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Abstract— This paper addresses the multi-robot planning
problem to generate trajectories for maximum information
gathering from an area of interest. To solve this problem,
the proposed framework first leverages a Gaussian Mixture
Model (GMM) as prior knowledge for modeling informative
regions in the target area. Taking samples from the GMM,
informative robot paths are then computed that optimize the
travel costs subject to energy budgets. Decomposing these paths
into waypoints, robot trajectories are planned while respecting
kinematic constraints and subsequently replanned online to
avoid collisions among themselves. The GMM model is incre-
mentally updated by incorporating the gathered information.
We demonstrate that our framework can achieve a significant
amount of information gain with the optimal travel distance.
We also provide a realistic simulation with a team of mobile
robots in a port infrastructure monitoring setting.

I. INTRODUCTION

Mobile robots’ capabilities to gather important information
from a large geographical area are the key to their use in
a broad range of applications. Some applications include
critical infrastructure monitoring [1], surveillance [2], target
tracking [3], search and rescue [4], source seeking [5],
precision agriculture [6], and nuclear tank inspection [7]. In
such applications, the objective is to maximize information
gathering by planning robot trajectories while respecting
their resource (limited battery life or finite time) and kine-
matic constraints.

The maximization of information gathering is more ef-
ficient and advantageous with multiple robots due to re-
siliency, coverage, and potential heterogeneity. However,
this multi-robot informative planning problem also poses
some challenges such as scalability, collision avoidance,
and coordination. Furthermore, the problem of finding a
number of optimal trajectories that maximize the amount
of information collected while satisfying constraints is NP-
hard [8]. Previous research efforts have presented approx-
imation algorithms [8] and branch and bound solvers [9]
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Fig. 1: Information gathering from port infrastructure moni-
toring: Two mobile robots gather information from blue elliptical
locations within two critical regions (dotted green lines) of the Port
of New Orleans, LA, USA, starting from the red depot location.

to develop informative trajectories for mobile robots. These
efforts have a scalability issue under resource constraints,
which we address in our work in addition to online trajectory
planning for avoiding inter-robot collisions.

To solve the multi-robot informative planning problem,
this paper presents a multi-robot trajectory planning frame-
work. The framework leverages a Gaussian Mixture Model
(GMM) to characterize critical regions of an area that must
be monitored frequently due to their importance and/or
utilization. The GMM model is used as prior knowledge and
allows us to obtain samples from a mixture of a finite number
of Gaussian components. The advantages of this GMM-
based information gathering characterization are three-fold:
1) The GMM is a statistical model that can be built from an
unknown probability distribution of gathered information; 2)
Multiple robots can travel to more informative locations by
sampling them from prior knowledge intelligently; and 3)
This model can easily scale to higher dimensions if needed.

To maximize information acquisition from an area, we
make the following contributions through our framework:

• First, informative paths for robots are calculated based
on a set of sample locations from the GMM subject to
energy budgets.

• Second, a coordination method is presented for planning
multi-robot trajectories respecting their kinematic con-
straints while avoiding collisions by online replanning
during their execution.

• Third, the GMM is incrementally updated by incorpo-
rating gathered information in multiple stages.

• Finally, our framework validation is demonstrated in a
realistic information gathering task depicted in Fig. 1.



The remainder of the paper is laid out as follows. To
begin with, a relevant literature review on informative motion
planning is provided in Section II. All the required definitions
and a formulation of our tackled problem are then given in
Section III. Afterward, different modules of our framework
to solve the formulated problem are described in Section IV.
Additionally, realistic simulation results are demonstrated in
Section V to validate our framework. Lastly, we conclude
and discuss directions for future work in Section VI.

II. RELATED WORK

The problem of informative motion planning has been
studied extensively in robotics. For information gathering
from a large exploration space that makes a comprehen-
sive search difficult, random graph search [10], heuristic
search [11], and sampling-based approaches [12], [13] have
been applied. For instance, a sampling-based strategy called a
rapidly-exploring information gathering (RIG) algorithm for
generating informative robot trajectories is presented subject
to a budget constraint [12] to maximize an information qual-
ity metric such as information gain or mutual information.
Built on this RIG algorithm, an incremental sampling-based
algorithm with a convergence criterion is presented [13]
for online applications. This algorithm incorporates partially
observable dense map representations and state uncertainty
of robots into the planning process.

