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HIGHLIGHTS

o Building energy consumption is predicted from overhead imagery alone.

o Buildings are detected and classified by type using deep learning.

o Predict individual building energy consumption explaining 28% of variance.

e Small amounts of spatial aggregation explain 91% of variance in predicted energy.
e Model demonstrated at a practical scale in two locations in the United States.

ARTICLE INFO ABSTRACT

Keywords: Residential buildings account for a large proportion of global energy consumption in both low- and high- income
Buildings countries. Efficient planning to meet building energy needs while increasing operational, economic, and envi-
Energy demand ronmental efficiency requires accurate, high spatial resolution information on energy consumption. Such in-
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formation is difficult to acquire and most models for estimating residential building energy consumption require
detailed knowledge of individual homes and communities which are unlikely to be available at a large scale.

To address this need, we introduce a methodology for automatically estimating individual building energy
consumption from overhead imagery (e.g. satellite, aerial) and demonstrate the effect of spatial aggregation for
further improving accuracy. We use a three-step estimation process by which we (1) automatically segment
buildings in overhead imagery using a convolutional neural network and classify them by type (residential or
commercial), (2) extract features (e.g. area, perimeter, building density) from those identified residential
buildings, and (3) use random forests regression to estimate building energy consumption from those features.

The predictive capability of this approach is evaluated in two locations: Gainesville, Florida, and San Diego,
California. The building detector correctly identifies 84% and 88% of buildings in Gainesville and San Diego,
respectively. The type of building is classified successfully 99% of the time for residential buildings and 74% of
the time for commercial buildings. With residential buildings identified, this approach predicted individual
building-level energy consumption with an R? of 0.28 and 0.38 for Gainesville and San Diego, respectively.
Aggregating the energy consumption estimates across small neighborhoods of size 200 x 200 m and 1000 x
1000 m in Gainesville results in an R? of 0.91 and 0.97, respectively. We also explore the sensitivity of estimates
in San Diego and Gainesville to the training data and its size. Our results suggest that using overhead imagery to
estimate the size of buildings has a higher predictive power in estimating residential building energy con-
sumption than common alternatives.
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1. Introduction
1.1. The need for residential building energy consumption information

Buildings account for more than one third of global energy con-
sumption [1]. In the United States and the European Union, buildings
account for more than 40% of energy consumption [2]. In the United
States, buildings constitute more than 72% of electricity consumption
[3]. Behind these figures is an unprecedented, decades-long trend to-
ward urbanization driven by both rapid population growth and a
migration from rural settings to cities.

Urbanization has driven economic development (and vice versa) but
these twin trends also result in greater energy consumption and green-
house gas emissions. In 2008, only half the world’s population lived in
urban areas, but they were responsible for two-thirds of the world’s
energy consumption. By 2030, nearly three-fourths of the world’s pop-
ulation is projected to live in urban areas [3]. At that point, the United
Nations estimates the number of city-dwellers worldwide will grow at a
rate of two million people per week. That astounding growth can be
managed with careful planning, but if urbanization continues on a
mostly ad hoc basis, environmental and social consequences could be
severe [4].

While national and international policies will have a role to play in
addressing greenhouse gas emissions, cities—where sustainable infra-
structure and policy measures find their most immediate implementa-
tion—may be in the best position to curb local emissions and energy
consumption, including that of buildings.

However, for policymakers to act meaningfully to curb energy con-
sumption, including building-level energy consumption, they first need
accurate, actionable data. Detailed building-level energy-use data has
many policy and technological applications. For example, researchers
have recently investigated the relationship between energy use (e.g.,
building consumption), economic indicators [5], and climate change
[6]; architects and engineers develop ‘zero-energy building’ technolo-
gies aspiring to bring us closer to sustainable growth [2]; and advanced
energy use forecasting models offer electricity producers and manufac-
turers opportunities for cost savings and prudent investments in energy
infrastructure.

Individual utility = companies have billing datathat con-
tains measurements of building energy consumption. Those data are
largely unavailable to the research and policy community and typically
the only option for accessing them is through non-disclosure agree-
ments, and those are often rare. The California Public Utilities Com-
mission, for instance, has a mechanism for disclosure of energy usage
data for approved research, but discloser of the data requires that the
individual customer energy data be aggregated to a level with at least
100 consumers per observation [7].

Energy data that are available often have their limitations. The
largest of which are either location-anonymized, such as the Residential
Energy Consumption Survey (RECS) [8] or the Pecan Street Data-
port dataset [9]. Others are limited in coverage area such as Gainesville
Green which only includes Gainesville, Florida, [10] or one of the many
non-intrusive load monitoring (NILM) datasets (REDD [11], BLUED
[12], PLAID [13], GREEND [14], AMPds [15], Tracebase [16], UKDale
[17]) that only include a handful of homeseach. For addressing
research and policy questions in a specific neighborhood or region,
these existing datasets, alone, will not provide adequate information,
but need to be supplemented with information specific to the study
region.

Estimation of energy consumption is one way to overcome these data
access limitations. Current state-of-the-art models estimating building
energy consumption, however, rely on data that is costly or even
impossible to collect at a large scale such as household income, dwelling
characteristics and occupant consumption behavior patterns. This pro-
duces a gap between the demand for building energy consumption data
(actual or estimated) and the supply. To fill this gap, we propose a
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method for estimating individual building energy consumption auto-
matically from satellite or aerial (collectively, overhead) imagery data.
It is impractical for human analysts to manually extract this information
from large volumes of overhead imagery, and therefore we employ
computer vision techniques to automatically extract the footprint of in-
dividual buildings, and then estimate their energy consumption. To our
knowledge, this is the first study to directly use overhead imagery to
estimate individual residential building energy consumption, poten-
tially offering a powerful new tool for scalable and cost-effective data
collection. However, this approach builds on a number of previous
studies investigating methods for accurately estimating the energy
consumption of buildings.

1.2. Previous work on estimating building-level energy consumption

Past work on building energy consumption estimation can broadly be
divided up into two categories: physical models and regression models,
with hybrid methods possible that combine both physical and statistical
techniques [18]. Most of the existing building energy estimation meth-
odologies require substantial amounts of data on each building to make
effective estimates of energy consumption.

Physical models. One approach to analyzing the energy consump-
tion of buildings is through the use of physical modeling and simulation
techniques. Most physical models focus on analyzing thermal flows and
are based on computational fluid dynamic (CFD), zonal and/or multi-
zonal (nodal) models. Seminal works in this space include Clarke (2007)
[19] and Underwood and Yik (2008) [20], which present wide-ranging
discussions of these approaches. In the field of building energy con-
sumption, thermal modelling is typically used together with a building
energy model to simulate energy consumption, such as EnergyPlus [21].
CFD models describe thermal transfer in a building by producing a
detailed description of thermal flows. This approach comes at a large
computational cost and information requirement about the building and
its materials. In the context of building energy consumption, these ap-
proaches have been applied for large rooms [22], predicting cooling and
heating demand in an office [23], and improving overheating prediction
through coupling CFD with a building energy simulation model,
TRNSYS, for a typical Belgian two-story house [24]. Zonal and multizonal
models divide rooms into several cells and solve physical equations for
each cell. The focus of much of this work is on thermal comfort [25] and
energy consumption estimation for buildings [26]. Multizonal ap-
proaches have been used to simulate building thermal behavior with
each building component modeled as a separate node [27] and to model
indoor air temperature in office buildings [28]. Olsen et al compare
cooling systems using EnergyPlus in a nodal framework to evaluate
energy savings potential for a newly built house in the UK [29]. Phan
et al. develop a multi-zone modeling strategy for a data center housing
1,120 servers comparing energy performance between warm and cold
climates [30]. Yang et al. combine a microclimate model ENVI-met with
EnergyPlus to analyze the effects of different microclimatic factors on
the energy balance of an individual urban building [31]. Scientists are
also actively working on improving the quality of building energy con-
sumption models. For instance, Dols et al couple EnergyPlus with
CONTAM, a commonly used multizone building airflow simulation tool,
aiming to capture the interdependencies between airflow and heat
transfer [32].

