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ABSTRACT

Access to electricity positively correlates with many benefi-
cial socioeconomic outcomes in the developing world includ-
ing improvements in education, health, and poverty. Efficient
planning for electricity access requires information on the lo-
cation of existing electric transmission and distribution infras-
tructure; however, the data on existing infrastructure is often
unavailable or expensive. We propose a deep learning based
method to automatically detect electric transmission infras-
tructure from aerial imagery and quantify those results with
traditional object detection performance metrics. In addition,
we explore two challenges to applying these techniques at
scale: (1) how models trained on particular geographies gen-
eralize to other locations and (2) how the spatial resolution
of imagery impacts infrastructure detection accuracy. Our
approach results in object detection performance with an F1
score of 0.53 (0.47 precision and 0.60 recall). Using training
data that includes more diverse geographies improves perfor-
mance across the 4 geographies that we examined. Image
resolution significantly impacts object detection performance
and decreases precipitously as the image resolution decreases.

Index Terms— Electricity infrastructure, power trans-
mission and distribution, aerial image, computer vision, ob-
ject detection

1. INTRODUCTION

Over 11% of the global population lacks access to electric-
ity. This lack of access is largely concentrated in the devel-
oping nations of Sub-Saharan Africa and Southeast Asia [1].
Studies show that electricity access positively correlates with
improved economic, educational, and health outcomes [2], so
identifying cost-effective pathways to electrification is impor-
tant. However, this process requires data on existing electric-
ity infrastructure, which is often unavailable or expensive.
One way to fill this information gap without requiring a
huge amount of human labor is to automatically extract elec-
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tricity infrastructure from aerial or satellite imagery. Past re-
search on aerial imagery has focused on diverse topics includ-
ing the classification of land use [3], building detection [4],
and the segmentation of road networks [5].

Two notable studies investigated aspects of mapping
transmission and distribution lines in satellite imagery. De-
velopment Seed used machine learning to augment human
tracing of high voltage transmission lines [6] in Pakistan,
Nigeria, and Zambia. While effective, this approach re-
quires substantial human labor. Rohrer, et al. from Facebook
Research developed an automated approach to estimate the
location of medium voltage distribution lines from indirect in-
dicators of electricity infrastructure, including lights at night
data, MODIS landcover data, and OpenStreetMap highways
data [7]. Rohrer, et al. use a probabilistic model they name
“Pathfinder” that uses a many-to-many variant of the Dijkstra
shortest distance algorithm to identify the most likely loca-
tion of distribution lines. Recently, Arderne, et al. used this
“Pathfinder” model to generate a composite map of the global
power grid which showed a predictive accuracy of 75% for
15x 15 km predictions on a validation set of 14 countries
[8]. Performance increased as the size of the evaluation grid
cell increased and decreased as the grid cell resolution was
decreased. In contrast to past work, we propose applying
object detection tools to automatically detect the locations
of electricity infrastructure from aerial imagery without a
human-in-the-loop and through direct observation of high
resolution visible spectrum imagery. We focus on correctly
identifying the precise location of the transmission towers
(performing validation to ensure detections are within 10 m
instead of kilometer-scale evaluations).

Object detection methods are computer vision techniques
that identify discrete objects within images. Modern object
detection methods are based on convolutional neural net-
works (CNNs), which enable automatic feature extraction,
hierarchical and high-dimensional feature representation,
joint optimization with several other tasks [9].

In this paper, we explore three CNN-based object detec-

IGARSS 2020

Authorized licensed use limited to: Duke University. Downloaded on September 28,2021 at 21:15:42 UTC from IEEE Xplore. Restrictions apply.



tion architectures to build a model that automatically detects
electricity infrastructure in satellite imagery. Furthermore,
we examine two specific challenges that arise when apply-
ing these techniques at scale. (1) First, we explore the impact
of applying object detection techniques across diverse loca-
tions around the world. We train transmission infrastructure
detection models on four distinct geographic types (deserts,
plains, forests, and suburban settings) and evaluate how well
each model generalizes to the other geographic types. (2)
Second, we investigate how image resolution affects model
performance. The higher the resolution of satellite imagery,
the greater the cost of the imagery. Intuitively, we expect that
higher resolution imagery will allow for better object detec-
tion performance. We seek to identify the lowest resolution
at which identifying transmission lines may still yield accept-
able performance to determine the data requirements of this
problem.

