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Abstract

The bulk of social neuroscience takes a ‘stimulus-brain’ approach, typically comparing brain responses to different types of
social stimuli, but most of the time in the absence of direct social interaction. Over the last two decades, a growing number
of researchers have adopted a ‘brain-to-brain’ approach, exploring similarities between brain patterns across participants
as a novel way to gain insight into the social brain. This methodological shift has facilitated the introduction of natural-
istic social stimuli into the study design (e.g. movies) and, crucially, has spurred the development of new tools to directly
study social interaction, both in controlled experimental settings and in more ecologically valid environments. Specifically,
‘hyperscanning’ setups, which allow the simultaneous recording of brain activity from two or more individuals during social
tasks, has gained popularity in recent years. However, currently, there is no agreed-upon approach to carry out such ‘inter-
brain connectivity analysis’, resulting in a scattered landscape of analysis techniques. To accommodate a growing demand
to standardize analysis approaches in this fast-growing research field, we have developed Hyperscanning Python Pipeline,
a comprehensive and easy open-source software package that allows (social) neuroscientists to carry-out and to interpret
inter-brain connectivity analyses.
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Fig. 1. Example of a hyperscanning application of the HyPyP toolbox for the study of dyadic social interactions. (A) Schematic representation of a hyperscanning setup
with two participants engaging in reciprocal social interaction. (B) Recordings are split in epochs across time, and brain signals are converted into connectivity matrices
containing both intra- and inter-brain connectivity measures. (C) By comparing groups of dyads or conditions, statistical modulation of the inter-brain connectivity

can be visualized (illustration generated using HyPyP. See section ‘Visualization’).

Introduction

Social cognition involves the integration of biological, behav-
ioral and social processes at both intra- and inter-individual
levels (Fairhurst and Dumas, 2019). Paradoxically, most of
social neuroscience research has investigated social cognition
in isolated individuals exposed to pre-recorded social stim-
uli, in the absence of any real-time interpersonal dynam-
ics (Hoehl and Markova, 2018). As a result, much remains
unknown about how the human brain supports dynamic social
interactions (Pfeiffer et al., 2013; Matusz et al., 2019). Neurosci-
entists recently developed new tools to directly study social
interaction, both in controlled experimental settings and in
more ecological valid environments (Hoehl and Markova, 2018;
Redcay and Schilbach, 2019; Figure 1A). Specifically, ‘hyper-
scanning’ setups are increasingly used to simultaneously record
brain activity from two or more individuals during social tasks
(Czeszumski et al., 2020) and to investigate the co-variations
in their brain activity related to their socio-behavioral interac-
tions (Dumas et al., 2011; Babiloni and Astolfi, 2014; Czeszum-
ski et al., 2020). Hyperscanning has been used to study neural
synchronization in a wide-range of social interaction contexts,
ranging from parent-infant gaze communication (Leong et al.,
2017) to teacher-students classroom interactions (Dikker et al.,
2017). However, there is currently no agreed-upon approach to
carry out such ‘inter-brain connectivity analysis’, resulting in a
scattered landscape of analysis techniques (Burgess, 2013). To
accommodate these growing demands of standardized analy-
sis approaches in a fast-growing research field, we developed
Hyperscanning Python Pipeline (HyPyP), a comprehensive and
easy to understand open-source software package that allows
(social) neuroscientists to carry-out and interpret a wide range of
inter-brain connectivity analyses. HyPyP can handle data from
groups of two or more participants, with data collected either in
a simultaneous hyperscanning recording context (Dumas et al.,
2011) or in a non-simultaneous setup (Dmochowski et al., 2014).
HyPyP encourages the community to share their analyses script
in open source and to provide supporting documentation for
each analysis measure to motivate its use to probe specific psy-
chologically relevant processes. As such, we hope to serve as a
platform where consensus can be reached within the research
community with respect to which analysis approach is best
suited for which research context.

