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Abstract

The models introduced in this paper describe a uniform distribution of plant stems competing for sunlight.
The shape of each stem, and the density of leaves, are designed in order to maximize the captured sunlight,
subject to a cost for transporting water and nutrients from the root to all the leaves. Given the intensity
of light, depending on the height above ground, we first solve the optimization problem determining the
best possible shape for a single stem. We then study a competitive equilibrium among a large number of
similar plants, where the shape of each stem is optimal given the shade produced by all others. Uniqueness
of equilibria is proved by analyzing the two-point boundary value problem for a system of ODEs derived
from the necessary conditions for optimality.
© 2020 Elsevier Inc. All rights reserved.

MSC: 34B15; 49N90; 91A40; 92B05

Keywords: Optimal shape; Competitive equilibrium; Nonlinear boundary value problem

1. Introduction

Optimization problems for tree branches have recently been studied in [3,5]. In these models,
optimal shapes maximize the total amount of sunlight gathered by the leaves, subject to a cost for
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building a network of branches that will bring water and nutrients from the root to all the leaves.
Following [2,8,11,13,14], this cost is defined in terms of a ramified transport.

In the present paper we consider a competition model, where a large number of similar plants
compete for sunlight. To make the problem tractable, instead of a tree-like structure we assume
that each plant consists of a single stem. As a first step, assuming that the intensity of light 7(-)
depends only on the height above ground, we determine the corresponding optimal shape of the
stem. This will be a curve y (-) which can be found by classical techniques of the Calculus of
Variations or optimal control [4,6,7]. In turn, given the density of plants (i.e., the average number
of plants growing per unit area), if all stems have the same shape y(-) one can compute the
intensity of light 7 (k) that reaches a point at height 4.

An equilibrium configuration is now defined as a fixed point of the composition of the two
maps I(-) — y(-) and y(-) — I(-). A major goal of this paper is to study the existence and
properties of these equilibria, where the shape of each stem is optimal subject to the presence of
all other competing plants.

In Section 2 we introduce our two basic models. In the first model, the length £ of the stems
and the thickness (i.e., the density of leaves along each stem) are assigned a priori. The only
function to optimize is thus the curve y : [0, £] — R? describing the shape of the stems. In the
second model, also the length and the thickness of the stems are allowed to vary, and optimal
values for these variables need to be determined.

In Section 3, given a light intensity function /(-), we study the optimization problem for
Model 1, proving the existence of an optimal solution and deriving necessary conditions for
optimality. We also give a condition which guarantees the uniqueness of the optimal solution.
A counterexample shows that, in general, if this condition is not satisfied multiple solutions
can exist. In Section 4 we consider the competition of a large number of stems, and prove the
existence of an equilibrium solution. In this case, the common shape of the plant stems can be
explicitly determined by solving a particular ODE.

The subsequent sections extend the analysis to a more general setting (Model 2), where both
the length and the thickness of the stems are to be optimized. In Section 5 we prove the existence
of optimal stem configurations, and derive necessary conditions for optimality, while in Section 6
we establish the existence of a unique equilibrium solution for the competitive game, assuming
that the density (i.e., the average number of stems growing per unit area) is sufficiently small.
The key step in the proof is the analysis of a two-point boundary value problem, for a system of
ODEs derived from the necessary conditions.

In the above models, the density of stems was assumed to be uniform on the whole space. As a
consequence, the light intensity / (2) depends only of the height 4 above ground. Section 7, on the
other hand, is concerned with a family of stems growing only on the positive half line. In this case
the light intensity I = I (h, x) depends also on the spatial location x, and the analysis becomes
considerably more difficult. Here we only derive a set of equations describing the competitive
equilibrium, and sketch what we conjecture should be the corresponding shape of stems.

The final section contains some concluding remarks. In particular, we discuss the issue of
phototropism, i.e. the tendency of plant stems to bend in the direction of the light source. Devising
a mathematical model, which demonstrates phototropism as an advantageous trait, remains a
challenging open problem. For a biological perspective on plant growth we refer to [9]. A recent
mathematical study of the stabilization problem for growing stems can be found in [1].
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Fig. 1. By a reflection argument, it is not restrictive to assume that the tangent vector t(s) to the stem satisfies (2.4), i.e.,
it lies in the shaded cone.

2. Optimization problems for a single stem

We shall consider plant stems in the x-y plane, where y is the vertical coordinate. We assume
that sunlight comes from the direction of the unit vector

n = (nl,nz), n2<0<n1.
As in Fig. 1, we denote by 6y € ]0, /2[ the angle such that

(—ny,n1) = (cosbp, sinby). (2.1)

Moreover, we assume that the light intensity 7(y) € [0, 1] is a non-decreasing function of the
height y. This is due to the presence of competing vegetation: close to the ground, less light can
get through.

Model 1 (a stem with fixed length and constant thickness). We begin by studying a simple
model, where each stem has a fixed length £. Let s — y(s) = (x(s), ¥(s)), s € [0, £], be an
arc-length parameterization of the stem. As a first approximation, we assume that the leaves are
uniformly distributed along the stem, with density «. The total distribution of leaves in space is
thus by a measure w, with

w(A) =k ~meas<{s €[0,2]; y(s)e A}) 2.2)

for every Borel set A C R?.

Among all stems with given length £, we seek the shape which will collect the most sunlight.
This can be formulated as an optimal control problem. Since y is parameterized by arc-length,
the map s — y (s) is Lipschitz continuous with constant 1. Hence the tangent vector

t(s) = y(s) = (cosO(s), sinf(s))

is well defined for a.e. s € [0, €]. The map s + 6(s) will be regarded as a control function.
According to the model in [5], calling ®(-) the density of the projection of 1 on the space Erf
orthogonal to n, the total sunlight captured by the stem is
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S() = / (1 - expl-0)) dz

J4

—K

- / 1((s)) - (1 —exp { RS ]) cos(8(s) — 6o) ds. 2.3)
0

In order to maximize (2.3), we claim that it is not restrictive to assume that the angle satisfies

B < 0(s) < forall s € [0, £]. (2.4)

b4
2
Indeed, for any measurable map s — 6(s) €] — w, =], we can define a modified angle function
6%(-) by setting

0(s) if 6(s)e]0,60+ /2],

) if 0 -7, 6 —m/2
oy ) it 0(s) €l = 6o —7/2], 03
200 +m —0(s) if O(s) €6y +m/2, ],

200 —0(s) if 6(s)€16p — /2, 0l.

Calling y* : [0, £] R2 the curve whose tangent vector is p*(s) = (cos 8% (s), sinf%(s)), since
the light intensity function y > I(y) is nondecreasing, we have S(y%) > S(y).

By this first step, without loss of generality we can now assume 6(s) €]0, 6y + 7 /2]. To
proceed further, consider the piecewise affine map

0 if 6 elb, 7/2],
0@ = 1 7—6 if 0eln/2, 00+7/2], (2.6)
200—6 if 6 [0,6]

Call y? the curve whose tangent vector is y?(s) = (cos(cp(@(s))), sin(cp(@(s)))). Since 1(-) is

nondecreasing, we again have S(y¥) > S(y). We now observe that, since 0 < 6y < /2, there
exists an integer m > 1 such that the m-fold composition ¢ =@ o --- o ¢ maps [0, 6y + 7/2]
into [6p, 7r/2]. An inductive argument now yields S(y“’m) > S(y), completing the proof of our
claim.

As shown in Fig. 2, left, we call z the coordinate along the space EIJ{ perpendicular to n, and
let y be the vertical coordinate. Hence

dz(s) = cos(6(s) — o) ds, dy(s) = sin(0(s))ds. 2.7)

In view of (2.4), one can express both y and 8 as functions of the variable y. Introducing the
function

(2.8)

g(0) = <1 _ exp[ —K }) cos(8 — 6p) 7

cos(6 — 6y) sin @

the problem can be equivalently formulated as follows.
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(OP1) Given a length £ > 0, find h > 0 and a control function y — 6(y) € [0, /2] which
maximizes the integral

h
/ 1) g0()) dy (2.9)
0
subject to
h
/Sin;(y) dy = €. (2.10)
0

Model 2 (stems with variable length and thickness). Here we still assume that the plant
consists of a single stem, parameterized by arc-length: s — y(s), s € [0, £]. However, now we
give no constraint on the length ¢ of the stem, and we allow the density of leaves to be variable
along the stem.

