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H I G H L I G H T S  

• Building energy consumption is predicted from overhead imagery alone. 
• Buildings are detected and classified by type using deep learning. 
• Predict individual building energy consumption explaining 28% of variance. 
• Small amounts of spatial aggregation explain 91% of variance in predicted energy. 
• Model demonstrated at a practical scale in two locations in the United States.  
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A B S T R A C T   

Residential buildings account for a large proportion of global energy consumption in both low- and high- income 
countries. Efficient planning to meet building energy needs while increasing operational, economic, and envi
ronmental efficiency requires accurate, high spatial resolution information on energy consumption. Such in
formation is difficult to acquire and most models for estimating residential building energy consumption require 
detailed knowledge of individual homes and communities which are unlikely to be available at a large scale. 

To address this need, we introduce a methodology for automatically estimating individual building energy 
consumption from overhead imagery (e.g. satellite, aerial) and demonstrate the effect of spatial aggregation for 
further improving accuracy. We use a three-step estimation process by which we (1) automatically segment 
buildings in overhead imagery using a convolutional neural network and classify them by type (residential or 
commercial), (2) extract features (e.g. area, perimeter, building density) from those identified residential 
buildings, and (3) use random forests regression to estimate building energy consumption from those features. 

The predictive capability of this approach is evaluated in two locations: Gainesville, Florida, and San Diego, 
California. The building detector correctly identifies 84% and 88% of buildings in Gainesville and San Diego, 
respectively. The type of building is classified successfully 99% of the time for residential buildings and 74% of 
the time for commercial buildings. With residential buildings identified, this approach predicted individual 
building-level energy consumption with an R2 of 0.28 and 0.38 for Gainesville and San Diego, respectively. 
Aggregating the energy consumption estimates across small neighborhoods of size 200 × 200 m and 1000 ×

1000 m in Gainesville results in an R2 of 0.91 and 0.97, respectively. We also explore the sensitivity of estimates 
in San Diego and Gainesville to the training data and its size. Our results suggest that using overhead imagery to 
estimate the size of buildings has a higher predictive power in estimating residential building energy con
sumption than common alternatives.   
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1. Introduction 

1.1. The need for residential building energy consumption information 

Buildings account for more than one third of global energy con
sumption [1]. In the United States and the European Union, buildings 
account for more than 40% of energy consumption [2]. In the United 
States, buildings constitute more than 72% of electricity consumption 
[3]. Behind these figures is an unprecedented, decades-long trend to
ward urbanization driven by both rapid population growth and a 
migration from rural settings to cities. 

Urbanization has driven economic development (and vice versa) but 
these twin trends also result in greater energy consumption and green
house gas emissions. In 2008, only half the world’s population lived in 
urban areas, but they were responsible for two-thirds of the world’s 
energy consumption. By 2030, nearly three-fourths of the world’s pop
ulation is projected to live in urban areas [3]. At that point, the United 
Nations estimates the number of city-dwellers worldwide will grow at a 
rate of two million people per week. That astounding growth can be 
managed with careful planning, but if urbanization continues on a 
mostly ad hoc basis, environmental and social consequences could be 
severe [4]. 

While national and international policies will have a role to play in 
addressing greenhouse gas emissions, cities—where sustainable infra
structure and policy measures find their most immediate implementa
tion—may be in the best position to curb local emissions and energy 
consumption, including that of buildings. 

However, for policymakers to act meaningfully to curb energy con
sumption, including building-level energy consumption, they first need 
accurate, actionable data. Detailed building-level energy-use data has 
many policy and technological applications. For example, researchers 
have recently investigated the relationship between energy use (e.g., 
building consumption), economic indicators [5], and climate change 
[6]; architects and engineers develop ‘zero-energy building’ technolo
gies aspiring to bring us closer to sustainable growth [2]; and advanced 
energy use forecasting models offer electricity producers and manufac
turers opportunities for cost savings and prudent investments in energy 
infrastructure. 

Individual utility companies have billing data that con
tains measurements of building energy consumption. Those data are 
largely unavailable to the research and policy community and typically 
the only option for accessing them is through non-disclosure agree
ments, and those are often rare. The California Public Utilities Com
mission, for instance, has a mechanism for disclosure of energy usage 
data for approved research, but discloser of the data requires that the 
individual customer energy data be aggregated to a level with at least 
100 consumers per observation [7]. 

Energy data that are available often have their limitations. The 
largest of which are either location-anonymized, such as the Residential 
Energy Consumption Survey (RECS) [8] or the Pecan Street Data
port dataset [9]. Others are limited in coverage area such as Gainesville 
Green which only includes Gainesville, Florida, [10] or one of the many 
non-intrusive load monitoring (NILM) datasets (REDD [11], BLUED 
[12], PLAID [13], GREEND [14], AMPds [15], Tracebase [16], UKDale 
[17]) that only include a handful of homes each. For addressing 
research and policy questions in a specific neighborhood or region, 
these existing datasets, alone, will not provide adequate information, 
but need to be supplemented with information specific to the study 
region. 

Estimation of energy consumption is one way to overcome these data 
access limitations. Current state-of-the-art models estimating building 
energy consumption, however, rely on data that is costly or even 
impossible to collect at a large scale such as household income, dwelling 
characteristics and occupant consumption behavior patterns. This pro
duces a gap between the demand for building energy consumption data 
(actual or estimated) and the supply. To fill this gap, we propose a 

method for estimating individual building energy consumption auto
matically from satellite or aerial (collectively, overhead) imagery data. 
It is impractical for human analysts to manually extract this information 
from large volumes of overhead imagery, and therefore we employ 
computer vision techniques to automatically extract the footprint of in
dividual buildings, and then estimate their energy consumption. To our 
knowledge, this is the first study to directly use overhead imagery to 
estimate individual residential building energy consumption, poten
tially offering a powerful new tool for scalable and cost-effective data 
collection. However, this approach builds on a number of previous 
studies investigating methods for accurately estimating the energy 
consumption of buildings. 

1.2. Previous work on estimating building-level energy consumption 

Past work on building energy consumption estimation can broadly be 
divided up into two categories: physical models and regression models, 
with hybrid methods possible that combine both physical and statistical 
techniques [18]. Most of the existing building energy estimation meth
odologies require substantial amounts of data on each building to make 
effective estimates of energy consumption. 

Physical models. One approach to analyzing the energy consump
tion of buildings is through the use of physical modeling and simulation 
techniques. Most physical models focus on analyzing thermal flows and 
are based on computational fluid dynamic (CFD), zonal and/or multi
zonal (nodal) models. Seminal works in this space include Clarke (2007) 
[19] and Underwood and Yik (2008) [20], which present wide-ranging 
discussions of these approaches. In the field of building energy con
sumption, thermal modelling is typically used together with a building 
energy model to simulate energy consumption, such as EnergyPlus [21]. 
CFD models describe thermal transfer in a building by producing a 
detailed description of thermal flows. This approach comes at a large 
computational cost and information requirement about the building and 
its materials. In the context of building energy consumption, these ap
proaches have been applied for large rooms [22], predicting cooling and 
heating demand in an office [23], and improving overheating prediction 
through coupling CFD with a building energy simulation model, 
TRNSYS, for a typical Belgian two-story house [24]. Zonal and multizonal 
models divide rooms into several cells and solve physical equations for 
each cell. The focus of much of this work is on thermal comfort [25] and 
energy consumption estimation for buildings [26]. Multizonal ap
proaches have been used to simulate building thermal behavior with 
each building component modeled as a separate node [27] and to model 
indoor air temperature in office buildings [28]. Olsen et al compare 
cooling systems using EnergyPlus in a nodal framework to evaluate 
energy savings potential for a newly built house in the UK [29]. Phan 
et al. develop a multi-zone modeling strategy for a data center housing 
1,120 servers comparing energy performance between warm and cold 
climates [30]. Yang et al. combine a microclimate model ENVI-met with 
EnergyPlus to analyze the effects of different microclimatic factors on 
the energy balance of an individual urban building [31]. Scientists are 
also actively working on improving the quality of building energy con
sumption models. For instance, Dols et al couple EnergyPlus with 
CONTAM, a commonly used multizone building airflow simulation tool, 
aiming to capture the interdependencies between airflow and heat 
transfer [32]. 

Physical models, with the ability to attain unparalleled levels of 
modeling detail also require extensive information about each individ
ual building, in some cases requiring a complete floorplan and inventory 
of building materials. These models may excel at making precise esti
mates but are not generally designed for large-scale implementation 
across many buildings in a region. 

