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Nonlinear differential equations model diverse phenomena but
are notoriously difficult to solve. While there has been extensive
previous work on efficient quantum algorithms for linear differ-
ential equations, the linearity of quantum mechanics has limited
analogous progress for the nonlinear case. Despite this obsta-
cle, we develop a quantum algorithm for dissipative quadratic
n-dimensional ordinary differential equations. Assuming R < 1,
where R is a parameter characterizing the ratio of the nonlin-
earity and forcing to the linear dissipation, this algorithm has
complexity T2q poly(log T, log n,log 1/¢€)/e, where T is the evo-
lution time, € is the allowed error, and g measures decay of the
solution. This is an exponential improvement over the best pre-
vious quantum algorithms, whose complexity is exponential in
T. While exponential decay precludes efficiency, driven equations
can avoid this issue despite the presence of dissipation. Our algo-
rithm uses the method of Carleman linearization, for which we
give a convergence theorem. This method maps a system of non-
linear differential equations to an infinite-dimensional system of
linear differential equations, which we discretize, truncate, and
solve using the forward Euler method and the quantum linear sys-
tem algorithm. We also provide a lower bound on the worst-case
complexity of quantum algorithms for general quadratic differ-
ential equations, showing that the problem is intractable for R >
+/2. Finally, we discuss potential applications, showing that the
R < 1 condition can be satisfied in realistic epidemiological mod-
els and giving numerical evidence that the method may describe
a model of fluid dynamics even for larger values of R.

quantum algorithm | nonlinear differential equations |
Carleman linearization | Navier-Stokes equation | plasma dynamics

odels governed by both ordinary differential equations

(ODE:s) and partial differential equations (PDEs) arise
extensively in the natural and social sciences, medicine, and
engineering. Such equations characterize physical and biologi-
cal systems that exhibit a wide variety of complex phenomena,
including turbulence and chaos. We focus here on differen-
tial equations with nonlinearities that can be expressed with
quadratic polynomials, which include many archetypal models in
biology, fluid dynamics, and plasma physics.

Quantum algorithms offer the prospect of rapidly character-
izing the solutions of high-dimensional systems of linear ODEs
(1-3) and PDEs (4-10). Such algorithms can produce a quan-
tum state proportional to the solution of a sparse (or block-
encoded) n-dimensional system of linear differential equations
in time poly(log n) using the quantum linear system algorithm
(QLSA) (11).

Early work on quantum algorithms for differential equations
already considered the nonlinear case (12). This work gave a
quantum algorithm for ODEs that simulates polynomial nonlin-
earities by storing multiple copies of the solution. The complexity
of this approach is polynomial in the logarithm of the dimen-
sion but exponential in the evolution time, scaling as O(1/e7).
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While some heuristic quantum algorithms for nonlinear ODEs
have been studied more recently (13, 14), these works do not
make precise statements about concrete implementations or run-
ning times of quantum algorithms. The recent preprint (15) also
describes a quantum algorithm to solve a nonlinear ODE by lin-
earizing it using a different approach from the one taken here.
However, a proof of correctness of their algorithm involving a
bound on the condition number and probability of success is not
given. The authors also do not describe how barriers such as
those of ref. 16 could be avoided in their approach.

Constructing efficient quantum algorithms for general classes
of nonlinear dynamics has been considered largely out of reach
since the linearity of quantum mechanics makes it challenging
to efficiently represent nonlinear dynamics. Furthermore, non-
linear modifications of quantum mechanics generically enable
quickly solving hard computational problems such as perform-
ing unstructured search among n items in time poly(logn).
Indeed, the search lower bound (17) can be used to show
that nonlinear dynamics is exponentially difficult to simulate in
general (16, 18, 19).

In this article, we design and analyze a quantum algorithm
that overcomes this limitation using Carleman linearization (20—
22). This approach embeds polynomial nonlinearities into an
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infinite-dimensional system of linear ODEs and then truncates
it to obtain a finite-dimensional linear approximation. We dis-
cretize the finite ODE system in time using the forward Euler
method and solve the resulting linear equations with the QLSA
(11, 23). Subject to the condition R < 1, where the quantity R
(defined in Problem 1 below) characterizes the relative strength
of the nonlinear and dissipative linear terms, we show that the
total complexity of this quantum Carleman linearization (QCL)
algorithm is sT? ¢ poly(log T,log n,log1/¢)/e, where s is the
sparsity, T is the evolution time, ¢ is the ratio of the norm of
the initial vector to that of the solution vector at time 7', n is the
dimension, and e is the allowed error (Theorem I). In the regime
R < 1, this is an exponential improvement over ref. 12, which has
complexity exponential in 7.