Call u(s) the density of leaves at the point y (s). In other words, u is now the measure which
is absolutely continuous w.r.t. arc-length measure on y, with density u. Instead of (2.2) we thus
have

w(A) = / u(s)ds. 2.11)
{s5 y(s)eA}

Calling I (y) the intensity of light at height y, the total sunlight gathered by the stem is now
computed by

4
S(u) = /I(y(s))~(l —exp{%wcos(em—%)d& 2.12)
0

As in [5], we consider a cost for transporting water and nutrients from the root to the leaves. This

is measured by

¢ ¢ o

I”‘(u)zf /u(t)dt ds, (2.13)

0 N

for some 0 < a < 1. Notice that, in Model 1, this cost was the same for all stems and hence it did
not play a role in the optimization.
For a given constant ¢ > 0, we now consider a second optimization problem:

maximize: S(u) — cZ%(u), (2.14)

subject to:

y(0) = 0, Y(s) = sinf(s). (2.15)
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The maximum is sought over all controls 8 : R +— [0, 7] and u : R} — R Calling

+00
(1) = /u(s)ds, (2.16)
t
. —Uu
G(Q,M) = <1 —exp{m}>cos(9 —9()), (217)

this leads to an optimal control problem in a more standard form.

(OP2) Given a sunlight intensity function I(y), and constants 0 <a < 1, ¢ > 0, find controls
0 : Ry [0y, m/2] and u : R4 +— R which maximize the integral

+00
f [I(y)G(e,u)—cz“]dt, (2.18)
0
subject to
y() = sind, y(0) = 0,
{ { (2.19)
) = —u, 2(+00) = 0.

3. Optimal stems with fixed length and thickness
3.1. Existence of an optimal solution

Let I(y) be the light intensity, which we assume is a non-decreasing function of the verti-
cal component y. For a given « > 0 (the thickness of the stem), we seek a curve s — y(s),
starting at the origin and with a fixed length ¢, which maximizes the sunlight functional defined

at (2.9).

Theorem 3.1. For any non-decreasing function y — I(y) € [0, 1] and any constants £,k > 0
and 6y €10, 7w /2[, the optimization problem (OP1) has at least one solution.

Proof. 1. Let M be the supremum among all admissible payoffs in (2.9). By the analysis in [5]
it follows that

0 <M < kuR? = k.
Hence there exists a maximizing sequence of control functions 6, : [0, i, ] +— [0y, 7 /2], so that
hn

1
——dy = ¢ foralln > 1, 3.1
O/S"len(y) Y
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hn

fl(y)g(Qn(y))dy - M. (3.2)
0

2. For each n, let 9,? be the non-increasing rearrangement of the function 6,,. Namely, 9,? is the
unique (up to a set of zero measure) non-increasing function such that, for every c € R

meas({s; Qnﬁ(s) < c}) = meas({s; 0,(s) < c}). (3.3)
This can be explicitly defined as

0:) = sup{&: meas((o €10/l 6u(0) 2 8)) > v}

For every n > 1 we claim that

. I
/;dy = /;dy = ¢, (3.4)
sinfZ (y) sin6, (y)
0 0
I hn
/I(y)g(eff(y))dy > /I(y)g(en(y))dy- (3.5)
0 0

Indeed, to prove the first identity we observe that, by (3.3), there exists a measure-preserving
map y +— ¢(y) from [0, A,,] into itself such that Hg(y) = 6,(¢(y)). Using ¢ as new variable of
integration, one immediately obtains (3.4).

To prove (3.5) we observe that the function g introduced at (2.8) is smooth and satisfies

g® <0  foralld e[y, 7/2]. (3.6)

Therefore, the map y +— g(@,ﬁt (y)) coincides with the non-decreasing rearrangement of y >
2(6,(y)). On the other hand, since /(-) is non-decreasing, it trivially coincides with the non-
decreasing rearrangement of itself. Therefore, (3.5) is an immediate consequence of the Hardy-
Littlewood inequality [10].

3. Since all functions 9,? are non-increasing, they have bounded variation. Using Helly’s com-
pactness theorem, by possibly extracting a subsequence, we can find 4 > 0 and a non-increasing
function 6* : [0, h] — [0, 7t /2] such that

lim hy = h, lim 6%(y) = 6*(y)  forae.yel0,h]. (3.7)
This implies
h h
/@dy = ¢, /I(y)g(G*(y))dy = M,

0

proving the optimality of 6*. O
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3.2. Necessary conditions for optimality
Let y > 6*(y) be an optimal solution. By the previous analysis we already know that the

function 6*(-) is non-increasing. Otherwise, its non-increasing rearrangement achieves a better
payoff. In particular, this implies that the left limit at the terminal point y = & is well defined:

0% (h) = lim 6%(y). (3.8)
y—>h—

Consider an arbitrary perturbation
0. = 6" + €0, he = h+en.

The constraint (2.10) implies

h+en
1
——dy = ¢. 3.9
sin e (y) Y G2
Differentiating (3.9) w.r.t. € one obtains
1 / 0*(y)
cos0*(y
- - O@()dy = 0. 3.10
sm@*(h))7 b/sinze*(y) (v)dy (5-10)
Next, calling
he
Je = /I(y)g(ee(y))dy
0

and assuming that 7 (-) is continuous at least at y = h, by (3.10) we obtain

h
_ / 1()g O*())O(y)dy
5 (3.11)

h
+I(h)g(9*(h))-sin9*(h)/ :1059 W) oy dy.
0

in” 6% (y)

d
0= —J
de” €

e=0

Since (3.11) holds for arbitrary perturbations ®(-), the optimal control 6*(-) should satisfy the
identity

. cos60*(y)
1 0 Ae—s7——— =0, for a.e. 0, hl, 3.12
Mg (0" () + 07 0y) orae.y € [0,h] (3.12)
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where
A= 1(h)g®*h))-sind*(h).

It will be convenient to write

GO
~ sinf cos(6 — 6p)

0 ’
g(®) p—r

G6) = <1 - exp{

Inserting (3.14) in (3.12) one obtains the pointwise identities

1)@ () 5in6* () = GO* (1)) c0s8*(y)) + - c0s6*(») = 0.

At y = h, the identities (3.13) and (3.15) yield

(MG (6™ (h))

G'(0*(h)) tan0*(h) — G(O*(h)) = — 0,

Hence

G'(6* (h)) tan0* (h) = 0,

which implies

0%(h) = 6y, A= I(h)g©)siny = (1 —e™ ) I(h).

Notice that (3.15) corresponds to

sin 6 sin6@

0 (v) — / G(9) A
» = argeg%(%?;] » .

Equivalently, 6 = 6*(y) is the solution to

G'@)tand — GO) = — % )
Y

where G is the function at (3.14).

}) cos(@ — 6p).

1579

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Lemma 3.2. Let G be the function at (3.14). Then for every z €] — 00, e™* — 1] the equation

F(©) = G'(®)tand — GO) = z
has a unique solution 0 = ¢(z) € [0y, 7 /2[.
Proof. Observing that

G(6p) = 1—e7", GO <0

for 6 €16y, /2[,

G'(6p) = 0, G"(0) <0

(3.19)

(3.20)
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we obtain F(fy) =e* — 1 and

F'() = G"(0)tand + G'(O)tan®0 < 0 for 0 € [0y, 7/2[.

Therefore, for 6 € [0y, w/2[, the left hand side of (3.19) is monotonically decreasing from
e — 1 to —oo. We conclude that (3.19) has a unique solution 6 = ¢(z) for any z €] — oo,
e “—1]. O

The optimal control 8*(-) determined by the necessary condition (3.18) is thus recovered by

—A e —1I(h
0*(») = ¢ <Ty)) =9 (%y))()) (3.21)
Next, we need to determine £ so that the constraint
. 1
L(h) = Ofmdy =/ (3.22)

is satisfied. As shown by Example 3.4 below, the solution of (3.21)-(3.22) may not be unique.
In the following, we seek a condition on / which implies that L is monotone, i.e.,

L'(h) =

h
= — /COS@ W__ L T esay - o. (3.23)
sin(6p)

J sin? 6*(y) F'(6*(y)) 1(y)

This will guarantee that (3.22) has a unique solution. To get an upper bound for F’(8), observe
that, for 6 € [0y, /2],

F'(6) < tan(®)G"(6)

K —K
- —tan(e)[cos(e — ) (1 - (m + 1) exp{m})
an? (9 — —K
+ %Kz GXp{m}}
= —tan(f) cos(/2 — o) (1 — (k + De™).

Since 6*(y) € [0y, /2] and G(6y) = 1 — e™*, using the above inequality one obtains

h
cos0*(y) 1 I'(h)
. Gy d
/sinZO*(y) [E(@*(y)D] 1(y) o)y
h
cos? 6y 1 —e* I'(h)
<——- / dy.
sin® 60 cos(rr/2 _90)<1 — (k+ 1)e—K) ) 1(y)
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Fig. 2. Left: the optimal shape of a stem, as described in Theorem 3.3. Right: if the light intensity / changes abruptly as
a function of the hight, the optimal shape may not be unique, as shown in Example 3.4.

Hence (3.23) is satisfied provided that

h
/ I'(h) dy < an g - cos(mw/2 — 60)(1 —(k+ e ) . (3.24)
1(y) l—e*

0

From the above analysis, we conclude

Theorem 3.3. Assume that the light intensity function I is Lipschitz continuous and satisfies the
strict inequality (3.24) for a.e. h € [0, £]. Then the optimization problem (OP1) has a unique
optimal solution 6* : [0, h*] — [0y, 7 /2]. The function 6* is non-increasing, and satisfies

I(h*
0" = ¢ ((e_K . I((y))>’ (3.25)

where 7 +— @(z) = 0 is the function implicitly defined by (3.19).

