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Abstract

The models introduced in this paper describe a uniform distribution of plant stems competing for sunlight. 
The shape of each stem, and the density of leaves, are designed in order to maximize the captured sunlight, 
subject to a cost for transporting water and nutrients from the root to all the leaves. Given the intensity 
of light, depending on the height above ground, we first solve the optimization problem determining the 
best possible shape for a single stem. We then study a competitive equilibrium among a large number of 
similar plants, where the shape of each stem is optimal given the shade produced by all others. Uniqueness 
of equilibria is proved by analyzing the two-point boundary value problem for a system of ODEs derived 
from the necessary conditions for optimality.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Optimization problems for tree branches have recently been studied in [3,5]. In these models, 
optimal shapes maximize the total amount of sunlight gathered by the leaves, subject to a cost for 
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building a network of branches that will bring water and nutrients from the root to all the leaves. 
Following [2,8,11,13,14], this cost is defined in terms of a ramified transport.

In the present paper we consider a competition model, where a large number of similar plants 
compete for sunlight. To make the problem tractable, instead of a tree-like structure we assume 
that each plant consists of a single stem. As a first step, assuming that the intensity of light I (·)
depends only on the height above ground, we determine the corresponding optimal shape of the 
stem. This will be a curve γ (·) which can be found by classical techniques of the Calculus of 
Variations or optimal control [4,6,7]. In turn, given the density of plants (i.e., the average number 
of plants growing per unit area), if all stems have the same shape γ (·) one can compute the 
intensity of light I (h) that reaches a point at height h.

An equilibrium configuration is now defined as a fixed point of the composition of the two 
maps I (·) �→ γ (·) and γ (·) �→ I (·). A major goal of this paper is to study the existence and 
properties of these equilibria, where the shape of each stem is optimal subject to the presence of 
all other competing plants.

In Section 2 we introduce our two basic models. In the first model, the length � of the stems 
and the thickness (i.e., the density of leaves along each stem) are assigned a priori. The only 
function to optimize is thus the curve γ : [0, �] �→ R2 describing the shape of the stems. In the 
second model, also the length and the thickness of the stems are allowed to vary, and optimal 
values for these variables need to be determined.

In Section 3, given a light intensity function I (·), we study the optimization problem for 
Model 1, proving the existence of an optimal solution and deriving necessary conditions for 
optimality. We also give a condition which guarantees the uniqueness of the optimal solution. 
A counterexample shows that, in general, if this condition is not satisfied multiple solutions 
can exist. In Section 4 we consider the competition of a large number of stems, and prove the 
existence of an equilibrium solution. In this case, the common shape of the plant stems can be 
explicitly determined by solving a particular ODE.

The subsequent sections extend the analysis to a more general setting (Model 2), where both 
the length and the thickness of the stems are to be optimized. In Section 5 we prove the existence 
of optimal stem configurations, and derive necessary conditions for optimality, while in Section 6
we establish the existence of a unique equilibrium solution for the competitive game, assuming 
that the density (i.e., the average number of stems growing per unit area) is sufficiently small. 
The key step in the proof is the analysis of a two-point boundary value problem, for a system of 
ODEs derived from the necessary conditions.

In the above models, the density of stems was assumed to be uniform on the whole space. As a 
consequence, the light intensity I (h) depends only of the height h above ground. Section 7, on the 
other hand, is concerned with a family of stems growing only on the positive half line. In this case 
the light intensity I = I (h, x) depends also on the spatial location x, and the analysis becomes 
considerably more difficult. Here we only derive a set of equations describing the competitive 
equilibrium, and sketch what we conjecture should be the corresponding shape of stems.

The final section contains some concluding remarks. In particular, we discuss the issue of 
phototropism, i.e. the tendency of plant stems to bend in the direction of the light source. Devising 
a mathematical model, which demonstrates phototropism as an advantageous trait, remains a 
challenging open problem. For a biological perspective on plant growth we refer to [9]. A recent 
mathematical study of the stabilization problem for growing stems can be found in [1].
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Fig. 1. By a reflection argument, it is not restrictive to assume that the tangent vector t(s) to the stem satisfies (2.4), i.e., 
it lies in the shaded cone.

2. Optimization problems for a single stem

We shall consider plant stems in the x-y plane, where y is the vertical coordinate. We assume 
that sunlight comes from the direction of the unit vector

n = (n1, n2), n2 < 0 < n1.

As in Fig. 1, we denote by θ0 ∈]0, π/2[ the angle such that

(−n2, n1) = (cos θ0, sin θ0). (2.1)

Moreover, we assume that the light intensity I (y) ∈ [0, 1] is a non-decreasing function of the 
height y. This is due to the presence of competing vegetation: close to the ground, less light can 
get through.

Model 1 (a stem with fixed length and constant thickness). We begin by studying a simple 
model, where each stem has a fixed length �. Let s �→ γ (s) = (x(s), y(s)), s ∈ [0, �], be an 
arc-length parameterization of the stem. As a first approximation, we assume that the leaves are 
uniformly distributed along the stem, with density κ . The total distribution of leaves in space is 
thus by a measure μ, with

μ(A) = κ · meas
({

s ∈ [0, �] ; γ (s) ∈ A
})

(2.2)

for every Borel set A ⊆R2.
Among all stems with given length �, we seek the shape which will collect the most sunlight. 

This can be formulated as an optimal control problem. Since γ is parameterized by arc-length, 
the map s �→ γ (s) is Lipschitz continuous with constant 1. Hence the tangent vector

t(s) = γ̇ (s) = (cos θ(s), sin θ(s))

is well defined for a.e. s ∈ [0, �]. The map s �→ θ(s) will be regarded as a control function.
According to the model in [5], calling �(·) the density of the projection of μ on the space E⊥

n
orthogonal to n, the total sunlight captured by the stem is
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S(γ ) =
∫ (

1 − exp{−�(z)}
)

dz

=
�∫

0

I (y(s)) ·
(

1 − exp
{ −κ

cos(θ(s) − θ0)

})
cos(θ(s) − θ0) ds. (2.3)

In order to maximize (2.3), we claim that it is not restrictive to assume that the angle satisfies

θ0 ≤ θ(s) ≤ π

2
for all s ∈ [0, �]. (2.4)

Indeed, for any measurable map s �→ θ(s) ∈] − π, π], we can define a modified angle function 
θ�(·) by setting

θ�(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ(s) if θ(s) ∈]0, θ0 + π/2],

−θ(s) if θ(s) ∈] − π, θ0 − π/2],
2θ0 + π − θ(s) if θ(s) ∈]θ0 + π/2,π],

2θ0 − θ(s) if θ(s) ∈]θ0 − π/2,0].

(2.5)

Calling γ � : [0, �] �→ R2 the curve whose tangent vector is γ̇ �(s) = (cos θ�(s), sin θ�(s)), since 
the light intensity function y �→ I (y) is nondecreasing, we have S(γ �) ≥ S(γ ).

By this first step, without loss of generality we can now assume θ(s) ∈]0, θ0 + π/2]. To 
proceed further, consider the piecewise affine map

ϕ(θ) =

⎧⎪⎨⎪⎩
θ if θ ∈]θ0,π/2],

π − θ if θ ∈ [π/2, θ0 + π/2],
2θ0 − θ if θ ∈ [0, θ0].

(2.6)

Call γ ϕ the curve whose tangent vector is γ̇ ϕ(s) =
(

cos(ϕ(θ(s))), sin(ϕ(θ(s)))
)

. Since I (·) is 

nondecreasing, we again have S(γ ϕ) ≥ S(γ ). We now observe that, since 0 < θ0 < π/2, there 
exists an integer m ≥ 1 such that the m-fold composition ϕm .= ϕ ◦ · · · ◦ ϕ maps [0, θ0 + π/2]
into [θ0, π/2]. An inductive argument now yields S(γ ϕm

) ≥ S(γ ), completing the proof of our 
claim.

As shown in Fig. 2, left, we call z the coordinate along the space E⊥
n perpendicular to n, and 

let y be the vertical coordinate. Hence

dz(s) = cos(θ(s) − θ0) ds, dy(s) = sin(θ(s)) ds. (2.7)

In view of (2.4), one can express both γ and θ as functions of the variable y. Introducing the 
function

g(θ)
.=
(

1 − exp
{ −κ

cos(θ − θ0)

}) cos(θ − θ0)

sin θ
, (2.8)

the problem can be equivalently formulated as follows.
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(OP1) Given a length � > 0, find h > 0 and a control function y �→ θ(y) ∈ [θ0, π/2] which 
maximizes the integral

h∫
0

I (y)g(θ(y)) dy (2.9)

subject to

h∫
0

1

sin θ(y)
dy = �. (2.10)

Model 2 (stems with variable length and thickness). Here we still assume that the plant 
consists of a single stem, parameterized by arc-length: s �→ γ (s), s ∈ [0, �]. However, now we 
give no constraint on the length � of the stem, and we allow the density of leaves to be variable 
along the stem.

Call u(s) the density of leaves at the point γ (s). In other words, μ is now the measure which 
is absolutely continuous w.r.t. arc-length measure on γ , with density u. Instead of (2.2) we thus 
have

μ(A) =
∫

{s ; γ (s)∈A}
u(s) ds . (2.11)

Calling I (y) the intensity of light at height y, the total sunlight gathered by the stem is now 
computed by

S(μ) =
�∫

0

I (y(s)) ·
(

1 − exp
{ −u(s)

cos(θ(s) − θ0)

})
cos(θ(s) − θ0) ds. (2.12)

As in [5], we consider a cost for transporting water and nutrients from the root to the leaves. This 
is measured by

Iα(μ) =
�∫

0

⎛⎝ �∫
s

u(t) dt

⎞⎠α

ds, (2.13)

for some 0 < α < 1. Notice that, in Model 1, this cost was the same for all stems and hence it did 
not play a role in the optimization.

For a given constant c > 0, we now consider a second optimization problem:

maximize: S(μ) − cIα(μ), (2.14)

subject to:

y(0) = 0, ẏ(s) = sin θ(s). (2.15)
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The maximum is sought over all controls θ : R+ �→ [0, π] and u :R+ �→ R+. Calling

z(t)
.=

+∞∫
t

u(s) ds, (2.16)

G(θ,u)
.=
(

1 − exp

{ −u

cos(θ − θ0)

})
cos(θ − θ0) , (2.17)

this leads to an optimal control problem in a more standard form.

(OP2) Given a sunlight intensity function I (y), and constants 0 < α < 1, c > 0, find controls 
θ : R+ �→ [θ0, π/2] and u :R+ �→ R+ which maximize the integral

+∞∫
0

[
I (y)G(θ,u) − c zα

]
dt, (2.18)

subject to

{
ẏ(t) = sin θ,

ż(t) = − u,

{
y(0) = 0,

z(+∞) = 0.
(2.19)

3. Optimal stems with fixed length and thickness

3.1. Existence of an optimal solution

Let I (y) be the light intensity, which we assume is a non-decreasing function of the verti-
cal component y. For a given κ > 0 (the thickness of the stem), we seek a curve s �→ γ (s), 
starting at the origin and with a fixed length �, which maximizes the sunlight functional defined 
at (2.9).