Note that the solution cannot decay exponentially in 7' for
the algorithm to be efficient, as captured by the dependence
of the complexity on ¢—a known limitation of quantum ODE
algorithms (2). For homogeneous ODEs with R < 1, the solution
necessarily decays exponentially in time (SI Appendix, Eq. S30),
so the algorithm is not asymptotically efficient. However, even
for solutions with exponential decay, we still find an improve-
ment over the best previous result O(1/e”) (12) for sufficiently
small e. Thus, our algorithm might provide an advantage over
classical computation for studying evolution for short times.
More significantly, our algorithm can handle inhomogeneous
quadratic ODEs, for which it can remain efficient in the long-
time limit since the solution can remain asymptotically nonzero
(for an explicit example, see the discussion just before the proof
of Lemma 1 in SI Appendix, Section 3.A.1) or can decay slowly
[i.e., ¢ can be poly(T)]. Inhomogeneous equations arise in many
applications, including, for example, the discretization of PDEs
with nontrivial boundary conditions.

We also show that the requirement R < 1 cannot be signifi-
cantly improved in general (Theorem 2). Specifically, we provide
a quantum lower bound showing worst-case hardness of sim-
ulating strongly nonlinear dynamics for R >+/2, establishing
a limitation on the ability of quantum computers to simulate
general nonlinear dynamics.

Our quantum algorithm could potentially be applied to study
models governed by quadratic ODEs arising in biology and
epidemiology as well as in fluid and plasma dynamics. In particu-
lar, the celebrated Navier-Stokes equation with linear damping,
which describes many physical phenomena, can be treated by
our approach if the Reynolds number is sufficiently small. While
the formal validity of our arguments assumes R <1, we find
in numerical experiments that our proposed approach remains
valid for larger R in certain cases.

We emphasize that as in related quantum algorithms for linear
algebra and differential equations, instantiating our approach
requires an implicit description of the problem that allows for
efficient preparation of the initial state and implementation
of the dynamics. Furthermore, since the output is encoded
in a quantum state, readout is restricted to features that can
be revealed by efficient quantum measurements. More work
remains to understand how these methods might be applied, as
we discuss further in Discussion.

Problem Statement

We focus on an initial value problem described by the n-
dimensional quadratic ODE

du
E:F2u®2—|—Flu-FFo(t): u(0) = tin. (1]
Here uz[ul,...,u"}TeR", u®2:[u12,u1u2,...,u1u",

Uptir, - Untn_1,u2]T ERY, each w=u(t) is a func-
tion of ¢ on the interval [0, T] for je€([n]:={1,...,n},
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Fe R"X"Q, Fy € R™™™ are time-independent matrices, and the
inhomogeneity Fo(t) €R™ is a C' continuous function of ¢.

The main computational problem we consider is as follows.

Problem 1. In the quantum quadratic ODE problem, we consider
an n-dimensional quadratic ODE as in [1]. We assume Fa, F1, and
Fy are s-sparse (i.e., have at most s nonzero entries in each row and
column), F is diagonalizable, and the eigenvalues \; of F1 satisfy
Re (An) <...<Re (A1) <0. We parametrize the problem in terms
of the quantity

1 ||Fo||>
R=——— Win ||| F2|| + . [2]
Re (h0)] (” L

For some given T > 0, we assume the values Re (A1), | F2||, || F1]l,
|Fo(t)|| for each te[0,T], and | Foll:= maxcjo, 7] || Fo(t)|],
| Foll := maxqcio, 7y || Fo(t)|| are known, and that we are given ora-
cles Or,, Or,, and Or, that provide the locations and values of
the nonzero entries of Fa, F1,and Fy(t) for any specified t, respec-
tively, for any desired row or column. We are also given the value
l|uin|| and an oracle O, that maps |00 ...0) € C" to a quantum
state proportional to uin. Our goal is to produce a quantum state
proportional to u(T) for some given T > O within some prescribed
02 error tolerance € > 0.