Because of the advantages and efficiency of multi-robot
systems, a stream of prior research has been conducted
on multi-robot informative planning. A coordination algo-
rithm [14] plans sequences of waypoints for a team of robots
in a decentralized fashion for their information gathering in
an infrastructure inspection scenario. For solving exploration
and mapping problems, a distributed algorithm based on
the sequential greedy assignment has been presented to
maximize mutual information gain [15]. Several multi-robot
information gathering algorithms have utilized Gaussian pro-
cesses (GPs) [16], [7] to model environmental phenomena.
The main limitation of these algorithms is that they do not
scale well with the increase of sensor measurements, lead-
ing to high computation time. Some such algorithms have
employed Partially Observable Markov Decision Processes
(POMDPs) [17] to model the quality of possible paths and
Deep Reinforcement Learning (Deep RL) [18] to tackle
model-free information-gathering tasks when existing models
cannot describe the information of interest.

In addition, the GMM model has been applied to in-
formation gathering [12] and information-theoretic explo-
ration [19] by mobile robots due to its good computational
performance. Hence, we employ a multi-stage GMM model
for multi-robot informative planning to incorporate gathered
information after each stage. Unlike many of existing in-
formation gathering algorithms, our framework accounts for
important regions within an environment that are likely to
contain locations of high information and thus reduces the
overall coverage area for robots. We also generate collision-
free robot trajectories from a single depot location for
information gathering.

III. PROBLEM FORMULATION

We model a two-dimensional area of interest as a
workspace denoted by W ⊂ R2. A set of p polygonal
obstacles is denoted as O. The free navigable space for
robots is characterized as E , where E = W \ O. The state
space of a single robot is X = E ×S1, where S1 represents
robot’s orientations. Let x ∈ X be the state of a robot. A
robot trajectory in the free space for a fixed time interval that
ends at T is represented by τ : [0, T ] → X . We consider n
homogeneous robots that gather information from E through
their range sensors. Each robot has an energy budget B that
models a limited battery life.

We model the phenomenon of our interest as a GMM
because it has been utilized before for encoding sensor
observations and maintaining a local occupancy map [20].
Furthermore, the GMM has several benefits such as scalabil-
ity, the availability of inference methods, and computational
efficiency. We assume that GMM parameters are unknown
to our framework and need to be estimated.

Given GMM model parameters Θ, n number of robots,
m number of information gathering stages, the informative
trajectory planning for n robots under energy budgets and
kinematic constraints needs solving the following maximiza-
tion problem:

arg max
τi,j

m∑
j=1

n∑
i=1

I(τi,j |Θ) (1)

subject to

xt+1 = f(xt, ut),

∀t, ∀i : c(τi,j) ≤ B where c : Ψ→ R+,

∀t, ∀(i, k), ∀j : ||τi,j(t)− τk,j(t)||2 ≥ δ and i 6= k,

∀p, ∀t : ||τi,j(t)−Op||2 ≥ δ,

where Ψ is the space of all possible trajectories for n
robots, τ is a single robot trajectory, f is a state transition
function that estimates a new state xt+1 from a state xt with
an action ut at time t, c is a trajectory cost function, B is
energy budget constant (e.g., travel time or battery life), δ
is a constant that represents the safety distance between two
robots or one robot and an obstacle, and I is a function that
corresponds to the gathered information quality.

IV. PROPOSED FRAMEWORK

The pipeline of our proposed framework for solving the
multi-robot informative planning problem is illustrated in
Fig 2. This section describes each module of the pipeline
in detail.

A. Modeling and Sampling Informative Locations

Our framework first utilizes a GMM to represent critical
regions of an area E as prior knowledge for information gath-
ering. We then sample informative locations from the GMM
for maximum information collection. The GMM formally
represents a weighted sum of r Gaussian probability density
functions (PDFs). For a set of sensor measurements z ∈
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Fig. 2: The pipeline of our proposed framework: Information
collection from critical regions of an area is modeled as an
estimation problem of GMM parameters; The Variational Bayesian
(VB) inference algorithm estimates the GMM with r number of
Gaussian components; To collect information, a set of samples
(S) are taken from these components; For covering these sample
locations, multiple robot trajectories under energy and kinematic
constraints are planned while minimizing the travel cost; Finally,
GMM parameters are updated by computing information gain (I)
from gathered measurements.

