
Quantum routing with fast reversals
Aniruddha Bapat1,4, Andrew M. Childs1,2,3, Alexey V. Gorshkov1,4, Samuel King5, Eddie Schoute1,2,3,
and Hrishee Shastri6

1Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland
20742, USA

2Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742, USA
3Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
4Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
5University of Rochester, Rochester, New York 14627, USA
6Reed College, Portland, Oregon 97202, USA

We present methods for implementing arbitrary permutations of qubits under interac-
tion constraints. Our protocols make use of previous methods for rapidly reversing the
order of qubits along a path. Given nearest-neighbor interactions on a path of length
n, we show that there exists a constant ε ≈ 0.034 such that the quantum routing time
is at most (1 − ε)n, whereas any swap-based protocol needs at least time n − 1. This
represents the first known quantum advantage over swap-based routing methods and
also gives improved quantum routing times for realistic architectures such as grids. Fur-
thermore, we show that our algorithm approaches a quantum routing time of 2n/3 in
expectation for uniformly random permutations, whereas swap-based protocols require
time n asymptotically. Additionally, we consider sparse permutations that route k ≤ n
qubits and give algorithms with quantum routing time at most n/3 + O(k2) on paths
and at most 2r/3 +O(k2) on general graphs with radius r.

1 Introduction
Qubit connectivity limits quantum information transfer, which is a fundamental task for quantum
computing. While the common model for quantum computation usually assumes all-to-all connec-
tivity, proposals for scalable quantum architectures do not have this capability [MK13; Mon+14;
Bre+16]. Instead, quantum devices arrange qubits in a fixed architecture that fits within engineering
and design constraints. For example, the architecture may be grid-like [MG19; Aru+19] or consist
of a network of submodules [MK13; Mon+14]. Circuits that assume all-to-all qubit connectivity can
be mapped onto these architectures via protocols for routing qubits, i.e., permuting them within
the architecture using local operations.

Aniruddha Bapat: ani@umd.edu
Andrew M. Childs: amchilds@umd.edu
Alexey V. Gorshkov: gorshkov@umd.edu
Eddie Schoute: eschoute@umd.edu

Accepted in Quantum 2021-08-16, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
3.

03
26

4v
2 

 [q
ua

nt
-p

h]
  2

4 
A

ug
 2

02
1

https://quantum-journal.org/?s=Quantum%20routing%20with%20fast%20reversals&reason=title-click
https://orcid.org/0000-0001-9489-9165
https://orcid.org/0000-0002-9903-837X
https://orcid.org/0000-0003-0509-3421
https://orcid.org/0000-0002-9575-9225
https://orcid.org/0000-0002-5613-1443
https://orcid.org/0000-0002-6188-1572
mailto:ani@umd.edu
mailto:amchilds@umd.edu
mailto:gorshkov@umd.edu
mailto:eschoute@umd.edu


Long-distance gates can be implemented using swap gates along edges of the graph of available
interactions. A typical procedure swaps pairs of distant qubits along edges until they are adjacent, at
which point the desired two-qubit gate is applied on the target qubits. These swap subroutines can
be sped up by parallelism and careful scheduling [SWD11; SSP13; SSP14; PS16; LWD15; Mur+19;
ZW19]. Minimizing the swap circuit depth corresponds to the Routing via Matchings prob-
lem [ACG94; CSU19]. The minimal swap circuit depth to implement any permutation on a graph
G is given by its routing number, rt(G) [ACG94]. Deciding rt(G) is generally NP-hard [BR17], but
there exist algorithms for architectures of interest such as grids and other graph products [ACG94;
Zha99; CSU19]. Furthermore, one can establish lower bounds on the routing number as a function
of graph diameter and other properties.

Routing using swap gates does not necessarily give minimal circuit evolution time since it
is effectively classical and does not make use of the full power of quantum operations. Indeed,
faster protocols are already known for specific permutations in specific qubit geometries such as the
path [Rau05; Bap+20]. These protocols tend to be carefully engineered and do not generalize readily
to other permutations, leaving open the general question of devising faster-than-swap quantum
routing. In this paper, we give a positive answer to this question.

Following [Rau05; Bap+20], we consider a continuous-time model of routing, where the pro-
tocol is defined by a Hamiltonian that can only include nearest-neighbor interactions. To make
consistent comparisons with a gate-based model of routing, we bound the spectral norm of interac-
tions [Bap+20] so that a swap gate takes unit time [VHC02], as determined by the canonical form
of a two-qubit Hamiltonian [Ben+02]. We suppose that single-qubit operations can be performed
arbitrarily fast, a common assumption [VHC02; Ben+02] that is practically well-motivated due to
the relative ease of implementing single-qubit rotations.

Rather than directly engineering a quantum routing protocol, we consider a hybrid strategy
that leverages a known protocol for quickly performing a specific permutation to implement general
quantum routing. Specifically, we consider the reversal operation

ρ :=
bn2 c∏
k=1

swapk,n+1−k (1)

that swaps the positions of qubits about the center of a length-n path. Fast quantum reversal
protocols are known in the gate-based [Rau05] and time-independent Hamiltonian [Bap+20] settings.
The reversal operation can be implemented in time [Bap+20]

T (ρ) ≤
√

(n+ 1)2 − p(n)
3 ≤ n+ 1

3 , (2)

where p(n) ∈ {0, 1} is the parity of n. Both protocols exhibit an asymptotic time scaling of
n/3 + O(1), which is asymptotically three times faster than the best possible swap-based time of
n − 1 (bounded by the diameter of the graph) [ACG94]. The odd-even sort algorithm provides a
nearly tight time upper bound of n [LDM84] and will be our main point of comparison.

The Hamiltonian protocol of [Bap+20] can be understood by looking at the time evolution of
the site Majorana operators obtained by a Jordan-Wigner transformation of the spin chain. In this
picture, the protocol can be interpreted as the rotation of a fictitious particle of spin n+ 1/2 whose
magnetization components are in one-to-one correspondence with the Majoranas on the chain. A
reversal corresponds to a rotation of the large spin by an angle of π. The gate-based reversal

2



protocol [Rau05] is a special case of a quantum cellular automaton with a transition function given
by the (n + 1)-fold product of nearest-neighbor controlled-Z (cz) operations—an operation that
can be done 3 times faster than a swap gate—and Hadamard operations. In an open spin chain,
this process spreads out local Pauli observables at site i over the chain and “refocuses” them at site
n+ 1− i in n+ 1 steps for every i. The ability to spread local observables (which is present in the
gate-based and Hamiltonian protocols but not in swap-based protocols) may be key to obtaining a
speedup over swap-based algorithms.

We expect both the gate-based and Hamiltonian protocols to be implementable on near-term
quantum devices. The gate-based protocol uses nearest-neighbor cz gates and Hadamard gates,
both of which are widely used on existing quantum platforms. The Hamiltonian protocol involves
nearest-neighbor Pauli XX interactions with non-uniform couplings, which is within the capabilities
of, e.g., superconducting architectures [Kja+20].

Routing using reversals has been studied extensively due to its applications in comparative
genomics (where it is known as sorting by reversals) [BP93; KS95]. References [Ben+08; PS02;
NNN05] present routing algorithms where, much like in our case, reversals have length-weighted
costs. However, these models assume reversals are performed sequentially, while we assume inde-
pendent reversals can be performed in parallel, where the total cost is given by the evolution time,
akin to circuit depth. To our knowledge, results from the sequential case are not easily adaptable
to the parallel setting and require a different approach.

Routing on paths is a fundamental building block for routing on more general graphs. For
example, a two-dimensional grid graph is the Cartesian product of two path graphs, and the best
known routing routine applies a path routing subroutine 3 times [ACG94]. A quantum protocol for
routing on the path in time cn, for a constant c > 0, would imply a routing time of 3cn on the
grid. A similar speedup follows for higher-dimensional grids. More generally, routing algorithms
for the generalized hierarchical product of graphs can take advantage of faster routing of the path
base graph [CSU19]. For other graphs, it is open whether fast reversals can be used to give faster
routing protocols for general permutations.

In the rest of this paper, we present the following results on quantum routing using fast reversals.
In Section 2, we give basic examples of using fast reversals to perform routing on general graphs to
indicate the extent of possible speedup over swap-based routing, namely a graph for which routing
can be sped up by a factor of 3, and another for which no speedup is possible. Section 3 presents
algorithms for routing sparse permutations, where few qubits are routed, both for paths and for
more general graphs. Here, we obtain the full factor 3 speedup over swap-based routing. Then, in
Section 4, we prove the main result that there is a quantum routing algorithm for the path with
worst-case constant-factor advantage over any swap-based routing scheme. Finally, in Section 5, we
show that our algorithm has average-case routing time 2n/3 + o(n) and any swap-based protocol
has average-case routing time at least n− o(n).

2 Simple bounds on routing using reversals
Given the ability to implement a fast reversal ρ with cost given by Eq. (2), the largest possible
asymptotic speedup of reversal-based routing over swap-based routing is a factor of 3. This is
because the reversal operation, which is a particular permutation, cannot be performed faster than
n/3 + o(n), and can be performed in time n classically using odd-even sort. As we now show, some
graphs can saturate the factor of 3 speedup for general permutations, while other graphs do not

3



(a) Joined graph K∗
9 . (b) Complete graph K5.