When Fy(t) =0 (i.e., the ODE is homogeneous), the quan-

tity R= % characterizes the ratio of the nonlinearity to
the linear dissipation. It is qualitatively similar to the Reynolds
number in fluid dynamics.

Our algorithm uses a rescaling of Problem 1 that we introduce

in ST Appendix, Section 1.

Main Results

For Problem 1 with R < 1, we present a quantum algorithm that
improves the complexity from an exponential dependence on T
to a nearly quadratic dependence. This algorithm is based on the
concept of Carleman linearization (20-22). Carleman lineariza-
tion is a method for converting a finite-dimensional system of
nonlinear differential equations into an infinite-dimensional lin-
ear one. This is achieved by introducing powers of the variables
into the system, allowing it to be written as an infinite sequence
of coupled linear differential equations. We then truncate the
system to N equations, where the truncation level N depends
on the allowed approximation error, giving a finite linear ODE
system.

Given a system of quadratic ODEs [1], we apply the Carleman
procedure to obtain the system of linear ODEs

U R ION TORS 3

with the tridiagonal block structure

1 1
3:11 A1 4z hn Fo(t)
d [ AT A3 el 0
de | ¢ | . v : .
A N 5 0
o ANy AN )Y
[4]

. v i
where § =u® €R"™, fin = [uin; v’

in 3t

R xn AZ eR™*" A;;l eR ! for j € [N] satisfying

N
;u2M], and Al €

in

A =Rl @R I¥ 2 +I¥ T 9 F,, [5]
=P @I¥ Y IR @I¥ . +I¥ '@ F, [6]

Al =Fo()RI¥  HI@Fy ()1 4. +1% '@ Fy(t).
71
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To construct a system of linear equations, we next divide [0, 7]
into m = T'/h time steps and apply the forward Euler method on
[3], letting

y " = [I + A(kh)h]y" + b(kh) [8]

where y* e R+ approximates (kh) for each ke
[m+1]o:={0,1,...,m}, with y° =4, :=§(0) = fin, and let-
ting all y* be equal for k€ [m+p+1]o\ [m+ 1o, for some
sufficiently large integer p. (It is unclear whether another dis-
cretization could improve performance, as discussed further in
Discussion.)

In the above system, the first n components of y* for k €
[m+p+1]o (i.e., yf) is e-close to the exact solution u( T, up to
normalization. We apply the high-precision QLSA (23) to [8] and
postselect on & to produce y{ /||yt || for some k € [m+p + 1o\
[m]o. SI Appendix, Section 2, gives more details about the system
of linear equations and the measurement procedure.

We control the additive approximation error e by combining a
convergence theorem for Carleman linearization that improves
previous analysis (22) with a bound for the global error of the
Euler method. To analyze the complexity of this approach, we
upper bound the condition number of the linear system and
lower bound the success probability of the final measurement.
We state our main algorithmic result as follows.

Theorem 1. (Informal version.) Consider an instance of the
quantum quadratic ODE problem as defined in Problem 1, with
its Carleman linearization as defined in [3]. Assume R < 1. Let
q:=||uinl||/||u(T)||. There exists a quantum algorithm producing
a state that approximates w(T)/||u(T)|| with error at most e <1,
succeeding with probability Q2(1), with query and gate complexity

T2q

€

poly(log T',log n,log 1/€). [9]

SI Appendix, Section 2, states the formal version of Theorem 1
with more details.

We also provide a quantum lower bound for the worst-case
complexity of simulating strongly nonlinear dynamics, show-
ing that the problem is intractable for R >+/2. Following the
approach of refs. 16, 18, we construct a protocol for distinguish-
ing two states of a qubit driven by a certain quadratic ODE.
Provided R > /2, this procedure distinguishes states with over-
lap 1 — € in time poly(log(1/¢)). Since nonorthogonal quantum
states are hard to distinguish, this implies a lower bound on
the complexity of the quantum ODE problem. This gives the
following limitation on quantum algorithms for nonlinear ODEs.