From a stimulus-brain approach to a
brain-brain approach

Over the last two decades, social and cognitive neuroscience
research has increasingly moved towards more naturalistic
paradigms, using a variety of recording techniques includ-
ing functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG), magneto- encephalography and functional
near-infrared spectroscopy (fNIRS). This was initially triggered
by two needs: capturing the social brain in the context of
daily life and capturing how being actively engaged in inter-
action is different from passively processing social stimuli
(Hari and Kujala, 2009). Various, parallel, attempts were made to
tackle the challenge to study social interaction directly, empha-
sizing multiple sub-dimensions. Some researchers, for instance,
focused on the embodied and enactive aspects of social cogni-
tion (Thompson and Varela, 2001). Interactional dynamics are
then grounded in the bi-directional sensorimotor coupling of
people (De Jaegher et al., 2010); the dyad thus becomes a two-
body dynamical system (Dumas et al., 2011). Others emphasized
instead how our social cognition is fundamentally different in
the interactive context, even if the interaction is not reciprocal.
In other words, taking a second person perspective (Schilbach
etal., 2013) or acting in a we-mode (Gallotti and Frith, 2013)
changes our social brain. Interestingly, this delineates a two-
dimensional space with one axis denoting offline vs online social
cognition (Redcay and Schilbach, 2019), recognizing that one
can mentalize and engage in metacognition about others with-
out necessarily interacting in real-time with them (Sebanz et al.,
2006; Gallotti and Frith, 2013; Shea et al.,, 2014), and another
axis denoting the synchronized (i.e. symmetric) vs complemen-
tary (i.e. asymmetric) roles of people engaged in the interaction
(Dumas et al., 2010; Konvalinka et al., 2014).

Beyond this ‘interactive turn’, social neuroscience has also
followed a call for more naturalistic studies and ecological valid-
ity, to bring daily life into the lab, and even the lab into daily life
(Dikker et al., 2019). Various researchers in the past few years
have highlighted the need for such ‘real-world’ neuroscience
studies for a range of reasons, including (a) the need to test
the laboratory model of human social cognition in dynamic nat-
uralistic contexts, (b) to address questions that might not be
straightforwardly answered in a laboratory environment and
(c) to reach populations that might not otherwise be easily
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studied (Matusz et al., 2019; Shamay-Tsoory and Mendelsohn,
2019). This move toward conducting neuroscience research
in ‘real-world’ social settings has been made possible in part
by the development of wireless EEG devices (Debener et al.,
2012). Portable, affordable technology has enabled researchers
to record brain activity from people ‘in the wild’, ranging
from professional environments (Toppi et al., 2016), to artistic
contexts (Cruz-Garza et al,, 2017), and even inside classrooms
(Dikker et al., 2017; Bevilacqua et al., 2019). This move is also
supported by translational psychiatry where the social context
and the environment can strongly affect how patients behave
(Dumas et al., 2014; Bilek et al., 2017), especially for neurode-
velopmental disorders (Leong and Schilbach, 2019; Markova
et al., 2019).

Given these developments, it is no surprise that the hyper-
scanning technique (Montague etal., 2002) has gained con-
siderable popularity, revealing new challenges for the study
of interacting social brains (Konvalinka and Roepstorff, 2012;
Babiloni and Astolfi, 2014). The associated multi-brain neuro-
science mixed real-time hyperscanning studies—with focus on
social interaction—and post-recording multi-brain analyses—
with focus on naturalistic perception, e.g. neurocinema. First,
fMRI results demonstrated how the brain dynamics are indeed
different when humans are taking others into account in an
interactive context (King-Casas etal., 2005) and how social
dimension of natural stimuli tends to enhance similarity
between brains (Hasson etal.,, 2012). Hyperscanning studies
using either EEG or fNIRS studies then demonstrated how spe-
cific neuromarkers are associated with ongoing social coordi-
nation (Tognoli et al., 2007) and how a reciprocal interaction
with others could bring the similarity of brain patterns to syn-
chronization at the sub-second level (Dumas et al., 2010). These
observations have since then been extended to various social
tasks, even without any rhythmic coordination (Goldstein et al.,
2018), thus demonstrating that inter-brain connectivity may be
more than a signature of sensorimotor entrainment (Fairhurst
and Dumas, 2019). Inter-brain connectivity may also consti-
tute a marker of shared understanding (Schippers et al., 2010) or
cooperation (Astolfi et al., 2020), and studies moving from dyads
to groups also support how it is a robust signature of shared
attention (Dmochowski et al., 2014; Dikker et al., 2017). Inter-
brain connectivity is thus broader than hyperscanning, and the
HyPyP library aims at supporting its use not only for simultane-
ous recording (Hasson et al., 2012; Poulsen et al., 2017) but also
across a large range of measures. The HyPyP toolbox is illus-
trated in Figure 1. HyPyP tools can be used to perform multiple
analyses to explore neural synchronizations at both intra- and
inter-individual levels. These are discussed later in the overview
of functionalities.

Pipeline description
Software specifications

The HyPyP library provides a suite of Python tools to manip-
ulate hyperscanning data and inter-brain connectivity mea-
sures. Using a community-driven perspective, the code is
open source, licensed under a three-clause Berkeley Soft-
ware Distribution (BDS) license and editable at this address:
https://github.com/GHFC/HyPyP.