Regression models. Machine learning (or statistical learning) 
models that perform regression to estimate building-level energy con
sumption may be further subdivided into two subcategories: those that 
take a top-down approach (start with an estimate for the whole city/ 

A. Streltsov et al.                                                                                                                                                                                                                                



Applied Energy 280 (2020) 116018

3

region and disaggregate as needed) and those that take a bottom-up 
approach (start with an individual building estimate and aggregate up to 
a larger region) [33]. Top-down models often treat groups of buildings 
as a single energy-consuming collective, disregarding differences among 
individual buildings. Bottom-up models, on the other hand, focus on 
individual buildings and energy uses within buildings. Those energy 
estimates can then be aggregated upward. Li et al. review both ap
proaches as well as variations within those approaches, advantages and 
disadvantages of each, and present an overview of the contemporary 
studies subscribing to each method [3]. 

The advantages of a top-down model for estimating building-level 
energy consumption are that this approach does not require the 
modeler to know buildings’ actual energy consumption. In fact, this 
approach only requires limited input information, often with aggregated 
economic data, and may consider long-term economic effects. This 
approach does pose limitations, however. Modelers need long term 
historical data describing energy use, and the model’s output relies upon 
those past relationships between economic factors and energy use. For 
deriving building-level energy consumption estimates, this typically 
amounts to using an average value or a weighted average of energy 
consumption for the region for each building without taking into ac
count individual building attributes [34]. 

Bottom-up approaches may employ statistical models or physics- 
based models. Statistical models simulate energy use at the level of 
specific buildings, so variations among individual buildings are 
considered. However, this approach requires billing, weather, or survey 
data, plus a larger number of sampling subjects, and the output relies 
highly on historical energy consumption trends. Physics-based models 
simulate energy use at different temporal scales and consider variations 
in individual end use, but this approach requires detailed physical and 
technological measures as well as intensive computational effort. 

Another branch of energy consumption estimation is energy fore
casting – prediction of energy consumption in a time series rather than a 
cross-sectional setting. Examples of this approach include Li et al. who 
train a deep learning model to predict the energy consumption of a retail 
building at 30- and 60-minute intervals [35] and Dong et al. who used 
four years of monthly energy use data for commercial buildings in 
Singapore and use energy consumption history combined with weather 
attributes to predict future consumption [36]. These techniques rely on 
historical timeseries data, which is generally unavailable. 

Most relevant to this work are bottom-up approaches that attempt to 
estimate individual building energy consumption. These techniques 
explore a wide variety of variables for predicting building energy con
sumption or identifying the most informative variables related to 
building energy consumption prediction. The variables considered in 
these studies range from weather, occupant lifestyle, dwelling size, and 
characteristics to socio-demographics [37–46]. However, these studies 
have one thing in common: they all rely upon numerous input variables, 
most of which are typically unavailable, thereby limiting the applica
bility of such models for large-scale building energy consumption 
prediction. 

For instance, Sanquist et al. extract 5 lifestyle factors via factor 
analysis, which reflect social and behavioral patterns associated with air 
conditioning, laundry usage, personal computer usage, climate zone of 
residence, and TV use, from 17 variables in the U.S. Residential Energy 
Consumption Survey (RECS) to train a linear model capable of pre
dicting building energy consumption with an R2 of 0.4 [44]. Huebner 
et al. use Lasso regression and show that the following predictors are 
statistically significantly correlated with consumption: household size, 
length of heating season and all the physical building characteristics (e. 
g. floor area, fuel type, age, location) [37]. In addition, they train 
separate models for building energy consumption using combinations of 
groups of predictors. In particular, the physical building factors model 
performs best with an R2 of 0.39, while the combined model that also 
includes socio-demographic and behavioral attributes such as number, 

age, gender, employment status and heating behavior of occupants has 
an R2 of 0.44. Scott Kelly makes use of the English House Condition 
Survey and predicts via a linear model using 6 variables such as 
household size, income, and floor area to arrive at an R2 of 0.31 [42]. 

Instead of predicting total energy consumption, some authors build 
models to predict energy use intensity or energy consumption by end use. 
For instance, Ma et al. use 216 variables and apply Elastic Net feature 
selection followed by Support Vector Regression to estimate use in
tensity for residential buildings in New York [38]. Whereas Min et al. 
utilize dozens of variables from RECS including energy price, household 
and housing unit characteristics to predict energy consumption by end 
use. Their log-linear models predicting heating, cooling, water heating 
and appliance energy consumption have R2 values of 0.83, 0.70, 0.34, 
and 0.52 respectively [39]. 

Each of the building-level models discussed in this section rely on 
data that are generally unavailable, such as household size, income, or 
lifestyle information. Amasyali et al. [47] and Ahmad et al. [48] echo 
the insufficiency of data for effective energy consumption estimation 
and/or forecasting. This means these techniques would be restricted to 
spatial coverage of areas where such data are available. Fortunately, 
however, many of these studies also point to the physical size and 
characteristics that may be externally visible for a dwelling as being a 
strong predictor of energy consumption [37,39–41,49]. Our goal is to 
overcome the challenge of large-scale energy consumption estimation 
for residential buildings and to approach this we make use of the 
important observation that the size of a building (its footprint) is typi
cally visible from overhead imagery, and so with the right tools to 
extract that information, we are able to generate an estimate of building 
energy consumption anywhere in the world with high resolution over
head imagery. 

1.3. Previous work on the use of overhead remotely sensed imagery for 
energy-relevant studies 

Machine learning and computer vision techniques, especially con
volutional neural networks (CNN), have enabled many relevant remote 
sensing applications. For example, remotely sensed nighttime lights 
have been successfully used to evaluate electrification rates in Africa 
[50] and India [51] as well as to predict energy consumption in Japan, 
China and India (improving an R2 from 0.66 to 0.83) [52]. The main 
limitation of nighttime lights dataset is its low resolution which limits its 
usefulness in analyzing building-level energy consumption. Related 
techniques have even been used to predict poverty in Africa using only 
remotely sensed data [53]. 

Daytime overhead imagery has also been shown to be effective for 
related analyses including solar photovoltaic array identification and 
capacity estimation. Building energy consumption may be impacted by 
the presence of solar photovoltaic arrays, so additional information on 
solar array location and size may help increase the accuracy of building 
energy estimation. Malof et al. demonstrate that solar photovoltaic 
panels can be detected extremely accurately with deep learning tech
niques [54], and Yu et al. demonstrate how this technique can be scaled 
up to the contiguous US [55]. 

Building detection and segmentation in overhead imagery is an 
active area of research. One example is Inria Aerial Image Labeling 
Benchmark (INRIA) released in December 2016–910 square kilometers 
of pixelwise labeled aerial imagery in 5 cities [56]. State-of-the-art 
building segmentation models generally use an encoder-decoder struc
ture as described in Chen et al. [57], with skip connections to maintain 
the fine-grained object boundary details. Two popular variants of this 
framework are U-net [58], the network used for building segmentation 
in this paper, and D-LinkNet [59]. Some authors, on the other hand, use 
different common networks as an encoder and a decoder. For instance, 
Demir et al. [60] replace the feature extractor with larger pretrained 
deep neural networks like ResNet [61] arriving at a superior 
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performance on building segmentation benchmark datasets [62]. 

1.4. Focus on residential building energy consumption 

Commercial building energy consumption tends to be better under
stood because of direct management for reducing energy consumption 
as compared with residential energy consumption which is highly var
iable due to variations in building sizes and geometries, occupant 
behavior, and limited data [33]. For many residences, the set of po
tential appliances or devices that are present may vary based on the 
culture [63] as well as the number and affluence of the occupants [21]. 
In this work, we focus on residential buildings due to two factors: (1) 
from a practical perspective, data on individual residential building 
energy consumption (including precise location and energy consump
tion) are publicly available for multiple cities, while very little infor
mation that is not de-identified is publicly available for the commercial 
sector; and (2) residential and commercial building energy consumption 
collectively accounts for 40% of total U.S. energy consumption, split 
about equally between the two sectors, so there is a significant impact 
for each. Moreover, residential buildings account for a large proportion 
of global energy consumption in both low and high income countries 
making this study topical outside the U.S. as well [64]. While there has 
been some work on commercial building energy consumption estima
tion [65–67], these approaches typically also require detailed informa
tion about a building. We leave the investigation of similar satellite 
imagery-based energy consumption estimation techniques that do not 
require such detailed data for each building to future work. 