Rd, we model the information gathering problem using the
probability density of the parametric GMM as follows [19]

p(z|Θ) =

r∑
i=1

αiN (z|µi,Λi), (2)

where Θ = {αi, µi,Λi}ri=1 represents the parameters of the
GMM. αi ∈ R1 is a weight such that

∑r
i=1 αi = 1 and

0 ≤ αi ≤ 1, µi is a mean, and Λi is a covariance matrix for
the ith d-dimensional Gaussian PDF of the distribution. The
multivariate probability density for z is expressed as

N (z|µi,Λi) =
|Λi|−1/2

(2π)d/2
exp

(
−1

2
(z− µi)TΛ−1i (z− µi)

)
.

One way to solve this problem is to utilize a non-adaptive
sampling strategy that suffers from sampling sparsity at the
maximum. To increase the number of informative samples,
we use the Variational Bayesian (VB) algorithm to infer the
number of components (Gaussians) from prior knowledge.
Afterward, we take random samples uniformly from these
components (multivariate Gaussian distributions). Formally,
we create a set of samples S ∼ N to find the most
informative locations of the area. This way we can plan
to have multiple robots synergistically collect measurements
from these locations.

B. Finding Informative Paths under Energy Constraints

The main idea of our path planning is to optimally travel
all the informative locations in the target area by individual
robots while considering their energy constraints. We con-
sider that all robots are initially located at a depot location
and that each robot can get recharged at the depot location
after following an informative path. Thus, each robot can
follow multiple informative paths. We choose a subset S with
k samples from S such that S ⊂ S, where S = {1, 2, . . . , k}.
All the informative paths start from and end to the same
depot location while exploring S sample locations.

Next, we need to calculate the lower bounds on infor-
mative path costs. Since S are in a 2-D workspace with
polygonal obstacles, we calculate the shortest path between
two samples that avoids these obstacles. To achieve this, we
apply the shortest-path roadmap algorithm [21]. Formally,
the roadmap is considered a weighted graph G = (V,E,w),
where V is a set of nodes, E is a set of edges, and w : E →
R≥0 are the edge costs. Once the roadmap is computed, we
can efficiently find the shortest paths and their costs between
sample locations. For a given pair of samples, the shortest
path is computed by connecting them with the roadmap.

Finding the informative shortest paths at the minimum cost
for n robots with an energy budget B can be considered as a
capacitated vehicle routing problem [22]. To solve this prob-
lem, we utilize Mixed Integer Linear Programming (MILP).
Formally, we define a set of locations V that incorporates
both S and the depot location 0 such that V = S ∪ {0}. Let
A be a set of paths, with A = {(i, j) ∈ V2 : i 6= j}. Let
bi be the amount of energy that is required to travel to the
ith location and cij be the travel cost between the ith and
jth locations. The MILP solver uses binary variables λij to
optimally assign an informative path to a robot minimizing
the sum of linear shortest path costs while respecting its
energy constraint as follows

minimize
∑
i,j∈A

cijλij , (3)

subject to ∑
i∈V,i6=j

λij = 1 i ∈ S, (4)∑
j∈V,j 6=i

λij = 1 j ∈ S, (5)

uj = ui + bj i, j ∈ A, i, j 6= 0, λij 6= 0, (6)
bi ≤ ui ≤ B i ∈ S. (7)

This formulation includes a continuous variable ui for
every i ∈ V \ {0} that represents the energy depletion by
the robot after it visits the ith location. Eq. (4) and (5) are
path constraints that indicate each location can be visited at
most once. Eq. (6) and (7) impose constraints on the energy
budget for all feasible informative paths.

C. Online Trajectory Planning Respecting Kinematic Con-
straints

We plan a robot trajectory τ employing the rapidly ex-
ploring random tree (RRT) algorithm [23] to follow an
informative path. At the high level, we first plan initial
trajectories for robots while avoiding static obstacles in the
target area and then using online replanning to adjust their
corresponding trajectories when facing unexpected obstacles.

In particular, we start with decomposing the informative
path obtained from Eq. (3) into a set of waypoints in E .
Given a waypoint, we then plan an initial feasible trajectory
for a robot while respecting its kinematic constraints. Since
this trajectory does not consider other robots as dynamic
obstacles, a further step is necessary to handle collisions with
dynamic obstacles. To address such situations, we replan a



robot’s trajectory by sensing the presence of dynamically
changing obstacles. This online replanning allows a robot
to navigate in initially unknown environments without prior
knowledge of other robots. Generating such trajectories is
computationally very efficient since they do not require exact
information about other robots’ trajectories. However, during
replanning, the robot might slightly adjust an intermediate
goal waypoint to find feasible and collision-free trajectories.
Thus, a robot completes an assigned path by repeating these
steps for all waypoints in its trajectory.