Theorem 3.1. For any non-decreasing function y �→ I (y) ∈ [0, 1] and any constants �, κ > 0
and θ0 ∈]0, π/2[ , the optimization problem (OP1) has at least one solution.

Proof. 1. Let M be the supremum among all admissible payoffs in (2.9). By the analysis in [5]
it follows that

0 ≤ M ≤ κ μ(R2) = κ �.

Hence there exists a maximizing sequence of control functions θn : [0, hn] �→ [θ0, π/2], so that

hn∫
1

sin θn(y)
dy = � for all n ≥ 1, (3.1)
0
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hn∫
0

I (y)g(θn(y)) dy → M. (3.2)

2. For each n, let θ�
n be the non-increasing rearrangement of the function θn. Namely, θ�

n is the 
unique (up to a set of zero measure) non-increasing function such that, for every c ∈ R

meas
(
{s ; θ�

n(s) < c}
)

= meas
(
{s ; θn(s) < c}

)
. (3.3)

This can be explicitly defined as

θ�
n(y) = sup

{
ξ ; meas

(
{σ ∈ [0, hn] ; θn(σ ) ≥ ξ}

)
> y
}

.

For every n ≥ 1 we claim that

hn∫
0

1

sin θ
�
n(y)

dy =
hn∫

0

1

sin θn(y)
dy = �, (3.4)

hn∫
0

I (y)g(θ�
n(y)) dy ≥

hn∫
0

I (y)g(θn(y)) dy. (3.5)

Indeed, to prove the first identity we observe that, by (3.3), there exists a measure-preserving 
map y �→ ζ(y) from [0, hn] into itself such that θ�

n(y) = θn(ζ(y)). Using ζ as new variable of 
integration, one immediately obtains (3.4).

To prove (3.5) we observe that the function g introduced at (2.8) is smooth and satisfies

g′(θ) ≤ 0 for all θ ∈ [θ0, π/2]. (3.6)

Therefore, the map y �→ g(θ
�
n(y)) coincides with the non-decreasing rearrangement of y �→

g(θn(y)). On the other hand, since I (·) is non-decreasing, it trivially coincides with the non-
decreasing rearrangement of itself. Therefore, (3.5) is an immediate consequence of the Hardy-
Littlewood inequality [10].

3. Since all functions θ�
n are non-increasing, they have bounded variation. Using Helly’s com-

pactness theorem, by possibly extracting a subsequence, we can find h > 0 and a non-increasing 
function θ∗ : [0, h] �→ [θ0, π/2] such that

lim
n→∞hn = h , lim

n→∞ θ�
n(y) = θ∗(y) for a.e. y ∈ [0, h]. (3.7)

This implies

h∫
0

1

sin θ∗(y)
dy = �,

h∫
0

I (y)g(θ∗(y)) dy = M,

proving the optimality of θ∗. �
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3.2. Necessary conditions for optimality

Let y �→ θ∗(y) be an optimal solution. By the previous analysis we already know that the 
function θ∗(·) is non-increasing. Otherwise, its non-increasing rearrangement achieves a better 
payoff. In particular, this implies that the left limit at the terminal point y = h is well defined:

θ∗(h) = lim
y→h− θ∗(y). (3.8)

Consider an arbitrary perturbation

θε = θ∗ + ε�, hε = h + εη.

The constraint (2.10) implies

h+εη∫
0

1

sin θε(y)
dy = �. (3.9)

Differentiating (3.9) w.r.t. ε one obtains

1

sin θ∗(h)
η −

h∫
0

cos θ∗(y)

sin2 θ∗(y)
�(y)dy = 0. (3.10)

Next, calling

Jε
.=

hε∫
0

I (y)g(θε(y))dy

and assuming that I (·) is continuous at least at y = h, by (3.10) we obtain

0 = d

dε
Jε

∣∣∣∣
ε=0

=
h∫

0

I (y)g′(θ∗(y))�(y)dy

+ I (h)g(θ∗(h)) · sin θ∗(h)

h∫
0

cos θ∗(y)

sin2 θ∗(y)
�(y)dy.

(3.11)

Since (3.11) holds for arbitrary perturbations �(·), the optimal control θ∗(·) should satisfy the 
identity

I (y)g′(θ∗(y)
)+ λ · cos θ∗(y)

sin2 θ∗(y)
= 0, for a.e. y ∈ [0, h], (3.12)
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where
λ = I (h)g(θ∗(h)) · sin θ∗(h). (3.13)

It will be convenient to write

g(θ) = G(θ)

sin θ
, G(θ)

.=
(

1 − exp
{ −κ

cos(θ − θ0)

})
cos(θ − θ0). (3.14)

Inserting (3.14) in (3.12) one obtains the pointwise identities

I (y)
(
G′(θ∗(y)) sin θ∗(y) − G(θ∗(y)) cos θ∗(y)

)
+ λ · cos θ∗(y) = 0. (3.15)

At y = h, the identities (3.13) and (3.15) yield

G′(θ∗(h)) tan θ∗(h) − G(θ∗(h)) = − I (h)G(θ∗(h))

I (h)
.

Hence

G′(θ∗(h)) tan θ∗(h) = 0,

which implies

θ∗(h) = θ0 , λ = I (h)g(θ0) sin θ0 = (
1 − e−κ

)
I (h) . (3.16)

Notice that (3.15) corresponds to

θ∗(y) = arg max
θ∈[0,π]

{
I (y)

G(θ)

sin θ
− λ

sin θ

}
. (3.17)

Equivalently, θ = θ∗(y) is the solution to

G′(θ) tan θ − G(θ) = − λ

I (y)
, (3.18)

where G is the function at (3.14).

Lemma 3.2. Let G be the function at (3.14). Then for every z ∈] − ∞, e−κ − 1] the equation

F(θ)
.= G′(θ) tan θ − G(θ) = z (3.19)

has a unique solution θ = ϕ(z) ∈ [θ0, π/2[ .

Proof. Observing that{
G(θ0) = 1 − e−κ ,

G′(θ ) = 0,

{
G′(θ) < 0

G′′(θ) < 0
for θ ∈]θ0,π/2[ , (3.20)
0
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we obtain F(θ0) = e−κ − 1 and

F ′(θ) = G′′(θ) tan θ + G′(θ) tan2 θ < 0 for θ ∈ [θ0,π/2[ .

Therefore, for θ ∈ [θ0, π/2[ , the left hand side of (3.19) is monotonically decreasing from
e−κ − 1 to −∞. We conclude that (3.19) has a unique solution θ = ϕ(z) for any z ∈] − ∞,

e−κ − 1]. �
The optimal control θ∗(·) determined by the necessary condition (3.18) is thus recovered by

θ∗(y) = ϕ

( −λ

I (y)

)
= ϕ

(
(e−κ − 1)I (h)

I (y)

)
. (3.21)

Next, we need to determine h so that the constraint

L(h)
.=

h∫
0

1

sin(θ∗(y))
dy = � (3.22)

is satisfied. As shown by Example 3.4 below, the solution of (3.21)-(3.22) may not be unique.
In the following, we seek a condition on I which implies that L is monotone, i.e.,

L′(h) = 1

sin(θ0)
+

h∫
0

cos θ∗(y)

sin2 θ∗(y)

1

F ′(θ∗(y))

I ′(h)

I (y)
G(θ0) dy > 0 . (3.23)

This will guarantee that (3.22) has a unique solution. To get an upper bound for F ′(θ), observe 
that, for θ ∈ [θ0, π/2[,

F ′(θ) ≤ tan(θ)G′′(θ)

= − tan(θ)

[
cos(θ − θ0)

(
1 −

(
κ

cos(θ − θ0)
+ 1

)
exp
{ −κ

cos(θ − θ0)

})
+ tan2(θ−θ0)

cos(θ−θ0)
κ2 exp

{ −κ
cos(θ−θ0)

}]
= − tan(θ) cos(π/2 − θ0)

(
1 − (κ + 1)e−κ

)
.

Since θ∗(y) ∈ [θ0, π/2] and G(θ0) = 1 − e−κ , using the above inequality one obtains

h∫
0

cos θ∗(y)

sin2 θ∗(y)
· 1

|F ′(θ∗(y))|
I ′(h)

I (y)
G(θ0) dy

≤ cos2 θ0

sin3 θ0
· 1 − e−κ

cos(π/2 − θ0)
(

1 − (κ + 1)e−κ
) h∫

I ′(h)

I (y)
dy .
0
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Fig. 2. Left: the optimal shape of a stem, as described in Theorem 3.3. Right: if the light intensity I changes abruptly as 
a function of the hight, the optimal shape may not be unique, as shown in Example 3.4.

Hence (3.23) is satisfied provided that

h∫
0

I ′(h)

I (y)
dy < tan2 θ0 · cos(π/2 − θ0)

(
1 − (κ + 1)e−κ

)
1 − e−κ

. (3.24)

From the above analysis, we conclude

Theorem 3.3. Assume that the light intensity function I is Lipschitz continuous and satisfies the 
strict inequality (3.24) for a.e. h ∈ [0, �]. Then the optimization problem (OP1) has a unique 
optimal solution θ∗ : [0, h∗] �→ [θ0, π/2]. The function θ∗ is non-increasing, and satisfies

θ∗(y) = ϕ

(
(e−κ − 1)

I (h∗)
I (y)

)
, (3.25)

where z �→ ϕ(z) = θ is the function implicitly defined by (3.19).

The following example shows that, without the bound (3.24) on the sunlight intensity function 
I (·), the conclusion of Theorem 3.3 can fail.

Example 3.4 (non-uniqueness). Choose n =
(

− 1√
2
, 1√

2

)
, � = 6/5 <

√
2, κ = 1,

I (y) =
{

ε if y ∈ [0,1],
1 if y > 1,

with ε > 0l.
By Theorem 3.1 at least one optimal solution exists. By the previous analysis, any optimal 

solution θ∗ : [0, h∗] �→ [θ0, π/2] satisfies the necessary conditions (3.25). In this particular case, 
this implies that θ∗(y) is constant separately for y < 1 and for y > 1. As shown in Fig. 2, right, 
these necessary conditions can have two solutions.

Solution 1. If h∗ < 1, then I (y) = ε for all y ∈ [0, h∗] and the necessary conditions (3.25)
yield
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θ∗
1 (y) = ϕ(e−1 − 1) = θ0 = π/4 for all y ∈ [0, h∗].

The total sunlight collected is

Sε(θ
∗
1 ) = 6

5
(1 − e−1) . (3.26)

Solution 2. If h∗ > 1, then I (h∗) = 1 and the necessary conditions (3.25) yield

θ∗
2 (y) = ϕ

(
(e−1 − 1)

I (h∗)
I (y)

)
=
⎧⎨⎩ ϕ

(
(e−1 − 1)ε−1

)
if y ∈ [0,1],

π/4 if y > 1.