1.5. Contributions of this work 

In this paper, we introduce and evaluate the performance of a novel 
approach for estimating individual and regional residential building 
energy consumption directly from overhead imagery, without the need 
for detailed information on a building or any historical or demographic 
data related to the building. This concept, originally suggested in [49], 
relies on deep convolutional neural networks to automatically estimate 
building footprints, classify buildings by type (residential or commer
cial) and extract relevant features (e.g. building footprint area, perim
eter, population density) in color overhead imagery. To these features 
extracted for each individual building, we apply a regression model to 
estimate that building’s energy consumption. We demonstrate that our 
approach can efficiently scale to analyses over large geographic areas, 
while still providing consumption estimates at a high geospatial reso
lution (e.g., individual buildings or neighborhoods), and that this model 
can be applied in multiple locations (in this work Gainesville, Florida, 

and San Diego, California). 
The paper is structured as follows: we summarize the datasets used in 

this study (Section 2) before describing the methodology (Section 3) for 
estimating building energy consumption. The methodology describes 
how we detect buildings in overhead imagery and generation of building 
footprints (3.1); classify those buildings as residential or commercial 
buildings (3.2); extract features based on those buildings including 
quantifies such as building area and perimeter (3.3); and predict the 
energy consumed by the building using regression (3.4). We also discuss 
the particular scoring metrics used to compare across models (3.5) and 
the baseline estimator we adopt as a point of comparison for perfor
mance (3.6) and how we split our data into training and testing sets 
(3.7). We lay out our experimental design in Section 4 to test the per
formance of each component of our analytical pipeline including 
building segmentation (4.1); building type classification (4.2) and en
ergy consumption estimation (4.3 and 4.4). We also perform a sensi
tivity analysis to the quantity of training data needed (4.5). We present 
the results for each of these experiments in Section 5 (with each sub
section in Section 5 corresponding to the experiment with the same 
number in Section 4) before concluding. Fig. 1 describes the complete 
pipeline for the methodology in this work and directs the reader to the 
relevant section containing experimental results for each pipeline 
component. 

2. Datasets 

Data on building-level energy consumption are sparse and we need 
data where we have both building-level energy consumption and high- 
resolution overhead imagery. Note that in practice, building-level en
ergy consumption information is not necessary to use our proposed 
method, but it is necessary to evaluate the ability of our approach to 
estimate the correct values (i.e., measure its accuracy). The two suitable 
areas we found are Gainesville, Florida, and San Diego, California. In 
both of these locations, high-resolution overhead imagery and energy 
consumption data are available, although the resolution of the energy 
data varies by region. The available data for each region are summarized 
in Table 1. 

Overhead imagery data. High-resolution, 0.3 m aerial imagery is 
publicly available from the United States Geological Survey (USGS) for 
both Gainesville and San Diego from the high resolution orthoimagery 
collection [69]. For building identification, 0.5 m or finer resolution 
data are typically required for recent state-of-the-art building segmen
tation algorithms, so 0.3 m resolution is adequate. The USGS imagery 
data were collected in December 2013 for the Gainesville data and 
October 2014 for the San Diego data. 

Fig. 1. Flowchart of the full pipeline of our methodology. Start with only an input satellite image, then (1) detect and segment each building’s footprint, (2) classify 
the building by type (residential/commercial), (3) extract relevant features based on the data, and finally use those features to estimate building energy consumption. 
Each item above indicates where in this manuscript additional information about the process can be found. 
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Energy consumption and building footprint data. In Gainesville, 
Florida, we downloaded a detailed energy consumption dataset pro
vided by Gainesville Green containing monthly electricity, water, and 
natural gas consumption as well as the corresponding geographic loca
tion for over 30,000 households in 2016 [10]. The data includes other 
years as well that were not included in this study. In Alachua County, in 
which Gainesville resides, the Property Appraiser made available a 
geospatial dataset of most building footprints in the county. Merging 
and matching the building footprints data with each building’s corre
sponding energy consumption, resulted in a dataset of 26,991 house
holds in Gainesville with the corresponding monthly energy 
consumption [70]. For each building, we aggregated monthly energy 
consumption up to annual consumption and removed any buildings with 
zero consumption (these are likely not in active use). 

In San Diego County, the available energy data were not fully- 
identified in the same way that they were in Gainesville, so we gath
ered data from three sources. The first dataset includes quarterly ZIP 
Code level energy consumption data publicly available from San Diego 
Gas & Electric [71]. This quarterly dataset is divided up by customer 
class that provides consumption by a number of building types including 
residential and commercial buildings. We extracted the residential data 
and summed the quarterly data to calculate the annual ZIP Code level 
energy consumption. The second dataset is a sample of individual resi
dential building-level energy consumption data from 10,718 location- 
anonymized buildings in San Diego City from the Building Perfor
mance Database [72]. While this dataset does not contain information 
on the particular location of the building (so we cannot match it directly 
with imagery data) it does contain information on the building square 
footage (which while not the same as the building footprint area, would 
be the same for 1-story buildings) and their ZIP Code location. We can 
use this information to train a regression model on and evaluate indi
vidual building-level energy consumption prediction performance, and 
its corresponding ZIP Code. Lastly, we have zoning data in San Diego 
City [73] to provide information as to whether a building in San Diego is 
residential or commercial. 

3. Methodology 

To predict residential building energy consumption from overhead 
imagery, we divide this process into three steps, illustrated in Fig. 1: (1) 
building detection and segmentation, (2) building type classification, 
and (3) energy consumption prediction, where we estimate the energy 
consumed by that building based on features of the building. Step (1) 
detects buildings in overhead imagery and produces polygonal repre
sentations of each detected building, a process known as building seg
mentation [74]. Residential buildings being the focus of the present 
paper, step (2) classifies the building as either being a residential or 
commercial building. Step (3) extracts informative features from the 

building footprints of residential buildings (e.g. area, perimeter) and 
their surrounding context (e.g., population density) to train our energy 
consumption prediction model and generate estimates of the energy 
consumed by each residential building. 

3.1. Building segmentation 

The first step in this process is to analyze the overhead imagery and 
identify where each building is located and generate a polygon denoting 
its outline. This is done by estimating the specific pixels in an image that 
compose each building in a process that is known as image segmentation 
[75]. The result of segmentation in this case is a binary image where 
each pixel is labeled with a value of one if it resides on a building, and a 
value of zero otherwise. This process can be done via manual labeling, 
however, given the size of overhead imagery, this approach is costly and 
impractical for regular application. Recently, it has been shown that 
convolutional neural networks (CNNs), which are a special type of 
machine learning model, can be trained to automatically generate high- 
accuracy image segmentation of various objects in overhead imagery, 
including buildings. Once such a model is trained, it is capable of rapidly 
scanning vast quantities of overhead imagery, making it scalable and 
cost-effective. This approach is ideal for our application, which requires 
regularly segmenting large volumes of overhead imagery to obtain up- 
to-date energy consumption estimates. 

Training a CNN requires providing it with a set of image pairs, where 
each pair comprises one overhead image and the desired segmentation 
map for that image. CNNs are composed of a large number of model 
parameters that control its segmentation process. During training, the 
CNN will repeatedly be provided with training images, and then attempt 
to predict their segmentation maps. The CNN’s parameters will be 
automatically and gradually adjusted throughout this process to maxi
mize the agreement between its predictions on the training imagery and 
their corresponding segmentation map. CNNs typically require a large 
set of training imagery, which themselves usually must be manually 
annotated [76]. However, this process must only be done once, after 
which the CNN can label much larger quantities of new imagery. 
Furthermore, there are now publicly available datasets to train seg
mentation models, including those for building segmentation. In this 
work we initially train our segmentation models on the INRIA dataset, 
which includes high-resolution orthorectified overhead color imagery 
covering 405 km2 of area across 5 major cities in the US and Europe with 
full segmentation labels for training. After we complete training on 
INRIA we subsequently train the same CNN further on a smaller set of 
imagery from Gainesville and San Diego, where we ultimately apply the 
model for segmenting new imagery. This process of training a second 
time on task-specific imagery is known as “fine-tuning”, and it has been 
shown to enhance the performance of CNNs for recognition tasks [77]. 
More details of the training setup can be found in [56]. 