Running HyPyP requires Python 3.7 (or higher) with major
data science libraries, such as Scipy (Virtanen et al.,, 2020),
scikit-learn (Pedregosa et al., 2011), Pandas (McKinney, 2010) and
Matplotlib (Hunter, 2007). HyPyP also takes advantage of other

community-driven libraries, such as the MNE library (Gramfort
et al.,, 2013) for the handling of M/EEG signals and Autoreject
(Jas etal., 2016) for the pre-processing and rejection of arti-
facts. Lastly, some metrics supporting the connectivity mea-
sures also rely on the Astropy package (Collaboration et al., 2013;
Price-Whelan et al., 2018).

Overview of the functionalities

The HyPyP toolbox is designed to be integrated with MNE-Python
(Gramfort et al.,, 2013), a software package that enables com-
prehensive M/EEG data analysis at the intra-brain level. HyPyP
implements these analyses at an inter-brain level (Figure 1).
You can find the complete documentation with an applica-
tion programming interface description on ‘HyPyP Docs’ at
the link (https://hypyp.readthedocs.io). A detailed tutorial with
a toy-dataset is also available on the Github page (http://
github.com/GHFC/HyPyP) and illustrates what the current ver-
sion of HyPyP allows researchers in social neuroscience to do. It
especially covers the following analysis steps for multi-person
datasets (Figure 2):

Load raw data. Raw data files for each condition and partici-
pant need to be converted into epochs with the appropriate MNE
function before using HyPyP. Epochs are one of the most com-
mon ways to analyze EEG signals; the MNE ecosystem has a
dedicated object containing signals in a data array and all the
associated parameters information—such as channel names,
bad channels, frequency, sample frequency—in a metadata dic-
tionary. Below, we illustrate how to load epochs from an exam-
ple EEG dataset of two participants with the mne.read_epochs()
function.

# Loading data files

epochsl = mne.read_epochs(os.path.join(’..’,data’,
"participantl-epo.fif "), preload=True)

epochs2 = mne.read_epochs(os.path.join(’.., data’,
"participant2-epo.fif "), preload=True)

Pre-process data. HyPyP includes tools to automatically pre-
process data, but researchers are still strongly encouraged
to manually inspect data and determine the most appropri-
ate pre-processing strategy. Users can also import already
pre-processed data (from EEGLAB for exemple) and pro-
ceed directly to the analysis steps with HyPyP. [prep.ICA_fit,
prep.ICA_choice_comp, prep.AR _local] is an adaption of MNE-
Python (Gramfort et al., 2013) and Autoreject (Jas et al., 2016)
functions, taking epochs and returning them cleaned. This pro-
cess involves rejecting bad epochs, rejecting or interpolating
partially bad channels per participant, and then removing the
same channels and the same epochs across participants. Thus,
only channels and epochs that are ‘good’ for all the participants
are preserved. Independent component analysis (ICA) removal
is also matched between participants such that similar inde-
pendent components (ICs) are rejected across participants. To
improve decomposition quality (Winkler et al., 2015), the func-
tion filt removes slow drifts from raw data, then after epoching,
ICA_fit prepares the signals by computing a global rejection
threshold with Autoreject for bad channel rejection and pruning
of highly artifacted epochs, and fits an ICA on the remaining set
of epochs. ICA_choice_comp then plots ICs for each participant,
lets the user choose the relevant component used as model for
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Fig. 2. Analysis pipeline for EEG datasets in HyPyP. Steps shown in blue are module-specific, extending functionalities offered by the Python-MNE environment, in

coherence with the workflow.

artifact rejection and applies ICA on epoch. AR_local applies cleaned_epochs_ICA = prep.ICA_choice_comp(icas, epochs=

local Autoreject in the second step:

# high-pass filtering
filt_raws = prep.filt(raws=[raw1l, raw2]

[epochs1, epochs2])

This is followed by a prompt asking which participant should
be used as a template and which IC from this participant should
be used as a template.

# computing global AR and ICA on epochs
icas = prep.ICA_fit(epochs=[epochs1, epochs?], # Applying local AR for each participant rejecting bad epochs,
n_components=15, method="infomax’, fit_params=dict rejecting or interpolating partially bad channels per partici-

(extended=True),random_state=42)

# selecting components semi-automatically and remove them

pant, and removing the same bad channels and epochs across
participants.

cleaned_epochs_AR = prep.AR_local(cleaned_epochs_ICA, verbose
=True)



Merge/split data. [utils.merge] takes epochs from each partic-
ipant to align and merge them into a single data file (whether
participant data were recorded in one file or in separate files).
This is particularly important when users have loaded their data
into MNE and just want to concatenate multiple participants in
the same MNE structure. For creating a hyper-dataset combining
two recordings stored in epochs called epochs1 and epochs2, this
is as simple as:

hyper_epo = merge(epochs_Sl=epochsi, epochs_S2=epochs?2)

[utils.merge] also takes previously pre-processed recordings:
users can load data directly to visualize them (bad channels are
still taken into account).