Physical models, with the ability to attain unparalleled levels of
modeling detail also require extensive information about each individ-
ual building, in some cases requiring a complete floorplan and inventory
of building materials. These models may excel at making precise esti-
mates but are not generally designed for large-scale implementation
across many buildings in a region.

Regression models. Machine learning (or statistical learning)
models that perform regression to estimate building-level energy con-
sumption may be further subdivided into two subcategories: those that
take a top-down approach (start with an estimate for the whole city/
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region and disaggregate as needed) and those that take a bottom-up
approach (start with an individual building estimate and aggregate up to
a larger region) [33]. Top-down models often treat groups of buildings
as a single energy-consuming collective, disregarding differences among
individual buildings. Bottom-up models, on the other hand, focus on
individual buildings and energy uses within buildings. Those energy
estimates can then be aggregated upward. Li et al. review both ap-
proaches as well as variations within those approaches, advantages and
disadvantages of each, and present an overview of the contemporary
studies subscribing to each method [3].

The advantages of a top-down model for estimating building-level
energy consumption are that this approach does not require the
modeler to know buildings’ actual energy consumption. In fact, this
approach only requires limited input information, often with aggregated
economic data, and may consider long-term economic effects. This
approach does pose limitations, however. Modelers need long term
historical data describing energy use, and the model’s output relies upon
those past relationships between economic factors and energy use. For
deriving building-level energy consumption estimates, this typically
amounts to using an average value or a weighted average of energy
consumption for the region for each building without taking into ac-
count individual building attributes [34].

Bottom-up approaches may employ statistical models or physics-
based models. Statistical models simulate energy use at the level of
specific buildings, so variations among individual buildings are
considered. However, this approach requires billing, weather, or survey
data, plus a larger number of sampling subjects, and the output relies
highly on historical energy consumption trends. Physics-based models
simulate energy use at different temporal scales and consider variations
in individual end use, but this approach requires detailed physical and
technological measures as well as intensive computational effort.

Another branch of energy consumption estimation is energy fore-
casting — prediction of energy consumption in a time series rather than a
cross-sectional setting. Examples of this approach include Li et al. who
train a deep learning model to predict the energy consumption of a retail
building at 30- and 60-minute intervals [35] and Dong et al. who used
four years of monthly energy use data for commercial buildings in
Singapore and use energy consumption history combined with weather
attributes to predict future consumption [36]. These techniques rely on
historical timeseries data, which is generally unavailable.

Most relevant to this work are bottom-up approaches that attempt to
estimate individual building energy consumption. These techniques
explore a wide variety of variables for predicting building energy con-
sumption or identifying the most informative variables related to
building energy consumption prediction. The variables considered in
these studies range from weather, occupant lifestyle, dwelling size, and
characteristics to socio-demographics [37-46]. However, these studies
have one thing in common: they all rely upon numerous input variables,
most of which are typically unavailable, thereby limiting the applica-
bility of such models for large-scale building energy consumption
prediction.

For instance, Sanquist et al. extract 5 lifestyle factors via factor
analysis, which reflect social and behavioral patterns associated with air
conditioning, laundry usage, personal computer usage, climate zone of
residence, and TV use, from 17 variables in the U.S. Residential Energy
Consumption Survey (RECS) to train a linear model capable of pre-
dicting building energy consumption with an R? of 0.4 [44]. Huebner
et al. use Lasso regression and show that the following predictors are
statistically significantly correlated with consumption: household size,
length of heating season and all the physical building characteristics (e.
g. floor area, fuel type, age, location) [37]. In addition, they train
separate models for building energy consumption using combinations of
groups of predictors. In particular, the physical building factors model
performs best with an R? of 0.39, while the combined model that also
includes socio-demographic and behavioral attributes such as number,
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age, gender, employment status and heating behavior of occupants has
an R? of 0.44. Scott Kelly makes use of the English House Condition
Survey and predicts via a linear model using 6 variables such as
household size, income, and floor area to arrive at an R% of 0.31 [42].

Instead of predicting total energy consumption, some authors build
models to predict energy use intensity or energy consumption by end use.
For instance, Ma et al. use 216 variables and apply Elastic Net feature
selection followed by Support Vector Regression to estimate use in-
tensity for residential buildings in New York [38]. Whereas Min et al.
utilize dozens of variables from RECS including energy price, household
and housing unit characteristics to predict energy consumption by end
use. Their log-linear models predicting heating, cooling, water heating
and appliance energy consumption have R? values of 0.83, 0.70, 0.34,
and 0.52 respectively [39].

Each of the building-level models discussed in this section rely on
data that are generally unavailable, such as household size, income, or
lifestyle information. Amasyali et al. [47] and Ahmad et al. [48] echo
the insufficiency of data for effective energy consumption estimation
and/or forecasting. This means these techniques would be restricted to
spatial coverage of areas where such data are available. Fortunately,
however, many of these studies also point to the physical size and
characteristics that may be externally visible for a dwelling as being a
strong predictor of energy consumption [37,39-41,49]. Our goal is to
overcome the challenge of large-scale energy consumption estimation
for residential buildings and to approach this we make use of the
important observation that the size of a building (its footprint) is typi-
cally visible from overhead imagery, and so with the right tools to
extract that information, we are able to generate an estimate of building
energy consumption anywhere in the world with high resolution over-
head imagery.

1.3. Previous work on the use of overhead remotely sensed imagery for
energy-relevant studies

Machine learning and computer vision techniques, especially con-
volutional neural networks (CNN), have enabled many relevant remote
sensing applications. For example, remotely sensed nighttime lights
have been successfully used to evaluate electrification rates in Africa
[50] and India [51] as well as to predict energy consumption in Japan,
China and India (improving an R? from 0.66 to 0.83) [52]. The main
limitation of nighttime lights dataset is its low resolution which limits its
usefulness in analyzing building-level energy consumption. Related
techniques have even been used to predict poverty in Africa using only
remotely sensed data [53].

Daytime overhead imagery has also been shown to be effective for
related analyses including solar photovoltaic array identification and
capacity estimation. Building energy consumption may be impacted by
the presence of solar photovoltaic arrays, so additional information on
solar array location and size may help increase the accuracy of building
energy estimation. Malof et al. demonstrate that solar photovoltaic
panels can be detected extremely accurately with deep learning tech-
niques [54], and Yu et al. demonstrate how this technique can be scaled
up to the contiguous US [55].

Building detection and segmentation in overhead imagery is an
active area of research. One example is Inria Aerial Image Labeling
Benchmark (INRIA) released in December 2016-910 square kilometers
of pixelwise labeled aerial imagery in 5 cities [56]. State-of-the-art
building segmentation models generally use an encoder-decoder struc-
ture as described in Chen et al. [57], with skip connections to maintain
the fine-grained object boundary details. Two popular variants of this
framework are U-net [58], the network used for building segmentation
in this paper, and D-LinkNet [59]. Some authors, on the other hand, use
different common networks as an encoder and a decoder. For instance,
Demir et al. [60] replace the feature extractor with larger pretrained
deep neural networks like ResNet [61] arriving at a superior
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performance on building segmentation benchmark datasets [62].

1.4. Focus on residential building energy consumption

Commercial building energy consumption tends to be better under-
stood because of direct management for reducing energy consumption
as compared with residential energy consumption which is highly var-
iable due to variations in building sizes and geometries, occupant
behavior, and limited data [33]. For many residences, the set of po-
tential appliances or devices that are present may vary based on the
culture [63] as well as the number and affluence of the occupants [21].
In this work, we focus on residential buildings due to two factors: (1)
from a practical perspective, data on individual residential building
energy consumption (including precise location and energy consump-
tion) are publicly available for multiple cities, while very little infor-
mation that is not de-identified is publicly available for the commercial
sector; and (2) residential and commercial building energy consumption
collectively accounts for 40% of total U.S. energy consumption, split
about equally between the two sectors, so there is a significant impact
for each. Moreover, residential buildings account for a large proportion
of global energy consumption in both low and high income countries
making this study topical outside the U.S. as well [64]. While there has
been some work on commercial building energy consumption estima-
tion [65-67], these approaches typically also require detailed informa-
tion about a building. We leave the investigation of similar satellite
imagery-based energy consumption estimation techniques that do not
require such detailed data for each building to future work.