Figure 1: K∗
9 admits the full factor of 3 speedup in the worst case when using reversals over swaps, whereas

K5 admits no speedup when using reversals over swaps.

admit any speedup over swaps.

Maximal speedup: For n odd, let K∗n denote two complete graphs, each on (n + 1)/2 vertices,
joined at a single “junction" vertex for a total of n vertices (Figure 1a). Consider a permutation on
K∗n in which every vertex is sent to the other complete subgraph, except that the junction vertex is
sent to itself. To route with swaps, note that each vertex (other than that at the junction) must be
moved to the junction at least once, and only one vertex can be moved there at any time. Because
there are (n + 1)/2 − 1 non-junction vertices on each subgraph, implementing this permutation
requires a swap-circuit depth of at least n− 1.

On the other hand, any permutation on K∗n can be implemented in time n/3+O(1) using rever-
sals. First, perform a reversal on a path that connects all vertices with opposite-side destinations.
After this reversal, every vertex is on the side of its destination and the remainder can be routed in
at most 2 steps [ACG94]. The total time is at most (n+ 1)/3 + 2, exhibiting the maximal speedup
by an asymptotic factor of 3.

No speedup: Now, consider the complete graph on n vertices,Kn (Figure 1b). Every permutation
on Kn can be routed in at most time 2 using swaps [ACG94]. Consider implementing a 3-cycle
on three vertices of Kn for n ≥ 3 using reversals. Any reversal sequence that implements this
permutation will take at least time 2. Therefore, no speedup is gained over swaps in the worst case.

We have shown that there exists a family of graphs that allows a factor of 3 speedup for any
permutation when using fast reversals instead of swaps, and others where reversals do not grant
any improvement. The question remains as to where the path graph lies on this spectrum. Faster
routing on the path is especially desirable since this task is fundamental for routing in more complex
graphs.

3 An algorithm for sparse permutations
We now consider routing sparse permutations, where only a small number k of qubits are to be
moved. For the path, we show that the routing time is at most n/3 + O(k2). More generally, we
show that for a graph of radius r, the routing time is at most 2r/3 +O(k2). (Recall that the radius
of a graph G = (V,E) is minu∈V maxv∈V dist(u, v), where dist(u, v) is the distance between u and v

4



Input : π, a permutation
1 function MiddleExchange(π):
2 identify the labels x1, . . . , xk ∈ [n] to be permuted, with xi < xi+1
3 let t be the largest index for which xt ≤ bn/2c, i.e., the last label xt left of the median
4 for i = 1 to t− 1 :
5 perform ρ(xi − i+ 1, xi+1 − 1)
6 for j = k to t+ 2 :
7 perform ρ(xj + k − j, xj−1 + 1)
8 perform ρ(xt − t+ 1, bn/2c)
9 perform ρ(xt+1 + k − t− 1, bn/2c+ 1)

10 ρ̄← the sequence of all reversals so far
11 route the labels x1, . . . , xk such that after performing ρ̄ in reverse order, each label is at

its destination
12 perform ρ̄ in reverse order

Algorithm 3.1: MiddleExchange algorithm to sort sparse permutations on the path graph. We let
ρ(i, j) denote a reversal on the segment starting at i and ending at j, inclusive.

in G.) Our approach to routing sparse permutations using reversals is based on the idea of bringing
all k qubits to be permuted to the center of the graph, rearranging them, and then sending them
to their respective destinations.

3.1 Paths
A description of the algorithm on the path, called MiddleExchange, appears in Algorithm 3.1.
Figure 2 presents an example of MiddleExchange for k = 6.

In Theorem 3.1, we prove that Algorithm 3.1 achieves a routing time of asymptotically n/3 when
implementing a sparse permutation of k = o(

√
n) qubits on the path graph. First, let Sn denote

the set of permutations on {1, . . . , n}, so |Sn| = n!. Then, for any permutation π ∈ Sn that acts
on a set of labels {1, . . . , n}, let πi denote the destination of label i under π. We may then write
π = (π1, π2, . . . , πn). Let ρ̄ denote an ordered series of reversals ρ1, . . . , ρm, and let ρ̄1 ++ ρ̄2 be the
concatenation of two reversal series. Finally, let S · ρ and S · ρ̄ denote the result of applying ρ and
ρ̄ to a sequence S, respectively, and let |ρ| denote the length of the reversal ρ, i.e., the number of
vertices it acts on.

Theorem 3.1. Let π ∈ Sn with k = |{x ∈ [n] | πx 6= x}| (i.e., k elements are to be permuted, and
n−k elements begin at their destination). Then Algorithm 3.1 routes π in time at most n/3+O(k2).

Proof. Algorithm 3.1 consists of three steps: compression (Line 4–Line 9), inner permutation
(Line 11), and dilation (Line 12). Notice that compression and dilation are inverses of each other.

Let us first show that Algorithm 3.1 routes π correctly. Just as in the algorithm, let x1, . . . , xk
denote the labels x ∈ [n] with xi < xi+1 such that πx 6= x, that is, the elements that do not begin
at their destination and need to be permuted. It is easy to see that these elements are permuted
correctly: After compression, the inner permutation step routes xi to the current location of the
label πxi in the middle. Because dilation is the inverse of compression, it will then route every
xi to its correct destination. For the non-permuting labels, notice that they lie in the support of

5



∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 3 ∗ ∗ ∗ ∗1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗ 2 ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 5 3 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗ 6 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 5 1 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗ 4 2 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 5 3
∣∣∣∣ 6 2 4︸ ︷︷ ︸

rearrange

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 3 1 2
∣∣∣∣ 5 6 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 1 3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 6 5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 2 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗5 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗2 ∗ ∗ ∗ ∗3 ∗ ∗ ∗ ∗
∣∣∣∣ ∗ ∗ ∗ ∗4 ∗ ∗ ∗ ∗5 ∗ ∗ ∗ ∗6 ∗ ∗ ∗ ∗

Figure 2: Example of MiddleExchange (Algorithm 3.1) on the path for k = 6.

either no reversal or exactly two reversals, ρ1 in the compression step and ρ2 in the dilation step.
Therefore ρ1 reverses the segment containing the label and ρ2 re-reverses it back into place (so
ρ1 = ρ2). Therefore, the labels that are not to be permuted end up exactly where they started once
the algorithm is complete.

Now we analyze the routing time. Let di = xi+1 − xi − 1 for i ∈ [k − 1]. As in the algorithm,
let t be the largest index for which xt ≤ bn/2c. Then, for 1 ≤ i ≤ t− 1, we have |ρi| = di + i, and,
for t + 2 ≤ j ≤ k, we have |ρj | = dj−1 + k − j. Moreover, we have |ρt| = bn/2c − xt − 1 + t and
|ρt+1| = xt+1−bn/2c+k− t. From all reversals in the first part of Algorithm 3.1, ρ̄, consider those
that are performed on the left side of the median (position bn/2c of the path). The routing time
of these reversals is

1
3

t∑
i=1
|ρi|+ 1 = 1

3 (bn/2c − xt − 1) + 1
3

t∑
i=1

(di + i+ 1)

= t(t+ 1)
6 + 1

3 (bn/2c − xt − 1) +
t∑
i=1

(xi+1 − xi)

= O(t2) + 1
3 (bn/2c − x1)

≤ n

6 +O(k2).

(3)

By a symmetric argument, the same bound holds for the compression step on the right half of the
median. Because both sides can be performed in parallel, the total cost for the compression step is
at most n/6 + O(k2). The inner permutation step can be done in time at most k using odd-even

6



c c

G T

Figure 3: Illustration of the token tree T in Theorem 3.2 for a case where G is the 5× 5 grid graph. Blue
circles represent vertices in S and orange circles represent vertices not in S. Vertex c denotes the center of
G. Red-outlined circles represent intersection vertices. In particular, note that one of the blue vertices is an
intersection because it is the first common vertex on the path to c of two distinct blue vertices.

sort. The cost to perform the dilation step is also at most n/6+O(k2) because dilation is the inverse
of compression. Thus, the total routing time for Algorithm 3.1 is at most 2(n/6 + O(k2)) + k =
n/3 +O(k2).

It follows that sparse permutations on the path with k = o(
√
n) can be implemented using

reversals with a full asymptotic factor of 3 speedup.

3.2 General graphs
We now present a more general result for implementing sparse permutations on an arbitrary graph.

Theorem 3.2. Let G = (V,E) be a graph with radius r and π a permutation of vertices. Let
S = {v ∈ V : πv 6= v}. Then π can be routed in time at most 2r/3 +O(|S|2).

Proof. We route π using a procedure similar to Algorithm 3.1, consisting of the same three steps
adapted to work on a spanning tree of G: compression, inner permutation, and dilation. Dilation is
the inverse of compression and the inner permutation step can be performed on a subtree consisting
of just k = |S| nodes by using the Routing via Matchings algorithm for trees in 3k/2+O(log k)
time [Zha99]. It remains to show that compression can be performed in r/3 +O(k2) time.