Table 1 
Description of data availability. For Gainesville, Florida, we have both energy consumption and building-level footprints for residential buildings. In San Diego, CA, we 
have ZIP Code level energy consumption and anonymized individual building energy consumption data. The experiments in this work are designed to maximize the use 
of these data sources and to do so with as much logical symmetry in approach as is possible given the constraints of the data.  

Location Number of individual 
buildings with known 
energy consumption 

Individual building 
area (in square 
meters) known? 

Includes corresponding 
building footprints 

(polygons)? 

Includes ZIP Code- 
level energy 

consumption? 

Additional associated data 

Gainesville, 
FL 

26,991 Yes Yes No A total of 33,432 building footprints from which to 
extract ground truth derived predictors; hand- 
labeled building footprints for 1,098 buildings5 (for 
fine-tuning a building segmentation algorithm 
pretrained on INRIA building data [56] and for 
testing the algorithm) 

San Diego, 
CA 

10,718 Yes No Yes (90 ZIP Codes) Hand-labeled building footprints for 7,626 
buildings1 (for fine-tuning building segmentation 
algorithm used in Gainesville and for testing the 
algorithm); zoning information for San Diego City 

1A subset of images was manually annotated using pyimannotate [68]. The annotator would mark each building’s perimeter manually. 
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Segmentation CNNs are available in many different architectures, 
each with somewhat varying characteristics. In this work we employ the 
U-net architecture [58], which has demonstrated success especially for 
building segmentation [58,78]. In particular, we use a modified U-net 
architecture that recently achieved the best performance for building 
segmentation on the INRIA dataset [56]. We trained our U-net as 
described above and then subsequently used it to segment all the 
buildings in our target imagery over Gainesville and San Diego. The 
segmentation output of our U-net is a binary image, however, we ulti
mately need to identify the polygons corresponding to individual 
buildings. To achieve this we extracted contiguous groups of building 
pixels – termed connected components – and then applied the Dou
glas–Peucker algorithm [79] to approximate a polygon that matches 
well with the shape/size of the connected component. 

3.2. Building type classification 

Building segmentation produces polygons that may represent many 
types of buildings including both residential and commercial. Therefore, 
we need to be able to identify those buildings that are residential before 
we can assign energy consumption estimates to those buildings. To do 
so, we trained a building type classifier that takes as input an overhead 
image of a building (cropped to 224 × 224 pixels around the center of 
the building) and classifies each building or rather the 224 × 224 pixel 
neighborhood around each building as either residential or commercial. 
The building type classifier is based on ResNet-152 architecture [61] (a 
well-known architecture designed for image classification) and assigns a 
residential or commercial class to each building. 

3.3. Feature extraction 

For each residential building identified, we know the location in the 
overhead image via the polygon (outline) of that building produced 
from the segmentation step. From this, we need to extract meaningful 
features from the imagery and polygon that inform a prediction of the 
amount of energy consumed within the building. Inherent in the 
building polygon and corresponding imagery there may be valuable 
information. Area (a measure of building size) and perimeter (relative to 
area is a measure of building complexity) are directly computable for 
each object giving us insight into the physical characteristics of a 
building. Area is an intuitive predictor for homes with significant 
heating and cooling energy consumption [80]. 

Other features may be worth considering, including information on 
rooftop material or swimming pools, population density (number of 
neighboring buildings within certain radius of the building), and other 
neighborhood characteristics. As mentioned before, CNNs are particu
larly adept at automatically extracting meaningful features, so we can 
also allow the CNN to automatically attempt to determine those prop
erties which are of greatest value for estimating energy con
sumption—some of these may have semantic meaning (e.g. roof color, 
presence of two cars in a driveway)—while others may not have such 
interpretability. We do this using ResNet-152 model [61]. We apply the 
ResNet model pre-trained on ImageNet [81] only for the purpose of 
extracting features, which are the network values fed into the final fully 
connected layer of the ResNet CNN. We then apply principal compo
nents analysis to these 2,048 features and use the top 10 principal 
components of those ResNet-extracted features as additional features 
about the building and its surrounding neighborhood [82]. While these 
additional features do contain information about the buildings, we show 
in the analyses below that simple building area proves to be, overall, the 
most informative feature for this problem. 

3.4. Energy consumption prediction 

Using the features extracted from the imagery data, area in partic
ular, we explored a number of regression models for energy 

consumption prediction that have been prominent in the literature 
[10,11]: linear multiple regression, gradient boosted decision trees, 
artificial neural networks, and random forests [49]. Using the model 
which predicted individual building energy consumption prediction 
best, random forests, we investigated the most informative features for 
this prediction by comparing performance across different combinations 
of features. 

This prediction approach estimates individual building energy con
sumption. The use of energy in individual buildings may be extremely 
variable due to factors that are invisible in overhead imagery including 
electronic devices that are not related to building size. However, small 
amounts of spatial aggregation may significantly reduce this variability 
while still retaining a high level of geographic spatial resolution. We 
therefore investigate the impact of spatial aggregation on building en
ergy estimation accuracy with an aggregation range of one square 
kilometer or less, much smaller than most ZIP Codes and neighborhoods. 
Past work in automatic solar photovoltaic identification demonstrated 
that geospatial resolution may be traded for estimation accuracy [83], 
and we also test the efficacy of that approach for building energy 
estimation. 

3.5. Scoring metrics 

To evaluate the performance of each regression model we use two 
well-known scoring metrics, which are two different ways to quantify 
the error between the energy consumption predicted by the models, and 
the true energy consumption values. The first is the coefficient of 
determination, R2, which is the proportion of variance of the true energy 
consumption values that are explained by our model’s predictions; we 
want this measure to be as close to 1 as possible (representing all vari
ance being explained by the model). We use the common formulation for 
R2, defined as follows 

R2(y, ŷ) = 1 −

∑N
i=1(yi − ŷi )

2

∑N
i=1(yi − y)

2 (1) 

Here yi is the true value, ŷi is the predicted value of energy con
sumption for the ith building and y is the sample average over true 
values. 

The second is the root mean square error (RMSE) between the pre
dicted and true energy consumption values, given by 

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi )

2

√
√
√
√ (2) 

We seek models that minimize the RMSE, with zero being optimal. 
For aggregation regions we simply compute R2 and RMSE on the 
aggregate truth and predictions, where yi would then be the true value of 
energy consumption for the region and ŷi is the predicted energy con
sumption value for that region. 

3.6. Baseline building energy consumption estimator 

There are two possible approaches for comparing the efficacy of our 
method. The first is to use existing building energy consumption esti
mation models, but as previously discussed those models often rely on 
building-specific data on the contents of the building or owner de
mographics that are rarely available at the individual building level. The 
second approach is to use regional energy consumption averages. In the 
absence of high-resolution geospatial energy consumption data, regional 
or national estimate of average building energy consumption is often 
available to policymakers and researchers. Therefore, for this work we 
adopt a regional average of building energy consumption as our baseline 
estimator for building energy consumption. 

The next choice is between using a national or regional average 
residential building consumption estimate. The rationale for a regional 
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rather than national average is due to the regional variation on building 
energy consumption. Data on this variation can be challenging to find. 
Although average annual energy consumption for some cities and 
counties is published [84,85], there are no comprehensive databases 
that collect city-level average consumption across the entire U.S. How
ever, there are some data sources one could use for a geographic com
parison. The Residential Energy Consumption Survey (RECS) is an 
example data source for regional estimates of average residential con
sumption, with regional resolution at the census level. This database 
demonstrates significant regional differences. For instance, while the 
national average building energy consumption from RECS 2015 is 
11,028 kWh, in New England the average is 7,633 kWh, while in parts of 
the southern U.S. the average is 14,807 kWh. 

For the purposes of our experiments we use a different baseline 
average estimate for each of the two regions in this study since this 
approach would generally be more accurate than using a single national 
average. In Gainesville, we compute the average for the training set 
(11,723 kWh) and use it as the baseline prediction for each building in 
the test set. In San Diego, we use the county average (5,871 kWh) [86]. 
Some of our experiments also explore the impact of spatial aggregation 
on estimating energy consumption. In the limit as the aggregation area 
approaches the extent of the region over which the original average was 
based on, the average becomes a perfect estimator. Since these regional 
estimates are not available for all cities and certainly not available at the 
neighborhood or individual building-level, we aim to show that our 
model outperforms this baseline estimator in most cases. 