Theorem 2. Assume R > /2. Then there is an instance of the
quantum quadratic ODE problem defined in Problem 1 such that
any quantum algorithm for producing a quantum state approximat-
ing u(T)/||u(T)| with bounded error must have worst-case time
complexity exponential in T.

Algorithm Analysis

In this section we describe the main ingredients used to prove
Theorem 1.

First, we provide an upper bound for the error from Carle-
man linearization for arbitrary evolution time 7. To the best of
our knowledge, the first and only explicit bound on the error of
Carleman linearization appears in ref. 22. However, the authors
only consider homogeneous quadratic ODEs, and to bound the
error for arbitrary T, the logarithmic norm of F; is assumed to be
negative (theorems 4.2 and 4.3 of ref. 22), which is too strong for
our case. Instead, we give an analysis under milder conditions,
providing a convergence guarantee for general inhomogeneous
quadratic ODEs.

Liu et al.
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Lemma 1. Consider an instance of the quadratic ODE [1],
with its corresponding Carleman linearization as defined in [3].
As in Problem 1, assume that the eigenvalues \; of Fi sat-
isfy Re (M) <...<Re (A1) <O0. Then for any j € [N), the error
0 () == u® (t) — 9 (t) satisfies

[lng ()1 < ¢N || Fa|flain] | [10]

where we require R < 1 as defined in [2].

We present the proof of Lemma 1 (and an improved version
for homogeneous equations) and explain the necessity of our
assumptions in SI Appendix, Section 3.A.1.

Next, we provide an upper bound for the error incurred by
approximating [3] with the forward Euler method.

Lemma 2. Consider an instance of the quantum quadratic ODE
problem as defined in Problem 1, with R <1 as defined in [2].
Choose a sufficiently small time step h. Suppose the error from Car-
leman linearization satisfies ||n(t)|| <||u(T)||/4. Then the global
error from the forward Euler method [8] on the interval [0, T for
[3] satisfies

151(T) = 91 ()| < 3N*° Th[(| Fa|| + | Fll + [ Foll)* + HF%WI-]

SI Appendix, Section 3.A.2, gives the proof of Lemma 2.

Next we upper bound the condition number of the linear
system.

Lemma 3. Consider an instance of the quantum quadratic ODE
problem as defined in Problem 1. Apply the forward Euler method
[8] to the Carleman linearization 3). Then the condition number of
the linear system satisfies

k<3(m+p+1). [12]

SI Appendix, Section 3.B, gives the proof of Lemma 3.

We next describe a procedure for preparing the right-hand
side of the linear system.

Lemma 4. Assume we are given the value ||uin||, and let O,
be an oracle that maps |00...0) € C" to a normalized quantum
state |uin) proportional to uin. Assume we are also given the values
|Eo(t)]| for each t € [0, T, and let O, be an oracle that provides
the locations and values of the nonzero entries of Fy(t) for any spec-
ified t. Then a quantum state encoding the right-hand side of the
linear system can be prepared using O (N) queries to O, and O(m)
queries to Or,, with gate complexity larger by a poly(log N, log n)
factor.

The proof of Lemma 4 appears in SI Appendix, Section 3.C,
along with a discussion of why the encoding of the initial state
suffices.

After applying the QLSA to [8], we perform a measurement
to extract a final state of the desired form. We now consider the
probability that this measurement succeeds.

Lemma 5. Consider an instance of the quantum quadratic ODE
problem defined in Problem 1, with the QLSA applied to the lin-
ear system using the forward Euler method [8]. Suppose the error
from Carleman linearization satisfies ||n(t)|| <||u(T)||/4, and the
error from Euler method satisfies ||§(T) — y™|| < ||u(T)||/4. Then
the probability of measuring a state |yf) for k=[m+p+1]o\
[m + 1]o satisfies

p+1

> 13
~9(m+p+1)Ng? [13]

Pmcasurc

We prove Lemma 5 in SI Appendix, Section 3.D.

