
Error-correcting codes for short tandem duplications
and at most p substitutions

Yuanyuan Tang, Hao Lou, and Farzad Farnoud

Electrical & Computer Engineering, University of Virginia, U.S.A., {yt5tz,hl2nu,farzad}@virginia.edu

Abstract—Compared to conventional data storage media, DNA

has several advantages, including high data density, energy

efficiency, longevity, and ease of generating copies. However,

challenges arising from the prevalence and variety of errors

in the DNA data storage pipeline, which include substitutions,

duplications, insertions, and deletions, must be addressed. This

paper focuses on simultaneously correcting an arbitrary number

of short tandem duplications and at most p substitutions, where

a short tandem duplication error consists of inserting a copy of

a substring of length at most 3 immediately after it. Interacting

with tandem duplications, the substitutions may affect segments

of unbounded lengths in the stored sequence. However, if the

codewords are irreducible, i.e., they do not have any short tandem

repeats, the problem can be cast as correcting edits in at most

p substrings of bounded lengths. We construct irreducible codes

with a structure that allows identifying where edit errors have

occurred, which are then corrected using an MDS code. The

rate of the proposed code correcting duplications and at most

p substitutions, when log p = o(log n), is shown to be at least

log(q � 2)(1 � o(1)), where q is the alphabet size and n is the

length of the code.

I. INTRODUCTION

The exponentially increasing amount of data [1] poses
significant challenges for traditional data storage media. Due
to its high density, energy-efficiency, longevity, and ease of
generating copies [2], [3], DNA serves as an attractive alter-
native for addressing some of these challenges. For instance,
the amount of DNA in a single human cell can ideally
hold 12.8 Gb of information, and furthermore DNA may last
thousands of years [4]. However, DNA suffers from various
types of errors arising from different stages of data storage
and retrieval, including insertions, deletions, substitutions, and
duplications [2], [5]. Many recent works, including [3], [6]–
[19], design error-correcting codes to fight against these errors.
This paper focuses on constructing codes for simultaneously
correcting short tandem duplication and substitution errors.

A (tandem) duplication in a DNA sequence generates a copy
of a substring and inserts it after the original substring [3],
where the length of the duplication is the length of the copy.
For instance, CATCAG ! CATCATCAG is a tandem duplica-
tion of length 3, where the copy is marked with the underline.
In recent years, many works have studied both fixed-length
duplications [3], [7]–[9] and bounded-length duplications [3],

This work was supported in part by NSF grants under grant nos. 1816409
and 1755773.

[5], [20]–[23], where the length of fixed-length duplications
is a constant and the length of bounded-length duplications
is upper bounded. In particular, Jain et al. [3] presented a
code for correcting an arbitrary number of duplications of
length at most 3, also referred to as short duplications, and
Kovačević [20] showed that the code is asymptotically optimal.

A substitution in a string changes a symbol to another one
over the same alphabet. Previous works have studied error-
correcting codes for both restricted substitutions occurring
in duplication copies [9], [24] and unrestricted substitutions
[9], [22], [24], which may occur anywhere. In particular,
Tang et al. [22] constructed error-correcting codes to correct
an arbitrary number of short duplications and at most one
unrestricted substitution.

This paper focuses on constructing error-correcting codes
that can correct an arbitrary number of short duplications
and at most p unrestricted substitutions, extending [22]. For
example, given an input x = TGAC, several short duplications
and 2 substitutions may produce an output y from x via the
following sequence of errors: x = TGAC ! TGAGAC !
TGATGAGAC ! TGATCAGAC ! TGATCTCAGAC !
TGATCACAGAC ! TGATCATCACAGAC = y, where
inserted copies are underlined and the substituted symbols and
their copies are in bold and different colors. A challenge in
correcting duplication and substitution errors simultaneously
arises from the fact that a single substitution may be duplicated
many times and affect an arbitrarily long segment of the
output. However, it was shown in [22] that the effect of a
substitution and any number of duplications on the duplication
root of the sequence is equivalent to replacing a substring
of bounded length, where the duplication root is obtained by
replacing all repeats of the form vv, |v|  3 with v. Using this
fact, a code is constructed in [22] with repeat-free codewords
in which data blocks and “marker” sequences are interleaved.
If the marker sequences in the retrieved word are in their
original positions, only a small number of block substitutions
could have occurred. Otherwise, the markers can be used to
uniquely identify the position of the substring edit. In both
cases, an MDS code is used to correct the errors.