1.5. Contributions of this work

In this paper, we introduce and evaluate the performance of a novel
approach for estimating individual and regional residential building
energy consumption directly from overhead imagery, without the need
for detailed information on a building or any historical or demographic
data related to the building. This concept, originally suggested in [49],
relies on deep convolutional neural networks to automatically estimate
building footprints, classify buildings by type (residential or commer-
cial) and extract relevant features (e.g. building footprint area, perim-
eter, population density) in color overhead imagery. To these features
extracted for each individual building, we apply a regression model to
estimate that building’s energy consumption. We demonstrate that our
approach can efficiently scale to analyses over large geographic areas,
while still providing consumption estimates at a high geospatial reso-
lution (e.g., individual buildings or neighborhoods), and that this model
can be applied in multiple locations (in this work Gainesville, Florida,
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and San Diego, California).

The paper is structured as follows: we summarize the datasets used in
this study (Section 2) before describing the methodology (Section 3) for
estimating building energy consumption. The methodology describes
how we detect buildings in overhead imagery and generation of building
footprints (3.1); classify those buildings as residential or commercial
buildings (3.2); extract features based on those buildings including
quantifies such as building area and perimeter (3.3); and predict the
energy consumed by the building using regression (3.4). We also discuss
the particular scoring metrics used to compare across models (3.5) and
the baseline estimator we adopt as a point of comparison for perfor-
mance (3.6) and how we split our data into training and testing sets
(3.7). We lay out our experimental design in Section 4 to test the per-
formance of each component of our analytical pipeline including
building segmentation (4.1); building type classification (4.2) and en-
ergy consumption estimation (4.3 and 4.4). We also perform a sensi-
tivity analysis to the quantity of training data needed (4.5). We present
the results for each of these experiments in Section 5 (with each sub-
section in Section 5 corresponding to the experiment with the same
number in Section 4) before concluding. Fig. 1 describes the complete
pipeline for the methodology in this work and directs the reader to the
relevant section containing experimental results for each pipeline
component.

2. Datasets

Data on building-level energy consumption are sparse and we need
data where we have both building-level energy consumption and high-
resolution overhead imagery. Note that in practice, building-level en-
ergy consumption information is not necessary to use our proposed
method, but it is necessary to evaluate the ability of our approach to
estimate the correct values (i.e., measure its accuracy). The two suitable
areas we found are Gainesville, Florida, and San Diego, California. In
both of these locations, high-resolution overhead imagery and energy
consumption data are available, although the resolution of the energy
data varies by region. The available data for each region are summarized
in Table 1.

Overhead imagery data. High-resolution, 0.3 m aerial imagery is
publicly available from the United States Geological Survey (USGS) for
both Gainesville and San Diego from the high resolution orthoimagery
collection [69]. For building identification, 0.5 m or finer resolution
data are typically required for recent state-of-the-art building segmen-
tation algorithms, so 0.3 m resolution is adequate. The USGS imagery
data were collected in December 2013 for the Gainesville data and
October 2014 for the San Diego data.

. . o Estimate Energy
E t Features from Residential Buildings
F & ol
| 4D
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110 75 1 170

2 150 53 p—— 2 150

3 250 68 3 250

4 155 50 4 162

5 270 74 5 273

Described in Section 3.3 Described in Section 3.4

Building Energy Estimation from Known Building Footprints Evaluated in Section 5.3

Full Pipeline Evaluated in Section 5.4

Fig. 1. Flowchart of the full pipeline of our methodology. Start with only an input satellite image, then (1) detect and segment each building’s footprint, (2) classify
the building by type (residential/commercial), (3) extract relevant features based on the data, and finally use those features to estimate building energy consumption.
Each item above indicates where in this manuscript additional information about the process can be found.



A. Streltsov et al.

Table 1
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Description of data availability. For Gainesville, Florida, we have both energy consumption and building-level footprints for residential buildings. In San Diego, CA, we
have ZIP Code level energy consumption and anonymized individual building energy consumption data. The experiments in this work are designed to maximize the use
of these data sources and to do so with as much logical symmetry in approach as is possible given the constraints of the data.

Location Number of individual Individual building Includes corresponding Includes ZIP Code- Additional associated data
buildings with known area (in square building footprints level energy
energy consumption meters) known? (polygons)? consumption?
Gainesville, 26,991 Yes Yes No A total of 33,432 building footprints from which to
FL extract ground truth derived predictors; hand-
labeled building footprints for 1,098 buildings® (for
fine-tuning a building segmentation algorithm
pretrained on INRIA building data [56] and for
testing the algorithm)
San Diego, 10,718 Yes No Yes (90 ZIP Codes) Hand-labeled building footprints for 7,626
CA buildings' (for fine-tuning building segmentation

algorithm used in Gainesville and for testing the
algorithm); zoning information for San Diego City

1A subset of images was manually annotated using pyimannotate [68]. The annotator would mark each building’s perimeter manually.

Energy consumption and building footprint data. In Gainesville,
Florida, we downloaded a detailed energy consumption dataset pro-
vided by Gainesville Green containing monthly electricity, water, and
natural gas consumption as well as the corresponding geographic loca-
tion for over 30,000 households in 2016 [10]. The data includes other
years as well that were not included in this study. In Alachua County, in
which Gainesville resides, the Property Appraiser made available a
geospatial dataset of most building footprints in the county. Merging
and matching the building footprints data with each building’s corre-
sponding energy consumption, resulted in a dataset of 26,991 house-
holds in Gainesville with the corresponding monthly energy
consumption [70]. For each building, we aggregated monthly energy
consumption up to annual consumption and removed any buildings with
zero consumption (these are likely not in active use).

In San Diego County, the available energy data were not fully-
identified in the same way that they were in Gainesville, so we gath-
ered data from three sources. The first dataset includes quarterly ZIP
Code level energy consumption data publicly available from San Diego
Gas & Electric [71]. This quarterly dataset is divided up by customer
class that provides consumption by a number of building types including
residential and commercial buildings. We extracted the residential data
and summed the quarterly data to calculate the annual ZIP Code level
energy consumption. The second dataset is a sample of individual resi-
dential building-level energy consumption data from 10,718 location-
anonymized buildings in San Diego City from the Building Perfor-
mance Database [72]. While this dataset does not contain information
on the particular location of the building (so we cannot match it directly
with imagery data) it does contain information on the building square
footage (which while not the same as the building footprint area, would
be the same for 1-story buildings) and their ZIP Code location. We can
use this information to train a regression model on and evaluate indi-
vidual building-level energy consumption prediction performance, and
its corresponding ZIP Code. Lastly, we have zoning data in San Diego
City [73] to provide information as to whether a building in San Diego is
residential or commercial.

3. Methodology

To predict residential building energy consumption from overhead
imagery, we divide this process into three steps, illustrated in Fig. 1: (1)
building detection and segmentation, (2) building type classification,
and (3) energy consumption prediction, where we estimate the energy
consumed by that building based on features of the building. Step (1)
detects buildings in overhead imagery and produces polygonal repre-
sentations of each detected building, a process known as building seg-
mentation [74]. Residential buildings being the focus of the present
paper, step (2) classifies the building as either being a residential or
commercial building. Step (3) extracts informative features from the

building footprints of residential buildings (e.g. area, perimeter) and
their surrounding context (e.g., population density) to train our energy
consumption prediction model and generate estimates of the energy
consumed by each residential building.

3.1. Building segmentation

The first step in this process is to analyze the overhead imagery and
identify where each building is located and generate a polygon denoting
its outline. This is done by estimating the specific pixels in an image that
compose each building in a process that is known as image segmentation
[75]. The result of segmentation in this case is a binary image where
each pixel is labeled with a value of one if it resides on a building, and a
value of zero otherwise. This process can be done via manual labeling,
however, given the size of overhead imagery, this approach is costly and
impractical for regular application. Recently, it has been shown that
convolutional neural networks (CNNs), which are a special type of
machine learning model, can be trained to automatically generate high-
accuracy image segmentation of various objects in overhead imagery,
including buildings. Once such a model is trained, it is capable of rapidly
scanning vast quantities of overhead imagery, making it scalable and
cost-effective. This approach is ideal for our application, which requires
regularly segmenting large volumes of overhead imagery to obtain up-
to-date energy consumption estimates.