Calling α = α(ε) .= ϕ
(
(e−1 − 1)ε−1

)
, the total sunlight collected in this case is

Sε(θ
∗
2 ) =

(
1 − exp

{
− 1

cos(α − π/4)

})
cos(α − π/4) ε +

(
6

5
− 1

sinα

)(
1 − e−1). (3.27)

We claim that, for a suitable choice of ε ∈]0, 1[ , the two quantities in (3.26) and (3.27) become 
equal. Indeed, as ε → 0+ we have

α(ε)
.= ϕ

(
e−1 − 1

ε

)
→ π

2
,

Sε(θ
∗
1 ) → 0, Sε(θ

∗
2 ) → 1 − e−1

5
. (3.28)

On the other hand, as ε → 1 we have α(ε) → π/4. By continuity, there exists ε1 ∈]0, 1[ such 
that

sinα(ε1) = 5

6
.

As ε → ε1+, we have

Sε(θ
∗
2 ) →

(
1 − exp

{
− 1

cos(α(ε1) − π/4)

})
cos(α(ε1) − π/4) ε1 < Sε1(θ

∗
1 ). (3.29)

Comparing (3.28) with (3.29), by continuity we conclude that there exists some ̂ε ∈]0, ε1[ such 
that Ŝε(θ

∗
1 ) = Ŝε(θ

∗
2 ). Hence for ε = ε̂ the optimization problem has two distinct solutions.

We remark that in this example the light intensity I (y) is discontinuous at y = 1. However, 
by a mollification one can still construct a similar example with two optimal configurations, also 
for I (·) smooth. Of course, in this case the derivative I ′(h) will be extremely large for h ≈ 1, so 
that the assumption (3.24) fails.
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4. A competition model

In the previous analysis, the light intensity function I (·) was a priori given. We now consider 
a continuous distribution of stems, and determine the average sunlight I (y) available at height y
above ground, depending on the density of vegetation above y.

Let the constants �, κ > 0 be given, specifying the length and thickness of each stem. We 
now introduce another constant ρ > 0 describing the density of stems, i.e. how many stems grow 
per unit area. Assume that all stems have the same height and shape, described by the function 
θ : [0, h] �→ [θ0, π/2]. For any y ∈ [0, h], the total amount of vegetation at height ≥ y, per unit 
length, is then measured by

ρ ·
h∫

y

κ

sin θ(y)
dy.

The corresponding light intensity function is defined as

I (y)
.= exp

⎧⎨⎩−ρ ·
h∫

y

κ

sin θ(y)
dy

⎫⎬⎭ for y ∈ [0, h], (4.1)

while I (y) = 1 for y ≥ h. We are interested in equilibrium configurations, where the shape of 
the stems is optimal for the light intensity I (·). We recall that θ0 is the angle of incoming light 
rays, as in (2.1), while the constants �, κ > 0 denote the length and thickness of the stems.

Definition 4.1. Given an angle θ0 ∈]0, π/2] and constants �, κ, ρ > 0, we say that a light in-
tensity function I ∗ : R+ �→ [0, 1] and a stem shape function θ∗ : [0, h∗] �→ [θ0, π/2] yield a
competitive equilibrium if the following holds.

(i) The stem shape function θ∗ : [0, h∗] �→ [θ0, π/2] provides an optimal solution to the opti-
mization problem (OP1), with light intensity function I = I ∗.

(ii) For all y ≥ 0, the light intensity at height y satisfies

I ∗(y) = exp

⎧⎪⎨⎪⎩−ρ ·
h∗∫

min{y,h∗}

κ

sin θ∗(y)
dy

⎫⎪⎬⎪⎭ . (4.2)

If the density of vegetation is sufficiently small, we now show that an equilibrium configura-
tion exists.

Theorem 4.2. Let the light angle θ0 ∈]0, π/2] be given, together with the constants �, κ > 0
determining the common length and thickness of all the stems. Then there exists a constant c0 > 0
such that, for all 0 < ρ ≤ c0, an equilibrium configuration exists.

Proof. 1. Consider the set of stem configurations

K .=
{
� : [0, �] �→ [θ0, π/2] , � is nonincreasing

}
, (4.3)
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and the set of light intensity functions

J .=
{
I : [0,+∞[ �→ [0,1] ; I is nondecreasing, I (y) = 1 for y ≥ �,

I is Lipschitz continuous with constant
ρκ

sin θ0

}
.

(4.4)

We observe that K is a compact, convex subset of L1([0, �]), while J is a compact, convex 
subset of C0([0, +∞[).

If �(·) ∈ K describes the common configuration of all stems, we denote by I�(·) the corre-
sponding light intensity function. Moreover, for a given function I (·), we denote by �∗(I ) the 
corresponding optimal configuration of plant stems.

In the following steps we shall prove that:

(i) The map � �→ I� is continuous from K into J .
(ii) The map I �→ �∗(I ) is continuous from J into K.

As a consequence, the composed map � �→ �∗(I�) is continuous from K into itself. By Schaud-
er’s theorem, it has a fixed point, which provides an equilibrium solution.

2. Given � ∈K, define the constant

h̄
.=

�∫
0

sin�(t) dt . (4.5)

More generally, for s ∈ [0, �], set

y(s)
.=

s∫
0

sin�(t) dt ∈ [0, h̄]. (4.6)

We observe that, since �(t) ∈ [θ0, π/2], the inverse function y �→ s(y) from [0, h̄] into [0, �] is a 
strictly increasing bijection, with Lipschitz constant L = 1

sin θ0
. The corresponding light intensity 

function is determined by

I�(y) =
{

exp
{−ρκ(� − s(y))

}
if y ∈ [0, h̄],

1 if y > �.
(4.7)

From the above definitions it follows that � �→ I� is continuous from K into J .
3. Next, let I ∈ J . Given the constants �, κ , by choosing ρ > 0 small enough, any Lipschitz 

continuous function I : [0, �] �→ [0, 1] with Lipschitz constant L = ρκ
sin θ0

will satisfy the inequal-
ity (3.24). Hence, by Theorem 3.3, the optimization problem (OP1) has a unique optimal solution 
θ∗ : [0, h∗] �→ [θ0, π/2].

Notice that in Theorem 3.3 this solution is written in terms of the variable y ∈ [0, h∗], and 
satisfies the optimality condition (3.25). In terms of the arc-length parameter s ∈ [0, �], this cor-
responds to
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�∗(s) = θ∗(h(s))

where the variable y(s) ∈ [0, h∗] is implicitly defined by

y(s)∫
0

1

sin θ∗(z)
dz = s.

In view of (2.3), given I ∈ J and � ∈K, the total sunlight collected by the stem is computed 
by

S(I,�) = =
�∫

0

I (y(s)) ·
(

1 − exp
{ −κ

cos(�(s) − θ0)

})
cos(�(s) − θ0) ds, (4.8)

where

y(s)
.=

s∫
0

sin�(s)ds.

From the above formulas it follows that the map (I, �) �→ S(I, �) is continuous on the compact 
set J ×K. In particular, the function

I �→ max
�∈K

S(I,�) (4.9)

is continuous on the compact set J .
Given a light intensity function I ∈ J , call �∗(I ) ∈ K the unique optimal stem shape. We 

claim that the map I �→ �∗(I ) is continuous.
Indeed, this is a straightforward consequence of continuity and compactness. If continuity 

fails, there exists a convergent sequence In → I such that �(In) does not converge to �(I). By 
the compactness of K, we can extract a subsequence such that

�nk
→ �� �= �(I).

By continuity, one obtains

S(I,�(I)) = sup
�∈K

S(I,�) = lim
k→∞ sup

�∈K
S(Ink

,�)

= lim
k→∞S(Ink

,�(Ink
))) = S(I,��).

This contradicts the uniqueness of the optimal stem configuration, stated in Theorem 3.3. We 
thus conclude that the map I �→ �∗(I ) is continuous, completing the proof. �
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4.1. Uniqueness and representation of equilibrium solutions

By (3.21) and (4.2), this equilibrium configuration (h∗, θ∗) must satisfy the necessary condi-
tion

θ∗(y) = ϕ

⎛⎝(e−κ − 1) exp

⎧⎨⎩
h∗∫

y

ρκ

sin θ∗(y)
dy

⎫⎬⎭
⎞⎠ , y ∈ [0, h∗], (4.10)

where ϕ is the function defined in Lemma 3.2. Here the constant h∗ must be determined so that

h∗∫
0

1

sin θ∗(y)
dy = �. (4.11)

Based on (4.10), one obtains a simple representation of all equilibrium configurations, for any 
length � > 0. Indeed, for t ∈] − ∞, 0], let t �→ ζ̂ (t) be the solution of the Cauchy problem

ζ ′ = − ρκ

sin θ
, where θ = ϕ

(
(e−κ − 1) eζ

)
,

with terminal condition ζ(0) = 0.

Notice that the corresponding function t �→ θ̂ (t) = ϕ
(
(e−κ − 1) eζ̂ (t)

)
satisfies

θ̂ (0) = ϕ(e−κ − 1) = θ0 .

For any length � of the stem, choose h∗ = h∗(�) so that

0∫
−h∗

1

sin θ̂ (t)
dt = � . (4.12)

The shape of the stem that achieves the competitive equilibrium is then provided by

θ∗(y) = θ̂ (y − h∗) , y ∈ [0, h∗]. (4.13)

Since the backward Cauchy problem

ζ ′ = − ρκ

sin
(
ϕ
(
(e−κ − 1) eζ

)) , ζ(0) = 0, (4.14)

has a unique solution, we conclude that, if an equilibrium solution exists, by the representation 
(4.13) it must be unique. (See Fig. 3.)
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Fig. 3. Left: the curve γ , parameterized by the coordinate t . For t < 0, the tangent vector is dγ
dt

= (tan θ(t), 1), where 
θ(t) is obtained by solving the Cauchy problem (4.14). Right: for different lengths 0 < �1 < �2 < �3, the equilibrium 
configuration is obtained by taking the upper portion of the same curve γ , up to the length �i , i = 1, 2, 3.

5. Stems with variable length and thickness

We now consider the optimization problem (OP2), allowing for stems of different lengths and 
with variable density of leaves.

5.1. Existence of an optimal solution

Theorem 5.1. For any bounded, non-decreasing function y �→ I (y) ∈ [0, 1] and any constants 
0 < α < 1, c > 0 and θ0 ∈]0, π/2[ , the optimization problem (OP2) has at least one solution.