We show in this paper that multiple substitutions can be
viewed as replacing multiple substrings in the duplication
roots. However, unlike the case of a single substitution, even if
the markers are in their original positions, all data blocks may

have been substituted. To address this problem, we impose
additional structures on the codewords that will enable us
to localize the errors and characterize their effect on the
data blocks. We show that the rate of the proposed code
correcting any number of short tandem duplications and at
most p substitutions, when log p = o(log n), is at least
log(q�2)(1�o(1)), where q is the alphabet size and n is the
length of the code.

The paper is organized as follows. Section II introduces the
notation and relevant prior results. Section III analyzes error
patterns resulting from an arbitrary number of short duplica-
tions and at most p substitutions. Finally, code constructions
as well as the code size are provided in Section IV.

II. NOTATION AND PRELIMINARIES

For integers a, b with a  b, let [a, b] denote the set of
integers {a, a+ 1, . . . , b}. If a = 1, [a, b] is simplified as [b].
Given an integer b � 1, let a mod0 b be the integer in [b]
whose remainder when divided by b is the same as that of a.

Let ⌃q be a finite alphabet of size q. Without loss of
generality, we let ⌃q = {0, 1, 2, . . . , q � 1}. The set of all
strings of length n and all finite strings over ⌃q are denoted
as ⌃n

q
and ⌃⇤

q
, respectively. The empty string is denoted by ⇤

and is a member of ⌃⇤
q
.

In this paper, strings in ⌃⇤
q

are denoted by bold symbols or
capital letters, such as x, yj , and B. The plain typeface is used
to denote entries of strings, e.g., xi 2 ⌃q denotes the ith entry
of the string x. Let xy denote the concatenation of two strings
x and y for x,y 2 ⌃⇤

q
, and xm denote the concatenation of

m copies of x 2 ⌃⇤
q
. For four strings x,u,v,w 2 ⌃⇤

q
, v

is called a substring of x if x can be written as x = uvw.
Furthermore, let |x| denote the length of x.

A tandem duplication (TD) of length k (k-TD) generates
a copy of a substring with length k and inserts it after the
original substring, resulting in a (tandem) repeat. For example,
given x = uvw with |v| = k, a k-TD may generate uvvw
with the repeat vv. A deduplication of length k replaces a
repeat of the form vv with v, where |v| = k.

Let k-TDs denote TDs of length upper bounded by k. This
paper focuses on k-TDs with k = 3, also called short tandem

duplications. For instance, given a string x = 3101203 2 ⌃⇤
4,

the output after several 3-TDs may be

x =3101203 ! 31011203 ! 3101121203

!3101101121203 = x0,
(1)

where the inserted copies with length 3 are marked with
underlines. The output x0 is called a descendant of x, i.e.,
a sequence derived from x after a number of 3-TDs. For
x 2 ⌃⇤

q
, we let D⇤

k
(x) represent the descendant cone of x,

i.e., the set of all descendants of x after an arbitrary number
of k-TDs.

The set of  k-irreducible strings of length n, denoted
Irrk(n), consists of strings without repeats of the form
vv, where |v|  k. Furthermore, Irrk(⇤) represents all
irreducible strings of finite length. A duplication root of x
is a k-irreducible string r such that x is a descendant of

r. Equivalently, r can be obtained from x by performing
all possible deduplications of length at most k. The set
of duplication roots of x is denoted Rk(x). Note that
Rk(x) ✓ Irrk(⇤). For  3-TDs, the work [3] showed that
R3(x) has a single element. When R3(x) is a singleton,
we may treat it as a string rather than a set. The uniqueness
of the root for k = 3 implies that if x0 is a descendant of x,
then R3(x) = R3(x0).

In addition to short TDs, this paper considers substitution

errors. Let D⇤,p

k
(x) denote the set of sequences obtained

from x through an arbitrary number of k-TDs and at most
p substitutions. Following (1), two substitutions occurring in
x0 and an additional duplication may lead to x00 2 D⇤,2

k
(x):

x0 = 3101101121203 ! 3101201321203,

! x00 = 3101201201321203,

where the changes resulting from the two substituted symbols
are marked red.