3.7. Training and testing data 

To prepare our Gainesville data for machine learning experimenta
tion, we divided our previously described energy consumption data into 
a training and test dataset, where the training data accounted for 75% of 
the samples. Since we conduct experiments for both the individual 
buildings and buildings aggregated over small regions, we took care to 
prevent information from our training data leaking into our test data. 
Therefore, we split the training and test data randomly, ensuring that 
held-out test data are never seen during training. We also performed the 
random sampling in a way such that we grouped neighborhoods 
together in gridded regions, sampling those regions into either the 
training or test set. The goal here was to reduce the likelihood that two 
neighboring houses would appear one in the training set and one in the 
test set. We also use group 5-fold cross validation on the training data for 
all of our experiments to select any model hyperparameters. Similar to 
the Gainesville dataset, for San Diego we randomly split the building- 
level data with 75% of the samples in the training dataset and 25% in 
the test dataset based on each buildings’ ZIP Code location. Anonymized 
building-level energy consumption data in San Diego comes from 16 ZIP 
Codes. To avoid information leakage in San Diego we do not test on the 
12 ZIP Codes from which we had training data. 

4. Experimental design 

Since the building energy estimation approach described here is 
composed of a number of subcomponents: (1) building segmentation, 

(2) building type classification, and (3) energy consumption estimation, 
we first create three brief experiments to individually measure the ef
ficacy of each of these steps to evaluate potential sources of error that 
may be introduced when combining these modules. 

4.1. Building segmentation evaluation 

To evaluate how well our approach could segment individual 
buildings, we used 798 hand-labeled building footprints in Gainesville 
and 7,396 from San Diego that we collected to serve as training data1. 
We trained our building segmentation algorithm and tested on a held- 
out dataset of 300 buildings in Gainesville and 230 buildings in San 
Diego, resulting in the performance demonstrated in Fig. 2. These 
precision-recall (PR) curves demonstrate the performance evaluated on 
a held-out set of images for both Gainesville and San Diego, quantifying 
how well individual buildings can be segmented in two diverse regions. 

For the PR curves, recall is the fraction of buildings in the ground 
truth that were correctly detected. Precision is the fraction of objects in 
the image we estimated to be buildings that actually were buildings. 

Fig. 2. Precision-Recall performance curves for building segmentation from 
overhead imagery. Comparison of object-wise Precision-Recall (PR) curves for 
Gainesville and San Diego. Each object is deemed a detection, i.e. a true posi
tive, if the Intersection over Union (IoU) of the segmented object compared to 
the ground truth exceeds a threshold value (IoU thresholds of 0.2 and 0.5 are 
used to score segmentation quality in both locations). An IoU of 0.5 is more 
restrictive on the quality of the segmentation that is required for a detection to 
be considered a true positive rather than a false negative; a threshold of 0.2 
enables more buildings to be declared as “detected,” albeit with less precise 
segmentation. 

1 Training data are required for building segmentation algorithms, and even 
with a pretrained algorithm, when approaching new geographies examples 
from that new geography improve performance. In this case, although we have 
building footprints in Gainesville, the geographic coordinates of objects in 
overhead imagery may not align precisely with objects of significant height 
(such as some buildings) since the camera angle may shift where a building 
rooftop appears in the image. This can be seen clearly when viewing sky
scrapers from above. To overcome this issue, we gathered training data based 
on the specific imagery we were using, requiring manual annotation of those 
buildings. 
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These curves are evaluated object-wise; that is each building detected 
could be either a true positive or false positive. A building was scored as 
a true positive if the detected building and ground truth building overlap 
sufficiently. Overlap is defined by intersection-over-union (IoU) which 
for two polygons represents the area of polygon intersection divided by 
the area of the union of the polygons. An IoU of 1 represents complete 
overlap, an IoU of 0 represents no overlap. Once we know how to 
identify true positives, we can then vary the sensitivity of the detector to 
produce each PR curve. Recall is the fraction of actual buildings that 
were labeled as buildings. Precision is the fraction of those objects that 
we labeled as buildings which were actually buildings (so low precision 
would mean there were many false positives). Precision and recall of 1 
would represent perfect performance. 

4.2. Building type classification evaluation 

To evaluate how well our approach classifies individual buildings as 
residential or commercial, we evaluate the classification performance in 
San Diego City. In Gainesville we only have residential building data so 
that location would not be an ideal location for testing this part of the 
pipeline. In San Diego, however, we do need to make this distinction. 
Another challenge is in having a sufficiently large dataset for evaluation 
since there are so many more residential buildings than commercial. To 
do this, we combine building footprint estimates produced by our al
gorithm and the zoning information for San Diego City. This combina
tion allowed us to assign the label of residential or commercial to each 
detected building, creating the dataset described in Table 2 that has 
189,448 buildings in the training dataset and 33,432 buildings in the 
test dataset with thousands of examples of both residential and com
mercial buildings. The massive class imbalance between residential 
buildings (32,047) versus commercial buildings (1,385) makes this 
problem more difficult for identifying commercial buildings, but the size 
of the dataset enables us to better evaluate our classifier’s performance 
which we present in a confusion matrix form in section 5. 

Due to the asymmetry of the available data between Gainesville and 
San Diego, the experiments we describe below use Gainesville data to 
evaluate performance at the individual building-level and at different 
levels of aggregation, while the San Diego experiments are only evalu
ated at the aggregated ZIP Code level. However, the same underlying 
process, that of Fig. 1, is used in both cases, and since the cities are 
separated by about 3,700 km, the results present two very different test 
cases that provide evidence towards the ability to apply this algorithm to 
geographically diverse areas. 

4.3. Building energy consumption estimation process evaluation from 
ground truth building footprints 

Before using the segmented and classified buildings, it is important 
to evaluate the performance of the energy estimation regression model 
using actual ground truth building footprint data. We use the ground 
truth building polygons we have in Gainesville and extract the building 
footprint for each building in our dataset. We then use building char
acteristic features extracted directly from the ground truth building 
footprints (e.g. area), so there is no error from building segmentation or 
type classification. Using this, we train an algorithm to predict building 
energy consumption using random forests regression. We apply the 
trained model to our test dataset and evaluate performance. 

We evaluate performance at both the individual building level as 

well as at five levels of aggregation using grid cells of progressively 
increasing size: 50 × 50 m, 100 × 100 m, 200 × 200 m, 400 × 400 m, 
1000 × 1000 m. We compare performance against the baseline of using 
the average building energy consumption as the estimate of each 
building (see Section 3.6). 

4.4. End-to-end process evaluation: Estimating building energy 
consumption from overhead imagery 

After investigating the performance of each component of this pro
cess individually, in this experiment we evaluate the full model end-to- 
end, summarized in Fig. 1, using overhead imagery directly to identify, 
segment, and classify all buildings and then use building characteristics 
extracted from the imagery (e.g. building area) to estimate building 
energy consumption. 

We apply this same process in both Gainesville and San Diego, 
although due to the nature of the data available for each, we evaluate 
performance differently for each location. In Gainesville, we repeat the 
process of Section 4.3, except with the full pipeline2 and evaluate per
formance at both the individual building level as well as at five levels of 
spatial aggregation. In San Diego, however, since the individual build
ings in the training data are location-anonymized and are only usable at 
the individual or ZIP Code levels of aggregation. We include San Diego 
to demonstrate performance in another metropolitan area and in a larger 
area (as the San Diego data covers both the city and the county) and is 
more relevant for large-scale regional aggregation to the ZIP Code level. 
In both regions, we compare performance against the baseline of using 
the average building energy consumption as the estimate of each 
building (see Section 3.6). 

4.5. Sensitivity analysis to identify the amount of training data required 

Since the energy consumption estimation methods proposed here 
rely on training data which includes examples of buildings with their 
location (latitude, longitude) and corresponding energy consumption, 
we wanted to evaluate the quantity of data necessary to achieve the 
performance one might target for each model and the consistency of that 
performance. To that end, we ran 100 trials of the end-to-end pipeline 
experiment (Section 4.4), estimating building energy consumption, 
varying the amount of training data used in each (sampling with 
replacement), but keeping the held-out test set fixed. We varied the size 
of the training dataset logarithmically from about 10 to 10,000 buildings 
in San Diego, about 20 to 15,000 buildings in Gainesville (since more 
buildings with known energy consumption were available in 
Gainesville). 