Training a CNN requires providing it with a set of image pairs, where
each pair comprises one overhead image and the desired segmentation
map for that image. CNNs are composed of a large number of model
parameters that control its segmentation process. During training, the
CNN will repeatedly be provided with training images, and then attempt
to predict their segmentation maps. The CNN’s parameters will be
automatically and gradually adjusted throughout this process to maxi-
mize the agreement between its predictions on the training imagery and
their corresponding segmentation map. CNNs typically require a large
set of training imagery, which themselves usually must be manually
annotated [76]. However, this process must only be done once, after
which the CNN can label much larger quantities of new imagery.
Furthermore, there are now publicly available datasets to train seg-
mentation models, including those for building segmentation. In this
work we initially train our segmentation models on the INRIA dataset,
which includes high-resolution orthorectified overhead color imagery
covering 405 km? of area across 5 major cities in the US and Europe with
full segmentation labels for training. After we complete training on
INRIA we subsequently train the same CNN further on a smaller set of
imagery from Gainesville and San Diego, where we ultimately apply the
model for segmenting new imagery. This process of training a second
time on task-specific imagery is known as “fine-tuning”, and it has been
shown to enhance the performance of CNNs for recognition tasks [77].
More details of the training setup can be found in [56].
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Segmentation CNNs are available in many different architectures,
each with somewhat varying characteristics. In this work we employ the
U-net architecture [58], which has demonstrated success especially for
building segmentation [58,78]. In particular, we use a modified U-net
architecture that recently achieved the best performance for building
segmentation on the INRIA dataset [56]. We trained our U-net as
described above and then subsequently used it to segment all the
buildings in our target imagery over Gainesville and San Diego. The
segmentation output of our U-net is a binary image, however, we ulti-
mately need to identify the polygons corresponding to individual
buildings. To achieve this we extracted contiguous groups of building
pixels — termed connected components — and then applied the Dou-
glas-Peucker algorithm [79] to approximate a polygon that matches
well with the shape/size of the connected component.

3.2. Building type classification

Building segmentation produces polygons that may represent many
types of buildings including both residential and commercial. Therefore,
we need to be able to identify those buildings that are residential before
we can assign energy consumption estimates to those buildings. To do
so, we trained a building type classifier that takes as input an overhead
image of a building (cropped to 224 x 224 pixels around the center of
the building) and classifies each building or rather the 224 x 224 pixel
neighborhood around each building as either residential or commercial.
The building type classifier is based on ResNet-152 architecture [61] (a
well-known architecture designed for image classification) and assigns a
residential or commercial class to each building.

3.3. Feature extraction

For each residential building identified, we know the location in the
overhead image via the polygon (outline) of that building produced
from the segmentation step. From this, we need to extract meaningful
features from the imagery and polygon that inform a prediction of the
amount of energy consumed within the building. Inherent in the
building polygon and corresponding imagery there may be valuable
information. Area (a measure of building size) and perimeter (relative to
area is a measure of building complexity) are directly computable for
each object giving us insight into the physical characteristics of a
building. Area is an intuitive predictor for homes with significant
heating and cooling energy consumption [80].

Other features may be worth considering, including information on
rooftop material or swimming pools, population density (number of
neighboring buildings within certain radius of the building), and other
neighborhood characteristics. As mentioned before, CNNs are particu-
larly adept at automatically extracting meaningful features, so we can
also allow the CNN to automatically attempt to determine those prop-
erties which are of greatest value for estimating energy con-
sumption—some of these may have semantic meaning (e.g. roof color,
presence of two cars in a driveway)—while others may not have such
interpretability. We do this using ResNet-152 model [61]. We apply the
ResNet model pre-trained on ImageNet [81] only for the purpose of
extracting features, which are the network values fed into the final fully
connected layer of the ResNet CNN. We then apply principal compo-
nents analysis to these 2,048 features and use the top 10 principal
components of those ResNet-extracted features as additional features
about the building and its surrounding neighborhood [82]. While these
additional features do contain information about the buildings, we show
in the analyses below that simple building area proves to be, overall, the
most informative feature for this problem.

3.4. Energy consumption prediction

Using the features extracted from the imagery data, area in partic-
ular, we explored a number of regression models for energy
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consumption prediction that have been prominent in the literature
[10,11]: linear multiple regression, gradient boosted decision trees,
artificial neural networks, and random forests [49]. Using the model
which predicted individual building energy consumption prediction
best, random forests, we investigated the most informative features for
this prediction by comparing performance across different combinations
of features.

This prediction approach estimates individual building energy con-
sumption. The use of energy in individual buildings may be extremely
variable due to factors that are invisible in overhead imagery including
electronic devices that are not related to building size. However, small
amounts of spatial aggregation may significantly reduce this variability
while still retaining a high level of geographic spatial resolution. We
therefore investigate the impact of spatial aggregation on building en-
ergy estimation accuracy with an aggregation range of one square
kilometer or less, much smaller than most ZIP Codes and neighborhoods.
Past work in automatic solar photovoltaic identification demonstrated
that geospatial resolution may be traded for estimation accuracy [83],
and we also test the efficacy of that approach for building energy
estimation.

3.5. Scoring metrics

To evaluate the performance of each regression model we use two
well-known scoring metrics, which are two different ways to quantify
the error between the energy consumption predicted by the models, and
the true energy consumption values. The first is the coefficient of
determination, R2, which is the proportion of variance of the true energy
consumption values that are explained by our model’s predictions; we
want this measure to be as close to 1 as possible (representing all vari-
ance being explained by the model). We use the common formulation for
R?, defined as follows

S0 =5
L=y’
Here y; is the true value, y; is the predicted value of energy con-
sumption for the i building and ¥ is the sample average over true
values.
The second is the root mean square error (RMSE) between the pre-
dicted and true energy consumption values, given by

R(.5)=1- €

RMSE(y,y) = 2)

We seek models that minimize the RMSE, with zero being optimal.
For aggregation regions we simply compute R? and RMSE on the
aggregate truth and predictions, where y; would then be the true value of
energy consumption for the region and y; is the predicted energy con-
sumption value for that region.

3.6. Baseline building energy consumption estimator

There are two possible approaches for comparing the efficacy of our
method. The first is to use existing building energy consumption esti-
mation models, but as previously discussed those models often rely on
building-specific data on the contents of the building or owner de-
mographics that are rarely available at the individual building level. The
second approach is to use regional energy consumption averages. In the
absence of high-resolution geospatial energy consumption data, regional
or national estimate of average building energy consumption is often
available to policymakers and researchers. Therefore, for this work we
adopt a regional average of building energy consumption as our baseline
estimator for building energy consumption.

The next choice is between using a national or regional average
residential building consumption estimate. The rationale for a regional
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rather than national average is due to the regional variation on building
energy consumption. Data on this variation can be challenging to find.
Although average annual energy consumption for some cities and
counties is published [84,85], there are no comprehensive databases
that collect city-level average consumption across the entire U.S. How-
ever, there are some data sources one could use for a geographic com-
parison. The Residential Energy Consumption Survey (RECS) is an
example data source for regional estimates of average residential con-
sumption, with regional resolution at the census level. This database
demonstrates significant regional differences. For instance, while the
national average building energy consumption from RECS 2015 is
11,028 kWh, in New England the average is 7,633 kWh, while in parts of
the southern U.S. the average is 14,807 kWh.

For the purposes of our experiments we use a different baseline
average estimate for each of the two regions in this study since this
approach would generally be more accurate than using a single national
average. In Gainesville, we compute the average for the training set
(11,723 kWh) and use it as the baseline prediction for each building in
the test set. In San Diego, we use the county average (5,871 kWh) [86].
Some of our experiments also explore the impact of spatial aggregation
on estimating energy consumption. In the limit as the aggregation area
approaches the extent of the region over which the original average was
based on, the average becomes a perfect estimator. Since these regional
estimates are not available for all cities and certainly not available at the
neighborhood or individual building-level, we aim to show that our
model outperforms this baseline estimator in most cases.