Respectively, [utils.split] takes a single hyper-epoch with both
participants’ data merged and channel names indicating the
participants 1 & 2 with “_1” and “_2”, and split it into two
single-participant epochs:

epochs1, epochs2 = split(hyper_epo)

Data analysis. [analyses.pow] computes Welch power spec-
tral density (PSD) from pre-processed epochs. fmin and fmax
set the minimum (fmin) and maximum (fmax) frequencies
over which PSD is computed. The parameter n_fft states the
length of the fast Fourier transform (FFT), and n_per_seg states
the length of each Welch segment. The exact frequency bins
are calculated based on FFT parameters and are returned in
freq_list. Here is a guide for determining n_fft and n_per_seg:
when n_fft is None, n_per_seg determines the sample count
of each segment for computing the PSD. A longer segment
means higher frequency resolution and lower time resolution.
N_fft is used only if a zero-padded FFT is desired, and it has
to be bigger or equal to n_per_seg. The segment length for
FFT is thus n_per_seg if n_fft is None or n_fft if it is not. To
estimate the power in the frequencies of interest, the seg-
ment length should be set to at least four times the period
of the minimum frequency (e.g. if fmin is 4 Hz and the sam-
pling rate is 1000 Hz, n_per_seg should be at least 1000, i.e.
1 second long). The user can either average PSD values over
epochs (epochs_average = True) or preserve the complete time
course. In the example below, the frequency-band-of-interest is
restricted to Alpha_Low, frequencies for which PSD is actually
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computed are returned in freq_list and PSD values are averaged
across epochs:

psdl = analyses.pow(preproc_S1, fmin=7.5, fmax=11,
n_fft=1000, n_per_seg=1000, epochs_average=True)

psd2 = analyses.pow(preproc_S2, fmin=7.5, fmax=11,
n_fft=1000, n_per_seg=1000, epochs_average=True)

data_psd = np.array([psd1.psd, psd2.psd])

[analyses.compute_freq_bands] and [analyses.compute_sync]
take pre-processed epochs, the analytic signal, and return
different measures of inter-individual brain connectivity
(see Roadmap Table 2 for the metrics that are implemented). The
resulting matrix from the connectivity analysis is a matrix of
size (2 x channel count, 2 x channel count) and represents con-
nectivities between every pair of channels among the two par-
ticipants. Indexing the matrix yields four blocks of size (channel
count, channel count). Thus, two of the four blocks represent
inter-brain connectivities from participant A to B and from B to
A, and the other two represent intra-brain connectivity within
each individual, respectively (See Figure 1B). Most of the con-
nectivity metrics implemented are not directional, and therefore
the two inter-brain connectivity ‘blocks’ are exactly symmet-
rical. However, this is not true for causality measures (partial
directed coherence [PDC] and transfer entropy), where connec-
tivity from A to B and from B to A is different. Similarly to PSD,
the user can either average the connectivity values over epochs
(epochs_average = True) or preserve the complete time course.

First, the analytic signal per frequency band is computed,
after which frequency- and time-frequency-domain connectiv-
ity is calculated. In the example below, circular correlation
coefficient (‘ccorr’) is used. The results are then sliced to gen-
erate the inter-brain part of the matrix. This is exemplified
below using Alpha_Low (frequencies); Cohens’ D is computed
for further analyses.

complex_signal = analyses.compute_freq_bands
(data=[preproc_S1, preproc_S2], freq_bands)
result = analyses.compute_sync(complex_signal,
mode="ccorr’)
n_ch = len(epochs1l.info[’ch_names’])
theta, alpha_low, alpha_high, beta, gamma = result[:, O:n_ch,

n_ch:2*n_ch]
Table 2. HyPyP roadmap of the core features
Category Pipeline functionality HyPyP alpha HyPyP beta HyPyP release
Data type EEG/MEG v v v
Fnirs - - v
Pre-processing Load raw datasets v v v
Pre-process data v v v
Load previously pre-processed data v v v
Temporally align datasets v v v
Data analysis (see also Roadmap Table 3) Compute inter-brain connectivity v v v
Compute intra-brain connectivity v v v
Compute power spectral density v v v
Sources reconstruction - - v
Statistical analysis (See also Roadmap Table 4) Group-mean differences v v v
Integrate behavioral variables - v v
Integrate intra-brain analyses - v v
Integrate group analysis - - v
Visualization Visualize inter-brain connectivity v v v
Visualize intra-brain analysis - v v
Visualize group connectivity - - v
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Table 3. HyPyP roadmap of the analyses and visualization tools