We construct a token tree T that reduces the compression step to routing on a tree. Let c
be a vertex in the center of G, i.e., a vertex with distance at most r to all vertices. Construct a
shortest-path tree T ′ of G rooted at c, say, using breadth-first search. We assign a token to each
vertex in S. Now T is the subtree of T ′ formed by removing all vertices v ∈ V (T ′) for which
the subtree rooted at v does not contain any tokens, as depicted in Figure 3. In T , call the first
common vertex between paths to c from two distinct tokens an intersection vertex, and let I be
the set of all intersection vertices. Note that if a token t1 lies on the path from another token t2
to c, then the vertex on which t1 lies is also an intersection vertex. Since T has at most k leaves,
|I| ≤ k − 1.

For any vertex v in T , let the descendants of v be the vertices u 6= v in T whose path on T to
c includes v. Now let Tv be the subtree of T rooted at v, i.e., the tree composed of v and all of the

7



Input : A vertex v in token tree T
1 function MoveUpTo(v):
2 if Tv contains no intersection vertices other than v then // Base case
3 for each leaf node u ∈ V (Tv) :
4 if u is the first leaf node then
5 Perform reversal from u to v.
6 else
7 Perform reversal from u to v, exclusive.
8 return
9 for each descendant b of v :

10 w := the intersection vertex in Tb closest to b // may include b
11 MoveUpTo(w)
12 m := the number of tokens from S in Tb
13 l(p) := the length of the path p from w to b in Tv
14 if l(p) ≥ m then // Enough room on p, form a path of tokens at b
15 Route the m tokens in Tb to the first m vertices of p using Routing via

Matchings.
16 Perform a reversal on the segment starting at w and ending at b.
17 else // Not enough room on p, form a tree of tokens rooted at b
18 Route the m tokens in Tb as close as possible to b using Routing via

Matchings.
19 if v has no token then // Put token on root v
20 Perform a reversal on the segment starting from v and ending at a vertex u in Tv

with a token such that no descendant of u has a token.
Algorithm 3.2: An algorithm that recursively moves all tokens from S that lie on Tv up to an
intersection vertex v.

descendants of v. We say that all tokens have been moved up to a vertex v if for all vertices u in
Tv without a token, Tu also does not contain a token. The compression step can then be described
as moving tokens up to c.

We describe a recursive algorithm for doing so in Algorithm 3.2. The base case considers the
trivial case of a subtree with only one token. Otherwise, we move all tokens on the subtrees
of descendant b up to the closest intersection w using recursive calls as illustrated in Figure 4.
Afterwards, we need to consider whether the path p between v and w has enough room to store all
tokens. If it does, we use a Routing via Matchings algorithm for trees to route tokens from w
onto p, followed by a reversal to move these tokens up to v. Otherwise, the path is short enough
to move all tokens up to v by the same Routing via Matchings algorithm.

We now bound the routing time on Tw1 of MoveUpTo(w1), for any vertex w1 ∈ V (T ). First
note that all operations on subtrees Tb of Tw1 are independent and can be performed in parallel.
Let w1, w2, . . . , wt be the sequence of intersection vertices that MoveUpTo(·) is recursively called on
that dominates the routing time of MoveUpTo(w1). Let dw, for w ∈ V (Tw1), be the distance of w
to the furthest leaf node in Tw. Assuming that the base case on Line 2 has not been reached, we
have a routing time of

T (w1) ≤ T (w2) + dw1 − dw2

3 +O(k), (4)

8



w

routing via
matchings

v b

wv b

reverse segment
from b to w

wv b

(a) When l(p) ≥ m. In this case, l(p) = 7 ≥ 5 = m.

w

routing via
matchings

v

b

b

wv

b

b

(b) When l(p) < m. In this case, l(p) = 3 < 5 = m.

Figure 4: An example of moving the m tokens in Tw up to b (Line 14–Line 18 in Algorithm 3.2).

where O(k) bounds the time required to route m ≤ k tokens on a tree of size at most 2m following
the recursive MoveUpTo(w2) call [Zha99]. We expand the time cost T (wi) of recursive calls until
we reach the base case of wt to obtain

T (v) ≤ T (wt)+
t−1∑
i=1

(
dwi − dwi+1

3 +O(k)
)

= T (wt)+ dw1 − dwt
3 + t ·O(k) ≤ dw1

3 +(t+1)O(k). (5)

Since dv ≤ r and t ≤ k, this shows that compression can be performed in r/3 +O(k2) time.

In general, a graph with radius r and diameter d will have d/2 ≤ r ≤ d. Using Theorem 3.2, this
implies that for a graph G and a sparse permutation with k = o(

√
r), the bound for the routing time

will be between d/3 +o(d) and 2d/3 +o(d). Thus, for such sparse permutations, using reversals will
always asymptotically give us a constant-factor worst-case speedup over any swap-only protocol
since rt(G) ≥ d. Furthermore, for graphs with r = d/2, we can asymptotically achieve the full
factor of 3 speedup.

9



Input : π, a permutation of a contiguous subset of [n].
1 function GenericDivideConquer(BinarySorter, π):
2 if |π| = 1 then
3 return ∅
4 B := BinaryLabeling(π)
5 ρ := BinarySorter(B)
6 π := π · ρ
7 ρ = ρ++ GenericDivideConquer(BinarySorter, π[0,

⌊
n
2
⌋
])

8 ρ = ρ++ GenericDivideConquer(BinarySorter, π[
⌊
n
2
⌋

+ 1, |π|])
9 return ρ

Algorithm 4.1: Divide-and-conquer algorithm for recursively sorting π. BinaryLabeling(π) is a
subroutine that uses Eq. (6) to transform π into a bitstring, and BinarySorter is a subroutine that
takes as input the resulting binary string and returns an ordered reversal sequence ρ̄ that sorts it.

4 Algorithms for routing on the path
Our general approach to implementing permutations on the path relies on the divide-and-conquer
strategy described in Algorithm 4.1. It uses a correspondence between implementing permutations
and sorting binary strings, where the former can be performed at twice the cost of the latter. This
approach is inspired by [PS02] and [Ben+08] who use the same method for routing by reversals in
the sequential case.

First, we introduce a binary labeling using the indicator function

I(v) =
{

0 if v < n/2,
1 otherwise.

(6)

This function labels any permutation π ∈ Sn by a binary string I(π) := (I(π1), I(π2), . . . , I(πn)).
Let π be the target permutation, and σ any permutation such that I(πσ−1) = (0bn/2c1dn/2e).
Then it follows that σ divides π into permutations πL, πR acting only on the left and right halves
of the path, respectively, i.e., π = πL · πR · σ. We find and implement σ via a binary sorting
subroutine, thereby reducing the problem into two subproblems of length at most dn/2e that can
be solved in parallel on disjoint sections of the path. Proceeding by recursion until all subproblems
are on sections of length at most 1, the only possible permutation is the identity and π has been
implemented. Because disjoint permutations are implemented in parallel, the total routing time is
T (π) = T (σ) + max(T (πL), T (πR)).

We illustrate Algorithm 4.1 with an example, where the binary labels are indicated below the
corresponding destination indices:

7 6 0 2 5 1 3 4 label−−−→ 7 6 0 2 5 1 3 4
1 1 0 0 1 0 0 1

sort−−→ 0 3 1 2 5 7 6 4
0 0 0 0 1 1 1 1

label−−−→ 0 3 1 2 5 7 6 4
0 1 0 1 0 1 1 0
↓ sort

0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1

sort←−− 0 1 3 2 5 4 6 7
0 1 1 0 1 0 0 1

label←−−− 0 1 3 2 5 4 6 7
0 0 1 1 0 0 1 1

(7)

Each labeling and sorting step corresponds to an application of Eq. (6) and BinarySorter, respec-
tively, to each subproblem. Specifically, in Eq. (7), we use TBS (Algorithm 4.2) to sort binary
strings.

10



Input : B, a binary string
1 function TripartiteBinarySort(B):
2 if |B| = 1 then
3 return ∅
4 m1 :=

⌊
|B|
3

⌋
5 m2 :=

⌊
2|B|

3

⌋
6 ρ := TripartiteBinarySort(B[0,m1])
7 ρ := ρ++ TripartiteBinarySort(B[m1 + 1,m2]⊕ 11 . . . 1)
8 ρ := ρ++ TripartiteBinarySort(B[m2 + 1, |B|])
9 B ← apply reversals in ρ̄ to B

10 i := index of first 1 in B
11 j := index of last 0 in B
12 return ρ++ ρ(i, j)

Algorithm 4.2: Tripartite Binary Sort (TBS). We let ρ(i, j) denote a reversal on the subsequence
S[i, j] (inclusive of i and j). In line 7, ⊕11 . . . 1 indicates that we flip all the bits, so that we sort the
middle third backwards.