3.7. Training and testing data

To prepare our Gainesville data for machine learning experimenta-
tion, we divided our previously described energy consumption data into
a training and test dataset, where the training data accounted for 75% of
the samples. Since we conduct experiments for both the individual
buildings and buildings aggregated over small regions, we took care to
prevent information from our training data leaking into our test data.
Therefore, we split the training and test data randomly, ensuring that
held-out test data are never seen during training. We also performed the
random sampling in a way such that we grouped neighborhoods
together in gridded regions, sampling those regions into either the
training or test set. The goal here was to reduce the likelihood that two
neighboring houses would appear one in the training set and one in the
test set. We also use group 5-fold cross validation on the training data for
all of our experiments to select any model hyperparameters. Similar to
the Gainesville dataset, for San Diego we randomly split the building-
level data with 75% of the samples in the training dataset and 25% in
the test dataset based on each buildings’ ZIP Code location. Anonymized
building-level energy consumption data in San Diego comes from 16 ZIP
Codes. To avoid information leakage in San Diego we do not test on the
12 ZIP Codes from which we had training data.

4. Experimental design

Since the building energy estimation approach described here is
composed of a number of subcomponents: (1) building segmentation,
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(2) building type classification, and (3) energy consumption estimation,
we first create three brief experiments to individually measure the ef-
ficacy of each of these steps to evaluate potential sources of error that
may be introduced when combining these modules.

4.1. Building segmentation evaluation

To evaluate how well our approach could segment individual
buildings, we used 798 hand-labeled building footprints in Gainesville
and 7,396 from San Diego that we collected to serve as training data’.
We trained our building segmentation algorithm and tested on a held-
out dataset of 300 buildings in Gainesville and 230 buildings in San
Diego, resulting in the performance demonstrated in Fig. 2. These
precision-recall (PR) curves demonstrate the performance evaluated on
a held-out set of images for both Gainesville and San Diego, quantifying
how well individual buildings can be segmented in two diverse regions.

For the PR curves, recall is the fraction of buildings in the ground
truth that were correctly detected. Precision is the fraction of objects in
the image we estimated to be buildings that actually were buildings.
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Fig. 2. Precision-Recall performance curves for building segmentation from
overhead imagery. Comparison of object-wise Precision-Recall (PR) curves for
Gainesville and San Diego. Each object is deemed a detection, i.e. a true posi-
tive, if the Intersection over Union (IoU) of the segmented object compared to
the ground truth exceeds a threshold value (IoU thresholds of 0.2 and 0.5 are
used to score segmentation quality in both locations). An IoU of 0.5 is more
restrictive on the quality of the segmentation that is required for a detection to
be considered a true positive rather than a false negative; a threshold of 0.2
enables more buildings to be declared as “detected,” albeit with less precise
segmentation.

! Training data are required for building segmentation algorithms, and even
with a pretrained algorithm, when approaching new geographies examples
from that new geography improve performance. In this case, although we have
building footprints in Gainesville, the geographic coordinates of objects in
overhead imagery may not align precisely with objects of significant height
(such as some buildings) since the camera angle may shift where a building
rooftop appears in the image. This can be seen clearly when viewing sky-
scrapers from above. To overcome this issue, we gathered training data based
on the specific imagery we were using, requiring manual annotation of those
buildings.
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These curves are evaluated object-wise; that is each building detected
could be either a true positive or false positive. A building was scored as
a true positive if the detected building and ground truth building overlap
sufficiently. Overlap is defined by intersection-over-union (IoU) which
for two polygons represents the area of polygon intersection divided by
the area of the union of the polygons. An IoU of 1 represents complete
overlap, an IoU of O represents no overlap. Once we know how to
identify true positives, we can then vary the sensitivity of the detector to
produce each PR curve. Recall is the fraction of actual buildings that
were labeled as buildings. Precision is the fraction of those objects that
we labeled as buildings which were actually buildings (so low precision
would mean there were many false positives). Precision and recall of 1
would represent perfect performance.

4.2. Building type classification evaluation

To evaluate how well our approach classifies individual buildings as
residential or commercial, we evaluate the classification performance in
San Diego City. In Gainesville we only have residential building data so
that location would not be an ideal location for testing this part of the
pipeline. In San Diego, however, we do need to make this distinction.
Another challenge is in having a sufficiently large dataset for evaluation
since there are so many more residential buildings than commercial. To
do this, we combine building footprint estimates produced by our al-
gorithm and the zoning information for San Diego City. This combina-
tion allowed us to assign the label of residential or commercial to each
detected building, creating the dataset described in Table 2 that has
189,448 buildings in the training dataset and 33,432 buildings in the
test dataset with thousands of examples of both residential and com-
mercial buildings. The massive class imbalance between residential
buildings (32,047) versus commercial buildings (1,385) makes this
problem more difficult for identifying commercial buildings, but the size
of the dataset enables us to better evaluate our classifier’s performance
which we present in a confusion matrix form in section 5.

Due to the asymmetry of the available data between Gainesville and
San Diego, the experiments we describe below use Gainesville data to
evaluate performance at the individual building-level and at different
levels of aggregation, while the San Diego experiments are only evalu-
ated at the aggregated ZIP Code level. However, the same underlying
process, that of Fig. 1, is used in both cases, and since the cities are
separated by about 3,700 km, the results present two very different test
cases that provide evidence towards the ability to apply this algorithm to
geographically diverse areas.

4.3. Building energy consumption estimation process evaluation from
ground truth building footprints

Before using the segmented and classified buildings, it is important
to evaluate the performance of the energy estimation regression model
using actual ground truth building footprint data. We use the ground
truth building polygons we have in Gainesville and extract the building
footprint for each building in our dataset. We then use building char-
acteristic features extracted directly from the ground truth building
footprints (e.g. area), so there is no error from building segmentation or
type classification. Using this, we train an algorithm to predict building
energy consumption using random forests regression. We apply the
trained model to our test dataset and evaluate performance.

We evaluate performance at both the individual building level as

Table 2
Overview of San Diego City building type classification datasets. Training and
test datasets by the number of buildings contained of each type.

Total Residential Commercial
Training Data 189,448 182,564 6,884
Testing Data 33,432 32,047 1,385
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well as at five levels of aggregation using grid cells of progressively
increasing size: 50 x 50 m, 100 x 100 m, 200 x 200 m, 400 x 400 m,
1000 x 1000 m. We compare performance against the baseline of using
the average building energy consumption as the estimate of each
building (see Section 3.6).

4.4. End-to-end process evaluation: Estimating building energy
consumption from overhead imagery

After investigating the performance of each component of this pro-
cess individually, in this experiment we evaluate the full model end-to-
end, summarized in Fig. 1, using overhead imagery directly to identify,
segment, and classify all buildings and then use building characteristics
extracted from the imagery (e.g. building area) to estimate building
energy consumption.

We apply this same process in both Gainesville and San Diego,
although due to the nature of the data available for each, we evaluate
performance differently for each location. In Gainesville, we repeat the
process of Section 4.3, except with the full pipeline” and evaluate per-
formance at both the individual building level as well as at five levels of
spatial aggregation. In San Diego, however, since the individual build-
ings in the training data are location-anonymized and are only usable at
the individual or ZIP Code levels of aggregation. We include San Diego
to demonstrate performance in another metropolitan area and in a larger
area (as the San Diego data covers both the city and the county) and is
more relevant for large-scale regional aggregation to the ZIP Code level.
In both regions, we compare performance against the baseline of using
the average building energy consumption as the estimate of each
building (see Section 3.6).