Analysis & visualization

HyPyP alpha HyPyP beta HyPyP release

Contrast between two conditions (A vs. B)

Display statistical map

Simulated dataset

Integrate behavioral coding

Compare intra- & inter-individual metrics

Searchlight analysis connectivity x behavior

Frequency correlations

High-def visualization options

Meta-connectivity analysis

Integrate other continuous data (e.g. physiological, movement)

S N N NN

AU U U U N U U U U N

Table 4. HyPyP roadmap of the documentation

Documentation

HyPyP alpha HyPyP beta HyPyP release

Code documentation
Tutorial documentation
Detailed metrics documentation

Guidelines about psychological processes associated with inter-brain metrics -

RSN
RSN

A Condition or Group 1 B
Pair 1 Pair 2 Pair 3

OQ@ epoch 1 @@ epoch 1 ©@ epoch 1
Time{ OO epoch2 | [ @@ epoch2 | ... epoch 2
[ Owo.;poch n (])w.';e.poch n .-m..;poch n
Condition or Group 2
Pair 2 Pair 3

&4 epoch 1
«n. | #4@ epoch2
.-w."e.poch n

Pair 1

Within pair permutation
randomization across epochs

Between pairs permutation
randomization across pairs

Between condition permutation
randomization across condition or group

Fig. 3. Permutation statistics for inter-brain connectivity measures. (A) Schematic representation of a hyperscanning experimental design. (B) Example of null hypoth-
esis testing with permutation. Inter-brain connectivity measures are either calculated for the same participants but randomizing time or for fake pairs generated by
randomizing pairing of participants in the same condition/group or between the condition/group.

values = alpha_low
values -= np.diag(np.diag(values))
C = (values - np.mean(values|:])) / np.std(values][:])

This process can also be applied to intra-individual brain
connectivity to support single participant analysis. In addition,
the mode argument in the function can take different con-
nectivity measurements (see section ‘Inter-brain connectivity
measures’). This generates connectivity matrices for each epoch
(Figure 1B).

Similar to the inter-brain analyses, results are sliced to gen-
erate the intra-brain part of the matrix, exemplified here with
Alpha_Low and Cohens’ D.

foriin [0, 1]:
theta, alpha_low, alpha_high, beta, gamma = result[;, i:i+n_ch,
iii+n_ch]
values_intra = alpha_low
values_intra -= np.diag(np.diag(values_intra))
C_intra = (values_intra - np.mean(values_intra[:])) /
np.std(values_intral[:])

Cross-spectral density (CSD) values can also be sampled
directly for statistical analyses:

result_intra.append(C_intra)

Statistics. [stats.statsCond] and [stats.statscluster] are adapted
from MNE-Python statistical tests: a parametric t-test cor-
rected for multiple comparisons and a non-parametric cluster-
level statistical permutation test using a pre-defined thresh-
old (alpha), corrected with channel connectivity across space
and frequencies (freq_list, ch_con_freq). Both functions take
PSD, intra- or inter-individual brain connectivity measurements
(result or data) and return statistical values. Permutation tests
can be leveraged to test a number of null hypotheses, ranging
from modulation of inter-brain synchronization within dyads to
between groups of participants (Figure 3). Permutation makes
it possible to calculate connectivity measures either for the
same participants but randomizing time or for fake pairs gen-
erated by randomizing pairing of participants in either the same
condition/group or between the condition/group (Figure 3B).
Clustering allows reducing familywise errors due to multiple
comparisons by clustering neighboring quantities that exhibit



the same effect. The neighborhood is corrected by space (adja-
cent sensors over the scalp) and frequencies (adjacent frequency
bins). We use the test argument to define the nature of the test
used to compare groups or conditions. The test can be a t-test for
independent or paired samples (‘ind ttest’ or ‘rel ttest’), a one-
way ANOVA test (‘f oneway’) or a multiple-way ANOVA test (‘f
multipleway’) (if multiple-way ANOVA, the number of levels for
each factor is specified with the factor_level argument).

The HyPyP simple parametric t-test is based on the MNE
function stats.permutations_t_test() to which we added a false
discovery rate correction for multiple comparisons.

statsCondTuple =
stats.statsCond(data=data_psd,epochs=preproc_S1,
n_permutations=5000, alpha=0.05)

For non-parametric cluster-based permutations, we created
a matrix of a priori channel connectivity within individuals
based on the channels’ position. In HyPyP, the permutation test
can be used for comparing either two groups of PSD matrices
or two groups of inter-brain synchrony matrices. Note that for
both types of comparison, we are using the same matrix as adja-
cency prior, assuming both EEG were recorded with the same
montage. This means that in the case of inter-brain connec-
tivity matrix comparison, clusters of inter-brain connections
are counted based on the distance between their ends on each
brain according to the channel locations; in the case of PSD
matrix comparison, clusters are counted based on the channel
locations on one brain.