Proof. 1. Consider a maximizing sequence of couples (θk, uk) : R+ �→ [θ0, π/2] × R+. For 
k ≥ 1, let

s �→ γk(s) =
⎛⎝ s∫

0

cos θk(s) ds ,

s∫
0

sin θk(s) ds

⎞⎠
be the arc-length parameterization of the stem γk . Call μk the Radon measure on R2 describing 
the distribution of leaves along γk . For every Borel set A ⊆Rn, we thus have

μk(A) =
∫

{s ; γk(s)∈A}
uk(s) ds. (5.1)

For a given radius ρ > 0, we have the decomposition

μk = μ
�
k + μ

�
k ,

where μ�
k is the restriction of μk to the ball B(0, ρ), while μ�

k is the restriction of μk to the 
complement R2 \ B(0, ρ). By the same arguments used in steps 1-2 of the proof of Theorem 3.1 
in [3], if the radius ρ is sufficiently large, then

S(μ
�
) − cIα(μ

�
) ≥ S(μk) − cIα(μk) (5.2)
k k
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for all k ≥ 1. Here S and Iα are the functionals defined at (2.12)-(2.13). According to (5.2), we 
can replace the measure μk with μ�

k without decreasing the objective functional.
Without loss of generality we can thus choose � > 0 sufficiently large and assume that

uk(s) = 0 for all s > �, k ≥ 1.

In turn, since S(μk) − cIα(μk) ≥ 0, we obtain the uniform bound

Iα(μk) ≤ κ1
.= 1

c
S(μk) ≤ �

c
. (5.3)

2. In this step we show that the measures μk can be taken with uniformly bounded mass. 
Consider a measure μk for which (5.3) holds. By (2.13), for every r ∈ [0, �] one has

Iα(μk) ≥ r ·
⎛⎝ �∫

r

uk(t) dt

⎞⎠α

.

In view of (5.3), this implies

�∫
r

uk(s) ds ≤
(κ1

r

)1/α

. (5.4)

It thus remains to prove that, in our maximizing sequence, the functions uk can be replaced with 
functions ũk having a uniformly bounded integral over [0, r], for some fixed r > 0.

Toward this goal we fix 0 < ε < β < 1, and, for j ≥ 1, we define rj = 2−j , and the interval 
Vj =]rj+1, rj ]. Given u = uk , if 

∫
Vj

u(s) ds > rε
j , we introduce the functions

uj (s)
.= χ

Vj
(s)u(s), ũj (s)

.= min{uj (s), cj }, (5.5)

choosing the constant cj ≥ 2r
β−1
j so that∫

Vj

ũj (s) ds = r
β
j . (5.6)

We then let μj = ujμ and μ̃j = ũjμ be the measures supported on Vj , corresponding to these 
densities.

For a fixed integer j∗, whose precise value will be chosen later, consider the set of indices

J
.=

⎧⎪⎨⎪⎩j ≥ j∗
∣∣∣∣ ∫
Vj

u(s) ds > rε
j

⎫⎪⎬⎪⎭ (5.7)

and the modified density
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ũ(s)
.= u(s) +

∑
j∈J

(ũj (s) − uj (s)). (5.8)

Moreover, call μ̃ the measure obtained by replacing u with ũ in (2.11). By (5.4) and (5.5) the 
total mass of μ̃ is bounded. Indeed

μ̃(R2) =
�∫

rj∗

ũ(s) ds +
rj∗∫
0

ũ(s) ds ≤
(

κ1

rj∗

)1/α

+
∑
j≥j∗

rε
j ≤

(
κ1

rj∗

)1/α

+
∑
j≥1

2−jε < +∞.

(5.9)

We now claim that

S(μ̃) − cIα(μ̃) ≥ S(μ) − cIα(μ). (5.10)

Toward a proof of (5.10), we estimate

S(μ) − S(μ̃) ≤
∑
j∈J

(∫
Vj

I (y(t)) cos(θ(t) − θ0) dt

−
∫
Vj

I (y(t))

(
1 − exp

{
− ũj (t)

cos(θ(t) − θ0)

})
cos(θ(t) − θ0) dt

)

≤
∑
j∈J

rj∫
rj+1

exp
{−ũj (t)

}
dt ≤

∑
j∈J

rj+1 exp
{
−2r

β−1
j

}
. (5.11)

To estimate the difference in the irrigation cost, we first observe that the inequality⎛⎝ �∫
r

u(t) dt

⎞⎠α

≤ 1

r
Iα(μ) = κ1

r

implies

⎛⎝ �∫
r

u(t) dt

⎞⎠α−1

≥
(κ1

r

) α−1
α

. (5.12)

Since ũ(s) ≤ u(s) for every s ∈ [0, �], using (5.12) we now obtain

Iα(μ) − Iα(μ̃) =
1∫

0

d

dλ
Iα
(
λμ + (1 − λ)μ̃

)
dλ

=
1∫ �∫

d

dλ

⎛⎝ �∫
[λu(t) + (1 − λ)ũ(t)]dt

⎞⎠α

ds dλ
0 0 s
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=
1∫

0

�∫
0

⎧⎪⎨⎪⎩α

⎛⎝ �∫
s

[λu(t) + (1 − λ)ũ(t)]dt

⎞⎠α−1 �∫
s

[u(t) − ũ(t)]dt

⎫⎪⎬⎪⎭ds dλ

≥
�∫

0

⎧⎪⎨⎪⎩α

⎛⎝ �∫
s

u(t) dt

⎞⎠α−1 �∫
s

[u(t) − ũ(t)]dt

⎫⎪⎬⎪⎭ds

≥
∑
j∈J

rj+1∫
rj+2

⎡⎢⎣α

⎛⎝ �∫
s

u(t) dt

⎞⎠α−1 rj∫
rj+1

(uj (t) − ũj (t)) dt

⎤⎥⎦ds

≥
∑
j∈J

α

(
κ1

rj+2

) α−1
α · (rε

j − r
β
j ) · rj+2

=
∑
j∈J

κ2r
1/α
j (rε

j − r
β
j ), (5.13)

where κ2 = α(4κ1)
α−1
α . Combining (5.11) with (5.13) we obtain

c[Iα(μ)−Iα(μ̃)]− [S(μ)−S(μ̃)] ≥
∑
j∈J

(
cκ2r

1/α
j (rε

j − r
β
j )− rj+1 exp

{
−2r

β−1
j

})
. (5.14)

By choosing the integer j∗ large enough in (5.7), for j ≥ j∗ all terms in the summation on the 
right hand side of (5.14) are ≥ 0. This implies (5.10).

3. By the two previous steps, w.l.o.g. we can assume that the measures μk have uniformly 
bounded support and uniformly bounded total mass. Otherwise, we can replace the sequence 
(uk)k≥1 with a new maximizing sequence (ũk)k≥1 having these properties.

By taking a subsequence, we can thus assume the weak convergence μk ⇀ μ. The upper 
semicontinuity of the functional S , proved in [5], yields

S(μ) ≥ lim sup
k→∞

S(μk). (5.15)

In addition, since all maps s �→ γk(s) are 1-Lipschitz, by taking a further subsequence we can 
assume the convergence

γk(s) → γ (s) (5.16)

for some limit function γ , uniformly for s ∈ [0, �].
Since each measure μk is supported on γk , the weak limit μ is a measure supported on the 

curve γ .
4. Since θk(s) ∈ [θ0, π/2], we can re-parameterize each stem γk in terms of the vertical vari-

able

yk(s) =
s∫

sin θk(t) dt.
0



A. Bressan et al. / J. Differential Equations 269 (2020) 1571–1611 1591
Calling s = sk(y) the inverse function, we thus obtain a maximizing sequence of couples

y �→ (θ̂k(y), ûk(y))
.=
(
θk(sk(y)), uk(sk(y))

)
, y ∈ [0, hk] .

Moreover, the stem γk can be described as the graph of the Lipschitz function

x = xk(y) =
sk(y)∫
0

cos θk(s) ds.

Since all functions xk(·) satisfy xk(0) = 0 and are non-decreasing, uniformly continuous with 
Lipschitz constant L = cos θ0/ sin θ0, by possibly extracting a further subsequence, we obtain 
the convergence hk → h̄ and xk(·) → x̄(·). Here x̄ : [0, h̄] �→ R is a nondecreasing continuous 
function with Lipschitz constant L, such that x̄(0) = 0. More precisely, the convergence xk → x̄

is uniform on every compact subinterval [0, h] with h < h̄.
5. We claim that the irrigation cost of μ is no greater that the lim-inf of the irrigation costs for 

μk . Let σ �→ γ (σ ) be an arc-length parameterization of γ . Since s �→ γ (s) is 1-Lipschitz, one 
has dσ/ds ≤ 1. We now compute

Iα(μ) =
σ(�)∫
0

⎛⎝ σ(�)∫
σ

u(t) dt

⎞⎠α

dσ =
σ(�)∫
0

⎛⎝ lim
k→∞

�∫
s

uk(t) dt

⎞⎠α

dσ(s)

≤ lim
k→∞

�∫
0

⎛⎝ �∫
s

uk(t) dt

⎞⎠α

ds = lim
k→∞Iα(μk).

(5.17)

6. Combining (5.15) with (5.17) we conclude that the measure μ, supported on the stem γ , is 
optimal.

Let ū be the density of the absolutely continuous part of μ w.r.t. the arc-length measure on 
γ̄ , and call μ∗ the measure that has density ū w.r.t. arc-length measure. Since S(μ∗) = S(μ), 
it follows that μ∗ = μ. Otherwise Iα(μ∗) < Iα(μ) and μ is not optimal. This argument shows 
that the optimal measure μ is absolutely continuous w.r.t. the arc-length measure on γ .

Calling σ �→ γ (σ ) the arc-length parameterization of γ , the optimal solution to (OP2) is now 
provided by σ �→ (θ(σ ), ū(σ )), where θ is the orientation of the tangent vector:

d

dσ
γ (σ ) = (

cos θ(σ ), sin θ(σ )
)
. �

5.2. Necessary conditions for optimality

Let t �→ (θ∗(t), u∗(t)) be an optimal solution to the problem (OP2). The necessary conditions 
for optimality [4,6,7] yield the existence of dual variables p, q satisfying

{
ṗ = − I ′(y)G(θ,u),

q̇ = cα zα−1,

{
p(+∞) = 0,

q(0) = 0,
(5.18)
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and such that the maximality condition

(θ∗(t), u∗(t)) = arg max
θ∈[0,π], u≥0

{
p(t) sin θ − q(t)u + I (y(t))G(θ,u) − czα

}
. (5.19)

We recall that G(θ, u) is the function defined at (2.17). An intuitive interpretation of the quanti-
ties on the right-hand side of (5.19) goes as follows:

• p(t) is the rate of increase in the gathered sunlight, if the upper portion of stem {γ (s) ; s > t}
is raised higher.

• q(t) is the rate at which the irrigation cost increases, adding mass at the point γ (t).
• I (y(t)) G(θ, u) is the sunlight captured by the leaves at the point γ (t).

6. Uniqueness of the optimal stem configuration

Aim of this section is to show that, if the light intensity I (y) remains sufficiently close to 1 for 
all y ≥ 0, then the shape of the optimal stem is uniquely determined. This models a case where 
the density of external vegetation is small.

Theorem 6.1. Let h �→ I (h) ∈ [0, 1] be a non-decreasing, absolutely continuous function which 
satisfies

I ′(y) ≤ Cy−β for a.e. y > 0, (6.1)

for some constants C > 0 and 0 < β < 1. If

I (0) ≥ 1 − δ (6.2)

for some δ > 0 sufficiently small, then the optimal solution to (OP2) is unique.