2. DATASET DESCRIPTION

Imagery used in this work is obtained from the Electric Trans-
mission and Distribution Infrastructure Imagery Dataset [10].
The dataset contains RGB aerial imagery with annotated
transmission and distribution infrastructure. The dataset cov-
ers 14 cities and 5 continents, and encapsulates the diversity
in human settlement density and terrain type. For exper-
iments in this paper, a subset of the dataset was selected
including imagery collected from 4 US states: Arizona (AZ),
Connecticut (CT), Kansas (KS), and North Carolina (NC).
The 4 selected US states represent 4 diverse geographies,
namely deserts, suburbs, plains, and forests, respectively.
Annotations associated with the imagery indicate the type of
electricity infrastructure (transmission or distribution tower)
and image-wise xy coordinates of infrastructure objects. The
imagery used in this work has a spatial resolution of 0.15 m
per pixel and each image file (or tile) is 10, 000 x 10, 000 pix-
els. Examples of selected images and associated annotations
are shown in Fig. la.

3. METHODS

Our work focuses on identifying the transmission and distri-
bution towers/poles in satellite imagery. To identify these ob-
jects, we explore three CNN-based object detection models,
Faster R-CNN [11], YOLOv2 [12], and RetinaNet [13]. All
models are pre-trained on ImageNet and use augmentation
techniques recommended by the authors of the correspond-
ing methods; for YOLOvV2 augmentation included random
crops, rotations, and hue, saturation, and exposure shifts and
for RetinaNet random horizontal flips. For Faster R-CNN,
as no recommendations were provided by the author we in-
vestigated common augmentation techniques and compared
their performance, selecting the best performing option: ran-
dom horizontal flips. All models take images as inputs and

output detected objects in the form of bounding box coordi-
nates. Each 10,000 x 10,000 pixel image tile in the dataset
is cropped into smaller image patches that are 512 x 512 pix-
els and then used as the input during training and testing. We
use 25% edge overlap for neighboring patches to account for
potential information loss at the edges of image patches.
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Fig. 1. (a) Example images and associated annotations from
the dataset of transmission and distribution infrastructure. (b)
Examples of how true positive, false negative, and false posi-
tive predictions are scored.

To score our predictions, we declare an object detected
by the object detection model to be a true positive if its lo-
cation falls within a radius of 10 m (approximately equiva-
lent to 66 pixels for 0.15 m resolution imagery) of the ground
truth transmission/distribution tower, otherwise it is declared
a false positive. Using this scoring method, and varying the
confidence threshold for declaring a detection, we construct
precision-recall (PR) curves and calculate F1 scores for eval-
uating performance. Precision is the ratio of true positives to
all detections labeled positive while recall is the proportion of
objects correctly detected. An F1 score is the harmonic mean
of precision and recall. In these experiments, while there are
two separate classes for transmission and distribution towers
in the dataset and during training, we combine those into one
class during testing to evaluate the algorithm’s overall ability
to identify transmission and distribution infrastructure.

4. EXPERIMENTS AND RESULTS

4.1. Electricity infrastructure detection

With each of the 3 object detection architectures mentioned
in Section 3, we trained a model on 0.15 m resolution aerial
imagery from Arizona (AZ), Connecticut (CT), Kansas (KS),
and North Carolina (NC). We use a 75-25 image-level train-
test split before any further pre-processing is performed, to
ensure that the training and test datasets do not overlap. This
training and testing strategy also serves as a baseline strategy
for the other two experiments in this work.