5. Results 

In this section, we describe the results from each of the experiments 
from the corresponding subsection in experimental design covering each 
of the subcomponents: (1) building segmentation, (2) building type 
classification, (3) energy consumption estimation, (4) the end-to-end 
experimental design, and (5) a sensitivity analysis of our results to the 
size of the training dataset. 

5.1. Building segmentation results: How accurately are buildings detected 
and segmented in overhead imagery? 

The results from segmenting buildings from overhead imagery are 
shown in Fig. 2 through precision-recall (PR) performance curves 
(explained in Section 4.1). We evaluated objects detected by setting an 
IoU threshold of both 0.5 (stricter in terms of segmentation quality) and 

Table 2 
Overview of San Diego City building type classification datasets. Training and 
test datasets by the number of buildings contained of each type.   

Total Residential Commercial 

Training Data 189,448 182,564 6,884 
Testing Data 33,432 32,047 1,385  

2 Gainesville data only contained residential buildings, so building type 
classification was unnecessary. 
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0.2 (less strict) which requires excellent correspondence between the 
estimated and predicted polygons. In general, Gainesville buildings were 
more difficult to identify due to significantly more tree cover over 
buildings than in San Diego. 

For the 0.5 IoU case In Gainesville we were able to correctly identify 
74% of buildings with 24% of identified buildings being false positives. 
For San Diego the performance was higher (in part because we used the 
Gainesville model as a pre-trained model for San Diego); the segmen
tation algorithm correctly identified 78% of buildings with 8% of 
identified buildings being false positives. The average IoU was 0.81. 

For the less stringent IoU threshold of 0.2, which would include a 
sufficient number of detected buildings while still preventing the in
clusion of many spurious groups pixels that happened to be labeled 
buildings. In Gainesville we were able to correctly identify 84% of 
buildings with 15% of identified buildings being false positives. For San 
Diego we correctly identified 88% of buildings with 8% of identified 
buildings being false positives. The average IoU was 0.76. 

5.2. Building classification results: How accurately are buildings 
categorized as residential or commercial? 

The results from investigating the building type classification algo
rithm performance (described in Section 4.2) are shown in the confusion 
matrix in Table 3. This demonstrates that the classifier correctly iden
tifies residential buildings 99% of the time and commercial buildings 
74% of the time. 

5.3. Building energy consumption results: Estimating building energy 
consumption from ground truth building footprints 

The results from estimating building energy consumption (the 
experiment described in Section 4.3) directly from Gainesville ground 
truth building footprints are shown in Table 4 in two parts, labeled A and 
B. The A-columns represent the baseline results: regional average 
building energy consumption multiplied by the total number of actual 
buildings (Section 3.6). The underlying data used for performance 
evaluation is the entire test set and the estimator is the average of the 
training set. Column B shows the results from repeating the analysis for 
column A, except using the random forest regression algorithm trained 
on the ground truth area of each building in the dataset. Comparing the 
case without aggregation, the RMSE improves by 15.3% over baseline 
and increases with aggregation. For the 1000 × 1000 m case, the RMSE 
improved 37.1% over the baseline. 

5.4. End-to-end process results: Estimating building energy consumption 
from overhead imagery 

This section describes the results from applying the full energy 
consumption estimation pipeline (Fig. 1), using only overhead imagery, 
initially described in Section 4.4. The results are presented by region: 
Gainesville in Table 5 and Table 6 (see supplemental information for 

additional results), and San Diego in Table 7. As a reminder, for Gain
esville, we have individual building and aggregate building energy 
consumption data with geolocation while for San Diego, we have only 
aggregate ZIP Code level energy consumption data, so the results are 
presented to reflect that difference. 

As we evaluate performance for the whole pipeline, we are faced 
with an additional complication: the fact that not every building is going 
to be detected by our segmentation algorithm in the overhead imagery. 
For maximum demonstration of performance, we therefore show results 
for two conditions: (1) where we evaluate the energy consumption es
timates for all buildings, acknowledging that some of those buildings 
will be missed by the segmentation algorithm and setting the estimate 
for those buildings to 0 kWh (Table 5) and (2) where we evaluate the 
performance only on buildings that were detected by the segmentation 
algorithm (Table 6). The latter case answers the question: “if we can 
identify that there is a building, how accurately can we estimate its 
energy consumption?” Overhead imagery may be occluded (such as by 
tree cover) making segmentation and detection of buildings challenging. 
Gainesville is an excellent example of this phenomena. Nevertheless, 
building segmentation techniques are being rapidly developed, so each 
of these approaches offer insights into algorithm performance and the 
potential for improvements in the near future.3 

Setting buildings not detected to 0 kWh. The Gainesville results 
evaluated on all buildings while setting energy consumption estimates of 
buildings missed by the segmentation algorithm to 0 kWh are shown in 
Table 5. Column A is the baseline model and columns B and C represent 
applying the full pipeline (Fig. 1) trained on either the ground truth area 
of the buildings (column B) or on the estimated area from the segmen
tation algorithm (column C). By using the segmentation area rather than 
the ground truth area, the energy estimation regression model is able to 
learn to compensate for some of the bias inherent within the building 
detection process connecting the imperfect building footprints estimated 
by the segmentation algorithm the corresponding energy consumption 

Table 3 
Confusion matrix for San Diego building type classification. The central four 
cells contain the percent of buildings of one type (rows) predicted as being either 
residential or commercial (columns). These central bolded cells are percentages 
of the total number of residential or commercial buildings. The number of 
samples in the right column is the total number of samples of a particular 
category (so there are 32,047 residential buildings in the dataset and 1,385 
commercial buildings).    

Prediction    

Residential Commercial Number of samples 

Truth 
Residential 99% 1% 32,047 
Commercial 26% 74% 1,385  
Total Samples   33,432  

Table 4 
Results for building energy estimation from ground truth building footprints in 
Gainesville, Florida. Comparison of building energy estimation regression by 
predictors used and level of spatial aggregation for all buildings (those detected 
by the CNN and those missed, for 26,991 buildings in total) in Gainesville, 
Florida. All predictors are estimated using ground truth building footprints. The 
random forest model outperforms the average baseline, spatial aggregation 
significantly increases performance of all models. Area is a very strong predictor. 
The RMSE values are in units of kilowatt-hours (kWh). The baseline column is 
the point of comparison for performance improvement measurements across the 
table.   

A B 
Regression 
Model 

Average 
(baseline) 

Random Forest 

Predictors Training set 
average 

consumption 

Ground Truth Area 

Level of 
aggregation 

R2 RMSE 
(kWh) 

R2 RMSE 
(kWh) 

Improvement over 
RMSE baseline (%) 

None 
(Individual)  

0.00 6541  0.28 5537  15.3 

50 × 50 m  0.22 6854  0.48 5611  18.1 
100 × 100 m  0.55 7399  0.74 5495  25.7 
200 × 200 m  0.74 7252  0.88 5100  29.7 
400 × 400 m  0.81 6281  0.93 4044  35.6 
1000 × 1000 m  0.87 6590  0.96 4143  37.1  

3 We also explored energy consumption prediction performance enhance
ments from imputing the values of missing buildings, if we assume we know 
how many buildings are in a given region, more information can be found in the 
supplemental information. This demonstrated that additional performance 
improvements if we know how many buildings are in a given region, even 
though we do not know their particular characteristics. 
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of the building. We see that both models as a whole improve upon the 
average baseline ranging from around 2–3.6% for individual buildings 
and 15–18% for the 1 km2 aggregation, with the larger gains occurring 
when the model is trained on the building area estimated from the 
segmentation results. 

As described in Section 3.3, we can also extract additional features 
from overhead imagery relevant to each building. In addition to the area 
estimated through the segmentation process in Section 3.1, we also 
extract features including perimeter, local building density estimates (a 
measure of how many other buildings are nearby), and the top 10 
principal components of the ResNet-152 features. Adding these features 
to the random forest with these additional features (column D of 
Table 54) nearly doubles the performance gains against the baseline: a 
7.2% RMSE improvement for individual building and a 35.3% 

improvement for 1000 × 1000 m aggregation, compared to the 3.6% 
and 18% improvement that random forest trained on area alone ach
ieves, respectively. 