D. Update the Model from Gathered Measurements

As a robot explores the informative locations, it gathers
measurements through its range sensor and collates them
along a trajectory τ ∈ Ψ. Let R(x) ⊂ E be the informative
region in E around a robot state x ∈ τ . The range sensor
reading is

h(z, E) =

{
z if z ∈ R(x)

0 otherwise,
(8)

where z ∈ R2. The collated measurements along a trajectory
for a robot are represented as z = {z|τ, h}. Given all
gathered measurements Z from n robots, where Z is the
set of n observed variables such that Z = {z1, . . . , zn}
and a GMM configuration from Eq. (2), our objective is
to estimate the GMM parameters Θ which approximately
match the distribution of sensor measurements. We then
employ the Variational Bayesian (VB) algorithm to find an
approximation for the posterior distribution p(Z|Θ̄). The
key idea of the VB algorithm is to begin with the prior
parameters Θ and then estimate the posterior parameters
Θ̄, such that p(Z|Θ̄) ≥ p(Z|Θ). The prior parameters are
updated with the posterior parameters for the next stage. This
process is repeated for multiple stages until a convergence
threshold is reached. The distance between the estimated and
true distributions for two consecutive stages is calculated by
the Kullback-Leibler (KL) divergence [24], which is also
interpreted as information gain.

It is important to note that if we collect sensor mea-
surements from all possible locations over the distribution,
then the estimated GMM converges to the true distribution.
Since measurements are collected at the expense of the
robots’ exploration with range sensors that requires energy
consumption, our framework minimizes the exploration time
while maximizing information gain.

V. EXPERIMENTS

Our experiments are carried out in a port infrastructure
monitoring setting, which simplifies the problem of informa-
tion gathering. Fig. 3 shows our simulated port environment,
where the red square box represents the depot location and
the gray boxes are static obstacles. All robots are initially
located at the depot, and they are required to periodically
visit informative regions to collect measurements with their
range sensors. We set a one meter sensing radius for the
range sensors. We adopt a GMM on a 2-D environment

Fig. 3: Assigned paths for the robots: The green dotted lines
represent paths that are generated based on the robots’ energy
budget (battery capacity). The red square represents the depot
location where robots are initially located and blue circles are
sampling locations where robots need to travel to accumulate
measurements. The gray boxes represent static obstacles.

(a) Collection of measurements

(b) Estimation of informative regions

Fig. 4: Informative regions: The red ellipses (ground truth or
given distributions) are bounded regions where measurements are
available. The blue dots represent measurements that are gathered
using range sensors with a 1 m sensing radius. The orange and blue
ellipses are estimated informative regions using the VB algorithm.



Fig. 5: Each robot executes its assigned informative trajectory from
its initial location at the depot, represented by the red square. Each
robot’s trajectory is represented by different colored lines.

Fig. 6: A collision scenario between two robots that are unaware of
each other’s locations. The robots with the blue and red trajectory
lines sense each other as dynamic obstacles and execute their online
replanning procedures.

to represent events associated with the port infrastructure
monitoring. To begin with the task of navigating informative
locations using multiple mobile robots, our sampling strategy
selects a set of informative locations based on the GMM
prior. These informative locations are shown with blue circles
in Fig. 3. Then, we plan a set of informative paths for
multiple robots while considering collision avoidance and en-
ergy consumption. Our path planning module integrates the
multi-query visibility roadmap algorithm [21] to efficiently
compute the informative paths and their corresponding costs
between two sample locations. We use the Gurobi [25]
optimizer to find the informative paths for robots based
on Mixed Integer-Linear Programming (MILP). The dotted
green lines in Fig. 3 are the resultant informative paths.

To facilitate information gathering with multi-robot ex-
ploration, we implement decentralized waypoint-based nav-
igation with online replanning. Fig. 5 shows the execu-
tion of robot trajectories starting at the red depot location
within our simulated port environment built in CoppeliaSim
(V-REP) [26]. A video of our experiment can be found
at https://youtu.be/E7uSwGWUVnk. A team of Pioneer
mobile robots decompose their assigned paths into waypoints
and then use the RRT algorithm [23] to generate intermediate
trajectories. While the robots are navigating, they utilize
ultrasonic sensors to dynamically detect obstacles and avoid
collisions using their online replanning procedures. Once a
robot detects a dynamic obstacle, it moves a short distance

Fig. 7: Two robots replan their trajectories to avoid the collision.
During replanning, the robots that detected each other in Fig. 6
move a short distance away and replan around one another.

away from the obstacle and then replans a new trajectory
around the obstacle. Fig. 6 shows a collision scenario be-
tween two robots, which is avoided in Fig. 7 by online
replanning. Each robot fully recharges its battery upon arrival
at the depot location after completing a trajectory and then
continues on to another trajectory afterward.