The following example is for comparing two groups’ PSD in
the Alpha Low band.

con_matrixTuple = stats.con_matrix(preproc_S1,
freqgs_mean=[7.5, 11])
ch_con_freq = con_matrixTuple.ch_con_freq

Below two fake groups are created for PSD comparison: one
with two instances of ‘participantl’ and the other with two
instances of ‘participant2’.

data_group = [np.array([psd1.psd, psd1l.psd]), np.array([psd2.psd,
psd2.psd])]

statscluster=stats.statscluster(data=data_group,

test=ind ttest, factor_level= None, ch_con_freq=scip.sparse.

bsr_matrix(ch_con_freq), tail=0, n_permutations=5000,

alpha=0.05)

The HyPyP non-parametric cluster-based permutations test
can also be used to compare intra-brain connectivity values
between participants. To that end, a matrix is created of a pri-
ori connectivity between channels across space and frequencies
based on their position.

con_matrixTuple = stats.con_matrix(epochs=preproc_S1,
freqs_mean= np.arange[7.5, 11],
draw=False)

Note that for inter-brain connectivity measures, the result-
ing frequency bins are every integer frequency between fmin
and fmax with a 1 Hz spectral resolution regardless of the data
structure because the FFT window parameters are adaptive.
For PSD, however, the resulting frequency bins are determined
based on the specific FFT window parameters and are returned
in ‘freq_list’. The spectral resolution may thus differ from 1 Hz
depending on the parameters.
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For CSD, values are averaged across each frequency, so you
do not need to take frequency into account to correct clusters.

ch_con = con_matrixTuple.ch_con

Here again, two fake groups are created with twice the
‘participantl’ and twice the ‘participant2’. Here we have, for
example, in the Alpha_Low band:

Alpha_low = [np.array([result_intra[0], result_intra[0]]),
np.array([result_intra[1], result_intra[1]])]
statscluster_intra = stats.statscluster(data=Alpha_Low,
test=ind ttest, factor_level= None,,
ch_con_freq = scipy.sparse.bsr_matrix(ch_con), tail=0,
n_permutations=5000, alpha=0.05)

Finally, intra-brain connectivity values can be compared to
a surrogate signal. For now, creating a surrogate signal has not
been implemented in HyPyP, but the user can compare intra-
connectivity between subjects. No a priori connectivity between
channels is considered between the two participants. In the
Alpha_Low band, for example (see earlier), two fake groups
are again created with twice the ‘participantl’ and twice the
‘participant2”:

data = [np.array([values, values]), np.array([result_intra[0],
result_intra[0]])]
statscluster = stats.statscluster(data=data, test=ind ttest,
factor_level = None,, ch_con_freq = None, tail=0,
n_permutations=5000, alpha=0.05)

Visualization. T values for statistical analyses can be visualized
for all channels or for significant channels only.
For example:

# visualize T values for channels for HyPyP parametric t test with
FDR correction
viz.plot_significant_sensors(T_obs_plot=statsCondTuple.T_obs,
epochs=preproc_S1)

# visualize T values for significant channel only for HyPyP para-
metric t test with FDR correction
viz.plot_significant_sensors(T_obs_plot=statsCondTuple.
T_obs_plot, epochs=preproc_S1)

Statistical modulation of the inter-brain connectivity can
also be visualized. [viz.viz_2D_topomap_inter, viz.viz_3D_inter]
take channel locations and the matrix of inter-individual brain
connectivity to visualize inter-brain links projected on either
2D topographic maps or 3D head models. Links are repre-
sented by 10th order Bezier curves; shape can be modulated
with the [steps] parameter. Only values over the user-defined
threshold are plotted. The sequential red color map is used
for positive connectivity values, the blue for negative. Line
thickness increases with the strength of the connectivity. Bad
channels are excluded after pre-processing and are displayed
on the visualization models with a cross (as opposed to the
points that are used for good channels) to clearly distinguish
between channels for which there was no significant inter-brain
link and channels that were excluded prior to analysis (see
Figure 1C for an example of 3D-visualization generated using
HyPyP).
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# Visualization of inter-brain connectivity in 2D
viz.viz_2D_topomap_inter(epochsl, epochs2, C, threshold=2,
steps=10, lab=True)

# Visualization of inter-brain connectivity in 3D
viz.viz_3D_inter(epochs1, epochs2, C, threshold=2, steps=10,
lab=False)