For simplicity, when k = 3, we drop the 3 subscript and
write D⇤(·), R(·), Irr(·), and D⇤,p(x).

As we will see in the next section, the effect of duplications
and substitutions on the duplication roots can be viewed as
substring edits. Formally, a substring edit in a string w 2 ⌃⇤

q

is the operation of replacing a substring u with a string v,
where at least one of u,v is nonempty. The length of the
substring edit is max{|u|, |v|}. An L-substring edit is one
whose length is at most L. We note that since u and v can
be empty strings (although not simultaneously), a substring
edit can represent three types of error: deletion of a substring,
insertion of a substring, or substituting a substring with another
substring, possibly with different lengths.

III. CHANNELS WITH SHORT DUPLICATION AND
SUBSTITUTION ERRORS

In this section, we study channels with an arbitrary number
of 3-TDs and at most p substitutions and motivate our error-
correction approach.

First, we consider channels with only short duplication
errors (i.e.,  3-TDs). Let x and y 2 D⇤(x) denote the
input and output of the channel. Note that the duplication
root of x is also the duplication root of y. This fact, along
with the uniqueness of duplication roots for short duplications,
implies that the channel does not alter the duplication root.
This observation was used in [3] to propose using the set of
irreducible strings of length n as a code for correcting an
arbitrary number of duplications. This code was shown to be
asymptotically optimal by [20].

The problem of correcting short duplications and an addi-
tional substitution was studied in [22], [25]. There, motivated
by the use of roots for correcting duplication errors, the effect
of the substitution on the duplication roots was studied.

Theorem1. [25, Theorem 3] There exists a (minimal) positive

integer L such that for any x and y 2 D⇤,1(x), R(y) can

be obtained from R(x) through an L-substring edit.

It was shown in [25] that L  17. Note that a priori, it is
not clear that the effect of the substitution can be limited to a
short substring since the substituted symbol may be duplicated
as parts of substrings of different lengths an arbitrary number
of times.

For the channel with many short duplications and at most
p substitutions, we can prove the following result.

Theorem 2. For any x 2 ⌃⇤
and y 2 D⇤,p(x), R(y) can

be obtained from R(x) by at most p L-substring edit errors.

Proof: Consider the sequence of substitution and dupli-
cation errors that transform x into y. (Note that the errors
may occur in any order.) For i 2 [p], let yi be the sequence
obtained just after the ith substitution error. Furthermore, let
y0 = x and yp+1 = y. By Theorem 1, for i 2 [p], R(yi)
can be obtained from R(yi�1) via an L-substring edit. Also,
R(yp) = R(yp+1). Hence, R(y0) can be transformed into
R(yp+1) via p L-substring edits.

We next provide an example, demonstrating Theorem 2.

Example 3. Let the alphabet be ⌃4 = {0, 1, 2, 3} and p = 2.

We take the input x to be irreducible, i.e., R(x) = x. By

passing through the channel, x suffers multiple 3-TDs and

2 symbol substitutions, resulting in y 2 D⇤,2(x). We show the

difference between R(x) and R(y) for two possible input-

output pairs. Below, substrings added via duplication are

marked with underlines, while substituted symbols are red and

bold.

First, we provide an example where R(y) can be obtained

from R(x) via non-overlapping substring edits:

x = 3210313230121321,

y = 321320321031313213232121321321,

R(x) = 321|{z}
↵0

|{z}
�1

031|{z}
↵1

3230121| {z }
�2

321|{z}
↵2

,

R(y) = 321|{z}
↵0

320321| {z }
�0

1

031|{z}
↵1

|{z}
�0

2

321|{z}
↵2

,

where the errors are �1 = ⇤ ! �0
1 and �2 ! �0

2 = ⇤.

In the second case, the two edits overlap, leading to a single

substring substitution:

x = 132031230,

y = 132320321320321230230230,

R(x) = 13203| {z }
↵0

|{z}
�1

1230|{z}
↵1

R(y) = 13203| {z }
↵0

2132032| {z }
�0

1

1230|{z}
↵1

.

Generally, t overlapping L-substring edits result in a (tL)-
substring edit.