The robots receive sensor readings upon arriving at in-
formative regions. In Fig. 4(a), the red ellipses represent
the ground truth informative regions and the blue dots are
readings that are captured by the range sensors. Finally,
utilizing these sensor readings, the VB algorithm updates the
informative regions, shown with orange and blue ellipses in
Fig. 4(b). We use the Python Scikit-learn VB library [27] for
this purpose.

Experiment Energy Budget Path Length Information Gain

1 35 min 2.30 km 0.855
2 35 min 2.33 km 0.838
3 35 min 2.38 km 0.846

TABLE I: Three different experiments with three mobile robots
under an energy budget are conducted to compute the path lengths
and information gains which are normalized between 0 ∼ 1.

Table I shows a qualitative performance evaluation of the
proposed framework. We perform three different experiments
with three mobile robots with the same energy budget to
gather information from the informative regions in Fig. 4.
We select a workspace of 400 m × 200 m with an energy
budget of 35 minutes operation time for each robot. We
observe a consistent cumulative path length of around 2.34
km for these experiments due to the use of an optimal path
planner that utilizes the MILP and the visibility graph. We
also observe that our exploration strategy can gather a higher
information gain of around 0.846. The information gain
scores are normalized between 0 and 1, where 0 represents no
information gain and 1 represents no loss of information with
respect to the ground truth. We use the Python Scikit-learn
normalized mutual information score library [27] to compute
the information gain. Additionally, Fig. 4(b) validates these
results as we can observe that our estimated informative
regions (shown in orange and blue ellipse) are very close to
the ground truth informative regions (shown in red ellipses).

https://youtu.be/E7uSwGWUVnk


VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present a multi-robot information gath-
ering framework under resource and kinematic constraints.
First, we utilize a GMM as prior knowledge to model critical
regions in an area of interest for information gathering.
Second, informative robot paths are generated based on a
set of sample locations from the GMM while considering
the robots’ energy budgets and avoiding static obstacles.
Third, we plan robot trajectories taking kinematic constraints
into account and then replan them for avoiding inter-robot
collisions. Fourth, we update the GMM by adding collected
information to solve the problem in multiple stages. Our
realistic simulations in a port infrastructure monitoring set-
ting show the applicability of our framework for information
gathering utilizing the robots’ range sensors. There are still
several important avenues for future work.

One of our motivating applications for our ideas is mon-
itoring coastal infrastructure [1]. For this application, it is
beneficial to consider heterogeneous teams composed of
aerial (UAV), ground (UGV), surface (ASV), and underwater
(AUV) assets that complement each other in terms of sensor
payload, workspace reachability, and energy constraints. We
believe that parts of our methodology can be extended to this
scenario such as the GMM for modeling the phenomena of
interest and online trajectory planning.

Specifically, there are two extensions to our ideas that we
would like to explore in the short term. First, we would like
to explore in detail other study cases and applications in
oceanic and environmental monitoring, where the Gaussian
mixtures can model concentrations of physical and chemical
quantities of interest (e.g., salinity, chlorophyll, turbidity).
Second, we would like to include spatial and temporal
variabilities in our modeling. A good alternative for this
can be using a mixture of Gaussian Processes (GP) for the
models which have been used in the context of multi-robot
informative path planning [28].

REFERENCES

[1] T. Alam, A. Campaneria, M. Silva, L. Bobadilla, and G. A. Weaver,
“Coastal infrastructure monitoring through heterogeneous autonomous
vehicles,” in Proceedings of IEEE International Conference on Robotic
Computing (IRC), pp. 79–82, 2020.

[2] E. W. Frew and J. Elston, “Target assignment for integrated search
and tracking by active robot networks,” in Proceedings of IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2354–
2359, 2008.

[3] G. Huang, K. Zhou, N. Trawny, and S. I. Roumeliotis, “A bank of
maximum a posteriori (MAP) estimators for target tracking,” IEEE
Transactions on Robotics, vol. 31, no. 1, pp. 85–103, 2015.

[4] V. Kumar and N. Michael, “Opportunities and challenges with au-
tonomous micro aerial vehicles,” The International Journal of Robotics
Research, vol. 31, no. 11, pp. 1279–1291, 2012.