The following example shows that, without the bound (3.24) on the sunlight intensity function
1 (-), the conclusion of Theorem 3.3 can fail.

Example 3.4 (non-uniqueness). Choose n = (— € %), 0=6/5<+2,k=1,

ﬁ)
e if yel0,1],
I(y) =
1 if y>1,

with ¢ > OL

By Theorem 3.1 at least one optimal solution exists. By the previous analysis, any optimal
solution 6* : [0, h*] — [, 7 /2] satisfies the necessary conditions (3.25). In this particular case,
this implies that 6*(y) is constant separately for y < 1 and for y > 1. As shown in Fig. 2, right,
these necessary conditions can have two solutions.

Solution 1. If 4* < 1, then I (y) = ¢ for all y € [0, *] and the necessary conditions (3.25)
yield
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07 (y) = et —1) = 6y = n/4 for all y € [0, A¥].
The total sunlight collected is
Se(67) = g(l —e . (3.26)

Solution 2. If &* > 1, then I (h*) = 1 and the necessary conditions (3.25) yield

1(h* p(e'=De™t) if yelo,1],
03(y) = w((e]—1)¥> _ el )

1(y) /4 if y>1.

Callingx =a(e) = ¢ ((e_l — 1)8_1), the total sunlight collected in this case is

S:(03) = <1 —exp{—;}) cos(a —m/4) e + <§ -

cos(a — m/4) 5 sina

)(1 —e ). (327

We claim that, for a suitable choice of ¢ € ]0, 1[, the two quantities in (3.26) and (3.27) become
equal. Indeed, as ¢ — 0+ we have

. e -1 T
o= o(C7Y) 1

1—
Se(07) — 0, S:(65) —

(3.28)

On the other hand, as ¢ — 1 we have «(¢) — m /4. By continuity, there exists €1 €]0, 1[ such
that

5
sina(e]) = G

As & — g1+, we have

1

S:(03) — (1—“?{‘m

}) cos(a(er) —m/4) e < S (9;‘). (3.29)

Comparing (3.28) with (3.29), by continuity we conclude that there exists some ¢ € 0, £1[ such
that Sz(0]) = Sz(05). Hence for ¢ ='¢ the optimization problem has two distinct solutions.

We remark that in this example the light intensity 7 (y) is discontinuous at y = 1. However,
by a mollification one can still construct a similar example with two optimal configurations, also
for I(-) smooth. Of course, in this case the derivative I’(h) will be extremely large for & ~ 1, so
that the assumption (3.24) fails.
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4. A competition model

In the previous analysis, the light intensity function 7 (-) was a priori given. We now consider
a continuous distribution of stems, and determine the average sunlight / (y) available at height y
above ground, depending on the density of vegetation above y.

Let the constants ¢,k > 0 be given, specifying the length and thickness of each stem. We
now introduce another constant p > 0 describing the density of stems, i.e. how many stems grow
per unit area. Assume that all stems have the same height and shape, described by the function
0 : [0, h] + [6p, w/2]. For any y € [0, h], the total amount of vegetation at height > y, per unit
length, is then measured by

h

[ i
P ] siney

y

The corresponding light intensity function is defined as

h

I(y) = exp —p~f

y

K

d f 0, h], 4.1
sino(y) or yel0,A] 4.1

while 7 (y) =1 for y > h. We are interested in equilibrium configurations, where the shape of
the stems is optimal for the light intensity /(-). We recall that 6y is the angle of incoming light
rays, as in (2.1), while the constants £, k > 0 denote the length and thickness of the stems.

Definition 4.1. Given an angle 6y €0, /2] and constants ¢, x, p > 0, we say that a light in-
tensity function I* : Ry +> [0, 1] and a stem shape function 6* : [0, h*] > [0, /2] yield a
competitive equilibrium if the following holds.

(i) The stem shape function 6* : [0, h*] — [6p, 7r /2] provides an optimal solution to the opti-
mization problem (OP1), with light intensity function 7 = I'*.
(ii) For all y > 0, the light intensity at height y satisfies

h*
K
I* = —p - —dy¢. 4.2
(y) = expy—p / S0 () y 4.2)
min{y,h*}

If the density of vegetation is sufficiently small, we now show that an equilibrium configura-
tion exists.

Theorem 4.2. Let the light angle 6y €10, w/2] be given, together with the constants €,k > 0
determining the common length and thickness of all the stems. Then there exists a constant cg > 0
such that, for all 0 < p < cp, an equilibrium configuration exists.

Proof. 1. Consider the set of stem configurations

K = [@ 1[0, €]+ [6p, /2], ©Ois nonincreasing], “4.3)
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and the set of light intensity functions

J = {I 1[0, 4o00[+ [0, 1]; 1 is nondecreasing, I(y)=1 fory >¢,
“4.4)

A . . . K
I is Lipschitz continuous with constant '0— }
sin Ay

We observe that K is a compact, convex subset of Ll([O, £]), while J is a compact, convex
subset of C°([0, 4+o00[).

If ©(-) € K describes the common configuration of all stems, we denote by 7©(-) the corre-
sponding light intensity function. Moreover, for a given function 7 (-), we denote by ®*([I) the
corresponding optimal configuration of plant stems.

In the following steps we shall prove that:

(i) The map © > I is continuous from K into 7.
(i1)) The map I +— ®*([) is continuous from 7 into K.

As a consequence, the composed map ® — ©*(1 ©) is continuous from K into itself. By Schaud-
er’s theorem, it has a fixed point, which provides an equilibrium solution.
2. Given ® € K, define the constant

12

h = /sin@(t)dt. 4.5)
0
More generally, for s € [0, £], set
N
y(s) = /sin@(t)dt € [0, hl. 4.6)
0

We observe that, since ®(¢) € [0y, 7 /2], the inverse function y > s(y) from [0, hlinto [0, £] is a
strictly increasing bijection, with Lipschitz constant L = m. The corresponding light intensity
function is determined by

©0) {exp{—pK(Z—s(y))} if yel0,h], “n
y) = .
1 if y>¢£.

From the above definitions it follows that © > I is continuous from K into 7.

3. Next, let I € J. Given the constants ¢, x, by choosing o > 0 small enough, any Lipschitz
continuous function 7 : [0, £] — [0, 1] with Lipschitz constant L = siﬁ’(eo will satisfy the inequal-
ity (3.24). Hence, by Theorem 3.3, the optimization problem (OP1) has a unique optimal solution
0* . [0, h*] — [6p, 7t /2].

Notice that in Theorem 3.3 this solution is written in terms of the variable y € [0, 2*], and
satisfies the optimality condition (3.25). In terms of the arc-length parameter s € [0, £], this cor-

responds to
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O*(s) = 0%(h(s))
where the variable y(s) € [0, #*] is implicitly defined by
y(s)

1
—  dr =
/sin@*(z) ¢
0

In view of (2.3), given I € J and ® € [, the total sunlight collected by the stem is computed
by

14

S(,0) = = /I(y(s)).<1—exp{

0

—K
cos((s) — bo) D cos(®(s) —bo)ds,  (4.8)

where

N

y(s) = /sin@(s)ds.

0

From the above formulas it follows that the map (/, ®) — S(I, ®) is continuous on the compact
set J x K. In particular, the function

I — max S(,0) 4.9)
Ock

is continuous on the compact set 7.

Given a light intensity function / € J, call ®*(1) € K the unique optimal stem shape. We
claim that the map I — ®*([/) is continuous.

Indeed, this is a straightforward consequence of continuity and compactness. If continuity
fails, there exists a convergent sequence I, — I such that ®(/,,) does not converge to ®(/). By
the compactness of IC, we can extract a subsequence such that

0, — ©F # ().