In Section 5.3, where we only considered ground truth building 
footprint area, that represented the best-case scenario for area estimates. 
This model (Table 5.D) outperforms the baseline even in that ideal case. 
Using the additional features described here, the RMSE of building en
ergy consumption for regions at least 100 × 100 m in size (7,009 kWh, 
full table available in Supplemental Information) is lower than the 
corresponding baseline estimate from Table 4 (7,399 kWh) which uses 
the actual building energy consumption average as well as ground truth 
footprints. Even with the imperfect building detections, with the right 
predictors this energy consumption estimation technique can improve 
over a baseline that is aware of the average building energy consump
tion and the location of all buildings. 

Limiting performance evaluation to detected buildings. Our next set 
of results address the question: “How well do we estimate building 

Table 5 
Results for the end-to-end building energy estimation process for Gainesville with missed buildings set to 0 kWh estimates. Comparison of building energy estimation 
regression by predictors used and the level of spatial aggregation for all 26,991 buildings in Gainesville, Florida with predicted consumption of buildings not detected 
by the segmentation algorithm set to 0 kWh. Column A is the baseline performance of the average for all buildings but with buildings missed by the segmentation 
algorithm set to 0 kWh. The RMSE values are in units of kilowatt-hours (kWh). The baseline column is the point of comparison for performance improvement 
measurements across the table. Columns B and C depict performance of random forest algorithm trained on ground truth (column B), CNN-estimated area (column C), 
and CNN-estimated area with additional features included (column D).   

A B C D 
Regression 
model 

Average 
(Baseline with 
consumption of 
buildings missed 
by segmentation 

set to 0 kWh) 

Random forest Random forest Random forest 

Predictors Training set 
average 

consumption 

Area training predictors: ground truth area, 
test predictors: estimated area 

Area training AND test predictors: estimated 
area 

CNN estimated area, perimeter, local density 
estimates, top 10 principal components of 

the ResNet-152 features 

Level of 
aggregation 

R2 RMSE 
(kWh) 

R2 RMSE 
(kWh) 

Improvement over 
RMSE baseline (%) 

R2 RMSE 
(kWh) 

Improvement over 
RMSE baseline (%) 

Improvement over RMSE baseline (%) 

None 
(Individual)  

0.00 8199  0.00 7965  2.9  0.00 7900  3.6  7.2 

50 × 50 m  0.00 8349  0.00 7931  5.0  0.00 7895  5.4  9.4 
100 × 100 m  0.33 8428  0.27 7530  10.7  0.35 7691  8.7  16.8 
200 × 200 m  0.64 8275  0.60 7275  12.1  0.66 7268  12.2  23.4 
400 × 400 m  0.72 7140  0.68 6237  12.6  0.75 6005  15.9  30.7 
1000 × 1000 m  0.77 7343  0.76 6215  15.4  0.81 6021  18.0  35.3  

Table 6 
Results for the end-to-end building energy estimation process for Gainesville for CNN-detected buildings. Comparison of building energy estimation regression by 
predictors used and by the level of spatial aggregation for the 20,122 buildings detected by the segmentation algorithm in Gainesville, Florida. Predictors used are 
ground truth area (column B) or are estimated from CNN-derived building annotations (columns C and D). The Random Forest prediction outperforms the average 
baseline in all scenarios. Adding additional predictors to building area (column D) is strictly better than using estimated area alone (column C), while it also out
performs energy predictions using ground truth area (column B) for larger levels of aggregation. The RMSE values are in units of kilowatt-hours (kWh). The baseline 
column is the point of comparison for performance improvement measurements across the table. See Table 9 in the Supplemental Information for additional per
formance metrics for column B.   

A B C D 
Regression 
model 

Average 
(baseline) 

Random forest Random forest Random forest 

Predictors Training set 
average 

consumption 

Ground truth area CNN estimated area CNN estimated area, perimeter, local density 
estimates, top 10 principal components of the 

ResNet-152 features 

Level of 
aggregation 

R2 RMSE 
(kWh) 

Improvement over RMSE 
baseline (%) 

R2 RMSE 
(kWh) 

Improvement over RMSE 
baseline (%) 

R2 RMSE 
(kWh) 

Improvement over RMSE 
baseline (%) 

None 
(Individual)  

0.00 6851  17.9  0.14 6352  7.3  0.28 5831  14.9 

50 × 50 m  0.27 7147  20.3  0.35 6472  9.4  0.48 5912  17.3 
100 × 100 m  0.61 7604  26.5  0.68 6716  11.7  0.76 5859  22.9 
200 × 200 m  0.79 7257  30.5  0.86 6101  15.9  0.91 5009  31.0 
400 × 400 m  0.85 6264  35.1  0.92 5040  19.5  0.95 3853  38.5 
1000 × 1000 m  0.87 6546  36.1  0.94 5177  20.9  0.97 3784  42.2  

4 See Supplemental Information Table 10 for additional performance metrics 
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energy consumption assuming we identify the building in overhead 
imagery?” For this case, we only consider Gainesville results for build
ings identified by the segmentation algorithm, shown in Table 6. As in 
each of these analyses, we show the baseline estimator (average of the 
training data) in column A for comparison. We also compare using 
ground truth building footprint area (column B) with CNN-detected 
building footprint area (column C) and CNN-detected building foot
print area coupled with additional features extracted from the imagery 
data (column D). All of these approaches greatly outperform the baseline 
model (column A), while the magnitude of improvement in RMSE is 
generally greatest for using predictors composed of CNN-detected 
building footprint area coupled with additional features extracted 
from the imagery data (column D), which even outperforms the ground 
truth-based predictors in column B for aggregation levels of 200 × 200 
m or larger. The additional features used in column D resulted in 14.9% 
RMSE improvements over the baseline for individual buildings 
compared to 7.3% for area alone. This is comparable to the 17.9% 
(column B) improvement that estimator based on the ground truth area 
boasts. Larger gains resulted from aggregating to 1000 × 1000 m regions 
which brought the improvement to 42.2% for the additional features of 
column C, up from 20.9% for using predicted area alone. 

Lastly, we investigated estimating building energy consumption in 
San Diego. There are a total of 90 ZIP Codes for which we have data 
available in San Diego County. Its area is 11,722 square kilometers, 
therefore, these ZIP Codes are on average far larger than even the largest 
area of aggregation (1 km2) that was used so far in these experiments. 
Additionally, since the area is larger, there is likely to be more hetero
geneity in the data in terms of housing stock and energy consumption. 
For these experiments, we do not have data with both individual energy 
consumption and the specific location of the corresponding building, so 
we have to split up the building segmentation algorithm training and 
energy consumption estimation process across different datasets. For 
building segmentation training, we use a small dataset of 7,396 hand- 
labeled buildings (polygons of building footprints) in San Diego that 
was used to fine-tune the Gainesville building segmentation model 
trained on 798 buildings in Gainesville pretrained on the INRIA building 
segmentation dataset [87]. For energy consumption estimation we use 
the anonymized collection of 10,718 buildings in San Diego City with 
known energy consumption, building footprint area and ZIP Code 
location. 

Having trained an individual building energy consumption regres
sion model using the anonymized collection of buildings from 12 ZIP 
Codes, we test first on just San Diego City (18 ZIP Codes) with results 
shown in Table 7 column A, then both the city and all of the other San 
Diego County ZIP Codes (78 ZIP Codes) with results shown in column B. 
Compared to using the County average residential energy consumption 

for all buildings (baseline 1), our approach yielded a 34.1% improve
ment in RMSE at the ZIP Code level for San Diego City (column A) and 
are comparable against baseline 2 that uses a training set average for San 
Diego City – a 30.9% improvement (column A). For predicting the ZIP 
Code level energy consumption for San Diego County, we find a 6.4% 
improvement in RMSE across the 90 ZIP Codes from San Diego County 
(column B). 

5.5. Results of the sensitivity analysis for quantity of training data needed 
for reliable output 

Training data are hard to obtain for building energy consumption, so 
we explore the impact of the quantity of training data on the error in the 
energy consumption estimates. Over repeated experiments, we vary the 
size of the training dataset, holding the test set fixed, and evaluate 
performance using different samples of training data sampled with 
replacement. To ensure scales are matched on our axes across experi
ments we use R-squared as our metric for comparison: higher R-squared 
is more desirable. In each experiment, we are interested in where the 
plot appears to level off, saturating its performance. Alternatively, one 
could use it to approximate the number of examples needed to produce 
an estimator of a targeted performance. 