Proof. We will show that the necessary conditions for optimality have a unique solution. This 
will be achieved in several steps. 1. Given I, p, q , define the functions �, U by setting(

�(I,p, q), U(I,p, q)
)

.= arg max
θ∈[0,π], u≥0

{
p · sin θ − q u + I · G(θ,u) − czα

}
. (6.3)

We recall that G is the function defined at (2.17). Notice that one can write

G(θ,u) = uG̃

(
cos (θ − θ0)

u

)
with

G̃(x)
.=
(

1 − exp

{
− 1

x

})
x > 0, G̃′(x) ≤ 1, G̃′′(x) ≤ 0, for all x > 0.

(6.4)

Denote by

H(θ, u)
.= p · sin θ − q u + I (y)G(θ,u) − czα (6.5)
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the quantity to be maximized in (6.3). Differentiating H w.r.t. θ and imposing that the derivative 
is zero, we obtain

p

I
= −Gθ(θ,u)

cos θ

= sin (θ − θ0)

cos θ

[
1 − exp

{
− u

cos (θ − θ0)

}
− u

cos (θ − θ0)
exp

{
− u

cos (θ − θ0)

}]
.

(6.6)

Similarly, differentiating H w.r.t. u, we find

−q + IGu(θ,u) = − q + I exp

{
− u

cos (θ − θ0)

}
= 0.

This yields

u = − ln
(q

I

)
cos (θ − θ0). (6.7)

A lengthy but elementary computation shows that the Hessian matrix of second derivatives of H
w.r.t. θ, u is negative definite, and the critical point is indeed the point where the global maximum 
is attained. By (6.7) it follows

U(I,p, q) = − ln
(q

I

)
cos
(
�(I,p, q) − θ0

)
. (6.8)

Inserting (6.8) in (6.6) and using the identity

sin (θ − θ0)

cos θ
= cos θ0 tan θ − sin θ0

we obtain

�(I,p, q) = arctan

(
tan θ0 +

1
cos θ0

p
I

1 − q
I

+ q
I

ln
( q

I

)) . (6.9)

Introducing the function

w(I,p, q)
.= p/I

1 − q
I

+ q
I

ln
( q

I

) , (6.10)

by (6.9) one has the identities⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin
(
�(I,p, q)

) = sin θ0 + w√
cos2 θ0 + (w + sin θ0)2

,

cos
(
�(I,p, q) − θ0

) = 1 + w sin θ0√
cos2 θ0 + (w + sin θ0)2

.

(6.11)

Note that w ≥ 0, because p, q, I ≥ 0. In turn, from (6.11) it follows
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
cos
(
�(I,p, q)

) = cos θ0√
cos2 θ0 + (w + sin θ0)2

,

sin (�(I,p, q) − θ0) = w cos θ0√
cos2 θ0 + (w + sin θ0)2

.

(6.12)

2. The necessary conditions for the optimality of a solution to (OP2) yield the boundary value 
problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = sin�,

ż(t) = − U,

ṗ(t) = − I ′(y)G
(
�,U

)
,

q̇(t) = cαzα−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = 0,

z(T ) = 0,

p(T ) = 0,

q(T ) = I (y(T )),

q(0) = 0.

(6.13)

Here [0, T [ is the interval where u > 0, while

� = �(I (y),p, q), U = U(I (y),p, q) (6.14)

are the functions introduced at (6.3), or more explicitly at (6.8)-(6.9). Notice that the length T of 
the stem is a quantity to be determined, using the boundary conditions in (6.13).

3. Since the control system (2.19) and the running cost (2.18) do not depend explicitly on 
time, the Hamiltonian function

H(y, z,p, q)
.= max

θ∈[0,π], u≥0

{
p · sin θ − q u + I (y)G(θ,u) − czα

}
(6.15)

is constant along trajectories of (6.13). Observing that the terminal conditions in (6.13) imply 
H(y(T ), z(T ), p(T ), q(T )) = 0, one has the first integral

H(y(t), z(t),p(t), q(t)) = 0 for all t ∈ [0, T ]. (6.16)

This yields

0 = p sin� +
[
I (y) − q + q ln

(
q

I (y)

)]
cos (� − θ0) − czα

=
p [sin θ0 + w] +

[
I (y) − q + q ln

(
q

I (y)

)]
[1 + w sin θ0]√

cos2 θ0 + (w + sin θ0)2
− czα

= I (y)

[
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

)]√
cos2 θ0 + (w + sin θ0)2 − czα.

We can use this identity to express z as a function of the other variables:
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z
(
I (y),p, q

) =
{

I (y)

c

[
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

)]√
cos2 θ0 + (w + sin θ0)2

}1/α

= c−1/α

{([
I (y) − q + q ln

( q

I (y)

)]
cos θ0

)2

+
(
p +

[
I (y) − q + q ln

(
q

I (y)

)]
sin θ0

)2
}1/2α

.

(6.17)

4. Since I is given as a function of the height y, it is convenient to rewrite the equations 
(6.13) using y as an independent variable. Using the identity (6.17), we obtain a system of two 
equations for the variables p, q:

d

dy
p(y) = − I ′(y)

[
1 − q(y)

I (y)

]
cos
(
�
(
I (y),p(y), q(y)

)− θ0
)

sin�
(
I (y),p(y), q(y)

)
= − I ′(y)

[
1 − q(y)

I (y)

]
1 + w sin θ0

w + sin θ0
.= − I ′(y)f1

(
I (y),p(y), q(y)

)
,

(6.18)

d

dy
q(y) = cα

[
z
(
I (y),p(y), q(y)

)]α−1

sin�
(
I (y),p(y), q(y)

)
= αc1/α

w + sin θ0

[
cos2 θ0 + (sin θ0 + w)2

]1− 1
2α

×
[
I (y)

(
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

))]1− 1
α

.= f2
(
I (y),p(y), q(y)

)
,

(6.19)

where w = w(I, p, q) is the function introduced at (6.10). Note that under our assumptions, f1
remains bounded, while f2 diverges as q(y) → I (y). The system (6.13) can now be equivalently 
formulated as{

p′(y) = −I ′(y)f1
(
I (y),p, q

)
,

q ′(y) = f2
(
I (y),p, q

)
,

{
p(h) = 0,

q(h) = I (h),
q(0) = 0. (6.20)

5. To prove uniqueness of the solution to the boundary value problem (6.13), it thus suffices 
to prove the following (see Fig. 4, right).

(U) Call

y �→ (
p(y,h), q(y,h)

)
(6.21)

the solution to the system (6.20), with the two terminal conditions given at y = h. Then there 
is a unique choice of h > 0 which satisfies also the third boundary condition

q(0, h) = 0. (6.22)
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Fig. 4. Left and center: sketch of the solution of the system (5.18) in the case where I (y) ≡ 1. Left: the graphs of the 
functions z in (6.25) and u = − lnq . Center: the graph of the function q at (6.26). The figure on the right shows the case 
where I (·) is not constant. As before, h must be determined so that q(0, h) = 0.

To make the argument more clear, the uniqueness property (U) will be proved in two steps.

(i) When I (y) ≡ 1, the map

h �→ q(0, h) (6.23)

is strictly decreasing, hence it vanishes at a unique point h0.
(ii) For all functions I (·) sufficiently close to the constant map ≡ 1, the map (6.23) is strictly 

decreasing in a neighborhood of h0.

In the case I (y) ≡ 1, recalling (6.9) we obtain (see Fig. 4)

I ′(y) = 0, p(y,h) = 0, �(I,0, q) = θ0, G(θ0,U) = 1 − e−U ,

U(1,0, q) = argmax
u

{−qu + G(θ0,U)
} = argmax

u
{−qu + 1 − e−u} = − lnq,

The system (6.13) can now be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p′(y) = 0,

q ′(y) = cαzα−1

sin θ0
,

z′(y) = lnq

sin θ0
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(h) = 0,

q(h) = 1,

z(h) = 0,

q(0) = 0. (6.24)

From (6.24) it follows p(y) ≡ 0, while

dz

dq
= lnq

cαzα−1 .

Integrating the above ODE with terminal conditions q = 1, z = 0, one obtains

z = c−1/α
[
1 + q lnq − q

]1/α

. (6.25)

The second equation in (6.24) thus becomes
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q ′(y) = αc1/α

sin θ0

[
1 + q ln |q| − q

] α−1
α

. (6.26)

Notice that here the right hand side is strictly positive for all q ∈] −1, 1[ . Of course, only positive 
values of q are relevant for the optimization problem, but for the analysis it is convenient to 
extend the definition also to negative values of q . The solution of (6.26) with terminal condition 
q(h) = 1 is implicitly determined by

h − y = sin θ0

αc1/α

1∫
q(y)

[
1 + s ln |s| − s

] 1−α
α

ds . (6.27)

The map h �→ q(0, h) thus vanishes at the unique point

h0 = sin θ0

αc1/α

1∫
0

[
1 + s ln |s| − s

] 1−α
α

ds. (6.28)

As expected, the height h0 of the optimal stem decreases as we increase the constant c in the 
transportation cost. A straightforward computation yields

∂

∂h
q(0, h) = − αc1/α

sin θ0

[
1 + q(0, h) ln |q(0, h)| − q(0, h)

] 1−α
α

. (6.29)

In particular, at h = h0 we have q(h0)(0) = 0 and hence

d

dh
q(0, h)

∣∣∣∣
h=h0

= − αc1/α

sin θ0
< 0. (6.30)

6. We will show that a strict inequality as in (6.30) remains valid for a more general function 
I (·), provided that the assumptions (6.1)-(6.2) hold.

Toward this goal, we need to determine how p and q vary w.r.t. the parameter h. Denoting by

P(y)
.= ∂p(y,h)

∂h
, Q(y)

.= ∂q(y,h)

∂h
(6.31)

their partial derivatives, by (6.20) one obtains the linear system(
P(y)

Q(y)

)′
=
(−I ′(y)f1,p −I ′(y)f1,q

f2,p f2,q

)(
P(y)

Q(y)

)
. (6.32)

The boundary conditions at y = h require some careful consideration. As y → h−, we expect 
f2(I (y), p(y), q(y)) → +∞ and Q(y) → −∞. To cope with this singularity we introduce the 
new variable

Q̃(y)
.= Q(y)

f
(
I (y),p(y), q(y)

) . (6.33)

2
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The system (6.32), together with the new boundary conditions for P, Q̃, can now be written as⎧⎪⎨⎪⎩
P ′(y) = −I ′(y)

[
f1,pP + f1,qf2Q̃

]
,

Q̃′(y) = f2,p

f2
P − I ′(y)[f2,I − f2,pf1]

f2
Q̃,

{
P(h) = 0,

Q̃(h) = − 1.
(6.34)

To analyze this system we must compute the partial derivatives of f1 and f2. From the definition 
(6.10) it follows

∂w

∂I
= w2

p

[
1 − q

I

]
,

∂w

∂p
= w

p
,

∂w

∂q
= −w2

p
ln
(q

I

)
. (6.35)

Using (6.35), from (6.18), (6.19) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,p

(
I (y),p, q

) = 1 − q
I (y)

I (y) tan2 �
[
1 − q

I (y)
+ q

I (y)
ln
(

q
I (y)

)] ,
f1,q

(
I (y),p, q

) = 1

I (y)

cos (� − θ0)

sin�
−

sin (� − θ0) cos�
[
1 − q

I (y)

]
ln
( q

I

)
I (y) sin2 �

[
1 − q

I (y)
+ q

I (y)
ln
(

q
I (y)

)] ,
f2,p

(
I (y),p, q

) = −
[

1 + α

sin2 �
− 2α

]
1

z
(
I (y),p, q

) ,
f2,q

(
I (y),p, q

)
) = −

[
(1 − α) sin θ0

sin2 �
− sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)] ln
(

q
I (y)

)
z
(
I (y),p, q

) ,
f2,I

(
I (y),p, q

) = −
[
(1 − α) sin θ0

sin2 �
+ sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)] 1 − q
I (y)

z
(
I (y),p, q

) .