IV. ERROR-CORRECTING CODES

We showed in Theorem 2 that short TDs and substitutions
applied to strings manifest as L-substring edit errors on their
duplication roots. Using this fact, in this section, we construct
error-correcting codes that can correct an arbitrary number of

short TDs and at most p substitutions by correcting p L-
substring edits. We will also present the rate of the proposed
codes.

A. Code construction

To correct an arbitrary number of TDs and at most p symbol
substitutions, it suffices to construct error-correcting codes
over 3-irreducible strings that correct at most p L-substring
edits in the duplication roots of the codewords. Given that the
substring edits are bounded in length, similar to [22], we divide
the codewords into message blocks, separated by markers,
such that an L-substring edit only affects a limited number
of message blocks. In the case of p = 1 studied in [22], it
was shown that if the markers appear in the correct positions
in the retrieved word, then at most two of the message blocks
are substituted. For p > 1 however, even if all markers are in
the correct positions, all message blocks may be substituted,
making it challenging to correct more than one error.

We start by recalling an auxiliary construction from [22].

Construction 4. [22, Construction 3] Let l,m,N be positive

integers with m > l � 5 and � 2 Irr(l). Also, let Bm

�

denote the set of sequences B of length m such that �B�
is irreducible and has exactly two occurrences of �. Define

C� = {B1�B2� · · ·�BN : Bi 2 Bm

� }.

The irreducibility of �Bi� ensures that the codewords are
irreducible.

We denote the output of the channel by y. Define a block

in y as a maximal substring that does not overlap with any �.
Furthermore, define an m-block in y as a block with length
m. Note that m-blocks can be either message blocks in x or
new blocks created by substring edits.

Having divided each codeword into N message blocks and
N � 1 separators, we study in the next lemma how message
blocks are affected by the errors.

Lemma 5. Let x 2 C� , m > L, and y be generated from

x through at most p L-substring edits. Then there are less

than (N + p) m-blocks in y. Furthermore, there are at least

N�2p error-free m-blocks in y which appear in x in the same

order. More precisely, there are blocks Bi1 , Bi2 , . . . , Bik in y,

where k � N � 2p, each Bij is a message block in x, and

any two blocks Bij and Bij0 have the same relative order of

appearance in x and in y.

Proof: First suppose y has � (N + p) message blocks.
This implies that the length of y is at least (N + p)m+(N +
p�1)l, which is larger than the length of x by pm+(p�1)l.
But this is not possible as m > L and the total length of
inserted substrings is at most pL.

Furthermore, if m > L, each L-substring edit alters i) a
message block in x, ii) a message block and a marker �, or
iii) two message blocks and the marker between them. Hence
at least N�2p message blocks of x appear in y without being
changed.

If the positions of the error-free m-blocks described in
Lemma 5 in y were known, a Reed-Solomon (RS) code of

length N and dimension N � 2p could be used to recover
codewords in C� . This however is not the case since the
blocks can be shifted by substring edits. In order to determine
the positions of the error-free m-blocks, we introduce another
auxiliary construction based on Construction 4 by combining
message blocks as message groups, where the message blocks
in each group have different “colors”.

Construction 6. For an integer T , we partition Bm

� into T
parts Bm

� (j), j 2 [T]. The elements of Bm

� (j) are said to have

color j. Let N̂ , N , and T be integers such that N = TN̂ . We

define the code

C(�,T) =
�
B1�B2� · · ·BN 2 C� : Bi 2 Bm

� (i mod0 T)

,

where C� has parameters m, l with m > L > l � 5.

For x 2 C(�,T), we define the k-th message group Sk as

Sk = (B(k�1)T+1, . . . , BkT�1, BkT), k 2 [N̂]. Note that the

message blocks in each message group have colors 1, 2, . . . , T
in order.

For example, if N = 12, T = 3, N̂ = 4, then in a codeword

x = B1�B2�B3�B4�B5�B6� · · ·�B10�B11�B12,

the first group is (B1, B2, B3) and the second group is
(B4, B5, B6). Furthermore, message blocks in both groups
have colors (1, 2, 3). The colors in the message group will
help us identify the true position of the message blocks.