By continuity, one obtains

SU,0)=sup SU,0) = lim sup S, )
eck k=00 gefc

= lim S(I,, O(I,)) = S, O,
k— 00

This contradicts the uniqueness of the optimal stem configuration, stated in Theorem 3.3. We
thus conclude that the map 7 — ®* (/) is continuous, completing the proof. 0O
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4.1. Uniqueness and representation of equilibrium solutions

By (3.21) and (4.2), this equilibrium configuration (h*, 6*) must satisfy the necessary condi-
tion

h*
K
0*(y) = @ | (e = 1exp /singi*(y)dy , y € [0, h*], (4.10)
y

where ¢ is the function defined in Lemma 3.2. Here the constant 2* must be determined so that

h*

1
0

Based on (4.10), one obtains a simple representation of all equilibrium configurations, for any
length € > 0. Indeed, for r € ] — 00, 0], let  — ¢ (¢) be the solution of the Cauchy problem

¢ = —P—'CQ, where 6 = gp((e—K—l)ef),
sin

with terminal condition ¢ (0) = 0.
Notice that the corresponding function ¢ @\(t) = go((e_" — 1) et )) satisfies

0(0) = p(e™ = 1) = .
For any length ¢ of the stem, choose 7* = h*(£) so that

0

/ .;df = £. (4.12)
sinf (t)

The shape of the stem that achieves the competitive equilibrium is then provided by

6" (y) = By =", v € [0, "], (4.13)
Since the backward Cauchy problem

K
sin (go((e—" -1 ef))

¢'= - ; ¢0) =0, (4.14)

has a unique solution, we conclude that, if an equilibrium solution exists, by the representation
(4.13) it must be unique. (See Fig. 3.)
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13

(o) / v,

Fig. 3. Left: the curve y, parameterized by the coordinate . For ¢ < 0, the tangent vector is ‘llj—f = (tan6(¢), 1), where
0(t) is obtained by solving the Cauchy problem (4.14). Right: for different lengths 0 < £ < £ < £3, the equilibrium
configuration is obtained by taking the upper portion of the same curve y, up to the length ¢;,i =1, 2, 3.

5. Stems with variable length and thickness

We now consider the optimization problem (OP2), allowing for stems of different lengths and
with variable density of leaves.

5.1. Existence of an optimal solution

Theorem 5.1. For any bounded, non-decreasing function y — I(y) € [0, 1] and any constants
O<a <1, c>0and6yel0, /2[, the optimization problem (OP2) has at least one solution.

Proof. 1. Consider a maximizing sequence of couples (6, ux) : Ry +— [6p, /2] x R4. For
k>1,let

N N

s = y(s) = /cos@k(s)ds, /sin@k(s)ds
0 0

be the arc-length parameterization of the stem y;. Call 11 the Radon measure on R? describing
the distribution of leaves along y%. For every Borel set A C R”, we thus have

nr(A) = / ug(s)ds. 3.1
{s m(s)eA}
For a given radius p > 0, we have the decomposition
b
o= w1,

where ,u,b( is the restriction of uy to the ball B(0, p), while /Lz is the restriction of uy to the
complement R? \ B(0, p). By the same arguments used in steps 1-2 of the proof of Theorem 3.1
in [3], if the radius p is sufficiently large, then

S(up) — eI () = S(i) — I* () (5.2)
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for all k > 1. Here S and Z* are the functionals defined at (2.12)-(2.13). According to (5.2), we
can replace the measure p with [L]b( without decreasing the objective functional.
Without loss of generality we can thus choose ¢ > 0 sufficiently large and assume that

up(s) =0 foralls > ¢, k=>1.
In turn, since S(ux) — cZ% () > 0, we obtain the uniform bound

1 14
I%(ue) < k1 = ;S(Mk) = (5.3)

2. In this step we show that the measures p; can be taken with uniformly bounded mass.
Consider a measure iy for which (5.3) holds. By (2.13), for every r € [0, £] one has

Y o
T*(ug) = r- fuk(t)dt

r

In view of (5.3), this implies

14

/uk(s)ds < ('i—l)l/“. (5.4)

r

It thus remains to prove that, in our maximizing sequence, the functions u; can be replaced with
functions #; having a uniformly bounded integral over [0, 7], for some fixed r > 0.

Toward this goal we fix 0 <& < 8 < 1, and, for j > 1, we define r; = 2-J, and the interval
Vi=1Irjs1,r;]. Given u = uy, if fv,- u(s)ds > r;‘., we introduce the functions

uj(s) = ij (Hu(s), ij(s) = min{u;(s),cj}, (5.5)

choosing the constant ¢; > er -1 so that

/ﬁj(s)ds - rf. (5.6)
Vi
We then let 1; = uju and ji; = i ju be the measures supported on V;, corresponding to these

densities.
For a fixed integer j*, whose precise value will be chosen later, consider the set of indices

J={1j=j" ‘ /u(s)ds > rj? (5.7)
V/

and the modified density
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(5) = us) + Y (5) — uj(s)). (5.8)
jelJ

Moreover, call fi the measure obtained by replacing u with & in (2.11). By (5.4) and (5.5) the
total mass of & is bounded. Indeed

Y4 rj*

1/e 1/a
s N ~ K1 K1 —je
A(R )_/u(s)ds+/u(s)ds§ <r,-*) + Z ( ,-*> +Zz < +o0.
r 0 Jjzj* Jj=1
5.9)
We now claim that
S() — cZ() = S(w) — cZ%(w). (5.10)

Toward a proof of (5.10), we estimate

S(n) —S() SZ(/I())(Z))COS(G(I) — o) dt

Jel Ny,
—fl(y(t)) (1 —exp{ - ”7m})cos(9(t) —90)dt>
cos(0(t) — 6p)
Vi
=y / exp{—ii; (1) }dt < er+1exp[—2rf“}. (5.11)
jejrj+l jelJ

To estimate the difference in the irrigation cost, we first observe that the inequality

¢ o

/u(r)dr < lpy =@
r r

y
implies

¢ a—1

/u(t)dt > (Kr—‘) . (5.12)

r

Since u(s) < u(s) for every s € [0, £], using (5.12) we now obtain

d
TG~ T = | T (i + (1 = D))

1 ¢
f/di /[,\u(t)+(1—x)u(t)] ds d
00

N

St~
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¢ a=l

1 ¢
= // o /[Au(t) + (1 —=Ma()]de /[u(t) —u(t)]dt y dsda
0 0 s s

¢ a—1

4
o /u(t)dt /[u(t)—ﬁ(t)]dt ds

N

%
O"\N

a—1

Tt 4 rj
> / o /u(t)dt /(uj(t)—ﬁj(t))dt ds
J€rjs s rjtl
a—1
K1 o
> Ya(fL) o=
jer N2
1
= > war et =), (5.13)
jeJ

where xr = oz(4/q)anl. Combining (5.11) with (5.13) we obtain

AT ()~ T @] - [SG0 - S@] = Y (exar 05 =Dy = rjexp-217"]). 5.14)
jeJ

By choosing the integer j* large enough in (5.7), for j > j* all terms in the summation on the
right hand side of (5.14) are > 0. This implies (5.10).

3. By the two previous steps, w.l.o.g. we can assume that the measures i have uniformly
bounded support and uniformly bounded total mass. Otherwise, we can replace the sequence
(ur)k>1 with a new maximizing sequence (ifx)x>1 having these properties.

By taking a subsequence, we can thus assume the weak convergence p; — ft. The upper
semicontinuity of the functional S, proved in [5], yields

S > limsup S(up). (5.15)
k—o00

In addition, since all maps s — yx(s) are 1-Lipschitz, by taking a further subsequence we can
assume the convergence

Yi(s) = ¥ (s) (5.16)

for some limit function ¥, uniformly for s € [0, £].

Since each measure py is supported on y%, the weak limit @ is a measure supported on the
curve y.

4. Since 6 (s) € [0y, /2], we can re-parameterize each stem yj in terms of the vertical vari-
able

N

Yi(s) = /sin&k(t)dt.

0
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Calling s = s¢(y) the inverse function, we thus obtain a maximizing sequence of couples

v o G w0 = (Bl ), ulsk ), y €10, .
Moreover, the stem yj can be described as the graph of the Lipschitz function

sk (y)
x = xx(y) = / cosO(s)ds.
0

Since all functions xx(-) satisfy x;(0) = 0 and are non-decreasing, uniformly continuous with
Lipschitz constant L = cos 6/ sin6y, by possibly extracting a further subsequence, we obtain
the convergence hy — h and x;(-) — X(-). Here ¥ : [0, h] — R is a nondecreasing continuous
function with Lipschitz constant L, such that x(0) = 0. More precisely, the convergence x; — X
is uniform on every compact subinterval [0, 4] with & < h.

5. We claim that the irrigation cost of 7t is no greater that the lim-inf of the irrigation costs for
uk. Let o — y (o) be an arc-length parameterization of y. Since s — Y (s) is 1-Lipschitz, one
has do/ds < 1. We now compute

o(l) /o) @ o (l) ¢ o
I%(w) = /ﬁ(t)dt do = / lim /uk(t)dt do (s)
k—o00
0 \o o« 0 § (5.17)

14

l
lim/ /uk(t)dt ds = lim Z%(uy).
k— 00 k— 00
0

N

IA

6. Combining (5.15) with (5.17) we conclude that the measure 1z, supported on the stem y, is
optimal.

Let u be the density of the absolutely continuous part of & w.r.t. the arc-length measure on
y, and call u* the measure that has density # w.r.t. arc-length measure. Since S(u*) = S(w),
it follows that u* = . Otherwise Z%(u*) < Z%(w) and jz is not optimal. This argument shows
that the optimal measure 1 is absolutely continuous w.r.t. the arc-length measure on y.