4.5. Sensitivity analysis to identify the amount of training data required

Since the energy consumption estimation methods proposed here
rely on training data which includes examples of buildings with their
location (latitude, longitude) and corresponding energy consumption,
we wanted to evaluate the quantity of data necessary to achieve the
performance one might target for each model and the consistency of that
performance. To that end, we ran 100 trials of the end-to-end pipeline
experiment (Section 4.4), estimating building energy consumption,
varying the amount of training data used in each (sampling with
replacement), but keeping the held-out test set fixed. We varied the size
of the training dataset logarithmically from about 10 to 10,000 buildings
in San Diego, about 20 to 15,000 buildings in Gainesville (since more
buildings with known energy consumption were available in
Gainesville).

5. Results

In this section, we describe the results from each of the experiments
from the corresponding subsection in experimental design covering each
of the subcomponents: (1) building segmentation, (2) building type
classification, (3) energy consumption estimation, (4) the end-to-end
experimental design, and (5) a sensitivity analysis of our results to the
size of the training dataset.

5.1. Building segmentation results: How accurately are buildings detected
and segmented in overhead imagery?

The results from segmenting buildings from overhead imagery are
shown in Fig. 2 through precision-recall (PR) performance curves
(explained in Section 4.1). We evaluated objects detected by setting an
IoU threshold of both 0.5 (stricter in terms of segmentation quality) and

2 Gainesville data only contained residential buildings, so building type
classification was unnecessary.
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0.2 (less strict) which requires excellent correspondence between the
estimated and predicted polygons. In general, Gainesville buildings were
more difficult to identify due to significantly more tree cover over
buildings than in San Diego.

For the 0.5 IoU case In Gainesville we were able to correctly identify
74% of buildings with 24% of identified buildings being false positives.
For San Diego the performance was higher (in part because we used the
Gainesville model as a pre-trained model for San Diego); the segmen-
tation algorithm correctly identified 78% of buildings with 8% of
identified buildings being false positives. The average IoU was 0.81.

For the less stringent IoU threshold of 0.2, which would include a
sufficient number of detected buildings while still preventing the in-
clusion of many spurious groups pixels that happened to be labeled
buildings. In Gainesville we were able to correctly identify 84% of
buildings with 15% of identified buildings being false positives. For San
Diego we correctly identified 88% of buildings with 8% of identified
buildings being false positives. The average IoU was 0.76.

5.2. Building classification results: How accurately are buildings
categorized as residential or commercial?

The results from investigating the building type classification algo-
rithm performance (described in Section 4.2) are shown in the confusion
matrix in Table 3. This demonstrates that the classifier correctly iden-
tifies residential buildings 99% of the time and commercial buildings
74% of the time.

5.3. Building energy consumption results: Estimating building energy
consumption from ground truth building footprints

The results from estimating building energy consumption (the
experiment described in Section 4.3) directly from Gainesville ground
truth building footprints are shown in Table 4 in two parts, labeled A and
B. The A-columns represent the baseline results: regional average
building energy consumption multiplied by the total number of actual
buildings (Section 3.6). The underlying data used for performance
evaluation is the entire test set and the estimator is the average of the
training set. Column B shows the results from repeating the analysis for
column A, except using the random forest regression algorithm trained
on the ground truth area of each building in the dataset. Comparing the
case without aggregation, the RMSE improves by 15.3% over baseline
and increases with aggregation. For the 1000 x 1000 m case, the RMSE
improved 37.1% over the baseline.

5.4. End-to-end process results: Estimating building energy consumption
from overhead imagery

This section describes the results from applying the full energy
consumption estimation pipeline (Fig. 1), using only overhead imagery,
initially described in Section 4.4. The results are presented by region:
Gainesville in Table 5 and Table 6 (see supplemental information for

Table 3

Confusion matrix for San Diego building type classification. The central four
cells contain the percent of buildings of one type (rows) predicted as being either
residential or commercial (columns). These central bolded cells are percentages
of the total number of residential or commercial buildings. The number of
samples in the right column is the total number of samples of a particular
category (so there are 32,047 residential buildings in the dataset and 1,385
commercial buildings).
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Table 4

Results for building energy estimation from ground truth building footprints in
Gainesville, Florida. Comparison of building energy estimation regression by
predictors used and level of spatial aggregation for all buildings (those detected
by the CNN and those missed, for 26,991 buildings in total) in Gainesville,
Florida. All predictors are estimated using ground truth building footprints. The
random forest model outperforms the average baseline, spatial aggregation
significantly increases performance of all models. Area is a very strong predictor.
The RMSE values are in units of kilowatt-hours (kWh). The baseline column is
the point of comparison for performance improvement measurements across the
table.

A B
Regression Average Random Forest
Model (baseline)
Predictors Training set Ground Truth Area
average
consumption
Level of R? RMSE R? RMSE Improvement over
aggregation (kWh) (kWh) RMSE baseline (%)
None 0.00 6541 0.28 5537 15.3
(Individual)
50 x 50 m 0.22 6854 0.48 5611 18.1
100 x 100 m 0.55 7399 0.74 5495 25.7
200 x 200 m 0.74 7252 0.88 5100 29.7
400 x 400 m 0.81 6281 0.93 4044 35.6
1000 x 1000m  0.87 6590 0.96 4143 37.1

additional results), and San Diego in Table 7. As a reminder, for Gain-
esville, we have individual building and aggregate building energy
consumption data with geolocation while for San Diego, we have only
aggregate ZIP Code level energy consumption data, so the results are
presented to reflect that difference.

As we evaluate performance for the whole pipeline, we are faced
with an additional complication: the fact that not every building is going
to be detected by our segmentation algorithm in the overhead imagery.
For maximum demonstration of performance, we therefore show results
for two conditions: (1) where we evaluate the energy consumption es-
timates for all buildings, acknowledging that some of those buildings
will be missed by the segmentation algorithm and setting the estimate
for those buildings to 0 kWh (Table 5) and (2) where we evaluate the
performance only on buildings that were detected by the segmentation
algorithm (Table 6). The latter case answers the question: “if we can
identify that there is a building, how accurately can we estimate its
energy consumption?” Overhead imagery may be occluded (such as by
tree cover) making segmentation and detection of buildings challenging.
Gainesville is an excellent example of this phenomena. Nevertheless,
building segmentation techniques are being rapidly developed, so each
of these approaches offer insights into algorithm performance and the
potential for improvements in the near future.®

Setting buildings not detected to 0 kWh. The Gainesville results
evaluated on all buildings while setting energy consumption estimates of
buildings missed by the segmentation algorithm to 0 kWh are shown in
Table 5. Column A is the baseline model and columns B and C represent
applying the full pipeline (Fig. 1) trained on either the ground truth area
of the buildings (column B) or on the estimated area from the segmen-
tation algorithm (column C). By using the segmentation area rather than
the ground truth area, the energy estimation regression model is able to
learn to compensate for some of the bias inherent within the building
detection process connecting the imperfect building footprints estimated
by the segmentation algorithm the corresponding energy consumption

Prediction
Residential Commercial Number of samples
Truth Residential 99% 1% 32,047
Commercial 26% 74% 1,385
Total Samples 33,432

3 We also explored energy consumption prediction performance enhance-
ments from imputing the values of missing buildings, if we assume we know
how many buildings are in a given region, more information can be found in the
supplemental information. This demonstrated that additional performance
improvements if we know how many buildings are in a given region, even
though we do not know their particular characteristics.
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Table 5

Results for the end-to-end building energy estimation process for Gainesville with missed buildings set to 0 kWh estimates. Comparison of building energy estimation
regression by predictors used and the level of spatial aggregation for all 26,991 buildings in Gainesville, Florida with predicted consumption of buildings not detected
by the segmentation algorithm set to 0 kWh. Column A is the baseline performance of the average for all buildings but with buildings missed by the segmentation
algorithm set to 0 kWh. The RMSE values are in units of kilowatt-hours (kWh). The baseline column is the point of comparison for performance improvement
measurements across the table. Columns B and C depict performance of random forest algorithm trained on ground truth (column B), CNN-estimated area (column C),
and CNN-estimated area with additional features included (column D).