Definition 7. For x 2 C(�,T) and y derived from x through at

most p L-substring edits, let the i-th m-block in y be denoted

by B0
i
. A T -group in y is a substring B0

k+1�B
0
k+2 · · ·�B0

k+T

such that the m-block B0
k+j

has color j.

The next lemma characterizes how error-free message
groups (those that do not suffer any substring edits but may
be shifted) appear in y.

Lemma 8. Suppose x 2 C(�,T) and let y be obtained from

x through at most p L-substring edits. For r 2 [N̂], if the

r-th message group in x is not affected by any substring edit

errors, then it will appear as a T -group after b m-blocks in

y, where b 2 [(r � 1)T � 2p, (r � 1)T + p� 1].

Proof: Since m > L, each L-substring edit can affect
at most two message blocks and thus at most two message
groups. Hence, there are at least N̂ � 2p message groups that
do not suffer any substring edits.

Let the r-th message group Sr in x be free of substring
edits. Given that the colors of its message blocks are not
altered, it will appear as a T -group in y. Since each substring
edit alters at most two message blocks, among the (r � 1)T
message blocks appearing before Sr in x, at most 2p do
not appear in y. Furthermore, the substring edits add at
most pL to the length of x. Since m > L, this means
that at most p � 1 new m-blocks are created in y. Hence,
b 2 [(r � 1)T � 2p, (r � 1)T + p� 1].

The previous lemma guarantees the presence of error-free,
but possibly shifted, T -groups, and provides bounds on their

position in y. In the following theorem, we use these facts to
show that these T -groups can be synchronized and the errors
can be localized.

Theorem 9. Let C(�,T) be a code in Construction 6 and

suppose T � 3p and N̂ � 4p+1. There is a decoder D such

that, for any x 2 C(�,T) and y derived from x through at most

p L-substring edits, v = D(y) suffers at most t substitutions

and e erasures of message groups, where t+ e  2p.

Proof: We start by identifying all T -groups in y. Note
that no two T -groups can overlap. Let v = (S0

1, . . . , S
0
N̂
) be

the decoded vector, where S0
r

is the decoded version of the
message group Sr, determined as follows.

For r = 1, . . . , N̂ :
1) If there exists a T -group T appearing after b message

blocks such that b 2 [(r� 1)T � 2p, (r� 1)T + p� 1],
then let S0

r
= T .

2) If such a T -group does not exist, let S0
r
= ⇤, denoting

an erasure.
We note that for each r, at most one T -group may satisfy the
condition in 1). If two such T -groups exist appearing after
b and b0 message blocks, we must have |b � b0| � T and
b, b0 2 [(r�1)T �2p, (r�1)T +p�1], implying 3p�1 � T ,
which contradicts the assumption on T .

If a message group Sr is not subject to a substring edit,
then by Lemma 8, we have S0

r
= Sr. Otherwise, we may

have a substitution of that message group, i.e., S0
r
6= Sr, or

an erasure, S0
r
= ⇤. Since each substring edit may affect at

most 2 message groups, the total number of substitutions and
erasures is no more than 2p.

We now construct an MDS code that can correct the output
of the decoder of Theorem 9.

Construction 10. Let C(�,T) be the code in Construction 6

with parameters l,m, T, N̂ satisfying m > L > l � 5, T �
3p, and N̂ � 4p+ 1. Furthermore, assume |Bm

� (j)| � N̂ + 1
for j 2 [T]. Finally, let � be a positive integer such that

2�  N̂ + 1 < 2�+1
and ⇣j : F2� ! Bm

� (j) be a one-to-one

mapping for j 2 [T]. We define CMDS as

CMDS ={⇣1(c11)� · · ·�⇣j(cj1)� · · ·�⇣T (cT1)�
�⇣1(c

1
2)� · · ·�⇣j(cj2)� · · ·�⇣T (cT2)� · · ·

�⇣1(c
1
N̂
)� · · ·�⇣j(cj

N̂
)� · · ·�⇣T (cT

N̂
) :

{cj , j 2 [T]} ✓ MDS(N̂ , N̂ � 4p, 4p+ 1)},

where MDS(N̂ , N̂ � 4p, 4p + 1) denotes an MDS code over

F2� of length N̂ = 2� � 1, dimension N̂ � 4p, and minimum

Hamming distance dH = 4p+ 1.