Calling o +— y (o) the arc-length parameterization of y, the optimal solution to (OP2) is now
provided by o (0(0), ii(c0)), where 8 is the orientation of the tangent vector:

 5(0) = (cosBlo). sind
EV(G) = (cos (0), sin (o)). O

5.2. Necessary conditions for optimality

Let ¢ — (0*(¢), u™(z)) be an optimal solution to the problem (OP2). The necessary conditions
for optimality [4,6,7] yield the existence of dual variables p, g satisfying

p=—1'(0)GO,u), p(+00) = 0,
(5.18)
§ = caz ", q(0) =0,
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and such that the maximality condition

0" () = arg max {p(t) sin® — q(t)u + 1(y(1)) G, u) —cz“}. (5.19)

We recall that G (0, u) is the function defined at (2.17). An intuitive interpretation of the quanti-
ties on the right-hand side of (5.19) goes as follows:

e p(t) is the rate of increase in the gathered sunlight, if the upper portion of stem {y (s); s > ¢}
is raised higher.

e ¢(t) is the rate at which the irrigation cost increases, adding mass at the point y (¢).

e I(y(t)) G(8,u) is the sunlight captured by the leaves at the point y (¢).

6. Uniqueness of the optimal stem configuration
Aim of this section is to show that, if the light intensity / (y) remains sufficiently close to 1 for
all y > 0, then the shape of the optimal stem is uniquely determined. This models a case where

the density of external vegetation is small.

Theorem 6.1. Let h +— I (h) € [0, 1] be a non-decreasing, absolutely continuous function which
satisfies

I') <Cy?  forae y>0, 6.1)
for some constants C > 0and 0 < 8 < 1. If
100) > 1-3 (6.2)
for some & > 0 sufficiently small, then the optimal solution to (OP2) is unique.

Proof. We will show that the necessary conditions for optimality have a unique solution. This
will be achieved in several steps. 1. Given /, p, g, define the functions ®, U by setting

(ot p. 9. U(I,p,cn)iargg max A posing—qu+1-GO,0—c*}. (63

e€[0,7], u>0

We recall that G is the function defined at (2.17). Notice that one can write

GO,u) =uG <w>
u

with
~ 1 ~ ~
G(x) = (l—exp{——}>x > 0, Gx) <1, G'(x) <0, for all x > 0.
x
6.4)
Denote by

HO,u) = p-sind —qu—+I1(y)GO,u)—cz* (6.5)



A. Bressan et al. / J. Differential Equations 269 (2020) 1571-1611 1593

the quantity to be maximized in (6.3). Differentiating H w.r.t. 8 and imposing that the derivative
18 zero, we obtain

P _ _GeOw
1 cosf
. (6.6)
sin (6 — 6p) u u u
= ——|1—expy— — expy— .
cosf cos (8 — 6p) cos (6 — 6p) cos (6 — 6p)
Similarly, differentiating H w.r.t. u, we find
£ 1Gu(0,u) e ! 0
— , u = — X —_— =
47T 1%u 4 P17 cos @ — 6o
This yields
_ _1n(2 _
u = 1n<1> cos (0 — 6). 6.7)

A lengthy but elementary computation shows that the Hessian matrix of second derivatives of H
w.r.t. 8, u is negative definite, and the critical point is indeed the point where the global maximum
is attained. By (6.7) it follows

U, p.qg) = —In (%) cos(OI, p, q) — ). 6.8)

Inserting (6.8) in (6.6) and using the identity

in (6 — 6
M = cosfptand — sinby
cosf
we obtain
_1 p
s6y 1
®, p,q) = arctan (tan@o + L) . (6.9)
= $+fin()
Introducing the function
. p/1
w(l, p,q) = , (6.10)
EESTIC)
by (6.9) one has the identities
. sinfy + w
sm(@([, p,q)) = : )
V/cos2 6 + (w + sin6p)? 6.11)
1 + wsin6y ’

cos(O(, p,q) — o)

B V/cos? 6y + (w + sinf)2 .

Note that w > 0, because p, g, I > 0. In turn, from (6.11) it follows
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cos by

/c0s2 6y + (w + sin 00)2
w cos By

V/cos2 6 + (w + sin6p)? .

cos(O(1, p,q)) =
(6.12)

sin(®(Z, p,q) —6y) =

2. The necessary conditions for the optimality of a solution to (OP2) yield the boundary value
problem

y(0) =0,
y(t) = sin®,
2(T) = 0,
z(t) = —U,
p(T) =0, (6.13)
pt) = —I'(1))G(®,U),
q(T) = 1(y(T)),
q@t) = caz® !,
q0) = 0.
Here [0, T'[ is the interval where u > 0, while
O =0, p. q9), U=UU®B),p.q) (6.14)

are the functions introduced at (6.3), or more explicitly at (6.8)-(6.9). Notice that the length T of
the stem is a quantity to be determined, using the boundary conditions in (6.13).

3. Since the control system (2.19) and the running cost (2.18) do not depend explicitly on
time, the Hamiltonian function

H(O,z,p.q) =  max {p-sin@—qu—i—l(y)G(@,u)—cz“} (6.15)
0e[0,7], u>0

is constant along trajectories of (6.13). Observing that the terminal conditions in (6.13) imply
Hy(T),z(T), p(T),q(T)) =0, one has the first integral

H(y@),z(), p(t),q@) =0 forallz € [0, T]. (6.16)

This yields

o
Il

psin® + |:I(y) —q—i—qln(L)]COS(@—@o) —cz®
I(y)

plsindo+wl+ [1() — g +q1n (74) ] 11 +wsingo]
Vcos2 6y + (w + sinfp)?

4 q q ) : 7 o«
I(y)|:l o) + o) ln(l(y))i| \/cos 6o + (w + sinbp)* — cz”.

o

We can use this identity to express z as a function of the other variables:
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1 1/a
z(l(y),p,q):{ o) [1 a 4 1n< a >i|\/cos290+(w+sin00)2}

c L 1o 1y \1y)

= c—l/a{ <|:I(y)—q+q1n<%y)>]coseo)2 o
+<p+[I(y)_q+qln<%y))]81n90)2}1/2a

4. Since [ is given as a function of the height y, it is convenient to rewrite the equations
(6.13) using y as an independent variable. Using the identity (6.17), we obtain a system of two
equations for the variables p, g:

d , q(y)} cos (O(1(»), p(»),g(»)) — o)
el - 7 1—
" (y)[ 1]~ sin0(I0), p0)a())
— Iy [1 _ ?(y)} 1+ wsinb (6.18)
(y) | w+sin6y

= —I'G) AT, P q(),

calz(10). p().g)]*™"!
sin®(1 (), p(). 4(»))

acl/ ;

= —[00529 + (sinf +w)2]17E
- w + sin 6y 0 0

-1
q q q «
1 1— 1
X[ (y)( o "1 “(uw))]

LI, p(»).9(),

d . _
dyq(y) =

(6.19)

where w = w(l, p, q) is the function introduced at (6.10). Note that under our assumptions, fi
remains bounded, while f> diverges as g(y) — I(y). The system (6.13) can now be equivalently
formulated as

Py =-1I'y AT, p.q), :p(h) =0,
g = LG, p.q). q(h) = 1(h),

5. To prove uniqueness of the solution to the boundary value problem (6.13), it thus suffices
to prove the following (see Fig. 4, right).

g(0) =0.  (6.20)

U) Call

y = (p(y.h). q(y. h)) (6.21)

the solution to the system (6.20), with the two terminal conditions given at y = h. Then there
is a unique choice of h > 0 which satisfies also the third boundary condition

q(0,h) = 0. (6.22)
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I(y)

qy)

Fig. 4. Left and center: sketch of the solution of the system (5.18) in the case where 7 (y) = 1. Left: the graphs of the
functions z in (6.25) and u = —Ing. Center: the graph of the function ¢ at (6.26). The figure on the right shows the case
where I (-) is not constant. As before, 7 must be determined so that ¢ (0, 7) = 0.

To make the argument more clear, the uniqueness property (U) will be proved in two steps.
(i) When I (y) =1, the map
h — q(0,h) (6.23)
is strictly decreasing, hence it vanishes at a unique point hy.
(i1) For all functions I (-) sufficiently close to the constant map = 1, the map (6.23) is strictly
decreasing in a neighborhood of Ay.