We present two algorithms for BinarySorter, which perform the work in our sorting algorithm.
The first of these binary sorting subroutines is Tripartite Binary Sort (TBS, Algorithm 4.2). TBS
works by splitting the binary string into nearly equal (contiguous) thirds, recursively sorting these
thirds, and merging the three sorted thirds into one sorted sequence. We sort the outer thirds
forwards and the middle third backwards which allows us to merge the three segments using at
most one reversal. For example, we can sort a binary string as follows:

010011100011010011110111001

010011100 011010011 110111001

TBS ↓ TBS ↓ backwards ↓ TBS

000001111 111110000 000111111

00000 1111111110000000 11111

00000000000011111111111111,

(8)

where the arrows with TBS indicate recursive calls to TBS and the bracket indicates the reversal
to merge the segments. Let GDC(TBS) denote Algorithm 4.1 when using TBS to sort binary strings,
where GDC stands for GenericDivideConquer.

The second algorithm is an adaptive version of TBS (Algorithm 4.3) that, instead of using equal
thirds, adaptively chooses the segments’ length. Adaptive TBS considers every pair of partition
points, 0 ≤ i ≤ j < n − 1, that would split the binary sequence into two or three sections: B[0, i],
B[i + 1, j], and B[j + 1, n − 1] (where i = j corresponds to no middle section). For each pair, it
calculates the minimum cost to recursively sort the sequence using these partition points. Since
each section can be sorted in parallel, the total sorting time depends on the maximum time needed
to sort one of the three sections and the cost of the final merging reversal. Let GDC(ATBS) denote
Algorithm 4.1 when using Adaptive TBS to sort binary strings.

Notice that the partition points selected by TBS are considered by the Adaptive TBS algorithm
and are selected by Adaptive TBS only if no other pair of partition points yields a faster sorting

11



Input : B, a binary string
1 function AdaptiveTripartiteBinarySort(B):
2 ρ := ∅
3 for i = 0 to n− 2 :
4 for j = i to n− 2 :
5 ρ0 = AdaptiveTripartiteBinarySort(B[0, i])
6 c0 := cost(ρ0)
7 ρ1 = AdaptiveTripartiteBinarySort(B[i+ 1, j])
8 c1 := cost(ρ1)
9 ρ2 = AdaptiveTripartiteBinarySort(B[j + 1, n− 1])

10 c2 := cost(ρ2)
11 r := cost of merging reversal using i and j as partition points
12 if ρ = ∅ or max{c0, c1, c2}+ r < cost(ρ) then
13 ρ := ρ0 ++ ρ1 ++ ρ2
14 return ρ

Algorithm 4.3: Adaptive TBS. For the sake of clarity, we implement an exhaustive search over all
possible ways to choose the partition points. However, we note that the optimal partition points can
be found in polynomial time by using a dynamic programming method [Ben+08].

time. Thus, for any permutation, the sequence of reversals found by Adaptive TBS costs no more
than that found by TBS. However, TBS is simpler to implement and will be faster than Adaptive
TBS in finding the sorting sequence of reversals.

4.1 Worst-case bounds
In this section, we prove that all permutations of sufficiently large length n can be sorted in time
strictly less than n using reversals. Let nx(b) denote the number of times character x ∈ {0, 1}
appears in a binary string b, and let T (b) (resp., T (π)) denote the best possible sorting time to sort
b (resp., implement π) with reversals. Assume all logarithms are base 2 unless specified otherwise.

Lemma 4.1. Let b ∈ {0, 1}n such that nx(b) < cn + O(log n), where c ∈ [0, 1/3] and x ∈ {0, 1}.
Then, T (b) ≤ (c/3 + 7/18)n+O(log n).

Proof. To achieve this upper bound, we use TBS (Algorithm 4.2). There are blog3 nc steps in the
recursion, which we index by j ∈ {0, 1, . . . , blog3 nc}, with step 0 corresponding to the final merging
step. Let |ρj | denote the size of the longest reversal in recursive step j that merges the three sorted
subsequences of size n/3j+1. The size of the final merging reversal ρ0 can be bounded above by
(c+ 2/3)n+O(log n) because |ρ0| is maximized when every x is contained in the leftmost third if
x = 1 or the rightmost third if x = 0. So we have

T (b) ≤

log3 n∑
j=0

|ρj |
3

+O(log n) ≤
(
c

3 + 2
9

)
n+O(log n) +

log3 n∑
j=1

|ρj |
3

+O(log n) (9)

≤
(
c

3 + 7
18

)
n+O(log n), (10)

where we used |ρj | ≤ n/3j for j ≥ 1.

12



n/3 2n/3

2εn
3− 6ε

2εn
3− 6ε

n0(b1) < 2εn n1(b3) < 2εn

Figure 5: Case 2 of Theorem 4.2. If there are few zeros and ones in the leftmost and rightmost thirds,
respectively, we can shorten the middle section so that it can be sorted quickly. Then, because each of the
outer thirds contain far more zeros than ones (or vice versa), they can both can be sorted quickly as well.

Now we can prove a bound on the cost of a sorting series found by Adaptive TBS for any binary
string of length n.

Theorem 4.2. For all bit strings b ∈ {0, 1}n of arbitrary length n ∈ N, T (b) ≤ (1/2− ε)n +
O(log n) ≈ 0.483n+O(log n), where ε = 1/3− 1/

√
10.

Proof. Let b ∈ {0, 1}n for some n ∈ N. Partition b into three sections b = b1b2b3 such that
|b1| = |b3| = bn/3c and |b2| = n− 2bn/3c. Since bn/3c = n/3− d where d ∈ {0, 1/3, 2/3}, we write
|b1| = |b2| = |b3| = n/3 +O(1) for the purposes of this proof. Recall that if segments b1 and b3 are
sorted forwards and segment b2 is sorted backwards, the resulting segment can be sorted using a
single reversal, ρ (see the example in Eq. (8)). Then we have

T (b) ≤ max(T (b1), T ′(b2), T (b3)) + |ρ|+ 1
3 , (11)

where T ′(b2) is the time to sort b2 backwards using reversals.
We proceed by induction on n. For the base case, it suffices to note that every binary string

can be sorted using reversals and, for finitely many values of n ∈ N, any time needed to sort a
binary string of length n exceeding (1/2− ε)n can be absorbed into the O(log n) term. Now assume
T (b) ≤ (1/2− ε) k +O(log k) for all k < n, b ∈ {0, 1}k.

Case 1: n0(b1) ≥ 2εn or n1(b3) ≥ 2εn. In this case, |ρ| ≤ n− 2εn, so

T (b) ≤ n− 2εn+ 1
3 + max(T (b1), T ′(b2), T (b3)) ≤

(1
2 − ε

)
n+O(log n) (12)

by the induction hypothesis.
Case 2: n0(b1) < 2εn and n1(b3) < 2εn. In this case, adjust the partition such that |b1| =

|b3| = n/3 + 2εn/(3 − 6ε) − O(1) and consequently |b2| = n/3 − 4εn/(3 − 6ε) + O(1), as depicted
in Figure 5. In this adjustment, at most 2εn/(3 − 6ε) zeros are added to the segment b1 and
likewise with ones to b3. Thus, n1(b3) ≤ 2εn + 2εn/(3 − 6ε) = (1 + 1/(3− 6ε)) 2εn. Since n =
(3− 6ε)|b1| −O(1), we have

n1(b3) ≤
(

1 + 1
3− 6ε

)
2ε((3− 6ε)|b1| −O(1)) = (2− 3ε)4ε|b1| −O(1). (13)

Let c = (2− 3ε)4ε = 2/15. Applying Lemma 4.1 with this value of c yields

T (b3) ≤
( 2

45 + 7
18

)
|b1|+O(log (|b1|)) =

( 1√
10
− 1

6

)
n+O(log n). (14)

13



Since |b1| = |b3|, we obtain the same bound T (b1) ≤ (1/
√

10 − 1/6)n + O(log n) by applying
Lemma 4.1 with the same value of c.

By the inductive hypothesis, T ′(b2) can be bounded above by

T ′(b2) ≤
(1

2 − ε
)(

n

3 −
4ε

3− 6εn+O(1)
)

+O(log n) =
( 1√

10
− 1

6

)
n+O(log n). (15)

Using Eq. (11) and the fact that |ρ| ≤ n, we get the bound

T (b) ≤
( 1√

10
− 1

6

)
n+O(log n) + n+ 1

3 =
(1

2 − ε
)
n+O(log n)

as claimed.

This bound on the cost of a sorting series found by Adaptive TBS for binary sequences can
easily be extended to a bound on the minimum sorting sequence for any permutation of length n.

Corollary 4.3. For a length-n permutation π, T (π) ≤
(
1/3 +

√
2/5

)
n + O(log2 n) ≈ 0.9658n +

O(log2 n).

Proof. To sort π, we turn it into a binary string b using Eq. (6). Then let ρ1, ρ2, . . . , ρm be a
sequence of reversals to sort b. If we apply the sequence to get π′ = πρ1ρ2 · · · ρm, every element of
π′ will be on the same half as its destination. We can then recursively perform the same procedure
on each half of π′, continuing down until every pair of elements has been sorted.