For each j, we also define an inverse ⇣�1
j

for ⇣j . For
B 2 Bm

� (j), if � 2 F2� such that ⇣j(�) = B exists, then
let ⇣�1

j
(B) = �. Otherwise, let ⇣�1

j
(B) = 0.

Theorem 11. The error-correcting codes CMDS in Construc-

tion 10 can correct any number of 3-TDs and at most p
symbol substitutions.

Proof: Given a codeword x 2 CMDS , let x00 2 D⇤,p(x)
be obtained from x via any number of 3-TDs and at most
p symbol substitutions, and let y = R(x00). Note that by
construction, x is irreducible. Thus, by Theorem 2, y can
be obtained from x through at most p L-substring edits.
As CMDS ✓ C(�,T), based on Theorem 9, v = D(y)
such that at most t substitutions and e erasures of message
groups occur, where t + e  2p. Hence, for j 2 [T], the
blocks (⇣j(c

j

1), ⇣j(c
j

2), . . . , ⇣j(c
j

N̂
)) suffer at most 2p erasures

or substitutions. Consequently, if we apply ⇣�1
j

to the corre-
sponding retrieved blocks in v, the codeword (cj1, c

j

2, . . . , c
j

N̂
)

also suffers at most 2p substitutions or erasures, which can be
corrected using the MDS code.

We note that the decoding algorithm needs to identify the
color of sequences B 2 Bm

� . To do this efficiently, we consider
each part in the partition of Bm

� to be a contiguous block in
the lexicographically sorted list of the elements of Bm

� . Then,
with the knowledge of the first element of each part, we can
identify the color of a given B 2 Bm

� in log T time.

B. Code rate

In this subsection, we present choices for the parameters of
Construction 10 and discuss the rate of the resulting code.

Among the n symbols of each codeword in Construction 10,
4pTm + (N̂T � 1)l symbols belong to MDS parities or
markers. We choose for T and l to be their smallest possible
values and set T = 3p and l = 5.

The construction requires that |Bm

� (j)| � N̂+1 for all j. Let
M (m)

� = |Bm

� |. Dividing Bm

� into parts of nearly equal size,
we find that each part Bm

� (j) has size at least M (m)
� /T � 1.

We then choose N̂ + 1 as the largest power of two not larger
than M (m)

� /T�1, ensuring that N̂+1 � M (m)
� /(2T)�(1/2).

Assume
M (m)

� � 24p2 + 15p. (2)

Then N̂ + 1 � M (m)
� /(2T)� (1/2) � 4p+ 2.

Furthermore, note that N̂T (m+ 5)� 5 = n and thus N̂ =
n+5

(m+5)(3p) . The size of the code then becomes

|CMDS | = (N̂ + 1)(N̂�4p)(3p),

and

log |CMDS | �
✓

n

m+ 5
� 12p2

◆
log

M (m)

�

6p
� 1

2

!

�
✓

n

m+ 5
� 12p2

◆✓
logM (m)

� + log

✓
1

6p
� 1

2M (m)
�

◆◆

�
✓

n

m+ 5
� 12p2

◆⇣
logM (m)

� � log (6p+ 1)
⌘
, (3)

where in the last step we have used the fact that M (m)
� �

24p2 + 15p.
It was shown in [22] that M (m)

� � (q � 2)m�cq for some
�, where cq is a constant independent of m. In particular,
c3  13, c4  6, and cq  5 for q � 5. To satisfy (2), we
need

m � max{log
q�2(24p

2 + 15p) + cq,L+ 1}. (4)

Given a code C(n) with length n and the code size |C(n)|,
the code rate is defined as R(C(n)) = 1

n
log |C(n)|. From (3),

for the rate of CMDS ,

R(CMDS) �
✓
m� cq
m+ 5

� 12p2m

n

◆
log(q � 2)� log(6p+ 1)

m+ 5

�
✓
1� cq + 5

m+ 5
� 12p2m

n

◆
log(q � 2)� log(6p+ 1)

m+ 5
,

where m satisfies (4). For log p = o(log n), letting m =
⇥(log n), we find that the rate asymptotically satisfies

R(CMDS) � log(q � 2)(1� o(1))

We note that the rate of the code that only corrects duplications
is bounded above by log(q � 1).