In the case I (y) = 1, recalling (6.9) we obtain (see Fig. 4)

I'bG)y =0, py.h) =0, OU0¢q =6, GO, U =1-eY,
U(1,0,q) = argmax {—qu+ G(6p, U)} = argmax{—qu+1—e"} = —Ing,
u u

The system (6.13) can now be written as

p'y) =0,
p(h) =0,
' = 4
T = ine qh) =1, q(0) = 0. (6.24)
Z(y) = ng z(h) = 0,
sin Ay
From (6.24) it follows p(y) = 0, while
dz  Ing
dg T ocazel”

Integrating the above ODE with terminal conditions g = 1, z =0, one obtains

“1Ja 1/a
z=c [1+qlnq—q] : (6.25)

The second equation in (6.24) thus becomes
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1/a a—1

l+glnjgl—ql| . 6.26
Sin90[+qn|61| q] (6.26)

q'(y) =

Notice that here the right hand side is strictly positive for all ¢ € ] — 1, 1[. Of course, only positive
values of g are relevant for the optimization problem, but for the analysis it is convenient to
extend the definition also to negative values of g. The solution of (6.26) with terminal condition
q(h) =1 is implicitly determined by

1
sin fg

h—y = /[1+sln|s|—s]7ds. (6.27)

acl/a
q(y)

The map h +— g (0, h) thus vanishes at the unique point

l—o

1
Bo oy
sin / 1 +sinls| —s] . (6.28)
0

OlCl /o
As expected, the height g of the optimal stem decreases as we increase the constant ¢ in the
transportation cost. A straightforward computation yields

1/a L

[1 + (0, h)In|g (0, k)| — g 0, h)] . (6.29)
in 6y

0 0,h) =
and =

In particular, at &7 = hy we have q(hO)(O) =0 and hence

acl/e
= — = < 0. (6.30)
h=hyg S 90

d 0, h)
an?™

6. We will show that a strict inequality as in (6.30) remains valid for a more general function
1 (), provided that the assumptions (6.1)-(6.2) hold.
Toward this goal, we need to determine how p and g vary w.r.t. the parameter /. Denoting by

ap(y, h) . 9q(y,h)
o QW) = —— (6.31)

P(y) =

their partial derivatives, by (6.20) one obtains the linear system

P _ (~I'Dfip —F00ﬁ4><f«w>
(Q@D = ( for Fra o) (6.32)

The boundary conditions at y = h require some careful consideration. As y — h—, we expect
HLUB), p(¥),q(y)) = 400 and Q(y) = —oo. To cope with this singularity we introduce the
new variable

o)

00 = Z 0 pa0)

(6.33)
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The system (6.32), together with the new boundary conditions for P, é, can now be written as

P'(y) = =I'0) [fipP + 14 120]. P(h) = 0,
B I _ ~ - (6.34)
P P

To analyze this system we must compute the partial derivatives of fi and f>. From the definition
(6.10) it follows

9 2 9 3 2
ow _ w_[l_i] w_wro _w_m(@). (6.35)
al p I p p aq p M
Using (6.35), from (6.18), (6.19) we obtain
-1
fip(I). p.q) = ; pPR— 7
I(y)tan 6[1—W+Ty>ln(m)]
1 cos(® — ) sin (® — 6p)cos O | 1 — %y) 1n(%)
Siq(IO).p.q) = I(y) sin® ) q q a \|’
1(y)sin @[1—m+mln W)]
[ o 1
L o). p.q) = — 1+.——206} TR (6.36)
o ) | sin?® 2(1(»), p.q)
_ . . In (L
(1 —a)sinfy  sin(© —6y) ( o )i| (I(y)>
IO p.q)) = — _ 1+ g )|
frqg(1): p.q)) | sin?0 cos © sin® ® (1), p.q)
_ , ) q
(1 —a)sinfy  sin(® — ) ( o )] )
6. p.q) = — 14 79 | [ L
fi(I(), p.q) sin2 ® cos ® sin” ® 2(I1(). p.q)

At this stage, the strategy of the~proof is straightforward. When I’(y) = 0, the solution to (6.34)
is trivially given by P(y) =0, Q(y) = —1. This implies

~

a
3740 = 000)- £2(1(0), p0), 4(0)) < 0.

We need to show that the same strict inequality holds when § > 0 in (6.2) is small enough.
Notice that, if the right hand sides of the equations in (6.34) were bounded, letting ||/ N —
0 a continuity argument would imply the uniform convergence P(y) — 0 and Q(y) — —1.
The same conclusion can be achieved provided that the right hand sides in (6.34) are uniformly
integrable. This is precisely what will be proved in the next two steps, relying on the identities
(6.36).

7. In this step we prove an inequality of the form

0 <6 <0OU,pg <0 < 6.37)

i
5"
As a consequence, this implies that all terms in (6.36) involving sin ® or cos ® remain uniformly
positive.
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The lower bound ® > 6 is an immediate consequence of (6.9). To obtain an upper bound on
®, we set

tIiM
1(y)’

By (6.13), a differentiation yields

caz® 1 — g1’ sin(®)
7 .

i =

Next, we observe that, by (6.13), one has

/ z(h) = 0,

caz? 1 — gfI’sin(®)

dz Ing*-cos(® —6p) -
dqﬁ - q 0

= ¢1(¢")-Ing*-az* ", {
q*(h) = 1.

In (6.2) we can now choose § < ca M®~!, where M > z(0) is an a priori bound on the mass of
the stem, derived in Section 5. This ensures that ¢; is a bounded, uniformly positive function for
y close enough to &, say

0<c < ¢ <c,
for some constants ¢, ¢ 7. Integrating, we obtain
Z 1 1
2 = /ac“‘ld; = —/gol(s)lnsds = —goz(qﬁ)/ Insds = @3(g") - (1 —¢")*, (6.38)
0 4t 4t
and
a1 a1
gt 1 a 1 o
4 _ 'coc —/gol(s) Insds =g04(qﬁ)- —f Insds
dy sin®
q* q*
20a—1)
=ps(gh - (1—gH 7 . (6.39)

Here the ¢ are uniformly positive, bounded functions. Integrating (6.39) we obtain

1 2(1-a)
/ (1—=s) "« ds = h—y. (6.40)

To fix the ideas, assume

0 <3 < ps5(5) < C3.
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Then
| 1
—/(1 _ot P ds = — 2 (—ghHEds > h—y.
3 (2 —a)cs
gt
(2—a)c3\ 2
1—g*(y) = < > (h—y)r= (6.41)
A similar argument yields
Q2-a)C3)\ 7% o
1—g"(y) < <T> (h —y)re. (6.42)
Using (6.1) and (6.42) in the equation (6.18) we obtain a bound of the form
') = Cl1—q() < Ca(h—y)*a (6.43)
for y in a left neighborhood of /, which yields
Cy 2
pQy) = ——(h—y)>=. (6.44)
oa+1

Since @ < 1, using (6.41) and (6.44) in (6.9) we obtain the limit ®(y) — 6y as y — h—.

On the other hand, when y is bounded away from #, the denominator in (6.10) is strictly
positive and the quantity w = w(l, p, ¢) remains uniformly bounded. By (6.9), we obtain the
upper bound ® < 6%, for some 67 < /2.

8. Relying on (6.36), in this step we prove that all terms on the right hand sides of the ODEs
in (6.34) are uniformly integrable.

(i) We first consider the terms appearing in the ODE for P(y). Concerning f1 p, as y — h—
one has

—1 —a
fp=0m-(1-1) " = 0 th-y7%, (6.45)

because of (6.41). Since o < 1, this implies that fj , is an integrable function of y.
(i1) By the second equation in (6.36), as y — h— one has

(1 —g"1In(g"
1 —g¢*+4%In(g*)

flq = O1)- = O(). (6.46)

(iii)) The term f, blows up as y — h—, due to the factor 7%~ However, this factor is integrable
in y because, by (6.38), (6.41) and (6.42)

(1), P, g() = O) - (h —nFe (6.47)
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This implies

LI, p(3),q(») =00) -2 1), p(»), g(»)

=0)-(h—y) Fra, (6.48)

showing that f> is integrable, because « > 0.

(iv) We now solve the linear ODE for P in (6.34) with terminal condition P (k) = 0. By the

estimates (6.45)-(6.46) and (6.48) one obtains a bound of the form

P(y) = O(1) - (h—y)7F=, (6.49)

valid in a left neighborhood of y = A.

(v) In a neighborhood of the origin, the function f| 4 contains a logarithm which blows up as

y — 04. However, this is integrable because, for y &~ 0, we have

10) - (Lo
1(y) dy I1(y)

co

YT @0)1(0)sin (©(0))

y=0

and In y is integrable in y. Recalling (6.1), as y ranges in a right neighborhood of the origin,

i.e. for y > 0, we conclude

') - figfr = 0 -I'(y) fig = O)-y Py,

(6.50)

r'y)-fip=00)-I'(y) = 0(1)-yF.

This shows that, in (6.34), the coefficients in first equation are uniformly integrable in a

right neighborhood of the origin. _
(vi) It remains to consider the terms appearing in the ODE for Q(y). We first observe that

@__sin@l:l o —2i|_0‘]
5 - T | Tane Y (I, P, q ().