A B C D
Regression Average Random forest Random forest Random forest
model (Baseline with
consumption of
buildings missed
by segmentation
set to 0 kWh)
Predictors Training set Area training predictors: ground truth area,  Area training AND test predictors: estimated =~ CNN estimated area, perimeter, local density
average test predictors: estimated area area estimates, top 10 principal components of
consumption the ResNet-152 features
Level of R? RMSE R? RMSE Improvement over R? RMSE Improvement over Improvement over RMSE baseline (%)
aggregation (kwh) (kwWh) RMSE baseline (%) (kwh) RMSE baseline (%)
None 0.00 8199 0.00 7965 2.9 0.00 7900 3.6 7.2
(Individual)
50 x 50 m 0.00 8349 0.00 7931 5.0 0.00 7895 5.4 9.4
100 x 100 m 0.33 8428 0.27 7530 10.7 0.35 7691 8.7 16.8
200 x 200 m 0.64 8275 0.60 7275 12.1 0.66 7268 12.2 23.4
400 x 400 m 0.72 7140 0.68 6237 12.6 0.75 6005 15.9 30.7
1000 x 1000m  0.77 7343 0.76 6215 15.4 0.81 6021 18.0 35.3

Table 6

Results for the end-to-end building energy estimation process for Gainesville for CNN-detected buildings. Comparison of building energy estimation regression by
predictors used and by the level of spatial aggregation for the 20,122 buildings detected by the segmentation algorithm in Gainesville, Florida. Predictors used are
ground truth area (column B) or are estimated from CNN-derived building annotations (columns C and D). The Random Forest prediction outperforms the average
baseline in all scenarios. Adding additional predictors to building area (column D) is strictly better than using estimated area alone (column C), while it also out-
performs energy predictions using ground truth area (column B) for larger levels of aggregation. The RMSE values are in units of kilowatt-hours (kWh). The baseline
column is the point of comparison for performance improvement measurements across the table. See Table 9 in the Supplemental Information for additional per-
formance metrics for column B.

A B C D
Regression Average Random forest Random forest Random forest
model (baseline)
Predictors Training set Ground truth area CNN estimated area CNN estimated area, perimeter, local density
average estimates, top 10 principal components of the
consumption ResNet-152 features
Level of R? RMSE Improvement over RMSE R? RMSE Improvement over RMSE R2? RMSE Improvement over RMSE
aggregation (kWh) baseline (%) (kWh) baseline (%) (kWh) baseline (%)
None 0.00 6851 17.9 0.14 6352 7.3 0.28 5831 14.9
(Individual)
50 x 50 m 0.27 7147 20.3 0.35 6472 9.4 0.48 5912 17.3
100 x 100 m 0.61 7604 26.5 0.68 6716 11.7 0.76 5859 229
200 x 200 m 0.79 7257 30.5 0.86 6101 15.9 0.91 5009 31.0
400 x 400 m 0.85 6264 35.1 0.92 5040 19.5 0.95 3853 38.5
1000 x 1000 m 0.87 6546 36.1 0.94 5177 20.9 0.97 3784 42.2

of the building. We see that both models as a whole improve upon the
average baseline ranging from around 2-3.6% for individual buildings
and 15-18% for the 1 km? aggregation, with the larger gains occurring
when the model is trained on the building area estimated from the
segmentation results.

As described in Section 3.3, we can also extract additional features
from overhead imagery relevant to each building. In addition to the area
estimated through the segmentation process in Section 3.1, we also
extract features including perimeter, local building density estimates (a
measure of how many other buildings are nearby), and the top 10
principal components of the ResNet-152 features. Adding these features
to the random forest with these additional features (column D of
Table 5%) nearly doubles the performance gains against the baseline: a
7.2% RMSE improvement for individual building and a 35.3%

4 See Supplemental Information Table 10 for additional performance metrics

10

improvement for 1000 x 1000 m aggregation, compared to the 3.6%
and 18% improvement that random forest trained on area alone ach-
ieves, respectively.

In Section 5.3, where we only considered ground truth building
footprint area, that represented the best-case scenario for area estimates.
This model (Table 5.D) outperforms the baseline even in that ideal case.
Using the additional features described here, the RMSE of building en-
ergy consumption for regions at least 100 x 100 m in size (7,009 kWh,
full table available in Supplemental Information) is lower than the
corresponding baseline estimate from Table 4 (7,399 kWh) which uses
the actual building energy consumption average as well as ground truth
footprints. Even with the imperfect building detections, with the right
predictors this energy consumption estimation technique can improve
over a baseline that is aware of the average building energy consump-
tion and the location of all buildings.

Limiting performance evaluation to detected buildings. Our next set
of results address the question: “How well do we estimate building
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Table 7
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Results for end-to-end building energy consumption estimation for San Diego. ZIP Code-level prediction performance using CNN-estimated annotations classified as
residential, then applying Random Forest regression and comparing against the averages for either San Diego county (baseline 1) or San Diego City (baseline 2). The
results for San Diego City (18 testing ZIP Codes, column A) and San Diego County (78 testing ZIP Codes, column B) are presented separately as the former is a higher
density region and the random forest energy consumption regression model was trained on an anonymized sample from San Diego City. ZIP Code sizes range from 0.16
sq. km to over 1,700 square km and are on average about 100 sq. km. All 12 ZIP Codes where anonymized training data comes from are excluded from testing.

A B

Location San Diego City San Diego County
Number of ZIP Codes 18 (12) 78 (12)
tested (trained)
Prediction method Average Average (city, Random Improvement over Improvement over Average Random Improvement
(random forest or (county, baseline 2) Forest Baseline 1 (%) Baseline 2 (%) (county, Forest (%)
average) baseline 1) baseline)
R? 0.36 0.55 0.77 114 40 0.72 0.75 4.2
Correlation 0.82 0.82 0.93 13.4 13.4 0.91 0.93 2.2
RMSE (kWh) 5671 5410 3737 34.1 30.9 10,404 9742 6.4
Average number of 9,333 9,171

buildings per ZIP

Code
Total number of 167,997 715,353

buildings

energy consumption assuming we identify the building in overhead
imagery?” For this case, we only consider Gainesville results for build-
ings identified by the segmentation algorithm, shown in Table 6. As in
each of these analyses, we show the baseline estimator (average of the
training data) in column A for comparison. We also compare using
ground truth building footprint area (column B) with CNN-detected
building footprint area (column C) and CNN-detected building foot-
print area coupled with additional features extracted from the imagery
data (column D). All of these approaches greatly outperform the baseline
model (column A), while the magnitude of improvement in RMSE is
generally greatest for using predictors composed of CNN-detected
building footprint area coupled with additional features extracted
from the imagery data (column D), which even outperforms the ground
truth-based predictors in column B for aggregation levels of 200 x 200
m or larger. The additional features used in column D resulted in 14.9%
RMSE improvements over the baseline for individual buildings
compared to 7.3% for area alone. This is comparable to the 17.9%
(column B) improvement that estimator based on the ground truth area
boasts. Larger gains resulted from aggregating to 1000 x 1000 m regions
which brought the improvement to 42.2% for the additional features of
column C, up from 20.9% for using predicted area alone.

Lastly, we investigated estimating building energy consumption in
San Diego. There are a total of 90 ZIP Codes for which we have data
available in San Diego County. Its area is 11,722 square kilometers,
therefore, these ZIP Codes are on average far larger than even the largest
area of aggregation (1 km?) that was used so far in these experiments.
Additionally, since the area is larger, there is likely to be more hetero-
geneity in the data in terms of housing stock and energy consumption.
For these experiments, we do not have data with both individual energy
consumption and the specific location of the corresponding building, so
we have to split up the building segmentation algorithm training and
energy consumption estimation process across different datasets. For
building segmentation training, we use a small dataset of 7,396 hand-
labeled buildings (polygons of building footprints) in San Diego that
was used to fine-tune the Gainesville building segmentation model
trained on 798 buildings in Gainesville pretrained on the INRIA building
segmentation dataset [87]. For energy consumption estimation we use
the anonymized collection of 10,718 buildings in San Diego City with
known energy consumption, building footprint area and ZIP Code
location.