[5] N. A. Atanasov, J. Le Ny, and G. J. Pappas, “Distributed algorithms
for stochastic source seeking with mobile robot networks,” Journal of
Dynamic Systems, Measurement, and Control, vol. 137, no. 3, 2015.

[6] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-of-
interest reconstruction with Dec-MCTS,” in Proceedings of IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 9101–
9107, 2019.

[7] S. A. Zanlongo, L. Bobadilla, D. McDaniel, and Y. T. Tan, “Develop-
ment of informative path planning for inspection of the Hanford tank
farm,” in Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), pp. 2297–2303, 2019.

[8] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707–755, 2009.

[9] J. Binney and G. S. Sukhatme, “Branch and bound for informative
path planning,” in Proceedings of IEEE International Conference on
Robotics and Automation (ICRA), pp. 2147–2154, 2012.

[10] R. Marchant, F. Ramos, S. Sanner, et al., “Sequential Bayesian optimi-
sation for spatial-temporal monitoring,” in Proceedings of Conference
on Uncertainty in Artificial Intelligence (UAI), pp. 553–562, 2014.

[11] L. Bottarelli, M. Bicego, J. Blum, and A. Farinelli, “Orienteering-
based informative path planning for environmental monitoring,” En-
gineering Applications of Artificial Intelligence, vol. 77, pp. 46–58,
2019.

[12] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic infor-
mation gathering algorithms,” The International Journal of Robotics
Research, vol. 33, no. 9, pp. 1271–1287, 2014.

[13] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Sampling-
based incremental information gathering with applications to robotic
exploration and environmental monitoring,” The International Journal
of Robotics Research, vol. 38, no. 6, pp. 658–685, 2019.

[14] G. Best and G. A. Hollinger, “Decentralised self-organising maps
for multi-robot information gathering,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020.

[15] M. Corah and N. Michael, “Distributed matroid-constrained submod-
ular maximization for multi-robot exploration: Theory and practice,”
Autonomous Robots, vol. 43, no. 2, pp. 485–501, 2019.

[16] A. Viseras, Z. Xu, and L. Merino, “Distributed multi-robot coop-
eration for information gathering under communication constraints,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pp. 1267–1272, 2018.

[17] J. Capitan, M. T. Spaan, L. Merino, and A. Ollero, “Decentralized
multi-robot cooperation with auctioned POMDPs,” The International
Journal of Robotics Research, vol. 32, no. 6, pp. 650–671, 2013.

[18] A. Viseras and R. Garcia, “DeepIG: Multi-robot information gathering
with deep reinforcement learning,” IEEE Robotics and Automation
Letters, vol. 4, no. 3, pp. 3059–3066, 2019.

[19] W. Tabib, K. Goel, J. Yao, M. Dabhi, C. Boirum, and N. Michael,
“Real-time information-theoretic exploration with Gaussian mixture
model maps,” in Proceedings of Robotics: Science and Systems (RSS),
2019.

[20] S. Srivastava and N. Michael, “Efficient, multifidelity perceptual rep-
resentations via hierarchical gaussian mixture models,” IEEE Trans-
actions on Robotics, vol. 35, no. 1, pp. 248–260, 2018.

[21] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006. Available at http://lavalle.pl/planning/.

[22] I. Kara, B. Y. Kara, and M. K. Yetis, “Energy minimizing vehicle
routing problem,” in Proceedings of the International Conference on
Combinatorial Optimization and Applications (COCOA), pp. 62–71,
2007.

[23] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), vol. 2, pp. 995–1001,
2000.

[24] J. R. Hershey and P. A. Olsen, “Approximating the Kullback Leibler
divergence between Gaussian mixture models,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 317–320, 2007.

[25] Gurobi Optimization, “Gurobi optimizer reference manual,” 2021.
[Online]. Available: http://www.gurobi.com.

[26] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1321–1326, 2013.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[28] W. Luo and K. Sycara, “Adaptive sampling and online learning in
multi-robot sensor coverage with mixture of gaussian processes,”
in Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pp. 6359–6364, 2018.

http://www.gurobi. com

	Introduction
	Related Work
	Problem Formulation
	Proposed Framework
	Modeling and Sampling Informative Locations
	Finding Informative Paths under Energy Constraints
	Online Trajectory Planning Respecting Kinematic Constraints
	Update the Model from Gathered Measurements

	Experiments
	Conclusion and Future Directions
	References

