
An Automatic Refactoring Framework for Replacing
Test-Production Inheritance by Mocking Mechanism

Xiao Wang
xwang97@stevens.edu

Stevens Institute of Technology
Hoboken, NJ, USA

Lu Xiao
lxiao6@stevens.edu

Stevens Institute of Technology
Hoboken, NJ, USA

Tingting Yu
tingting.yu@uc.edu

University of Cincinnati
Cincinnati, OH, USA

Anne Woepse
anne.woepse@ansys.com
Analytical Graphics, Inc.

Exton, PA, USA

Sunny Wong
sunny@computer.org

Analytical Graphics, Inc.
Exton, PA, USA

ABSTRACT
Unit testing focuses on verifying the functions of individual units of
a software system. It is challenging due to the high inter dependen-
cies among software units. Developers address this by mocking—
replacing the dependency by a “fake” object. Despite the existence
of powerful, dedicated mocking frameworks, developers often turn
to a “hand-rolled" approach—inheritance. That is, they create a
subclass of the dependent class and mock its behavior through
method overriding. However, this requires tedious implementation
and compromises the design quality of unit tests. This work con-
tributes a fully automated refactoring framework to identify and
replace the usage of inheritance by using Mockito—a well received
mocking framework. Our approach is built upon the empirical ex-
perience from five open source projects that use inheritance for
mocking. We evaluate our approach on four other projects. Results
show that our framework is efficient, generally applicable to new
datasets, mostly preserves test case behaviors in detecting defects
(in the form of mutants), and decouples test code from production
code. The qualitative evaluation by experienced developers suggests
that the auto-refactoring solutions generated by our framework
improve the quality of the unit test cases in various aspects, such as
making test conditions more explicit, as well as improved cohesion,
readability, understandability, and maintainability with test cases.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Software design techniques; Softwaremaintenance
tools;Maintaining software; Software evolution.

KEYWORDS
software refactoring, software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468590

ACM Reference Format:
Xiao Wang, Lu Xiao, Tingting Yu, AnneWoepse, and SunnyWong. 2021. An
Automatic Refactoring Framework for Replacing Test-Production Inheri-
tance byMockingMechanism. In Proceedings of the 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3468264.3468590

1 INTRODUCTION
Software testing is a critical element of software quality assur-
ance [24, 64]. Unit testing is an important phase of testing that
focuses on individual units of a software system [70]. A unique chal-
lenge to unit testing is that software elements are inter-dependent
on each other [36, 70]. That is, when testing one function, we have
to consider its dependencies to other functions. This hinders our
ability to test easily and promptly. For example, the function under
test (FUT) may depend on an external database that has not been
deployed. This challenge also applies to debugging — if a unit test
fails, it is unclear whether the failure is caused by the fault in FUT
or its dependent functions.

A general methodology to address this challenge is isolating
the core FUT from its dependencies through mocking [73, 74], i.e.,
replacing the dependency by a “fake” object. For example, instead
of waiting until the external database is deployed, developers create
a “fake” database with dummy data populated in a local file system
and control its behavior to serve for the testing purposes. There are
various dedicated mocking frameworks, such as easyMock,Mockito,
and PowerMock [1–3], which provide well constructed solutions to
isolate FUT from its dependencies. Specifically, they provide pow-
erful functions allowing developers to easily create mock objects,
control their behavior, and verify the execution/status of the mock
objects. These frameworks work together with classic automated
unit testing frameworks, such as JUnit [4] and PyUnit [5].

Despite the existence of powerful mocking frameworks, develop-
ers often turn to a “hand-rolled” approach—inheritance [68]. That
is, to create a “fake” object, developers create a subclass of the de-
pendent production class and control its behavior through method
overriding. For example, in the nine open source projects exam-
ined in this study (Section 3.1 and Section 6.1), developers already
adopt an existing mocking framework for testing their systems.
However, in about half of the cases when mocking is potentially
needed, developers still use inheritance instead of using a mock-
ing framework. The problem is that inheritance is not intended

https://doi.org/10.1145/3468264.3468590
https://doi.org/10.1145/3468264.3468590

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

for mocking. As such, it requires tedious implementation when
being used for this purpose. In addition, it may compromise the
design quality of unit tests and lead to maintenance difficulties in
the test cases [43, 56, 63, 65]. More specifically, as illustrated in
Section 2, inheritance has the following drawbacks compared to
using a mocking framework such as Mockito: 1) Implicit test condi-
tion and blurred test logic; 2) Difficult-to-maintain test code that
couples with the production code; and 3) Incohesive test design that
separates the mocking behavior from the test case that leverages it.