The proof of the main algorithmic result (Theorem I) follows
by applying the above lemmas with appropriate parameters and
carefully analyzing the complexity. The detailed analysis appears
in SI Appendix, Section 3.E.
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Lower Bound

In this section, we establish a limitation on the ability of quantum
computers to solve the quadratic ODE problem when the non-
linearity is sufficiently strong. We quantify the strength of the
nonlinearity in terms of the quantity R defined in [2]. Whereas
there is an efficient quantum algorithm for R <1 (as shown in
Theorem 1), we show here that the problem is intractable for
R > /2. We establish this result by showing how the nonlin-
ear dynamics can be used to distinguish nonorthogonal quantum
states, a task that requires many copies of the given state.

Previous work on the computational power of nonlinear quan-
tum mechanics shows that the ability to distinguish nonorthog-
onal states can be applied to solve unstructured search (and
other hard computational problems) (16, 18, 19). Here we show
a similar limitation using an information-theoretic argument.

Lemma 6. Let |¢) ,|¢) be states of a qubit with |(¢|é)| =1 —
€. Suppose we are given either a black box that prepares |1) or a
black box that prepares |¢). Then any bounded-error protocol for
determining whether the state is |1)) or |¢) must use Q(1/€) queries.

The proof of Lemma 6 is presented in SI Appendix, Section
4.A.

Lemma 6 can be used to establish limitations on the ability
of quantum computers to simulate general nonlinear dynamics
since nonlinear dynamics can be used to distinguish nonorthogo-
nal states. Whereas previous work considers models of nonlinear
quantum dynamics [such as the Weinberg model (18, 19) and the
Gross-Pitaevskii equation (16)], here we aim to show the diffi-
culty of efficiently simulating more general nonlinear ODEs—in
particular, quadratic ODEs with dissipation—using quantum
algorithms.

Lemma 7. There exists an instance of the quantum quadratic
ODE problem as defined in Problem 1 with R > /2, and two states
of a qubit with overlap 1 — ¢ (for 0 < e <1 —3/+/10) as possible
initial conditions, such that the two final states after evolution time
T = O(log(1/€)) have an overlap no larger than 3/+/10.

SI Appendix, Section 4.B, presents the proof of Lemma 7.

The proof of our main lower bound result (7heorem 2) follows
by combining Lemma 6 and Lemma 7, and is presented in SI
Appendix, Section 4.C.

Note that exponential time is achievable since our QCL algo-
rithm can solve the problem by taking N to be exponential in 7',
where N is the truncation level of Carleman linearization. [The
algorithm of Leyton and Osborne also solves quadratic differ-
ential equations with complexity exponential in 7' but requires
the additional assumptions that the quadratic polynomial is
measure-preserving and Lipschitz continuous (12).]

Applications

Our quantum algorithm could be applied to study models gov-
erned by inhomogeneous quadratic ODEs with linear dissipa-
tion. Such equations arise in biology and epidemiology as well
as in fluid and plasma dynamics.

One concrete example is the so-called SEIR model of an
epidemic (24). The model

%zfA%frvacPvaAfnmPS% [14]
TN an

describes the population of P individuals composed of four
components: susceptible (Pg), exposed (Pg), infected (Pr), and

40f6 | PNAS
https://doi.org/10.1073/pnas.2026805118

recovered (Pr). Here 7. is the rate of transmission from an
infected to a susceptible person, m,c is the vaccination rate,
That is the latent time until an exposed person becomes infec-
tious, Tin is the infectious time that an infectious person can
infect others, and A is a flux of individuals constantly refresh-
ing the population. This type of model has been used to describe
the early spread of the COVID-19 virus (24). Realistic param-
eters from that study give a value R <1 (as discussed in more
detail in SI Appendix, Section 5), showing that the assumptions
of our algorithm can correspond to some real-world prob-
lems that are only moderately nonlinear. This example can
be generalized to a high-dimensional system of ODEs that
models the early spread over a large number of cities with
interaction (25, 26).
We also consider the celebrated Navier—Stokes equation

du+ (u-V)u+pfu=vViu+f [18]

with linear damping and a forcing term. Equations of the form
[18] are ubiquitous in fluid mechanics (27), and related models
such as those studied in refs. 28-30 are used to describe the for-
mation of large-scale structure in the universe. Similar equations
also appear in magnetohydrodynamics (31) and in models that
describe the motion of free particles that stick to each other upon
collision (32). In the inviscid case, v =0, the resulting Euler-
type equations with linear damping are also of interest, both for
modeling micromechanical devices (33) and for their intimate
connection with viscous models (34).