(6.36)

At this stage, the strategy of the proof is straightforward. When I ′(y) ≡ 0, the solution to (6.34)
is trivially given by P(y) ≡ 0, Q̃(y) ≡ −1. This implies

∂

∂h
q(0, h) = Q̃(0) · f2(I (0),p(0), q(0)) < 0.

We need to show that the same strict inequality holds when δ > 0 in (6.2) is small enough. 
Notice that, if the right hand sides of the equations in (6.34) were bounded, letting ‖I ′‖L∞ →
0 a continuity argument would imply the uniform convergence P(y) → 0 and Q̃(y) → −1. 
The same conclusion can be achieved provided that the right hand sides in (6.34) are uniformly 
integrable. This is precisely what will be proved in the next two steps, relying on the identities 
(6.36).

7. In this step we prove an inequality of the form

0 < θ0 ≤ �(I,p, q) ≤ θ+ <
π

2
. (6.37)

As a consequence, this implies that all terms in (6.36) involving sin� or cos� remain uniformly 
positive.
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The lower bound � ≥ θ0 is an immediate consequence of (6.9). To obtain an upper bound on 
�, we set

q� .= q(y)

I (y)
.

By (6.13), a differentiation yields

q̇� = cαzα−1 − q�I ′ sin(�)

I
.

Next, we observe that, by (6.13), one has

dz

dq�
= lnq� ·cos(�−θ0) · I

cαzα−1 − q�I ′ sin(�)
= ϕ1(q

�) · lnq� ·αzα−1 ,

{
z(h) = 0,

q�(h) = 1.

In (6.2) we can now choose δ ≤ cαMα−1, where M ≥ z(0) is an a priori bound on the mass of 
the stem, derived in Section 5. This ensures that ϕ1 is a bounded, uniformly positive function for 
y close enough to h, say

0 < c− ≤ ϕ1 ≤ c+,

for some constants c−, c+. Integrating, we obtain

zα =
z∫

0

αζα−1 dζ = −
1∫

q�

ϕ1(s) ln s ds = − ϕ2(q
�)

1∫
q�

ln s ds = ϕ3(q
�) · (1 − q�)2, (6.38)

and

dq�

dy
= cα

sin�

⎛⎜⎝−
1∫

q�

ϕ1(s) ln s ds

⎞⎟⎠
α−1
α

= ϕ4(q
�) ·
⎛⎜⎝−

1∫
q�

ln s ds

⎞⎟⎠
α−1
α

= ϕ5(q
�) · (1 − q�)

2(α−1)
α . (6.39)

Here the ϕk are uniformly positive, bounded functions. Integrating (6.39) we obtain

1∫
q�

1

ϕ5(s)
(1 − s)

2(1−α)
α ds = h − y. (6.40)

To fix the ideas, assume

0 < c3 ≤ ϕ5(s) ≤ C3 .
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Then

1

c3

1∫
q�

(1 − s)
2(1−α)

α ds = α

(2 − α)c3
(1 − q�)

2−α
α ds ≥ h − y.

1 − q�(y) ≥
(

(2 − α)c3

α

) α
2−α

(h − y)
α

2−α . (6.41)

A similar argument yields

1 − q�(y) ≤
(

(2 − α)C3

α

) α
2−α

(h − y)
α

2−α . (6.42)

Using (6.1) and (6.42) in the equation (6.18) we obtain a bound of the form

−p′(y) ≤ C1(1 − q(y)) ≤ C2(h − y)
α

2−α (6.43)

for y in a left neighborhood of h, which yields

p(y) ≤ C2

α + 1
(h − y)

2
2−α . (6.44)

Since α < 1, using (6.41) and (6.44) in (6.9) we obtain the limit �(y) → θ0 as y → h−.
On the other hand, when y is bounded away from h, the denominator in (6.10) is strictly 

positive and the quantity w = w(I, p, q) remains uniformly bounded. By (6.9), we obtain the 
upper bound � ≤ θ+, for some θ+ < π/2.

8. Relying on (6.36), in this step we prove that all terms on the right hand sides of the ODEs 
in (6.34) are uniformly integrable.

(i) We first consider the terms appearing in the ODE for P(y). Concerning f1,p, as y → h−
one has

f1,p = O(1) ·
(

1 − q

I

)−1 = O(1) · (h − y)
−α
2−α , (6.45)

because of (6.41). Since α < 1, this implies that f1,p is an integrable function of y.
(ii) By the second equation in (6.36), as y → h− one has

f1,q = O(1) · (1 − q�) ln(q�)

1 − q� + q� ln(q�)
= O(1). (6.46)

(iii) The term f2 blows up as y → h−, due to the factor zα−1. However, this factor is integrable 
in y because, by (6.38), (6.41) and (6.42)

zα
(
I (y),p(y), q(y)

) = O(1) · (h − y)
2α

2−α . (6.47)
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This implies

f2
(
I (y),p(y), q(y)

)=O(1) · zα−1(I (y),p(y), q(y)
)

=O(1) · (h − y)−1+ α
2−α , (6.48)

showing that f2 is integrable, because α > 0.
(iv) We now solve the linear ODE for P in (6.34) with terminal condition P(h) = 0. By the 

estimates (6.45)-(6.46) and (6.48) one obtains a bound of the form

P(y) = O(1) · (h − y)
α

2−α , (6.49)

valid in a left neighborhood of y = h.
(v) In a neighborhood of the origin, the function f1,q contains a logarithm which blows up as 

y → 0+. However, this is integrable because, for y ≈ 0, we have

q(y)

I (y)
≈
(

d

dy

q(y)

I (y)

)∣∣∣∣
y=0

· y = cα

(z(0))1−αI (0) sin (�(0))
y,

and lny is integrable in y. Recalling (6.1), as y ranges in a right neighborhood of the origin, 
i.e. for y > 0, we conclude⎧⎨⎩ I ′(y) · f1,qf2 = O(1) · I ′(y)f1,q = O(1) · y−β lny,

I ′(y) · f1,p = O(1) · I ′(y) = O(1) · y−β .

(6.50)

This shows that, in (6.34), the coefficients in first equation are uniformly integrable in a 
right neighborhood of the origin.

(vi) It remains to consider the terms appearing in the ODE for Q̃(y). We first observe that

f2,p

f2
= − sin�

cα

[
1 + α

sin2 �
− 2α

]
z−α
(
I (y),p(y), q(y)

)
.

As y → h−, by (6.47) and (6.49) this implies

f2,p

f2
· P = O(1) · (h − y)

−2α
2−α · (h − y)

α
2−α , (6.51)

which is integrable for α < 1.
(vii) Finally, as y → h−, we consider

f2,I

f2
= − sin�

cα

[
(1 − α) sin θ0

sin2 �
+ sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)]
× 1 − q

I (y)

zα
(
I (y),p(y), q(y)

)
= O(1) · (1 − q�)z−α

(
I (y),p(y), q(y)

) = O(1) · (h − y)
α

2−α · (h − y)
−2α
2−α ,

(6.52)
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which is integrable in y since α < 1. Similarly, by (6.51), (6.18), and (6.42), it follows

f2,p

f2
· f1 = O(1) · (h − y)

−2α
2−α · (h − y)

α
2−α , (6.53)

which is again integrable.

9. The proof can now be accomplished by a contradiction argument. If the conclusion of 
the theorem were not true, one could find a sequence of absolutely continuous, non-decreasing 
functions In : R+ �→ [0, 1], all satisfying (6.1), with In(0) → 1, and such that, for each n ≥ 1, 
the optimization problem (OP2) has two distinct solutions, say (θ̌n, ǔn) and (θ̂n, ûn). As a 
consequence, for each n ≥ 1 the system (6.13) has two solutions. To fix the ideas, let the 
first solution be defined on [0, ȟn] and the second on [0, ĥn], with ȟn < ĥn. These two solu-
tions will be denoted by (p̌n, q̌n, ̌zn) and (p̂n, q̂n, ̂zn). They both satisfy the boundary condi-
tions

p̌n(ȟn) = p̂n(ĥn) = 0, q̌n(ȟn) = I (ȟn), q̂n(ĥn) = I (ĥn), q̌n(0) = q̂n(0) = 0.

(6.54)

As a preliminary, we observe that, for δ > 0 small, the heights ĥ, ȟ of optimal stems must 
remain uniformly positive. Indeed, by (2.3) the sunlight gathered by a stem γ of length � is 
bounded by

S(γ ) ≤ �.

Hence, for a sequence of stems γn with heights ĥn → 0, the total sunlight satisfies

S(γn) ≤ �n ≤ ĥn

sin θ0
→ 0.

Therefore, for n large, none of these stems can be optimal.
Thanks to the last identity in (6.54), by the mean value theorem there exists some intermediate 

point kn ∈ [ȟn, ĥn] such that, with the notation introduced at (6.21),

∂qn

∂h
(0, kn) = 0. (6.55)

For each n ≥ 1 consider the corresponding system⎧⎪⎨⎪⎩
P ′

n(y) = −I ′
n(y)

[
f1,pPn + f1,qf2Q̃n

]
,

Q̃′(y) = f2,p

f2
Pn − I ′

n(y)[f2,I − f2,pf1]
f2

Q̃n,

{
Pn(kn) = 0,

Q̃n(kn) = − 1.
(6.56)

Since f2
(
In(0), pn(0, kn), 0

)
> 0, by (6.55) it follows

Q̃n(0) = 1

f
(
I (0),p (0, k ),0

) · ∂qn

∂h
(0, kn) = 0. (6.57)
2 n n n
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Let

Pn(y)
.= ∂p(y, kn)

∂h
, Q̃n(y)

.= 1

f2
(
In(y),pn(y, kn), qn(y, kn)

) · ∂q(y, kn)

∂h
,

be the solutions to (6.56). By the previous steps, their derivatives 
(
P ′

n, Q̃
′
n

)
n≥1 form a sequence 

of uniformly integrable functions defined on the intervals [0, kn]. Note that the existence of an 
upper bound supn kn

.= h+ < +∞ follows from the existence proof.
Thanks to the uniform integrability, by possibly taking a subsequence, we can assume the 

convergence kn → h ∈ [0, h+], the weak convergence of derivatives P ′
n ⇀ P ′, Q̃′

n ⇀ Q̃′ in L1, 
and the convergence

Pn → P, Q̃n → Q̃,

uniformly on every subinterval [0, h] with h < h̄.
Recalling that every I ′

n satisfies the uniform bounds (6.1), since In(y) → I (y) ≡ 1 uniformly 
for all y ≥ 0, we conclude that (P, Q̃) provides a solution to the linear system (6.34) on [0, h̄], 
corresponding to the constant function I (y) ≡ 1. We now observe that, when I (y) ≡ 1, the 
solution to (6.34) is P(y) ≡ 0 and Q̃(y) ≡ −1. On the other hand, our construction yields

Q̃(0) = lim
n→∞ Q̃n(0) = 0.