Inter-brain connectivity measures

To measure the connectivity between two signals, we can mea-
sure the similarity in their power, phase or both (Table 1).
Amplitude or envelope correlation (power correlation, enve-
lope correlation and projected power correlation [PPC]) esti-
mates power similarity. Phase synchrony (phase locking value
[PLV], phase locking index [PLI] and circular correlation [CCorr])
measures the phase similarity, while coherency-based met-
rics (coherence, wavelet coherence and imaginary coherence)
measure the similarity of both power and phase. Thus, the
choice of appropriate connectivity metric depends on the nature
of what the experimenter is interested in. For example, for
neural processes, the similarity between participants’ cogni-
tive states is better reflected in the amplitude or envelope cor-
relation because their dynamics are on a larger time scale.
For ongoing cognitive processing, with a finer-grained account
of neural content and timing, the phase synchrony measures
might be more relevant. Following existing hyperscanning stud-
ies and functional connectivity network studies, HyPyP natively
includes common measures of phase synchrony, power syn-
chrony, coherence-based connectivity and directed measures of
casualty or information transfer (Astolfi et al., 2007). We will con-
tinue adding and documenting measures on the HyPyP project
page (https://pypi.org/project/HyPyP/), with the ultimate goal of
formulating testable linking hypotheses between connectivity
metrics and psychological processes, as such promoting con-
sensus within the hyperscanning research field with regard to
analysis choices. Here, we briefly describe the core connectivity
measures that are implemented in HyPyP.

Although inter-brain connectivity metrics are often
grounded in functional connectivity measures used in single-
brain studies, the experimental design and under
lying mechanism differ significantly. Unlike intra-brain syn-
chrony, inter-brain synchronization is not driven by physical
connections between brain sources and cannot be explained
by information transfer through neuronal oscillations (Dumas
etal., 2012). In addition, hyperscanning studies sometimes
adopt a naturalistic paradigm without trigger-locking events.
These distinctions result in hyperscanning studies’ mixed
methodologies and complex functional interpretation of the
results.

Our toolbox addresses these different needs: HyPyP pro-
vides a variety of connectivity options, as mentioned earlier,
along with functionalities to explore and compare them. First,
when metrics are computed in the frequency domain, we calcu-
late them from the analytic signal instead of spectral densities,
which is more suited for nonstationary brain data in naturalistic
paradigms (Lowet et al., 2016). According to Lowet et al., phase
synchronization process is inherently non-stationary because
it comes with systematic frequency variations over time, but
the phase representation computed from cross-spectral den-
sity assumes stationarity. Estimating phase from the analytic
signal using Hilbert transform, on the other hand, generates
instantaneous phase representation, and thus does not assume

stationarity. Second, a connectivity matrix is calculated for
inter- and intra-brain channel pairs for all epochs (Figure 1B),
resulting in a space-time-frequency representation convenient
for data exploration. To facilitate a deeper understanding of the
metrics, we provide an example hyperscanning dataset to test
hyper-connectivities metrics. With regard to statistical tests, we
include a traditional t-test with possibility of multiple compar-
isons correction through cluster-based permutation test. Future
implementations will include correlation with behavioral cod-
ing, meta-analyses across different metrics and analyses of
variance combining groups and conditions. On top of these anal-
yses, we offer 2D and 3D visualizations of hyper-connections
between brains and we will implement an equivalent for con-
nectivity within brains.

Correlation and coherence are traditional linear methods to
estimate brain connectivity. Correlation coefficients of blood-
oxygen-level dependent signal (BOLD) signals in hyperscanning
fMRI studies have been found to characterize joint attention
(Koike et al., 2016) and increase during social context in cin-
ema (Hasson et al., 2004). Coherence, on the other hand, is more
commonly used in fNIRS and EEG studies. Wavelet coherence
is commonly employed in fNIRS hyperscanning studies, such
as to study cooperative and competitive behaviors (Cui et al.,
2012; Osaka et al., 2014), imitation (Holper et al., 2012), verbal
communication (Jiang et al.,, 2012; Jiang et al., 2015), decision-
making (Tang et al., 2016) and learning (Pan et al., 2018). In
EEG hyperscanning, coherence has been used to study class-
room social dynamics (Dikker et al., 2017). As an alternative, the
imaginary part of the coherence captures time-lagged synchro-
nization only, removing zero-lagged spurious synchronizations
caused by volume condition, i.e. only useful at the intra-brain
level (Nolte et al., 2004; Dikker et al., 2019).