As y — h—, by (6.47) and (6.49) this implies

@.p — O() - (h—y)Ta . (h— y)3, (6.51)

f2

which is integrable for o < 1.
(vii) Finally, as y — h—, we consider

far sin ® |:(1 —a)sinfy  sin (© — 6p) ( o >:|
N 1+ — 2
f2 ca sin? ® cos ® sin? ©
1
X
(1), p(.q()

O) - (1 =gz (1), p(3), q(»)) = O() - (h — y) 7% - (h — y)Ts,

9
) (6.52)
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which is integrable in y since o < 1. Similarly, by (6.51), (6.18), and (6.42), it follows

Jop
2

which is again integrable.

fi = O) - (h— )T - (h—y)T, (6.53)

9. The proof can now be accomplished by a contradiction argument. If the conclusion of
the theorem were not true, one could find a sequence of absolutely continuous, non-decreasing
functions I, : Ry +— [0, 1], all satisfying (6.1), with I,(0) — 1, and such that, for eachn > 1,
the optimization problem (OP2) has two distinct solutions, say (On, it,) and (9,,, i,). As a
consequence, for each n > 1 the system (6.13) has two solutions. To fix the ideas, let the
first solution be defined on [0, h ] and the second on [0, h,,] with h < h These two solu-
tions will be denoted by (P, Gn, Zn) and (Pu, Gn, Zn). They both satisfy the boundary condi-
tions

ﬁn(ﬁn) = ﬁn(i’n) =0, qvn(;ln) = I(;ln), Eln(]:\ln) = I(ﬁn)v CV[n(O) = én(o) =0.
(6.54)

As a preliminary, we observe that, for § > 0 small, the heights fz, h of optimal stems must
remain uniformly positive. Indeed, by (2.3) the sunlight gathered by a stem y of length £ is
bounded by

Sy) < ¢.

Hence, for a sequence of stems y;, with heights hn, — 0, the total sunlight satisfies

~

Slyn) < 4, <

sin 6y

Therefore, for n large, none of these stems can be optimal.
Thanks to the last identity in (6.54), by the mean value theorem there exists some intermediate
point k,, € [h,,, h ] such that, with the notation introduced at (6.21),

aq” “0.k) = 0. (6.55)

For each n > 1 consider the corresponding system

Pry) = ~L0) [fi.pPa+ fiq£20u]. P.(k) = O,
_ v _ _ (6.56)
3'(y) = fsz LWl — f pfl]Qn’ { Ol = — 1.
) f2
Since f2(14(0), pu(0, k), 0) > 0, by (6.55) it follows
0,(0) = ! aq” SO k) = 0. (6.57)

fZ(In 0), pu(0, k), 0)
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Let

oh '

A (AT N R CS) RV

Pu(y) =

be the solutions to (6.56). By the previous steps, their derivatives (Pn’, é,’l)’pl form a sequence

of uniformly integrable functions defined on the intervals [0, k,,]. Note that the existence of an
upper bound sup, k, = h™ < +o0 follows from the existence proof.

Thanks to the uniform integrability, by possibly taking a subsequence, we can assume the
convergence k, — h € [0, ht], the weak convergence of derivatives P, — P/, 0 — é/ inL!,
and the convergence

n
Pn_)Pv én_)év

uniformly on every subinterval [0, 4] with & < h.

Recalling that every I, satisfies the uniform bounds (6.1), since I,(y) — I (y) = 1 uniformly
for all y > 0, we conclude that (P, é) provides a solution to the linear system (6.34) on [0, ﬁ],
corresponding to the constant functio’\l} I(y) = 1. We now observe that, when I(y) = 1, the
solution to (6.34) is P(y) =0 and Q(y) = —1. On the other hand, our construction yields

00 = lim 0,(0) = 0.
n—o00
This contradiction achieves the proof of Theorem 6.1. O

7. Existence of an equilibrium solution

Given a nondecreasing light intensity function 7/ : R4 +— [0, 1], in the previous section we
proved the existence of an optimal solution (6*, u*) for the maximization problem (OP2).

Conversely, let pg > 0 be the constant density of stems, i.e. the number of stems growing
per unit area. If all stems have the same configuration, described by the couple of functions
y > (6(y),u(y)) asin (2.18), then the corresponding intensity of light at height y above ground
is computed as

+00

0.u) - ko u()
I 0) = exp cos 6 / sinf(¢) e r 7.

y

The main goal of this section is to find a competitive equilibrium, i.e. a fixed point of the
composition of the two maps I > (6*, u*) and (9, u) — 1®),

Definition 7.1. Given an angle 6 € ]0, 7/2[ and a constant pg > 0, we say that the light intensity
function I* : Ry +> [0, 1] and the stem configuration (0*, u*) : R4 > [0y, /2] x Ry yield a
competitive equilibrium if the following holds.

(i) The couple (6*, u*) provides an optimal solution to the optimization problem (OP2), with
light intensity function [ = I'*.
(ii) The identity I* = 1@"#") holds.
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The main result of this section provides the existence of a competitive equilibrium, assuming
that the density pg of stems is sufficiently small.

Theorem 7.2. Let an angle 6y €10, w/2[ be given. Then, for all py > O sufficiently small, a
unique competitive equilibrium (I*,0*, u™) exists.

Proof. 1. Setting C =1 and 8 =1/2 in (6.1), we define the family of functions

F = {I Ry [1-46,1]; [ isabsolutely continuous,
(7.2)
'y elo, y 17?] fora.e.y>0},

where 6 > 0 is chosen small enough so that the conclusion of Theorem 6.1 holds.
2.Foreach I € F,let (9, u!) describe the corresponding optimal stem. Calling

h" = sup {y=0; u'"(y)>0}
the height of this stem, by the a priori bounds proved in Section 6 we have a uniform bound
jAY) < nt

forall I € F. Let p), ¢™ : [0, D] R be the corresponding solutions of (6.20). For con-
venience, we extend all these functions to the larger interval [0, A™] by setting

Dy = pD (D), gDy = ¢Pn?D),  forallye[nD, nt].

3. By the analysis in Section 6, for any / € F, the solution to the system of optimality condi-
tions (6.13) satisfies

6o < OUY), p(y),q(y) < 67, coy =< % <1, (7.3)

for some 07 < 7/2 and ¢y > 0 sufficiently small. In view of (6.8), this implies

I
Uy, p(»).q(»)) = —In (%) cos(OU (), p(»). q(»)) —60) < —In(coy). (7.4)

Note that ©(7 (y), pV (). 4" () =6D () and U1 (). p V(). 4" () = u'" (). Thus,
if we choose pg > 0 small enough, it follows that the corresponding light intensity function 7%
at (7.1) is again in F. A competitive equilibrium will be obtained by constructing a fixed point
of the composition of the two maps

Al e (00, uD), Ar: (O, u) — 199, (7.5)

In order to use Schauder’s theorem, we need to check the continuity of these maps, in a suitable
topology.
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We start by observing that F ¢ CY([0, h*]) is a compact, convex set. Again by the analysis
in Section 6, as I varies within the domain F, the corresponding functions 6/ are uniformly
bounded in L*°([0, 27 ]), while «?) is uniformly bounded in L! ([0, 2T ]).

From the estimate (6.43) it follows that the functions p!) are equicontinuous on [0, 2 7].
Recalling that ¢ = ¢* - I, by (6.39) we conclude that the functions ¢!’ are equicontinuous as
well.

4. Motivated by (7.3)-(7.4), we consider the set of functions

U= {@.w el ([0.h71: R, 60 €lbo,67], 0=um =—In@y}. (76

Thanks to the uniform bounds imposed on 6 and u in the definition (7.6), the continuity of the
map Ay :U > C°, defined at (7.1) is now straightforward.

5. To prove the continuity of the map A1, consider a sequence of functions I, € F, with
I, — I uniformly on [0, 2T]. Let (8,, u,) : [0, 1] — R? be the corresponding unique optimal
solutions.

We claim that (6,, u,) — (0, u) in L1([0, h1]), where (0, u) is the unique optimal solution,
given the light intensity /.

To prove the claim, let (p,, g,) be the corresponding solutions of the system (6.20). By the
estimates on p’, g’ proved in Section 6, the functions (py,g,) are equicontinuous. From any
subsequence we can thus extract a further subsequence and obtain the convergence

pnj_)/p\’ an_>21\, Inj—)l, (77)

for some functions p, g, uniformly on [0, 2T].
For every j > 1 we now have

On; () = O(Ln; (9), Pu; (9): 4n; (1)) tn; () = U(Ln; (9)s Pu; (9): qn; (0))

where U and ©® are the functions in (6.8)-(6.9). By the dominated convergence theorem, the con-
vergence (7.7) together with the uniform integrability of 6,,; and u,; yields the L' convergence

[16n; —§||L1 — 0, llitn; Uy — 0. (7.8)

In turn this implies that (p, ) provide a solution to the problem (6.20), in connection with the
light intensity /. By uniqueness, p = p and § = q. Therefore, 0 = 6 and & = u as well.

The above argument shows that, from any subsequence, one can extract a further subsequence
so that the L!-convergence (7.8) holds. Therefore, the entire sequence (6, Un)n>1 converges to
(0, u) in L' ([0, A*]). This establishes the continuity of the map Aj.