This contradiction achieves the proof of Theorem 6.1. �
7. Existence of an equilibrium solution

Given a nondecreasing light intensity function I : R+ �→ [0, 1], in the previous section we 
proved the existence of an optimal solution (θ∗, u∗) for the maximization problem (OP2).

Conversely, let ρ0 > 0 be the constant density of stems, i.e. the number of stems growing 
per unit area. If all stems have the same configuration, described by the couple of functions 
y �→ (θ(y), u(y)) as in (2.18), then the corresponding intensity of light at height y above ground 
is computed as

I (θ,u)(y)
.= exp

⎧⎨⎩− ρ0

cos θ0

+∞∫
y

u(ζ )

sin θ(ζ )
dζ

⎫⎬⎭ . (7.1)

The main goal of this section is to find a competitive equilibrium, i.e. a fixed point of the 
composition of the two maps I �→ (θ∗, u∗) and (θ, u) �→ I (θ,u).

Definition 7.1. Given an angle θ0 ∈]0, π/2[ and a constant ρ0 > 0, we say that the light intensity 
function I ∗ : R+ �→ [0, 1] and the stem configuration (θ∗, u∗) : R+ �→ [θ0, π/2] × R+ yield a
competitive equilibrium if the following holds.

(i) The couple (θ∗, u∗) provides an optimal solution to the optimization problem (OP2), with 
light intensity function I = I ∗.

(ii) The identity I ∗ = I (θ∗,u∗) holds.
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The main result of this section provides the existence of a competitive equilibrium, assuming 
that the density ρ0 of stems is sufficiently small.

Theorem 7.2. Let an angle θ0 ∈]0, π/2[ be given. Then, for all ρ0 > 0 sufficiently small, a 
unique competitive equilibrium (I∗, θ∗, u∗) exists.

Proof. 1. Setting C = 1 and β = 1/2 in (6.1), we define the family of functions

F .=
{
I : R+ �→ [1 − δ, 1] ; I is absolutely continuous,

I ′(y) ∈ [0, y−1/2 ] for a.e. y > 0
}
,

(7.2)

where δ > 0 is chosen small enough so that the conclusion of Theorem 6.1 holds.
2. For each I ∈ F , let (θ(I), u(I)) describe the corresponding optimal stem. Calling

h(I) = sup
{
y ≥ 0 ; u(I)(y) > 0

}
the height of this stem, by the a priori bounds proved in Section 6 we have a uniform bound

h(I) ≤ h+

for all I ∈ F . Let p(I), q(I) : [0, h(I)] �→ R+ be the corresponding solutions of (6.20). For con-
venience, we extend all these functions to the larger interval [0, h+] by setting

p(I)(y)
.= p(I)

(
h(I)
)
, q(I)(y)

.= q(I)
(
h(I)
)
, for all y ∈ [h(I), h+].

3. By the analysis in Section 6, for any I ∈ F , the solution to the system of optimality condi-
tions (6.13) satisfies

θ0 ≤ �(I (y),p(y), q(y)) ≤ θ+ , c0 y ≤ q(y)

I (y)
≤ 1, (7.3)

for some θ+ < π/2 and c0 > 0 sufficiently small. In view of (6.8), this implies

U(I (y),p(y), q(y))
.= − ln

(
q(I )

I (y)

)
cos
(
�(I (y),p(y), q(y)) − θ0

) ≤ − ln(c0y). (7.4)

Note that �(I (y), p(I)(y), q(I)(y)) = θ(I)(y) and U(I (y), p(I)(y), q(I)(y)) = u(I)(y). Thus, 
if we choose ρ0 > 0 small enough, it follows that the corresponding light intensity function I (θ,u)

at (7.1) is again in F . A competitive equilibrium will be obtained by constructing a fixed point 
of the composition of the two maps

�1 : I �→ (
θ(I), u(I)

)
, �2 : (θ, u) �→ I (θ,u). (7.5)

In order to use Schauder’s theorem, we need to check the continuity of these maps, in a suitable 
topology.
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We start by observing that F ⊂ C0([0, h+]) is a compact, convex set. Again by the analysis 
in Section 6, as I varies within the domain F , the corresponding functions θ(I) are uniformly 
bounded in L∞([0, h+]), while u(I) is uniformly bounded in L1([0, h+]).

From the estimate (6.43) it follows that the functions p(I) are equicontinuous on [0, h+]. 
Recalling that q = q� · I , by (6.39) we conclude that the functions q(I) are equicontinuous as 
well.

4. Motivated by (7.3)-(7.4), we consider the set of functions

U .=
{
(θ, u) ∈ L1([0, h+] ; R2), θ(y) ∈ [θ0, θ

+], 0 ≤ u(y) ≤ − ln(c0y)
}
. (7.6)

Thanks to the uniform bounds imposed on θ and u in the definition (7.6), the continuity of the 
map �2 : U �→ C0, defined at (7.1) is now straightforward.

5. To prove the continuity of the map �1, consider a sequence of functions In ∈ F , with 
In → I uniformly on [0, h+]. Let (θn, un) : [0, h+] �→ R2 be the corresponding unique optimal 
solutions.

We claim that (θn, un) → (θ, u) in L1([0, h+]), where (θ, u) is the unique optimal solution, 
given the light intensity I .

To prove the claim, let (pn, qn) be the corresponding solutions of the system (6.20). By the 
estimates on p′, q ′ proved in Section 6, the functions (pn, qn) are equicontinuous. From any 
subsequence we can thus extract a further subsequence and obtain the convergence

pnj
→ p̂, qnj

→ q̂, Inj
→ I, (7.7)

for some functions p̂, ̂q , uniformly on [0, h+].
For every j ≥ 1 we now have

θnj
(y) = �

(
Inj

(y),pnj
(y), qnj

(y)
)
, unj

(y) = U
(
Inj

(y),pnj
(y), qnj

(y)
)
,

where U and � are the functions in (6.8)-(6.9). By the dominated convergence theorem, the con-
vergence (7.7) together with the uniform integrability of θnj

and unj
yields the L1 convergence

‖θnj
− θ̂‖L1 → 0, ‖unj

− û‖L1 → 0. (7.8)

In turn this implies that (p̂, ̂q) provide a solution to the problem (6.20), in connection with the 
light intensity I . By uniqueness, p̂ = p and ̂q = q . Therefore, ̂θ = θ and ̂u = u as well.

The above argument shows that, from any subsequence, one can extract a further subsequence 
so that the L1-convergence (7.8) holds. Therefore, the entire sequence (θn, un)n≥1 converges to 
(θ, u) in L1([0, h+]). This establishes the continuity of the map �1.

6. The map �2 ◦�1 is now a continuous map of the compact, convex domain F ⊂ C0([0, h+])
into itself. By Schauder’s theorem it admits a fixed point I ∗(·). By construction, the optimal stem 
configuration 

(
θ(I∗), u(I∗)) yields a competitive equilibrium, in the sense of Definition 7.1.

7. To prove uniqueness, we derive a set of necessary conditions satisfied by the equilibrium 
solution, and show that this system has a unique solution.
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Using (6.8) and (6.11), we can rewrite the light intensity function (7.1) as

I (y) = exp

{
ρ0

cos θ0

∞∫
y

ln
(q

I

)1 + w sin θ0

sin θ0 + w
dζ

}
,

where w = w(I, p, q) is the function introduced at (6.10). Differentiating w.r.t. y one obtains

I ′(y) = − ρ0

cos θ0
ln

(
q

I

)
1 + w sin θ0

sin θ0 + w
· I .= f3(I,p, q). (7.9)

Combining (7.9) with (6.20), we conclude that the competitive equilibrium satisfies the system 
of equations and boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

p′(y) = −f1
(
I (y),p(y), q(y)

) · f3(I (y),p(y), q(y)),

q ′(y) = f2
(
I (y),p(y), q(y)

)
,

I ′(y) = f3(I (y),p(y), q(y)),

⎧⎪⎪⎨⎪⎪⎩
p(h) = 0,

q(h) = 1,

I (h) = 1,

(7.10)

together with

q(0) = 0. (7.11)

Here the common height of the stems h > 0 is a constant to be determined.
8. The uniqueness of solutions to (7.10) will be achieved by a contradiction argument. Since 

this is very similar to the one used in the proof of Theorem 6.1, we only sketch the main steps.
In analogy with (6.31), (6.33), denote by p(y, h), q(y, h), I (y, h) the unique solution to the 

Cauchy problem (7.10), with terminal conditions given at y = h. Consider the functions

P(y)
.= ∂p(y,h)

∂h
, Q̃(y)

.= 1

f2(I,p, q)

∂q(y,h)

∂h
, J (y)

.= ∂I (y,h)

∂h
.

By (7.10), these functions satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ′(y) = −[f3,I f1 + f3f1,I

]
J − [f3,pf1 + f3f1,p

]
P − [f3,qf1 + f3f1,q

]
f2Q̃,

Q̃′(y) = f2,I

f2
J + f2,p

f2
P − f3

f2

[
f2,I − f2,pf1

]
Q̃,

J ′(y) = f3,I J + f3,pP + f3,qf2Q̃,

(7.12)

with boundary conditions

P(h) = 0, Q̃(h) = −1, J (h) = 0.

Set d0 = ρ0
cos θ0

. Several of the partial derivatives on the right-hand side of (7.12) were computed 
in (6.36). The remaining ones are
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f1,I (I,p, q) = q

I 2 · 1 + w sin θ0

sin θ0 + w
− cos2 θ0

(sin θ0 + w)2

w2

p

[
1 − q

I

]
,

f3,I (I,p, q) = −d0

[(
ln
(q

I

)
− 1
)1 + w sin θ0

sin θ0 + w
− I ln

(q

I

) cos2 θ0

(sin θ0 + w)2

w2

p

(
1 − q

I

)]
,

f3,p(I,p, q) = d0I ln
(q

I

) cos2 θ0

(sin θ0 + w)2

w

p
,

f3,q(I,p, q) = −d0I

[
1

q
· 1 + w sin θ0

sin θ0 + w
+
[

ln
(q

I

)]2 cos2 θ0

(sin θ0 + w)2

w2

p

]
.