Non-linear brain connectivity metrics are also implemented
in HyPyP, including versions of phase synchrony, power correla-
tion and causality measures. The most commonly used phase
synchrony measure is PLV, which was employed to estimate
synchronization in joint action (Dumas et al., 2010 2011), ver-
balinteraction (Perez Repetto et al., 2017), decision-making (Tang
et al., 2016) and other tasks. PLI is similar to PLV but designed
for events based experimental designs. It has been adopted
in a series of musical coordination studies (Lindenberger et al.,
2009; Sanger etal.,, 2012). CCorr measures the covariance of
phase variance between two data streams and is more robust
to coincidental synchrony (Burgess, 2013) compared to PLV or
PLI. CCorr has seen an increasing popularity and has been suc-
cessfully implemented in studies investigating touch (Goldstein
et al., 2018), learning (Bevilacqua et al., 2019) and language (Perez
Repetto et al., 2017).

Correlation between PSD and envelope in EEG data has long
been used in single-brain studies (Shaw, 1984; Guevara and
Corsi-Cabrera, 1996) and also adopted in hyperscanning (Zamm
et al., 2018). PPC, a version of power correlation between orthog-
onalized time series to discount spurious synchronization (Hipp
et al., 2012), has been found to be correlated with personality
traits in naturalistic interaction (Dikker et al., 2019).

Recent studies have advocated for establishing causal inter-
pretations of synchrony values (Dean and Dunsmuir, 2016). For
inferring causality in a multivariate dataset, there are autore-
gressive modeling and information-theoretic approaches, rep-
resented by Granger causality (GC) and transfer entropy (TE),
respectively. GC and TE are based on the predictive ability of one
series on the other’s future; they are equivalent under the Gaus-
sian distribution. In EEG studies, GC is often operationalized
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through partial directed coherence (PDC), the frequency-domain
method for GC. PDC has been found to be associated with altru-
istic or cooperative behaviors in hyperscanning studies (Fallani
et al.,, 2010; Astolfi et al.,, 2012; Toppi et al., 2016; Ciaramidaro
et al., 2018). Compared to GC, TE does not require a model and is
thus more sensitive to nonlinear interactions (Schreiber, 2000).
Its application in EEG hyperscanning was proposed by some
groups (Liu and Pelowski, 2014) but has not yet been explored
much.
Here is a list of short definitions of each metric:

e Coherence: the squared magnitude of cross-spectral
density between x and y, divided by the autospectral
density of x and y, respectively.

e Imaginary coherence: the absolute value of the imagi-
nary part of the coherence.

e Wavelet coherence: the cross-correlation between
two signals as a function of frequency and time,
detecting time-localized synchrony in nonstationary
signals.

e Envelope correlation: Pearson correlation between the
envelope of two signals.

e Power correlation: Pearson correlation between the
power of two signals.

e PPC: Pearson correlation between the signal envelopes
after the projection of one signal on the other has been
removed.

e CCorr: Pearson correlation between the angle values of
two signals.

e PLV: variability of the phase difference between two sig-
nals over time.

e Phaselagindex: the amount of asymmetry of the relative
phase distribution (Aydore et al., 2013).

e PDC (GC in the frequency domain): the amount of spec-
tral information in the future of y that can be predicted
from the past of x.

e TE: equivalent to GC under the Gaussian distribution,
can better handle non-linearity.

Roadmap

To our knowledge, HyPyP is the first comprehensive toolbox
dedicated to quantifying brain connectivity across multiple par-
ticipants. Tables 2—4 list the roadmap for HyPyP iterations. These
roadmaps are subject to change and are actively maintained on
the HyPyP project page (pypi.org/project/HyPyP).

We aim to integrate the study of behavioral variables from
inter to intra-brain level and extend statistical and visualiza-
tion functions to group analyses. Also, taking advantage of
MNE source level functionality, we aim to integrate source-
level hyperscanning to complement our channel-level visual-
ization. In addition to streamlining and implementing these
functionalities (listed in Tables 2-4), we will continue releas-
ing documentation around the pipeline, including documented
code, tutorial materials and guidelines for linking hypothe-
ses between connectivity metrics and psychological processes.
The toolbox is designed with consideration for the complexity
and multi-dimensionality of hyperscanning studies. By incor-
porating the time course, behavioral data and meta-analyses,
we hope the toolbox can support the discovery of functional
and behavioral correlates of connectivity metrics in multi-brain
studies.
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Conclusion

The HyPyP is an analysis toolbox designed to support (social)
neuroscientists interested in comparing brain data across two
or more participants. It already integrates the core tools to
run inter-brain connectivity measures from pre-processing to
visualization and will continue to be improved upon in a
community-driven fashion. The specific tools provided in HyPyP
will facilitate standardized inter-individual neurophysiological
analyses to support scientific progress and replicability in social
neuroscience research.
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