This process requires blog nc steps, and at step i, there are 2i binary strings of length n
2i being

sorted in parallel. This gives us the following bound to implement π:

T (π) ≤
logn∑
i=0

T (bi), (16)

where bi ∈ {0, 1}n/2i . Applying the bound from Theorem 4.2, we obtain

T (π) ≤
logn∑
i=0

T (bi) ≤
logn∑
i=0

((1
6 + 1√

10

)
n

2i +O(log(n/2i))
)

=
(

1
3 +

√
2
5

)
n+O(log2 n).

5 Average-case performance
So far we have presented worst-case bounds that provide a theoretical guarantee on the speedup of
quantum routing over classical routing. However, the bounds are not known to be tight, and may
not accurately capture the performance of the algorithm in practice.

In this section we show better performance for the average-case routing time, the expected
routing time of the algorithm on a permutation chosen uniformly at random from Sn. We present
both theoretical and numerical results on the average routing time of swap-based routing (such as
odd-even sort) and quantum routing using TBS and ATBS. We show that on average, GDC(TBS)
(and GDC(ATBS), whose sorting time on any instance is at least as fast) beats swap-based routing
by a constant factor 2/3. We have the following two theorems, whose proofs can be found in
Appendices A and B, respectively.

14



0 100 200 300 400 500
n

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
n/n

OES
GDC(TBS)
GDC(ATBS)

(a) Normalized mean routing time with std. deviation.

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
log10 [n]

2.0

1.8

1.6

1.4

1.2

1.0

lo
g 1

0
[

n/n
]

OES
GDC(TBS)
GDC(ATBS)

(b) Log normalized standard deviation of the routing time.

Figure 6: The mean routing time and fit of the mean routing time for odd-even sort (OES), and routing
algorithms using Tripartite Binary Sort (GDC(TBS)) and Adaptive TBS (GDC(ATBS)). We exhaustively search
for n < 12 and sample 1000 permutations uniformly at random otherwise. We show data for GDC(ATBS) only
for n ≤ 207 because it becomes too slow after that point. We find that the fit function µn = an+ b

√
n+ c

fits the data with an R2 > 99.99% (all three algorithms). For OES, the fit gives a ≈ 0.9999; for GDC(TBS),
a ≈ 0.6599; and for GDC(ATBS), a ≈ 0.6513. Similarly, for the standard deviation, we find that the fit
function σ2

n = an + b
√
n + c fits the data with R2 ≈ 99% (all three algorithms), suggesting that the

normalized deviation of the performance about mean scales as σn/n = Θ(n−0.5) asymptotically.

Theorem 5.1. The average routing time of any swap-based procedure is lower bounded by n−o(n).

Theorem 5.2. The average routing time of GDC(TBS) is 2n/3 +O(nα) for a constant α ∈
(1

2 , 1
)
.

These theorems provide average-case guarantees, yet do not give information about the non-
asymptotic behavior. Therefore, we test our algorithms on random permutations for instances of
intermediate size.

Our numerics [KSS21] show that Algorithm 4.1 has an average routing time that is well-
approximated by c · n + o(n), where 2/3 . c < 1, using TBS or Adaptive TBS as the binary
sorting subroutine, for permutations generated uniformly at random. Similarly, the performance of
odd-even sort (OES) is well-approximated by n + o(n). Furthermore, the advantage of quantum
routing is evident even for fairly short paths. We demonstrate this by sampling 1000 permutations
uniformly from Sn for n ∈ [12, 512], and running OES and GDC(TBS) on each permutation. Due to
computational constraints, GDC(ATBS) was run on sample permutations for lengths n ∈ [12, 206].
On an Intel i7-6700HQ processor with a clock speed of 2.60 GHz, OES took about 0.04 seconds to
implement each permutation of length 512; GDC(TBS) took about 0.3 seconds; and, for permutations
of length 200, GDC(ATBS) took about 6 seconds.

The results of our experiments are summarized in Figure 6. We find that the mean normalized
time costs for OES, GDC(TBS), and GDC(ATBS) are similar for small n, but the latter two decrease
steadily as the lengths of the permutations increase while the former steadily increases. Furthermore,
the average costs for GDC(TBS) and GDC(ATBS) diverge from that of OES rather quickly, suggesting
that GDC(TBS) and GDC(ATBS) perform better on average for somewhat small permutations (n ≈ 50)
as well as asymptotically.

The linear coefficient a of the fit of µn for OES is a ≈ 0.9999 ≈ 1, which is consistent with

15



the asymptotic bound proven in Theorems 5.1 and 5.2. For the fit of the mean time costs for
GDC(TBS) and GDC(ATBS), we have a ≈ 0.6599 and a ≈ 0.6513 respectively. The numerics suggest
that the algorithm routing times agree with our analytics, and are fast for instances of realistic
size. For example, at n = 100, GDC(TBS) and GDC(ATBS) have routing times of ∼ 0.75n and
0.72n, respectively. On the other hand, OES routes in average time > 0.9n. For larger instances,
the speedup approaches the full factor of 2/3 monotonically. Moreover, the fits of the standard
deviations suggest σn/n = Θ(1/

√
n) asymptotically, which implies that as permutation length

increases, the distribution of routing times gets relatively tighter for all three algorithms. This
suggests that the average-case routing time may indeed be representative of typical performance for
our algorithms for permutations selected uniformly at random.

6 Conclusion
We have shown that our algorithm, GDC(ATBS) (i.e., Generic Divide-and-Conquer with Adaptive
TBS to sort binary strings), uses the fast state reversal primitive to outperform any swap-based
protocol when routing on the path in the worst and average case. Recent work shows a lower bound
on the time to perform a reversal on the path graph of n/α, where α ≈ 4.5 [Bap+20]. Thus we
know that the routing time cannot be improved by more than a factor α over swaps, even with
new techniques for implementing reversals. However, it remains to understand the fastest possible
routing time on the path. Clearly, this is also lower bounded by n/α. Our work could be improved
by addressing the following two open questions: (i) how fast can state reversal be implemented, and
(ii) what is the fastest way of implementing a general permutation using state reversal?

We believe that the upper bound in Corollary 4.3 can likely be decreased. For example, in the
proof of Lemma 4.1, we use a simple bound to show that the reversal sequence found by GDC(TBS)
sorts binary strings with fewer than cn ones sufficiently fast for our purposes. It is possible that
this bound can be decreased if we consider the reversal sequence found by GDC(ATBS) instead.
Additionally, in the proof of Theorem 4.2, we only consider two pairs of partition points: one pair
in each case of the proof. This suggests that the bound in Theorem 4.2 might be decreased if the
full power of GDC(ATBS) could be analyzed.

Improving the algorithm itself is also a potential avenue to decrease the upper bound in Corol-
lary 4.3. For example, the generic divide-and-conquer approach in Algorithm 4.1 focused on splitting
the path exactly in half and recursing. An obvious improvement would be to create an adaptive
version of Algorithm 4.1 in a manner similar to GDC(ATBS) where instead of splitting the path in
half, the partition point would be placed in the optimal spot. It is also possible that by going
beyond the divide-and-conquer approach, we could find faster reversal sequences and reduce the
upper bound even further.

Our algorithm uses reversals to show the first quantum speedup for unitary quantum routing.
It would be interesting to find other ways of implementing fast quantum routing that are not
necessarily based on reversals. Other primitives for rapidly routing quantum information might be
combined with classical strategies to develop fast general-purpose routing algorithms, possibly with
an asymptotic scaling advantage. Such primitives might also take advantage of other resources, such
as long-range Hamiltonians or the assistance of entanglement and fast classical communication.

16



Acknowledgements
We thank William Gasarch for organizing the REU-CAAR program that made this project possible.

A.B. and A.V.G. acknowledge support by the DoE ASCR Quantum Testbed Pathfinder pro-
gram (award number de-sc0019040), ARO MURI, DoE ASCR Accelerated Research in Quantum
Computing program (award number de-sc0020312), U.S. Department of Energy award number de-
sc0019449, NSF PFCQC program, AFOSR, and AFOSR MURI. A.M.C. and E.S. acknowledge
support by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Quantum Testbed Pathfinder program (award number de-sc0019040) and the U.S.
Army Research Office (MURI award number W911NF-16-1-0349). S.K. and H.S. acknowledge sup-
port from an NSF REU grant, REU-CAAR (CNS-1952352). E.S. acknowledges support from an
IBM Ph.D. Fellowship.

References
[ACG94] N. Alon, F. R. K. Chung, and R. L. Graham. “Routing Permutations on Graphs via

Matchings”. In: SIAM Journal on Discrete Mathematics 7.3 (1994), pp. 513–530. doi:
10.1137/s0895480192236628.

[Aru+19] F. Arute et al. “Quantum supremacy using a programmable superconducting proces-
sor”. In: Nature 574.7779 (2019), pp. 505–510. doi: 10.1038/s41586-019-1666-5.

[BP93] V. Bafna and P. A. Pevzner. “Genome rearrangements and sorting by reversals”.
In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science. 1993,
pp. 148–157. doi: 10.1137/S0097539793250627.