By the same arguments used in step 8 of the proof of Theorem 6.1, we conclude that the right-
hand side of (7.12) is uniformly integrable.

9. Let a density ρ0 > 0 be given. Assume that the problem (7.10)-(7.11) has two distinct 
solutions (p̂, q̂, Î ) and (p̌, q̌, Ǐ ), defined on [0, ĥ] and [0, ȟ] say with ĥ < ȟ. Since q̂(0) = q̌(0) =
0, by the mean value theorem there exists k ∈ [ĥ, ȟ] such that ∂q

∂h
(0, k) = 0.

Next, if multiple solutions exist for arbitrarily small values of the density ρ0, we can find 
a decreasing sequence ρ0,n ↓ 0 and corresponding solutions Pn, Qn, In of (7.12), defined for 
y ∈ [0, kn], such that

Pn(kn) = 0, Q̃n(kn) = −1, Jn(kn) = 0, Q̃n(0) = 0. (7.13)

Thanks to the uniform integrability of the right hand sides of (7.12), by possibly extracting a 
subsequence we can achieve the convergence kn → h̄ ∈ [0, h+], the weak convergence P ′

n ⇀ P ′, 
Q̃′

n ⇀ Q̃′, J ′
n ⇀ J ′ in L1, and the strong convergence

Pn → P, Q̃n → Q̃, Jn → J,

uniformly on every subinterval [0, h] with h < h̄.
To reach a contradiction, we observe that

Jn(y) = −
kn∫

y

J ′
n(z) dz

and the right-hand side of J ′
n in (7.12) consists of uniformly integrable terms which are multiplied 

by ρ0,n. This implies J (y) ≡ 0. This corresponds to the case of an intensity function I (y) ≡ 1. 
But in this case we know that Q̃(y) ≡ −1, contradicting the fact that, by (7.13),

Q̃(0) = lim
n→∞ Q̃n(0) = 0. �

8. Stem competition on a domain with boundary

We consider here the same model introduced in Section 2, where all stems have fixed length �
and constant thickness κ . But we now allow the sunlight intensity I = I (x, y) to vary w.r.t. both 
variables x, y. As shown in Fig. 5, left, we denote by
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Fig. 5. Left: to leading order, the amount of vegetation in the shaded region is proportional to κ ρ̄(ξ)dξds. Since the 
area is computed in terms of the cross product ∂γ

∂ξ
× ∂γ

∂s
, this motivates the formula (8.4). Right: a possible competitive 

equilibrium, where the light rays come from the direction n = ( −1√
2
, 1√

2
) and stems are distributed along the positive 

half line, with density as in (8.9). In this case, stems originating from points close to the origin have no incentive to 
grow upward, because they already receive a nearly maximum light intensity. Hence they bend to the right, almost 
perpendicularly to the light rays.

s �→ γ (s, ξ) = (x(s), y(s)), s ∈ [0, �], (8.1)

the arc-length parameterization of the stem whose root is located at (ξ, 0), and write g for the 
function introduced at (2.8). This leads to the optimization problem

(OP3) Given a light intensity function I = I (x, y), find a control s �→ θ(s) ∈ [0, π] which max-
imizes the integral

�∫
0

I (x(s), y(s)) g(θ(s)) ds (8.2)

subject to

d

ds
(x(s), y(s)) = (cos θ(s), sin θ(s)), (x(0), y(0)) = (ξ,0). (8.3)

Next, consider a function ρ̄(ξ) ≥ 0 describing the density of stems which grow near ξ ∈ R. 
At any point in space reached by a stem, i.e. such that

(x, y) = γ (s, ξ) for some ξ ∈ R, s ∈ [0, �],

the density of vegetation is

ρ(x, y) = ρ(γ (s, ξ)) = κ ρ̄(ξ) ·
[
∂γ × ∂γ

]−1

. (8.4)

∂ξ ∂s
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The light intensity at a point P = (x, y) ∈ R2 is now given by

I (P ) = exp

⎧⎨⎩−
+∞∫
0

ρ(P + tn) dt

⎫⎬⎭ . (8.5)

Definition 8.1. Given the constants �, κ and the density ρ̄ ∈ L∞(R), we say that the maps γ :
[0, �] ×R and I : R ×R+ �→ [0, 1] yield a competitive equilibrium if the following holds:

(i) For each ξ ∈R, the stem γ (·, ξ) provides an optimal solution to (OP3).
(ii) The function I (·) coincides with the light intensity determined by (8.4)-(8.5).

We shall not analyze the existence or uniqueness of the competitive equilibrium, in the case 
where the distribution of stem roots is not uniform. We only observe that, if the stem γ (·, ξ) in 
(8.1) is optimal, the necessary conditions yield the existence of a dual vector s �→ p(s) satisfying

ṗ(s) = − ∇I
(
x(s), y(s)

)
g(θ(s)), p(�) = (0,0), (8.6)

and such that, for a.e. s ∈ [0, �], the optimal angle θ∗(s) satisfies

θ∗(s) = argmax
θ

{
p(s) · (cos θ, sin θ) + I (x(s), y(s))g(θ)

}
. (8.7)

Differentiating the expression on the right hand side of (8.7) one obtains an implicit equation for 
θ∗(s), namely

I
(
x(s), y(s)

)
)g′(θ∗(s)) + p(s) · n(s) = 0 (8.8)

for a.e. s ∈ [0, �]. Here n(s)
.= (− sin θ(s), cos θ(s)

)
is the unit vector perpendicular to the stem. 

Moreover, by (8.6) one has

p(s) =
�∫

s

∇I
(
x(σ ), y(σ )) g(θ∗(σ )

)
dσ.

An interesting case is where stems grow only on the half line {ξ ≥ 0}. For example, one can take

ρ̄(ξ) =
⎧⎨⎩

0 if ξ < 0,

b−1ξ if ξ ∈ [0, b],
1 if ξ > b.

(8.9)

In this case, we conjecture that the competitive equilibrium has the form illustrated in Fig. 5, 
right.
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Fig. 6. The stem γ1, oriented perpendicularly to the sun rays, collects much more sunlight than γ2. Indeed, γ1 would 
give the best orientation for solar panels. Notice that γ2 minimizes the sunlight gathered because the upper leaves put the 
lower ones in shade.

9. Concluding remarks

A motivation for the present study was to understand whether competition for sunlight could 
explain phototropism, i.e. the tendency of plant stems to bend toward the light source. A naive 
approach may suggest that, if a stem bends in the direction of the light rays, the leaves will 
be closer to the sun and hence gather more light. However, since the average distance of the 
earth from the sun is approximately 90 million miles, getting a few inches closer cannot make a 
difference.

As shown in Fig. 6, if a single stem were present, to maximize the collected sunlight it should 
be perpendicular to the light rays, not parallel. In the presence of competition among several 
plant stems, our analysis shows that the best configuration is no longer perpendicular to light 
rays: the lower part of the stems should grow in a nearly vertical direction, while the upper part 
bends away from the sun.

Still, our competition models do not predict the tilting of stems in the direction of the sun rays. 
This may be due to the fact that these models are “static”, i.e., they do not describe how plants 
grow in time. This leaves open the possibility of introducing further models that can explain 
phototropism in a time-dependent framework. As suggested in [12], the preemptive conquering 
of space, in the direction of the light rays, can be an advantageous strategy. We leave these issues 
for future investigation.

Acknowledgments

The research of A. Bressan was partially supported by NSF, with grant DMS-1714237, “Mod-
els of controlled biological growth”. S.T. Galtung was supported in part by a grant from the 
U.S.-Norway Fulbright Foundation. A. Reigstad was supported by the grant “Waves and Nonlin-
ear Phenomena” (250070) from the Research Council of Norway. S.T. Galtung and A. Reigstad 
are very grateful to the Department of Mathematics at Penn State University for the generous 
hospitality during the academic year 2018/2019.



A. Bressan et al. / J. Differential Equations 269 (2020) 1571–1611 1611
References

[1] F. Ancona, A. Bressan, O. Glass, W. Shen, Feedback stabilization of stem growth, J. Dyn. Differ. Equ. 31 (2019) 
1079–1106.

[2] M. Bernot, V. Caselles, J.M. Morel, Optimal Transportation Networks. Models and Theory, Springer Lecture Notes 
in Mathematics, vol. 1955, Berlin, 2009.

[3] A. Bressan, M. Palladino, Q. Sun, Variational problems for tree roots and branches, Calc. Var. Partial Differ. Equ. 
59 (2020) 7.

[4] A. Bressan, B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics, 
AIMS, Springfield, MO, 2007.

[5] A. Bressan, Q. Sun, On the optimal shape of tree roots and branches, Math. Models Methods Appl. Sci. 28 (2018) 
2763–2801.

[6] L. Cesari, Optimization - Theory and Applications, Springer-Verlag, 1983.
[7] W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer, 1975.
[8] E.N. Gilbert, Minimum cost communication networks, Bell Syst. Tech. J. 46 (1967) 2209–2227.
[9] O. Leyser, S. Day, Mechanisms in Plant Development, Blackwell Publishing, 2003.

[10] E. Lieb, M. Loss, Analysis, second edition, American Mathematical Society, Providence, 2001.
[11] F. Maddalena, J.M. Morel, S. Solimini, A variational model of irrigation patterns, Interfaces Free Bound. 5 (2003) 

391–415.
[12] A. Runions, B. Lane, P. Prusinkiewicz, Modeling trees with a space colonization algorithm, in: Eurographics Work-

shop on Natural Phenomena, 2007.
[13] Q. Xia, Optimal paths related to transport problems, Commun. Contemp. Math. 5 (2003) 251–279.
[14] Q. Xia, Motivations, ideas and applications of ramified optimal transportation, ESAIM Math. Model. Numer. Anal. 

49 (2015) 1791–1832.

http://refhub.elsevier.com/S0022-0396(20)30019-X/bib41424753s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib41424753s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib42434Ds1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib42434Ds1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib42505375s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib42505375s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4250s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4250s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4253s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4253s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib436573617269s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4652s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib47s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4C44s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4C4Cs1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4D4D53s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib4D4D53s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib524C50s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib524C50s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib5833s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib583135s1
http://refhub.elsevier.com/S0022-0396(20)30019-X/bib583135s1

	Competition models for plant stems
	1 Introduction
	2 Optimization problems for a single stem
	3 Optimal stems with ﬁxed length and thickness
	3.1 Existence of an optimal solution
	3.2 Necessary conditions for optimality

	4 A competition model
	4.1 Uniqueness and representation of equilibrium solutions

	5 Stems with variable length and thickness
	5.1 Existence of an optimal solution
	5.2 Necessary conditions for optimality

	6 Uniqueness of the optimal stem conﬁguration
	7 Existence of an equilibrium solution
	8 Stem competition on a domain with boundary
	9 Concluding remarks
	Acknowledgments
	References