As a specific example, consider the one-dimensional forced
viscous Burgers equation

Au+ udpu=v02u+f, [19]

which is the one-dimensional case of Eq. 18 with 8 =0. This is
often used as a simple model of convective flow (35). For con-
creteness, let the initial condition be u(z,0)= Upsin(2nz/Lg)
on the domain z € [—Lo/2, Lo/2], and use Dirichlet boundary
conditions u(—Lo/2,0) =u(Lo/2,0)=0. We force this equa-
tion using a localized off-center Gaussian with a sinusoidal time

dependence, given by f(z,t) = Usexp (—%)Cos@mﬁ).

To solve this equation using the Carleman method, we dis-
cretize the spatial domain into n, points and use central dif-
ferences for the derivatives to get a system of quadratic ODEs.
This equation is of the form [1] and can thus generate the
Carleman system [4]. The resulting linear ODE can then be
integrated using the forward Euler method, as shown in Fig.
1. Even though the parameters used in this example result in
R ~ 44, which violates the requirement R < 1 of the QCL algo-
rithm, we see from the absolute error plot in Fig. 1 that the
maximum absolute error over time decreases exponentially as
the truncation level N is incremented (in this example, the
maximum Carleman truncation level considered is N =4). Sur-
prisingly, this suggests that in this example, the error of the
classical Carleman method converges exponentially with NV, even
though R > 1.

Discussion

In this paper we have presented a QCL algorithm for a class of
quadratic nonlinear differential equations. Compared to the pre-
vious approach of ref. 12, our algorithm improves the complexity
from an exponential dependence on T to a nearly quadratic
dependence, under the condition R < 1 as defined in [2]. Quali-
tatively, this means that the system must be dissipative and that
the nonlinear and inhomogeneous effects must be small relative
to the linear effects. We have also provided numerical results
suggesting the classical Carleman method may work on certain
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Carleman solution of the forced viscous Burgers equation with Re = 20.00, n, = 16, n; = 4000, R = 43.59

Solutions at t = T,;/3

Absolute error

Error convergence

= 0 - [ .
N i 1 — Corloman, N =1 TRINN
0.2 / \\\ [ ——Carleman, N = 2 \\\
/ \ i ! Carleman, N =3 \\\
/ R \ i ——Carleman, N =4 \\\

I \ i 1 .

0.1 /// p \\ [ 1077 ¢ \ il \\\
Iy, \\L ! | “z .
Y | = e & Y
s 0¥ : 24 = A
W . z N
=102} 2

-0.1 — —-Initial condition —

--—--Source shape

—— Direct /

—+—Carleman, N =1 -
- ’ -3
02 ——Carleman, N = 4 N J/ 10 |

N , |
=t : 1072
-0.5 0 0.5 0 1 Tw/3 2 3 1 2 3 4
t N

Fig. 1. Integration of the forced viscous Burgers equation using Carleman linearization on a classical computer (source code available in ref. 38). The
viscosity is set so that the Reynolds number Re =UyLq /v = 20. The parameters ny = 16 and n; = 4,000 are the number of spatial and temporal discretization
intervals, respectively. The corresponding Carleman convergence parameter is R = 43.59. (Left) Initial condition, source, and solutions plotted at a third
of the nonlinear time %Tm = ;TOO. The direct solution is obtained from the ode45 solver in MATLAB. (Center) I, norm of the absolute error between the
Carleman solutions at various truncation levels N and the direct solution. (Right) Convergence of the time-maximum error.

PDE:s that do not strictly satisfy the assumption R < 1. Further-
more, we established a lower bound showing that for general
quadratic differential equations with R >+/2, quantum algo-
rithms must have worst-case complexity exponential in 7. We
also discussed several potential applications arising in biology
and fluid and plasma dynamics.