6. The map As o A1 is now a continuous map of the compact, convex domain F C Co([0,h*Y)
into itself. By Schauder’s theorem it admits a fixed point /*(-). By construction, the optimal stem
configuration (9(1 D u *)) yields a competitive equilibrium, in the sense of Definition 7.1.

7. To prove uniqueness, we derive a set of necessary conditions satisfied by the equilibrium
solution, and show that this system has a unique solution.
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Using (6.8) and (6.11), we can rewrite the light intensity function (7.1) as

o
1+ws1n90
I1(y) = 1 d¢ i,
o) = ep{ Lo [in(4) 2
y

where w = w(l, p, ¢) is the function introduced at (6.10). Differentiating w.r.t. y one obtains

00 g\ 1+ wsin6y .
I = — In{=)———-1 = I,p,q). 7.9
» p—— n<l> Sinfo 1 w U, p,q) (7.9)

Combining (7.9) with (6.20), we conclude that the competitive equilibrium satisfies the system
of equations and boundary conditions

Py ==, p,q) - HUG), P, q()), p(h) = 0,
g = LG, p(».q(), q(h)y =1, (7.10)
I'v) = AT, PO g, Ity =1,

together with
q(0) = 0. (7.11)

Here the common height of the stems / > 0 is a constant to be determined.
8. The uniqueness of solutions to (7.10) will be achieved by a contradiction argument. Since
this is very similar to the one used in the proof of Theorem 6.1, we only sketch the main steps.
In analogy with (6.31), (6.33), denote by p(y, h),q(y, h), I(y, h) the unique solution to the
Cauchy problem (7.10), with terminal conditions given at y = k. Consider the functions

. dp(y.h) ~ 1 dq(y, h) L 0y h)
P(y)=——: 00y = Al oh Ty =—5—-

By (7.10), these functions satisfy

Py =~[fifi+ B = [Brfi+ BAp|P—[fqafi+ g 0,

m>_%h+@%—?m,fan (7.12)

J(y) = f3,1J+f3,pP+f3,qf2Q,

with boundary conditions

P(h)y=0, QO=-1, Jh)=

Set dp = Og % Several of the partial derivatives on the right-hand side of (7.12) were computed
in (6.36). The remaining ones are



A. Bressan et al. / J. Differential Equations 269 (2020) 1571-1611 1607

g 1+ wsinfy cos? 0 w_z[ q]

12 sinfp+w  GinG+w)? pl T

q 1 + wsin6y q cos’p  w q
I T = T )
31U, p.q) 0|: "7 sinfp + w "7 (sinfp + w)? p 1

cos 90 w
(sinfp +w)? p

firl, p,q)=

frplp.g)=doln ()
l.1+ws1no90 [ln<g)]2 cos? 6y w_2i|

I, p, =—dpl| — " :
f3.4U, p.q) 0 [q sinfo + w (sinfp + w)? p

By the same arguments used in step 8 of the proof of Theorem 6.1, we conclude that the right-
hand side of (7.12) is uniformly integrable.

9. Let a dens1ty po > 0 be given. Assume that the problem (7. 10) (7 11) has two distinct
solutions (p, g, I) and (p, q, 1) defined on [0, h] and [0, h] say with i < h Since §(0) =g (0) =
0, by the mean value theorem there exists k € [h h] such that (0 k)=

Next, if multiple solutions exist for arbitrarily small values of the densny po, we can find
a decreasing sequence pg , | 0 and corresponding solutions P,, Q,, I, of (7.12), defined for
y €10, k], such that

Pu(ky) =0,  Ontkp)=—1,  Jutkn)=0,  0,(0)=0. (7.13)

Thanks to the uniform integrability of the right hand sides of (7.12), by possibly extracting a
subsequence we can achieve the convergence k, — h € [0, ht], the weak convergence P, — P,
Q! — Q',J/ — J'in L', and the strong convergence

P,—>P,  0,—0, i,

uniformly on every subinterval [0, 4] with & < h.
To reach a contradiction, we observe that
kll
() = — f Ty (2)dz
y
and the right-hand side of J; in (7.12) consists of uniformly integrable terms which are multiplied

by po,»- This implies J(y) = 0. This corresponds to the case of an intensity function /(y) = 1.
But in this case we know that Q(y) = —1, contradicting the fact that, by (7.13),

0(0) = lim 0,(0) = 0. O
n—oo
8. Stem competition on a domain with boundary
We consider here the same model introduced in Section 2, where all stems have fixed length ¢

and constant thickness k. But we now allow the sunlight intensity / = I (x, y) to vary w.r.t. both
variables x, y. As shown in Fig. 5, left, we denote by
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g X
Fig. 5. Left: to leading order, the amount of vegetation in the shaded region is proportional to x p(§)d&ds. Since the
area is computed in terms of the cross product Z;_;g x %, this motivates the formula (8.4). Right: a possible competitive
equilibrium, where the light rays come from the direction n = (;1, %) and stems are distributed along the positive

V2

half line, with density as in (8.9). In this case, stems originating from points close to the origin have no incentive to
grow upward, because they already receive a nearly maximum light intensity. Hence they bend to the right, almost
perpendicularly to the light rays.

s = y(s,8) = (x(s), y(s)), s €0, €], 8.1

the arc-length parameterization of the stem whose root is located at (£, 0), and write g for the
function introduced at (2.8). This leads to the optimization problem

(OP3) Given a light intensity function I = I (x, y), find a control s — 0(s) € [0, ] which max-
imizes the integral

l
/I(X(S),y(S))g(G(S))dS (8.2)
0
subject to
d
a(x(S),y(S)) = (cos6(s),sin6(s)), (x(0), y(0)) = (£,0). (8.3)

Next, consider a function p(£§) > 0 describing the density of stems which grow near £ € R.
At any point in space reached by a stem, i.e. such that

x,y)=v(,§) for some £ € R, s €[0,¢],

the density of vegetation is

~1
W 3”] . (8.4)

p(x,y) = p(y(s,§) = Kﬁ(é‘){aé !
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The light intensity at a point P = (x, y) € R? is now given by

+00
I(P) = exp —fp(P+tn)dt . (8.5)
0

Definition 8.1. Given the constants £, ¥ and the density p € L°(R), we say that the maps y :
[0,€] x Rand I : R x R4 +— [0, 1] yield a competitive equilibrium if the following holds:

(i) For each & € R, the stem y (-, &) provides an optimal solution to (OP3).
(i) The function [ (-) coincides with the light intensity determined by (8.4)-(8.5).

We shall not analyze the existence or uniqueness of the competitive equilibrium, in the case

where the distribution of stem roots is not uniform. We only observe that, if the stem y (-, £) in
(8.1) is optimal, the necessary conditions yield the existence of a dual vector s — p(s) satisfying

P(s) = — VI(x(5), () g0 (), p(6) = (0,0), (8.6)

and such that, for a.e. s € [0, £], the optimal angle 6*(s) satisfies
0*(s) = argmax {p(s) - (cos B, sinB) + 1 (x(s), y(s))g(e)}. 8.7)

Differentiating the expression on the right hand side of (8.7) one obtains an implicit equation for
0*(s), namely

I(x(s), y()))g' (0" (s)) +p(s) -n(s) = O (8.8)

fora.e. s € [0, £]. Here n(s) = (— sinf(s), cos 9(s)) is the unit vector perpendicular to the stem.
Moreover, by (8.6) one has

L

pGs) = /VI(X(G),y(G))g(Q*(U))dG-

s

An interesting case is where stems grow only on the half line {£ > 0}. For example, one can take

0 if £ <0,
pE) = b7 if £€[0,b], (8.9)
1 if £>b.

In this case, we conjecture that the competitive equilibrium has the form illustrated in Fig. 5,
right.
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Fig. 6. The stem yy, oriented perpendicularly to the sun rays, collects much more sunlight than y,. Indeed, y; would
give the best orientation for solar panels. Notice that y» minimizes the sunlight gathered because the upper leaves put the
lower ones in shade.

9. Concluding remarks

A motivation for the present study was to understand whether competition for sunlight could
explain phototropism, i.e. the tendency of plant stems to bend toward the light source. A naive
approach may suggest that, if a stem bends in the direction of the light rays, the leaves will
be closer to the sun and hence gather more light. However, since the average distance of the
earth from the sun is approximately 90 million miles, getting a few inches closer cannot make a
difference.

As shown in Fig. 6, if a single stem were present, to maximize the collected sunlight it should
be perpendicular to the light rays, not parallel. In the presence of competition among several
plant stems, our analysis shows that the best configuration is no longer perpendicular to light
rays: the lower part of the stems should grow in a nearly vertical direction, while the upper part
bends away from the sun.

Still, our competition models do not predict the tilting of stems in the direction of the sun rays.
This may be due to the fact that these models are “static”, i.e., they do not describe how plants
grow in time. This leaves open the possibility of introducing further models that can explain
phototropism in a time-dependent framework. As suggested in [12], the preemptive conquering
of space, in the direction of the light rays, can be an advantageous strategy. We leave these issues
for future investigation.
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