PR curves of three trained object detection architectures
are shown in Fig. 2.RetinaNet achieves the best overall per-
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formance with a maximum F1 score of 0.53. Therefore, we
use RetinaNet, the best performing architecture on 0.15 m res-
olution imagery, as the model of choice in the experiments
that follow.
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Fig. 2. Transmission/distribution object detection perfor-
mance trained and tested on 0.15 m resolution imagery.

4.2. Generalizability across diverse geographies

Our method would be most beneficial if it could be applied
anywhere in the world, but geographies differ significantly
across locations. This experiment explores the impact of
training on data from different geographies. To investigate
model generalizability across geographies, we first trained
the RetinaNet model on only one geography (AZ, CT, KS,
NC) then tested on each of those 4 geographies. Then we
trained on the union of the training data from each of the
four geographies, which we label the "ALL” set and tested
on each of the 4 geographies.

Our results (shown in Fig. 3) showed that the model
trained on the "ALL” set was generally the best performing
one. The local models, whose training and testing data orig-
inated from the same region, showed similar performance
compared to the union model. Other models whose training
location are different from the testing location performed
significantly worse than the models whose training data was
from the same region as the test data and also worse than the
more diverse "ALL” training dataset.

These results indicate that a model’s object detection per-
formance is heavily impacted by its training geographies. A
model tends to perform well on geographies that it’s seen
while diverse training geographies may potentially result in
even better performance. While additional efforts are always
required to acquire labeled imagery for a new geography, us-
ing such imagery for fine-tuning is likely to yield better per-
formance on the new geography.

4.3. Impact of imagery resolution

Another challenge in satellite and aerial imagery analysis is
that imagery resolution varies from 0.15 m resolution (e.g.
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Fig. 3. Transmission/distribution object detection perfor-
mance of RetinaNet trained and tested across diverse geo-
graphical locations. Lines labeled with training geography.

proprietary aerial imagery) to 10 m or lower resolution (e.g.
publicly available Sentinel satellite imagery). Higher resolu-
tion imagery is richer in details; however, it’s generally lim-
ited in availability and greater in cost. Therefore, we investi-
gate the impact of spatial resolution on object detection per-
formance.

We downsample the 0.15 m per pixel images in our train-
ing and test set from AZ to create 0.3 m, 0.5 m, and 1 m per
pixel resolution images (examples shown in Fig. 4a).

The results showed that model performance declined sig-
nificantly as the resolution decreased. When the resolution
decreased to 0.3 m, the highest recall that the model could
achieve was around 0.6 while achieving a high precision
around 0.8, which was much worse than the model trained
on the original resolution but it still showed acceptable per-
formance. For imagery with 0.5 m or coarser resolution, the
models showed much lower recall (below 0.2) which means
the majority of objects of interest were not detected. These
results indicate that a resolution of 0.3m would be required
for identifying transmission and distribution towers/poles.

5. CONCLUSIONS

This work introduced a deep learning object detection ap-
proach to mapping electricity infrastructure in satellite and
aerial imagery from 4 diverse U.S. states. This approach to
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Fig. 4. (a) Example imagery with resolution varied from 0.15
m to 1.00 m per pixel; (b) Object detection performance of
RetinaNet trained and tested on imagery of each resolution

transmission identification is fully-automated without a hu-
man in the loop. It relies on the direct observation of infras-
tructure in overhead imagery data for precise determination of
infrastructure locations within 10 m of the true location rather
than through lower-resolution proxies such as lights at night
data. Of the models we considered, RetinaNet performed the
best, achieving a maximum F1 score of 0.53. Geographic rep-
resentativeness and diversity of the training data with respect
to the test data were demonstrated to be vital factors for detec-
tion performance: model performance on previously unseen
geographies is significantly worse than for either the case of
training on data from the same geography or from a mixture
of diverse geographies. Lastly, for reasonable infrastructure
detection performance, the resolution of the imagery needs
to be at least 0.3m to be able to detect half of the transmis-
sion and distribution lines. Of course, the connectivity of the
lines and their inherent spatial resolution may be able to fill in
missed detections, and that will be explored in future work.
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