[BR17] I. Banerjee and D. Richards. “New Results on Routing via Matchings on Graphs”.
In: Fundamentals of Computation Theory. Lecture Notes in Computer Science 10472.
Springer, 2017, pp. 69–81. doi: 10.1007/978-3-662-55751-8_7.

[Bap+20] A. Bapat, E. Schoute, A. V. Gorshkov, and A. M. Childs. Nearly optimal time-independent
reversal of a spin chain. 2020. arXiv: 2003.02843v1 [quant-ph].

[Ben+08] M. A. Bender, D. Ge, S. He, H. Hu, R. Y. Pinter, S. Skiena, and F. Swidan. “Improved
bounds on sorting by length-weighted reversals”. In: Journal of Computer and System
Sciences 74.5 (2008), pp. 744–774. doi: 10.1016/j.jcss.2007.08.008.

[Ben+02] C. H. Bennett, J. I. Cirac, M. S. Leifer, D. W. Leung, N. Linden, S. Popescu, and G.
Vidal. “Optimal simulation of two-qubit Hamiltonians using general local operations”.
In: Physical Review A 66.1 (2002). doi: 10.1103/physreva.66.012305.

[Bre+16] T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret, and R. J. Schoelkopf.
“Multilayer microwave integrated quantum circuits for scalable quantum computing”.
In: npj Quantum Information 2.16002 (2016). doi: 10.1038/npjqi.2016.2.

[CSU19] A. M. Childs, E. Schoute, and C. M. Unsal. “Circuit Transformations for Quantum
Architectures”. In: 14th Conference on the Theory of Quantum Computation, Commu-
nication and Cryptography (TQC 2019). Vol. 135. Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019, 3:1–
3:24. doi: 10.4230/LIPIcs.TQC.2019.3.

17

https://doi.org/10.1137/s0895480192236628
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1137/S0097539793250627
https://doi.org/10.1007/978-3-662-55751-8_7
https://arxiv.org/abs/2003.02843v1
https://doi.org/10.1016/j.jcss.2007.08.008
https://doi.org/10.1103/physreva.66.012305
https://doi.org/10.1038/npjqi.2016.2
https://doi.org/10.4230/LIPIcs.TQC.2019.3


[KS95] J. Kececioglu and D. Sankoff. “Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement”. In: Algorithmica 13.1-2 (1995),
pp. 180–210. doi: 10.1007/BF01188586.

[KSS21] S. King, E. Schoute, and H. Shastri. reversal-sort. 2021. url: https://gitlab.umiacs.
umd.edu/amchilds/reversal-sort.

[Kja+20] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I.-J. Wang, S. Gustavs-
son, and W. D. Oliver. “Superconducting qubits: Current state of play”. In: Annual
Review of Condensed Matter Physics 11 (2020), pp. 369–395. doi: 10.1146/annurev-
conmatphys-031119-050605.

[Klø08] T. Kløve. Spheres of Permutations under the Infinity Norm–Permutations with lim-
ited displacement. Research rep. 376. Department of Informatics, University of Bergen,
Norway, 2008. url: http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-376.pdf .

[LDM84] S. Lakshmivarahan, S. K. Dhall, and L. L. Miller. “Parallel Sorting Algorithms”. In:
vol. 23. Advances in Computers. Elsevier, 1984, pp. 321–323. doi: 10.1016/S0065-
2458(08)60467-2.

[LWD15] A. Lye, R. Wille, and R. Drechsler. “Determining the minimal number of swap gates
for multi-dimensional nearest neighbor quantum circuits”. In: The 20th Asia and South
Pacific Design Automation Conference. IEEE, 2015, pp. 178–183. doi: 10.1109/asp-
dac.2015.7059001.

[MG19] D. McClure and J. Gambetta. Quantum computation center opens. Tech. rep. IBM,
2019. url: https://www.ibm.com/blogs/research/2019/09/quantum-computation-
center/ (visited on 03/30/2020).

[MK13] C. Monroe and J. Kim. “Scaling the Ion Trap Quantum Processor”. In: Science 339.6124
(2013), pp. 1164–1169. doi: 10.1126/science.1231298.

[Mon+14] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and
J. Kim. “Large-scale modular quantum-computer architecture with atomic memory
and photonic interconnects”. In: Physical Review A 89.2 (2014). doi: 10.1103/phys-
reva.89.022317.

[Mur+19] P. Murali, J. M. Baker, A. J. Abhari, F. T. Chong, and M. Martonosi. “Noise-Adaptive
Compiler Mappings for Noisy Intermediate-Scale Quantum Computers”. In: ASPLOS
’19. Proceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. The Association for Comput-
ing Machinery, 2019, pp. 1015–1029. doi: 10.1145/3297858.3304075.

[NNN05] T. C. Nguyen, H. T. Ngo, and N. B. Nguyen. “Sorting by Restricted-Length-Weighted
Reversals”. In: Genomics, Proteomics & Bioinformatics 3.2 (2005), pp. 120–127. doi:
10.1016/S1672-0229(05)03016-0.

[PS16] M. Pedram and A. Shafaei. “Layout Optimization for Quantum Circuits with Linear
Nearest Neighbor Architectures”. In: IEEE Circuits and Systems Magazine 16.2 (2016),
pp. 62–74. doi: 10.1109/MCAS.2016.2549950.

[PS02] R. Pinter and S. Skiena. “Genomic sorting with length-weighted reversals”. In: Genome
informatics. International Conference on Genome Informatics 13 (2002), pp. 103–11.
doi: 10.11234/gi1990.13.103.

18

https://doi.org/10.1007/BF01188586
https://gitlab.umiacs.umd.edu/amchilds/reversal-sort
https://gitlab.umiacs.umd.edu/amchilds/reversal-sort
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
http://www.ii.uib.no/publikasjoner/texrap/pdf/2008-376.pdf
https://doi.org/10.1016/S0065-2458(08)60467-2
https://doi.org/10.1016/S0065-2458(08)60467-2
https://doi.org/10.1109/aspdac.2015.7059001
https://doi.org/10.1109/aspdac.2015.7059001
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://doi.org/10.1126/science.1231298
https://doi.org/10.1103/physreva.89.022317
https://doi.org/10.1103/physreva.89.022317
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1016/S1672-0229(05)03016-0
https://doi.org/10.1109/MCAS.2016.2549950
https://doi.org/10.11234/gi1990.13.103


[Rau05] R. Raussendorf. “Quantum computation via translation-invariant operations on a chain
of qubits”. In: Physical Review A 72.5 (2005). doi: 10.1103/physreva.72.052301.

[Rob55] H. Robbins. “A remark on Stirling’s formula”. In: The American Mathematical Monthly
62.1 (1955), pp. 26–29. doi: 10.2307/2315957.

[SWD11] M. Saeedi, R. Wille, and R. Drechsler. “Synthesis of quantum circuits for linear nearest
neighbor architectures”. In: Quantum Information Processing 10.3 (2011), pp. 355–377.
doi: 10.1007/s11128-010-0201-2.

[SV17] M. Schwartz and P. O. Vontobel. “Improved Lower Bounds on the Size of Balls Over
Permutations With the Infinity Metric”. In: IEEE Transactions on Information Theory
63.10 (2017), pp. 6227–6239. doi: 10.1109/TIT.2017.2697423.

[SSP13] A. Shafaei, M. Saeedi, and M. Pedram. “Optimization of Quantum Circuits for In-
teraction Distance in Linear Nearest Neighbor Architectures”. In: Proceedings of the
50th Annual Design Automation Conference. DAC ’13. ACM, 2013, 41:1–41:6. doi:
10.1145/2463209.2488785.

[SSP14] A. Shafaei, M. Saeedi, and M. Pedram. “Qubit placement to minimize communication
overhead in 2D quantum architectures”. In: 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2014. doi: 10.1109/aspdac.2014.6742940.

[TS10] I. Tamo and M. Schwartz. “Correcting Limited-Magnitude Errors in the Rank-Modulation
Scheme”. In: IEEE Transactions on Information Theory 56.6 (2010), pp. 2551–2560.
doi: 10.1109/TIT.2010.2046241.

[VHC02] G. Vidal, K. Hammerer, and J. I. Cirac. “Interaction Cost of Nonlocal Gates”. In:
Physical Review Letters 88.23 (2002), p. 237902. doi: 10.1103/PhysRevLett.88.237902.

[Zha99] L. Zhang. “Optimal Bounds for Matching Routing on Trees”. In: SIAM Journal on
Discrete Mathematics 12.1 (1999), pp. 64–77. doi: 10.1137/s0895480197323159.

[ZW19] A. Zulehner and R. Wille. “Compiling SU(4) quantum circuits to IBM QX architec-
tures”. In: ASP-DAC ’19. Proceedings of the 24th Asia and South Pacific Design Au-
tomation Conference. ACM Press, 2019, pp. 185–190. doi: 10.1145/3287624.3287704.

A Average routing time using only swaps
In this section, we prove Theorem 5.1. First, define the infinity distance d∞ : Sn → N to be
d∞(π) = max1≤i≤n |πi − i|. Note that 0 ≤ d∞(π) ≤ n − 1. Finally, define the set of permutations
of length n with infinity distance at most k to be Bk,n = {π ∈ Sn : d∞(π) ≤ k}.