For the Gainesville case, predicting energy consumption from CNN- 
derived area alone, we see in Fig. 3, unsurprisingly, the more data that 
are included, the better the performance. However, what is more 
interesting is that the performance increase from adding training begins 
producing marginal returns around 2,000 samples. Beyond that, very 
minor improvements are seen in performance. For larger areas of ag
gregation, even less data may be needed as the 1000 × 1000 m case 
appears to level off between 300 and 400 training samples. For indi
vidual buildings, 2,000 samples may be required, while for a square 
kilometer as few as 200 samples may be sufficient to approach near-peak 
performance. Additionally, over 95% of predictions made with at least 
200 buildings in the sample outperformed the baseline average model in 
Gainesville. 

For the San Diego sensitivity analysis results are shown in Fig. 4. In 
this case, individual building energy consumption performance over this 
larger region (an entire county) continues to increase with more data, 
which may be explained by the greater diversity in the larger region: the 
imagery datasets for Gainesville and San Diego County cover 315 km2 

and 9,131 km2 respectively. Bear in mind that the training dataset comes 
from San Diego City which is unlikely to be representative of the entire 
County. Nevertheless, a dataset of as few as 300 buildings is enough to 
perform better than the baseline average estimator in San Diego City at 
the ZIP Code level. For San Diego County, new data steadily decreases 
the probability of the estimator underperforming the baseline. In fact, 

Table 7 
Results for end-to-end building energy consumption estimation for San Diego. ZIP Code-level prediction performance using CNN-estimated annotations classified as 
residential, then applying Random Forest regression and comparing against the averages for either San Diego county (baseline 1) or San Diego City (baseline 2). The 
results for San Diego City (18 testing ZIP Codes, column A) and San Diego County (78 testing ZIP Codes, column B) are presented separately as the former is a higher 
density region and the random forest energy consumption regression model was trained on an anonymized sample from San Diego City. ZIP Code sizes range from 0.16 
sq. km to over 1,700 square km and are on average about 100 sq. km. All 12 ZIP Codes where anonymized training data comes from are excluded from testing.   

A B 
Location San Diego City San Diego County 
Number of ZIP Codes 
tested (trained) 

18 (12) 78 (12) 

Prediction method 
(random forest or 
average) 

Average 
(county, 

baseline 1) 

Average (city, 
baseline 2) 

Random 
Forest 

Improvement over 
Baseline 1 (%) 

Improvement over 
Baseline 2 (%) 

Average 
(county, 
baseline) 

Random 
Forest 

Improvement 
(%) 

R2 0.36 0.55 0.77 114 40 0.72 0.75  4.2 
Correlation 0.82 0.82 0.93 13.4 13.4 0.91 0.93  2.2 
RMSE (kWh) 5671 5410 3737 34.1 30.9 10,404 9742  6.4 
Average number of 

buildings per ZIP 
Code 

9,333 9,171 

Total number of 
buildings 

167,997 715,353  
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even 100 buildings (0.01% of test set buildings in the County) is enough 
to produce a better-performing estimator in 75% of model runs, and for 
4,000 buildings (0.56% of test set buildings in the County), this results in 
better-than-baseline performing estimates 90% of the time. 

6. Conclusions 

This work presents an end-to-end pipeline for residential building 
energy consumption based only on overhead imagery data. This method 
produces estimates that are generally lower-error compared to using the 
regional average building energy consumption. In Gainesville, our 
approach for detected buildings yielded individual buildings energy 
estimates with errors around 5,831 kWh per year (R2 of 0.28), while the 
baseline (average) resulted in an error of 6,851 kWh per year. Aggre
gating the data over small “neighborhood” regions also resulted in 
additional improvements in building energy estimation accuracy. For a 
1 square kilometer aggregation, the estimation error fell to between 
3,784 and 4,754 kWh per year (R2 between 0.81 and 0.97), while the 
baseline was 6,546 kWh per year. This meant our approach improved 
7%-15% over baseline performance for estimating the energy con
sumption of individual residential buildings. By aggregating energy es
timates up to 1 square kilometer neighborhoods, energy estimation 
improved to between 28% and 42% over the baseline. In San Diego 
County, while individual level predictions resulted in a R2 of 0.38, 
aggregating up to the ZIP Code level demonstrated a 34% improvement 
in building energy estimation performance for San Diego City and a 
6.4% improvement for San Diego County. 

Features of the buildings included in the energy estimation model 
impacted performance, determining, in part, which end of the range of 
improvements over the baseline model estimates fell into. Extracting 
only the footprint area of each building was enough to produce the lower 
end of these performance improvement ranges. While area proved to be 
an essential feature for energy estimation prediction, additional features 
pushed the results towards the upper end of the performance range. 
Perimeter, neighborhood building density estimates, and other visual 
features extracted from imagery of each building and its surrounding 
using a deep learning model’s encoder, pushed the performance to the 
upper end of the performance range. Another factor in performance was 
whether scoring metrics included occluded buildings (those not visible 
from above due to tree cover, etc.), with larger improvements resulting 
if visually occluded buildings were not factored into scoring. This 
demonstrates that these techniques perform better when the buildings 
are clearly visible. Quantitatively, the building detector correctly iden
tifies 84% and 88% of buildings in Gainesville and San Diego, respec
tively, and the building type is classified with 99% accuracy for 
residential buildings and 74% accuracy for commercial buildings. 

We also explored how the quantity of training data impacted the 
energy estimation performance achieved through a sensitivity analysis. 
For instance, in our Gainesville experiments, for individual building 
energy consumption estimates to achieve a 12% improvement over the 
baseline model around 2,000 samples of building data were needed, 
while for a 37% improvement in the 1 square kilometer aggregate es
timates this requirement could be as low as 200–300 samples. These 
data requirements are not overly onerous and implies that this approach 
may be practical for applications in new and potentially larger 
geographies. 

Overall, this approach demonstrates the feasibility of using overhead 
imagery to produce high-resolution estimates of residential building 
energy consumption that are generally more accurate than using what is 
typically available today: regional building energy consumption aver
ages. This approach could be used to rapidly gain higher resolution in
sights on building energy consumption at a larger geographic scale than 
previously achievable without the need for large household surveys or 
proprietary data. This technique may enable researchers to better assess 
energy consumption trends around the world as residential housing 
development evolves and enhance evidence-based decision making for 
planning for energy system security and sustainability. 

Fig. 3. Sensitivity analysis of the energy consumption estimation process 
varying the size of the training dataset for Gainesville, Florida over 100 
repeated trials using a different subset of training data. Each line represents a 
median across trials for different levels of aggregation starting with the indi
vidual building level and increasing through 1 square km. Over the repeated 
runs of this model, the bands around each line show the range between per
centiles 2.5% and 97.5%. The baseline for the case of individual building en
ergy consumption prediction is an R2 of 0. 

Fig. 4. Sensitivity analysis of the energy consumption estimation process 
varying the size of the training dataset for San Diego, California over 100 
repeated trials where each trial uses a different subset of training data (sampled 
with replacement). The results show the median R2 values for both individual 
building and ZIP Code level estimates. Baseline averages are shown for com
parison. Over the repeated runs of this model, the bands around each line show 
the range between percentiles 2.5% and 97.5%. 
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7. Limitations and future work 

Among the limitations of this work, the availability of datasets with 
both known energy consumption and known location to provide 
adequate training data yielded a relatively small sample size for the 
number of buildings in our experiments. In Gainesville there was also 
substantial tree coverage in the imagery data for many buildings, 
limiting the efficacy of feature extraction and therefore performance for 
occluded structures. Another limitation was encountered in San Diego, 
where we had no buildings where both energy consumption and precise 
geolocation was known. This motivated our experimental choice of 
aggregating to the ZIP Code level. Lastly, our current feature extraction 
methods did not include techniques for directly estimating building 
height, which can enable improved estimates of overall building 
volume. 

For future work, incorporating additional data could enhance this 
work in multiple ways. Gathering larger energy use datasets could 
enable measures of algorithm generalizability to be evaluated across 
more diverse regions. Other datasets may be added to the model pipeline 
such as data to provide information about building height such as Lidar 
data and street level imagery (similar to what is available from Google 
Street View). These data may have the potential to provide features on 
the physical characteristics of the dwelling (its height, building envelope 
material, window size etc.) and also potentially relevant socioeconomic 
data as well. Additionally, collecting more data on commercial buildings 
could allow similar work to be completed on estimating commercial 
building energy consumption. Lastly, if the number of buildings in a 
region is known, further work could be devoted to imputing the con
sumption of such buildings using both aggregate and individual esti
mates to improve regional energy consumption estimation. 
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