Having trained an individual building energy consumption regres-
sion model using the anonymized collection of buildings from 12 ZIP
Codes, we test first on just San Diego City (18 ZIP Codes) with results
shown in Table 7 column A, then both the city and all of the other San
Diego County ZIP Codes (78 ZIP Codes) with results shown in column B.
Compared to using the County average residential energy consumption
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for all buildings (baseline 1), our approach yielded a 34.1% improve-
ment in RMSE at the ZIP Code level for San Diego City (column A) and
are comparable against baseline 2 that uses a training set average for San
Diego City — a 30.9% improvement (column A). For predicting the ZIP
Code level energy consumption for San Diego County, we find a 6.4%
improvement in RMSE across the 90 ZIP Codes from San Diego County
(column B).

5.5. Results of the sensitivity analysis for quantity of training data needed
for reliable output

Training data are hard to obtain for building energy consumption, so
we explore the impact of the quantity of training data on the error in the
energy consumption estimates. Over repeated experiments, we vary the
size of the training dataset, holding the test set fixed, and evaluate
performance using different samples of training data sampled with
replacement. To ensure scales are matched on our axes across experi-
ments we use R-squared as our metric for comparison: higher R-squared
is more desirable. In each experiment, we are interested in where the
plot appears to level off, saturating its performance. Alternatively, one
could use it to approximate the number of examples needed to produce
an estimator of a targeted performance.

For the Gainesville case, predicting energy consumption from CNN-
derived area alone, we see in Fig. 3, unsurprisingly, the more data that
are included, the better the performance. However, what is more
interesting is that the performance increase from adding training begins
producing marginal returns around 2,000 samples. Beyond that, very
minor improvements are seen in performance. For larger areas of ag-
gregation, even less data may be needed as the 1000 x 1000 m case
appears to level off between 300 and 400 training samples. For indi-
vidual buildings, 2,000 samples may be required, while for a square
kilometer as few as 200 samples may be sufficient to approach near-peak
performance. Additionally, over 95% of predictions made with at least
200 buildings in the sample outperformed the baseline average model in
Gainesville.

For the San Diego sensitivity analysis results are shown in Fig. 4. In
this case, individual building energy consumption performance over this
larger region (an entire county) continues to increase with more data,
which may be explained by the greater diversity in the larger region: the
imagery datasets for Gainesville and San Diego County cover 315 km?
and 9,131 km? respectively. Bear in mind that the training dataset comes
from San Diego City which is unlikely to be representative of the entire
County. Nevertheless, a dataset of as few as 300 buildings is enough to
perform better than the baseline average estimator in San Diego City at
the ZIP Code level. For San Diego County, new data steadily decreases
the probability of the estimator underperforming the baseline. In fact,
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Fig. 3. Sensitivity analysis of the energy consumption estimation process
varying the size of the training dataset for Gainesville, Florida over 100
repeated trials using a different subset of training data. Each line represents a
median across trials for different levels of aggregation starting with the indi-
vidual building level and increasing through 1 square km. Over the repeated
runs of this model, the bands around each line show the range between per-
centiles 2.5% and 97.5%. The baseline for the case of individual building en-
ergy consumption prediction is an R? of 0.
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Fig. 4. Sensitivity analysis of the energy consumption estimation process
varying the size of the training dataset for San Diego, California over 100
repeated trials where each trial uses a different subset of training data (sampled
with replacement). The results show the median R? values for both individual
building and ZIP Code level estimates. Baseline averages are shown for com-
parison. Over the repeated runs of this model, the bands around each line show
the range between percentiles 2.5% and 97.5%.

even 100 buildings (0.01% of test set buildings in the County) is enough
to produce a better-performing estimator in 75% of model runs, and for
4,000 buildings (0.56% of test set buildings in the County), this results in
better-than-baseline performing estimates 90% of the time.
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6. Conclusions

This work presents an end-to-end pipeline for residential building
energy consumption based only on overhead imagery data. This method
produces estimates that are generally lower-error compared to using the
regional average building energy consumption. In Gainesville, our
approach for detected buildings yielded individual buildings energy
estimates with errors around 5,831 kWh per year (R? of 0.28), while the
baseline (average) resulted in an error of 6,851 kWh per year. Aggre-
gating the data over small “neighborhood” regions also resulted in
additional improvements in building energy estimation accuracy. For a
1 square kilometer aggregation, the estimation error fell to between
3,784 and 4,754 kWh per year (R?> between 0.81 and 0.97), while the
baseline was 6,546 kWh per year. This meant our approach improved
7%-15% over baseline performance for estimating the energy con-
sumption of individual residential buildings. By aggregating energy es-
timates up to 1 square kilometer neighborhoods, energy estimation
improved to between 28% and 42% over the baseline. In San Diego
County, while individual level predictions resulted in a R? of 0.38,
aggregating up to the ZIP Code level demonstrated a 34% improvement
in building energy estimation performance for San Diego City and a
6.4% improvement for San Diego County.

Features of the buildings included in the energy estimation model
impacted performance, determining, in part, which end of the range of
improvements over the baseline model estimates fell into. Extracting
only the footprint area of each building was enough to produce the lower
end of these performance improvement ranges. While area proved to be
an essential feature for energy estimation prediction, additional features
pushed the results towards the upper end of the performance range.
Perimeter, neighborhood building density estimates, and other visual
features extracted from imagery of each building and its surrounding
using a deep learning model’s encoder, pushed the performance to the
upper end of the performance range. Another factor in performance was
whether scoring metrics included occluded buildings (those not visible
from above due to tree cover, etc.), with larger improvements resulting
if visually occluded buildings were not factored into scoring. This
demonstrates that these techniques perform better when the buildings
are clearly visible. Quantitatively, the building detector correctly iden-
tifies 84% and 88% of buildings in Gainesville and San Diego, respec-
tively, and the building type is classified with 99% accuracy for
residential buildings and 74% accuracy for commercial buildings.

We also explored how the quantity of training data impacted the
energy estimation performance achieved through a sensitivity analysis.
For instance, in our Gainesville experiments, for individual building
energy consumption estimates to achieve a 12% improvement over the
baseline model around 2,000 samples of building data were needed,
while for a 37% improvement in the 1 square kilometer aggregate es-
timates this requirement could be as low as 200-300 samples. These
data requirements are not overly onerous and implies that this approach
may be practical for applications in new and potentially larger
geographies.

Overall, this approach demonstrates the feasibility of using overhead
imagery to produce high-resolution estimates of residential building
energy consumption that are generally more accurate than using what is
typically available today: regional building energy consumption aver-
ages. This approach could be used to rapidly gain higher resolution in-
sights on building energy consumption at a larger geographic scale than
previously achievable without the need for large household surveys or
proprietary data. This technique may enable researchers to better assess
energy consumption trends around the world as residential housing
development evolves and enhance evidence-based decision making for
planning for energy system security and sustainability.
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7. Limitations and future work

Among the limitations of this work, the availability of datasets with
both known energy consumption and known location to provide
adequate training data yielded a relatively small sample size for the
number of buildings in our experiments. In Gainesville there was also
substantial tree coverage in the imagery data for many buildings,
limiting the efficacy of feature extraction and therefore performance for
occluded structures. Another limitation was encountered in San Diego,
where we had no buildings where both energy consumption and precise
geolocation was known. This motivated our experimental choice of
aggregating to the ZIP Code level. Lastly, our current feature extraction
methods did not include techniques for directly estimating building
height, which can enable improved estimates of overall building
volume.

For future work, incorporating additional data could enhance this
work in multiple ways. Gathering larger energy use datasets could
enable measures of algorithm generalizability to be evaluated across
more diverse regions. Other datasets may be added to the model pipeline
such as data to provide information about building height such as Lidar
data and street level imagery (similar to what is available from Google
Street View). These data may have the potential to provide features on
the physical characteristics of the dwelling (its height, building envelope
material, window size etc.) and also potentially relevant socioeconomic
data as well. Additionally, collecting more data on commercial buildings
could allow similar work to be completed on estimating commercial
building energy consumption. Lastly, if the number of buildings in a
region is known, further work could be devoted to imputing the con-
sumption of such buildings using both aggregate and individual esti-
mates to improve regional energy consumption estimation.
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