The infinity distance is crucially tied to the performance of odd-even sort, and indeed, any
swap-based routing algorithm. For any permutation π of length n, the routing time of any swap-
based algorithm is bounded below by d∞(π), since the element furthest from its destination must
be swapped at least d∞(π) times, and each of those swaps must occur sequentially. To show that
the average routing time of any swap-based protocol is asymptotically at least n, we first show that
|B(1−ε)n,n|/n!→ 0 for all 0 < ε ≤ 1/2.

Schwartz and Vontobel [SV17] present an upper bound on |Bk,n| that was proved in [Klø08] and
[TS10]:

19

https://doi.org/10.1103/physreva.72.052301
https://doi.org/10.2307/2315957
https://doi.org/10.1007/s11128-010-0201-2
https://doi.org/10.1109/TIT.2017.2697423
https://doi.org/10.1145/2463209.2488785
https://doi.org/10.1109/aspdac.2014.6742940
https://doi.org/10.1109/TIT.2010.2046241
https://doi.org/10.1103/PhysRevLett.88.237902
https://doi.org/10.1137/s0895480197323159
https://doi.org/10.1145/3287624.3287704


Lemma A.1. For all 0 < r < 1, |Brn,n| ≤ Φ(rn, n), where

Φ(k, n) =

((2k + 1)!)
n−2k
2k+1

∏2k
i=k+1(i!)2/i if 0 < k/n ≤ 1

2

(n!)
2k+2−n

n
∏n−1
i=k+1(i!)2/i if 1

2 ≤ k/n < 1.
(17)

Proof. Note that r = k/n. For the case of 0 < r ≤ 1/2, refer to [Klø08] for a proof. For the case
of 1/2 ≤ r < 1, refer to [TS10] for a proof.

Lemma A.2.

n! = Θ
(√

n

(
n

e

)n)
(18)

Proof. This follows from well-known precise bounds for Stirling’s formula:

√
2πn

(
n

e

)n
e

1
12n+1 ≤ n! ≤

√
2πn

(
n

e

)n
e

1
12n (19)

√
2πn

(
n

e

)n
≤ n! ≤

√
2πn

(
n

e

)n
e (20)

(see for example [Rob55]).

With Lemmas A.1 and A.2 in hand, we proceed with the following theorem:

Theorem A.3. For all 0 < ε ≤ 1/2, limn→∞ |B(1−ε)n,n|/n! = 0. In other words, the proportion of
permutations of length n with infinity distance less than (1− ε)n vanishes asymptotically.

Proof. Lemma A.1 implies that |B(1−ε)n,n|/n! ≤ Φ((1 − ε)n, n)/n!. The constraint 0 < ε ≤ 1/2
stipulates that we are in the regime where 1/2 ≤ r < 1, since r = 1− ε. Then we use Lemma A.2
to simplify any factorials that appear. Substituting Eq. (17) and simplifying, we have

Φ ((1− ε)n, n)
n! =

∏n−1
i=(1−ε)n+1(i!)2/i

(n!)2ε−2/n = O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 . (21)

We note that i1/i terms can be bounded by

n−1∏
i=(1−ε)n+1

i
1
i ≤

n−1∏
i=(1−ε)n+1

n
1

(1−ε)n ≤ n
ε

1−ε ≤ n (22)

20



since ε ≤ 1/2. Now we have

O

 e2εn−2

n2εn−2

n−1∏
i=(1−ε)n+1

i2+1/i

e2

 = O

 n

n2εn−2

n−1∏
i=(1−ε)n+1

i2

 (23)

= O

(
n

n2εn−2

( (n− 1)!
((1− ε)n+ 1)!

)2)
(24)

= O

(
n

n2εn−2e2εn
(n− 1)2n−1

((1− ε)n+ 1)2(1−ε)n+2

)
(25)

= O

(
n

n2εn−2e2εn
n2n

((1− ε)n)2(1−ε)n

)
(26)

= O

(
n3

exp ((ln(1− ε)(1− ε) + ε)2n)

)
. (27)

Since ln(1− ε)(1− ε) + ε > 0 for ε > 0, this vanishes in the limit of large n.

Now we prove the theorem.

Proof of Theorem 5.1. Let T̄ denote the average routing time of any swap-based protocol. Consider
a random permutation π drawn uniformly from Sn. Due to Theorem A.3, π will belong in B(1−ε)n,n
with vanishing probability, for all 0 < ε ≤ 1/2. Therefore, for any fixed 0 < ε ≤ 1/2 as n → ∞,
(1 − ε)n < E [d∞(π)]. This translates to an average routing time of at least n − o(n) because we
have, asymptotically, (1− ε)n ≤ T̄ for all such ε.

B Average routing time using TBS
In this section, we prove Theorem 5.2, which characterizes the average-case performance of TBS
(Algorithm 4.2). This approach consists of two steps: a recursive call on three equal partitions of
the path (of length n/3 each), and a merge step involving a single reversal.

We denote the uniform distribution over a set S as U(S). The set of all n-bit strings is denoted
Bn, where B = {0, 1}. Similarly, the set of all n-bit strings with Hamming weight k is denoted Bnk .
For simplicity, assume that n is even. We denote the runtime of TBS on b ∈ Bn by T (b).

When running GDC(TBS) on a given permutation π, the input bit string for TBS is b = I(π),
where the indicator function I is defined in Eq. (6). We wish to show that, in expectation over all
permutations π, the corresponding bit strings are quick to sort. First, we show that it suffices to
consider uniformly random sequences from Bnn/2.

Lemma B.1. If π ∼ U(Sn), then I(π) ∼ U(Bnn/2).

Proof. We use a counting argument. The number of permutations π such that I(π) ∈ Bnn/2 is
(n/2)!(n/2)!, since we can freely assign index labels from {1, 2, . . . , n/2} to the 0 bits of I(π), and
from {n/2 + 1, . . . , n} to the 1 bits of I(π). Therefore, for a uniformly random π and arbitrary
b ∈ Bnn/2,

Pr(I(π) = b) = (n/2)!(n/2)!
n! = 1( n

n/2
) = 1
|Bnn/2|

. (28)

Therefore, I(π) ∼ U(Bnn/2).

21



While Bnn/2 is easier to work with than Sn, the constraint on the Hamming weight still poses
an issue when we try to analyze the runtime recursively. To address this, Lemma B.2 below shows
that relaxing from U(Bnn/2) to U(Bn) does not affect expectation values significantly.

We give a recursive form for the runtime of TBS. We use the following convention for the
substrings of an arbitrary n-bit string a: if a is divided into 3 segments, we label the segments
a0.0, a0.1, a0.2 from left to right. Subsequent thirds are labeled analogously by ternary fractions. For
example, the leftmost third of the middle third is denoted a0.10, and so on. Then, the runtime of
TBS on string a can be bounded by

T (a) ≤ max
i∈{0,1,2}

T (a0.i) + n1(a0.0) + n1(a0.2) + n/3 + 1
3 , (29)

where a is the bitwise complement of bit string a and n1(a) denotes the Hamming weight of a.
Logically, the first term on the right-hand side is a recursive call to sort the thirds, while the second
term is the time taken to merge the sorted subsequences on the thirds using a reversal. Each term
T (a0.i) can be broken down recursively until all subsequences are of length 1. This yields the general
formula

T (b) ≤ 1
3

dlog3(n)e∑
r=1

max
i∈{0,1,2}r−1

{n1(a0.i0) + n1(a0.i2)}+ n/3r + 1

 , (30)

where i ∈ ∅ indicates the empty string.

Lemma B.2. Let a ∼ U(Bn) and b ∼ U(Bnn/2). Then

E[T (b)] ≤ E[T (a)] + Õ(nα) (31)

where α ∈ (1
2 , 1) is a constant.

The intuition behind this lemma is that by the law of large numbers, the deviation of the
Hamming weight from n/2 is subleading in n, and the TBS runtime does not change significantly
if the input string is altered in a subleading number of places.

Proof. Consider an arbitrary bit string a, and apply the following transformation. If n1(a) = k ≥
n/2, then flip k − n/2 ones chosen uniformly randomly to zero. If k < n/2, flip n/2 − k zeros to
ones. Call this stochastic function f(a). Then, for all a, f(a) ∈ Bnn/2, and for a random string
a ∼ U(Bn), we claim that f(a) ∼ U(Bnn/2). In other words, f maps the uniform distribution on Bn
to the uniform distribution on Bnn/2.

We show this by calculating the probability Pr(f(a) = b), for arbitrary b ∈ Bnn/2. A string a
can map to b under f only if a and b disagree in the same direction: if, WLOG, n1(a) ≥ n1(b),
then a must take value 1 wherever a, b disagree (and 0 if n1(a) ≤ n1(b)). We denote this property
by a � b. The probability of picking a uniformly random a such that a � b with x disagreements
between them is

(n/2
x

)
, since n0(b) = n/2. Next, the probability that f maps a to b is

(n/2+x
x

)
.