REFERENCES

[1] D. Reinsel, J. Rydning, and J. Gantz, “Worldwide global datasphere
forecast, 2020–2024: The covid-19 data bump and the future of data
growth,” Int. Data Corp.(IDC), Framingham, MA, USA, Tech. Rep.

US44797920, 2020.
[2] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church,

“Terminator-free template-independent enzymatic DNA synthesis for
digital information storage,” Nature communications, vol. 10, no. 1, pp.
1–12, 2019.

[3] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Transac-

tions on Information Theory, vol. 63, no. 8, pp. 4996–5010, 2017.
[4] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and

O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans-

actions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230–248, 2015.

[5] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of ge-
nomic tandem duplication,” IEEE Transactions on Information Theory,
vol. 63, no. 10, pp. 6129–6138, 2017.

[6] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church,
“CRISPR–Cas encoding of a digital movie into the genomes of a
population of living bacteria,” Nature, vol. 547, no. 7663, pp. 345–349,
Jul. 2017.

[7] M. Kovačević and V. Y. Tan, “Asymptotically optimal codes correcting
fixed-length duplication errors in DNA storage systems,” IEEE Commu-

nications Letters, vol. 22, no. 11, pp. 2194–2197, 2018.
[8] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA

sequences with uniform tandem-duplication errors,” IEEE Transactions

on Information Theory, vol. 66, no. 5, pp. 2658–2668, 2020.
[9] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error

detection and correction for duplication and substitution channels,” IEEE

Transactions on Information Theory, vol. 66, no. 11, pp. 6908–6919,
2020.

[10] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over
sets for DNA storage,” IEEE Transactions on Information Theory,
vol. 66, no. 4, pp. 2331–2351, 2020.

[11] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Optimal
codes correcting a single indel/edit for DNA-based data storage,” arXiv

preprint arXiv:1910.06501, 2019.
[12] O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of

codes over symbol-pair read channels,” IEEE Transactions on Informa-

tion Theory, vol. 66, no. 3, pp. 1385–1395, 2020.
[13] A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and

E. Yaakobi, “Coding for efficient DNA synthesis,” in IEEE International

Symposium on Information Theory (ISIT). IEEE, 2020, pp. 2885–2890.
[14] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction

codes for polymer-based data storage,” in IEEE International Symposium

on Information Theory (ISIT), 2020, pp. 25–30.
[15] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized

writing rate in DNA storage,” in IEEE International Symposium on

Information Theory (ISIT), 2020, pp. 711–716.
[16] H. M. Kiah, T. Thanh Nguyen, and E. Yaakobi, “Coding for sequence

reconstruction for single edits,” in IEEE International Symposium on

Information Theory (ISIT), 2020, pp. 676–681.

[17] Y. Yehezkeally and M. Schwartz, “Uncertainty of reconstructing multiple
messages from uniform-tandem-duplication noise,” in IEEE Interna-

tional Symposium on Information Theory (ISIT), 2020, pp. 126–131.
[18] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Constrained

coding with error control for DNA-based data storage,” in IEEE Inter-

national Symposium on Information Theory (ISIT). IEEE, 2020, pp.
694–699.

[19] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-optimal codes for
DNA storage,” in IEEE International Symposium on Information Theory

(ISIT). IEEE, 2020, pp. 717–722.
[20] M. Kovačević, “Codes correcting all patterns of tandem-duplication

errors of maximum length 3,” arXiv preprint arXiv:1911.06561, 2019.
[21] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding

the confusability of words under tandem repeats in linear time,” ACM

Transactions on Algorithms (TALG), vol. 15, no. 3, pp. 1–22, 2019.
[22] Y. Tang and F. Farnoud, “Error-correcting codes for short tandem

duplication and substitution errors,” in IEEE International Symposium

on Information Theory (ISIT). IEEE, 2020, pp. 734–739.
[23] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Efficient en-

coding/decoding of gc-balanced codes correcting tandem duplications,”
IEEE Transactions on Information Theory, vol. 66, no. 8, pp. 4892–
4903, 2020.

[24] Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication
channels,” in 2019 57th Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2019, pp. 140–146.
[25] ——, “Error-correcting codes for short tandem duplication and substi-

tution errors,” arXiv preprint arXiv:2011.05896, 2020.