It is natural to ask whether the result of Theorem I can be
achieved with a classical algorithm, i.e., whether the assumption
R <1 makes differential equations classically tractable. Clearly,
a naive integration of the truncated Carleman system [4] is
not efficient on a classical computer since the system size is
G)(nN ). However, furthermore, it is unlikely that any classical
algorithm for this problem can run in time polylogarithmic in
n. Indeed, if we consider Problem 1 with ||\1||T < 1 but let the
nonlinearity and forcing be even smaller such that R < 1, then
in the asymptotic limit we have a linear differential equation
with no dissipation. Hence, any classical algorithm that could
solve Problem I could also solve nondissipative linear differential
equations, which is a BQP-hard problem even when the dynamics
are unitary (36). In other words, an efficient classical algorithm
for this problem would imply efficient classical algorithms for any
problem that can be solved efficiently by a quantum computer,
which is considered unlikely.

Our upper and lower bounds leave a gap in the range 1 <R <
V2, for which we do not know the complexity of the quantum
quadratic ODE problem. We hope that future work will close
this gap and determine for which R the problem can be solved
efficiently by quantum computers in the worst case.

Furthermore, the complexity of our algorithm has nearly
quadratic dependence on T, namely, T“poly(log T). It is
unknown whether the complexity for quadratic ODEs must
be at least linear or quadratic in 7. Note that sublinear
complexity is impossible in general because of the no-fast-
forwarding theorem (37). However, it should be possible
to fast-forward the dynamics in special cases, and it would
be interesting to understand the extent to which dissipation
enables this.

The complexity of our algorithm depends on the parameter ¢
defined in Theorem 1, which characterizes the decay of the final
solution relative to the initial condition. This restricts the util-
ity of our result since we must have a suitable initial condition
and terminal time such that the final state is not exponentially
smaller than the initial state. However, it is unlikely that such
a dependence can be significantly improved since renormaliza-
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tion of the state can be used to implement postselection, which
would imply the unlikely consequence BQP =PP (see section
8 of ref. 2 for further discussion). As discussed in the intro-
duction, the solution of a homogeneous dissipative equation
necessarily decays exponentially in time, so our method is not
asymptotically efficient. However, for inhomogeneous equations
the final state need not be exponentially smaller than the ini-
tial state even in a long-time simulation, suggesting that our
algorithm could be especially suitable for models with forcing
terms.

The quantum part of the algorithm might also be improved.
In this paper we limit ourselves to the first-order Euler method
to discretize the linearized ODE:s in time. This is crucial for the
analysis in Lemma 2, which states that the global error increases
at most linearly with 7' (see the formal version of Lemma 2 in
SI Appendix, Section 3.A.2). However, it is unclear how to give a
similar bound for higher-order numerical schemes. If this obsta-
cle could be overcome, the error dependence of the complexity
might be improved.

It is also natural to ask whether our approach can be improved
by taking features of particular systems into account. Since the
Carleman method has only received limited attention and has
generally been used for purposes other than numerical integra-
tion, it seems likely that such improvements are possible. In fact,
the numerical results discussed in Applications (see in particular
Fig. 1) suggest that the condition R < 1 is not a strict requirement
for the viscous Burgers equation, since we observe convergence
even though R & 44. This raises the possibility that our approach
could be applicable in a broader context than our analytical
results might suggest. We leave a detailed investigation of this
for future work.

A related question is whether our algorithm can efficiently
simulate systems exhibiting dynamical chaos. The condition R <
1 might preclude chaos, but we do not have a proof of this. More
generally, the presence or absence of chaos might provide a more
fine-grained picture of the algorithm’s efficiency.

When contemplating applications, it should be emphasized
that our approach produces a state vector that encodes the
solution without specifying how information is to be extracted
from that state. Simply producing a state vector is not enough
for an end-to-end application since the full quantum state can-
not be read out efficiently. In some cases it may be possible
to extract useful information by sampling a simple observ-
able, whereas in other cases, more sophisticated postprocessing
may be required to infer a desired property of the solution.
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Our method does not address this issue but can be consid-
ered as a subroutine whose output will be parsed by sub-
sequent quantum algorithms. We hope that future work will
address this issue and develop end-to-end applications of these
methods.

Finally, the algorithm presented in this paper might be
extended to solve related mathematical problems on quantum
computers. Obvious candidates include initial value problems
with time-dependent coefficients and boundary value problems.
Carleman methods for such problems are explored in ref. 21, but
it is not obvious how to implement those methods in a quantum
algorithm. It is also possible that suitable formulations of prob-
lems in nonlinear optimization or control could be solvable using
related techniques.
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