22



Combining these, we have

Pr(f(a) = b) =
n/2∑

x=−n/2
Pr
(
a � b and n1(a) = n

2 + x

)
· Pr

(
f(a) = b | a � b and n1(a) = n

2 + x

)
,

(32)

=
n/2∑

x=−n/2

(n/2
|x|
)

2n · 1(n/2+|x|
|x|

) , (33)

= 1( n
n/2
) n/2∑
x=−n/2

( n
n/2−x

)
2n , (34)

= 1( n
n/2
) = 1
|Bnn/2|

. (35)

Therefore, f(a) ∼ U(Bnn/2). Thus, f allows us to simulate the uniform distribution on Bnn/2 starting
from the uniform distribution on Bn.

Now we bound the runtime of TBS on f(a) in terms of the runtime on a fixed a. Fix some
α ∈ (1

2 , 1). We know that n1(f(a)) = n/2, and suppose |n1(a)− n/2| ≤ nα. Since f(a) differs from
a in at most nα places, then at level r of the TBS recursion (see Eq. (30)), the runtimes of a and
f(a) differ by at most 1/3 ·min{2n/3r, nα}. This is because the runtimes can differ by at most two
times the length of the subsequence. Therefore, the total runtime difference is bounded by

∆T ≤ 1
3

dlog3(n)e∑
r=1

min
{2n

3r , n
α
}
, (36)

= 1
3

dlog3(2n1−α)e∑
r=1

nα + 2
dlog3(n)e∑

r=dlog3(2n1−α)e+1

n

3r

 , (37)

= 1
3

nα log(2nα/3) + 2
blog3(nα/2)c−1∑

s=0
3s
 (38)

= 1
3 (nα log(2nα/3) + nα/2− 1) = Õ(nα). (39)

On the other hand, if |n1(a) − n/2| ≥ nα/2, we simply bound the runtime by that of OES, which
is at most n.

Now consider a ∼ U(Bn) and b = f(a) ∼ U(Bnn/2). Since n1(a) has the binomial distribution
B(n, 1/2), where B(k, p) is the sum of k Bernoulli random variables with success probability p, the
Chernoff bound shows that deviation from the mean is exponentially suppressed, i.e.,

Pr(|n1(a)− n/2| ≥ nα) = exp(−O(n2α−1)). (40)

Therefore, the deviation in the expectation values is bounded by

|E[T (f(a))]− E[T (a)]| ≤ n exp(−O(n2α−1)) + c(1− exp(−O(n2α−1)))nα log(n) = Õ(nα), (41)

where c is a constant. Finally, we conclude that

E[T (b)] ≤ E[T (a)] + Õ(nα) (42)

as claimed.

23



Next, we prove the main result of this section, namely, that the runtime of GDC(TBS) is 2n/3
up to additive subleading terms.

Proof of Theorem 5.2. We first prove properties for sorting a random n-bit string a ∼ U(Bn) and
then apply this to the problem of sorting b ∼ U(Bnn/2) using Lemmas B.1 and B.2.

The expected runtime for TBS can be calculated using the recursive formula in Eq. (30):

E[T (a)] ≤ 1
3

log3(n)∑
r=1

E
[

max
i∈{0,1,2}r−1

{n1(a0.i0) + n1(a0.i2)}
]

+ n/3r + 1

 . (43)

The summand contains an expectation of a maximum over Hamming weights of i.i.d. uniformly
random substrings of length n/3r, which is equivalent to a binomial distribution B(n/3r, 1/2) where
we have n/3r Bernoulli trials with success probability 1/2. Because of independence, if we sample
X1, X2 ∼ B(n/3r, 1/2), then X1 + X2 ∼ B(2n/3r, 1/2). Using Lemma B.3 with m = 3r−1, the
expected maximum can be bounded by

n

3r +O

(√
(n/3r) log(3r−1n/3r)

)
= n

3r + Õ
(
n1/2

)
(44)

since the second term is largest when r = O(1). Therefore,

E[T (a)] ≤ 1
3

log3(n)∑
r=1

2n
3r

+ Õ
(
n1/2

)
= n

3 + Õ
(
n1/2

)
. (45)

Lemma B.2 then gives E[T (b)] ≤ n
3 + Õ(nα).

The routing algorithm GDC(TBS) proceeds by calling TBS on the full path, and then in parallel
on the two disjoint sub-paths of length n/2. We show that the distributions of the left and right
halves are uniform if the input permutation is sampled uniformly as π ∼ U(Sn). There exists a
bijective mapping g such that g(π) = (b, πL, πR) ∈ Bnn/2 × Sn/2 × Sn/2 for any π ∈ Sn since

|Sn| = n! =
(
n

n/2

)(
n

2

)
!
(
n

2

)
! =

∣∣∣Bnn/2 × Sn/2 × Sn/2

∣∣∣. (46)

In particular, g can be defined so that b specifies which entries are taken to the first n/2 positions—
say, without changing the relative ordering of the entries mapped to the first n/2 positions or the
entries mapped to the last n/2 positions—and πL and πR specify the residual permutations on the
first and last n/2 positions, respectively. Given g(π) = (b, πL, πR), TBS only has access to b. After
sorting, TBS can only perform deterministic permutations µL(b), µR(b) ∈ Sn/2 on the left and right
halves, respectively, that depend only on b. Thus TBS performs the mappings πL 7→ πL ◦ (µL(b))
and πR 7→ πR ◦ (µR(b)) on the output. Now it is easy to see that when πL, πR ∼ U(Sn/2), the
output is also uniform because the TBS mapping is independent of the relative permutations on
the left and right halves.

More generally, we see that a uniform distribution over permutations U(Sn) is mapped to two
uniform permutations on the left and right half, respectively. Symbolically, for, π ∼ U(Sn), we
have that

g(π) = (b, πL, πR) ∼ U(Bnn/2 × Sn/2 × Sn/2) = U(Bnn/2)× U(Sn/2)× U(Sn/2). (47)

24



As shown earlier, given uniform distributions over left and right permutations, the output is also
uniform. By induction, all permutations in the recursive steps are uniform.

We therefore get a sum of expected TBS runtime on bit strings of lengths n/3r, i.e.,
log2 n∑
r=1

E[T (br)] ≤
log2 n∑
r=1

E[T (ar)] + Õ

((
n

2r−1

)α)
≤ 2n

3 + Õ(nα) (48)

where, by Lemma B.1 and the uniformity of permutations in recursive calls, we need only consider
br ∼ U(Bn/2r

n/2r−1) and we bound the expected runtime using Lemma B.2 with ar ∼ U(Bn/2r−1).

We end with a lemma about the order statistics of binomial random variables used in the proof
of the main theorem.

Lemma B.3. Given m i.i.d. samples from the binomial distribution Xi ∼ B(n, p) with i ∈ [m],
and p ∈ [0, 1], the maximum Y = maxiXi satisfies

E[Y ] < pn+O

(√
n log(mn)

)
. (49)

Proof. We use Hoeffding’s inequality for the Bernoulli random variable X ∼ B(n, p), which states
that

Pr(X ≥ (p+ ε)n) ≤ exp(−2nε2) ∀ε ≥ 0. (50)

Pick ε =
√

c
2n log(mn), where c > 0 is a constant. For this choice, we have

Pr(Xi ≥ (p+ ε)n) ≤
( 1
mn

)c
(51)

for every i = 1, . . . ,m. Then the probability that Y < (p+ ε)n is identical to the probability that
Xi < (p+ ε)n for every i, which for i.i.d Xi is given by

Pr(Y < (p+ ε)n) = Pr(X < (p+ ε)n)m >

(
1− 1

(mn)c
)m

. (52)

Using Bernoulli’s inequality ((1 + x)r ≥ 1 + rx for x ≥ −1), we can simplify the above bound to

Pr(Y < (p+ ε)n)m > 1−m1−cn−c. (53)

Finally, we bound the expected value of Y by an explicit weighted sum over its range:

E[Y ] =
n∑
k=0

Pr(Y = k) · k (54)

=
b(p+ε)nc∑
k=0

Pr(Y = k) · k +
n∑

k=b(p+ε)nc+1
Pr(Y = k) · k (55)

≤
b(p+ε)nc∑
k=0

Pr(Y = k)) · k + n ·
n∑

k=b(p+ε)nc+1
Pr(Y = k) (56)

≤
b(p+ε)nc∑
k=0

Pr(Y = k) · k + (mn)1−c (57)

≤ (p+ ε)n+ (mn)1−c. (58)

25



Since (mn)1−c < 1 for c > 1,

E[Y ] <
⌈
pn+ 1 +

√
cn

2 log(mn)
⌉

= pn+O(
√
n log(mn)) (59)

as claimed.

26


	1 Introduction
	2 Simple bounds on routing using reversals
	3 An algorithm for sparse permutations
	3.1 Paths
	3.2 General graphs

	4 Algorithms for routing on the path
	4.1 Worst-case bounds

	5 Average-case performance
	6 Conclusion
	A Average routing time using only swaps
	B Average routing time using TBS