The goal of this work is to develop a fully automated refac-
toring framework to identify and replace the usage of inheri-
tance by usingMockito for mocking in unit testing.We choose
Mockito because it is one of the most well received mocking frame-
work for Java projects [63]. It is adopted in both commercial and
open source projects [73]. The key challenge is to preserve the
test behaviors before and after the refactoring. To overcome this
challenge, we first conduct an empirical study (Section 3) involving
five real-life, open-source projects as the learning dataset. The goal
is to gain empirical experience of whether it is feasible and how
to perform refactoring following an automated procedure. Based
on the empirical observations, we formalize the problem definition
of auto-refactoring to replace inheritance by using Mockito (Sec-
tion 4). Next, we propose a fully automated refactoring framework
and implement it as an Eclipse-Plugin (Section 5). This framework
first identifies all feasible refactoring candidates and then performs
the refactoring on each candidate for a given project.

We perform both quantitative and qualitative evaluation (Sec-
tion 6) of the proposed framework using another four open-source
projects. The quantitative evaluation shows the general applica-
bility, overall reduced code complexity, high test case behavior
preservation, and efficient run-time performance of the refactor-
ing framework. The qualitative evaluation—participated by expe-
rienced, full-time developers—proves that the auto-refactoring so-
lutions generated by our approach are of good design quality and
provide various benefits for improving test code design.

In summary, this work makes the following contributions:
• An empirical study involving five open-source projects in-
vestigating whether it is feasible and how to automatically
replace inheritance by Mockito for mocking.

• A fully automated refactoring framework and its Eclipse-
Plugin implementation to identify feasible refactoring candi-
dates and perform the refactoring on each candidate.

• Quantitative and qualitative evaluation of the proposed frame-
work on four open-source projects.

2 BACKGROUND AND MOTIVATION
This section introduces the basic concepts of unit testing, and an
motivating example comparing the difference between mocking
through inheritance and through Mockito.

2.1 Unit Testing
Unit testing aims at validating that each unit of function performs
as expected [39, 70]. The unit test code is composed of test classes,
test cases, and test suites. A test class is similar to a production
class. A test class contains one or more test cases. Each test case
focuses on verifying the behavior of a certain unit of function

(e.g. method) in the project. A test case should follow the “AAA
(Arrange, Act, Assert)” pattern—arrange for setting up required
test environment; act for invocation of the function being tested;
and assert for checking whether the expectations were met [48].
A group of test cases for testing related functions are grouped and
executed together as a test suite.

The interdependence among software units hinder our ability
to perform unit testing. A key for creating high-quality, easy-to-
maintain and debug unit test cases is to isolate the core FUT from
its dependencies. In practice, this is achieved through mocking—
replacing the dependency by a “faked” object.

2.2 A Motivating Example
In an e-Commerce system, CustomerService defines a service, sub-
scribeCustomer, to subscribe customers by email. This service de-
pends on another class, EmailManager, which is responsible of
managing and sending emails. Its method, subscribe, first sends an
email to the customer to confirm the address; once confirmed, it
stores the email address in a database. Another method, sendEmail,
sends email through an external server. We aim to test the logic
of subscribeCustomer in CustomerService. The problem is that, its
dependency functions, EmailManager, is not fully implemented yet—
neither the database nor the external service is available. Thus, we
isolate the FUT, subscribeCustomer, from its dependency, EmailMan-
ager, by mocking the latter. Next, we illustrate mocking through
inheritance and Mockito:

2.2.1 Mocking by Inheritance. Inheritance is a mechanism to derive
a subclass from a base class. The subclass inherits the attributes and
methods of the base class. Meanwhile, method overriding allows
the subclass to replace certain method implementation of the base
class. Inheritance is used as a “hand-rolled” approach for mock-
ing. Developers define a test subclass to “mock” certain behaviors
of the production class through method overriding or interface
implementation for testing.

In Figure 1a, 𝑀𝑜𝑐𝑘𝐸𝑚𝑎𝑖𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑟 extends the 𝐸𝑚𝑎𝑖𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑟

(line 1). The formermocks the behaviors—𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 and 𝑠𝑒𝑛𝑑𝐸𝑚𝑎𝑖𝑙—
of the latter throughmethod overriding. Two new private attributes,
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 (line 2) and 𝑛𝑢𝑚 (line 3), are defined for tracking the
execution of the two overridden methods. That is, 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 is set
to be true (line 6) when 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 executes; while 𝑛𝑢𝑚 increments
(line 10) each time 𝑠𝑒𝑛𝑑𝐸𝑚𝑎𝑖𝑙 executes. Of particular note, since
the logic defined in this subclass prepares mocking behaviors for
the unit test case, it is part of the “Arrange" in the “AAA" pattern.

The test case, 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 , follows the “AAA" pattern.
First, it arranges the environment for testing. This includes creating
an instance of𝑀𝑜𝑐𝑘𝐸𝑚𝑎𝑖𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑟—𝑒𝑚𝑎𝑖𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑟—(line 15), and
creating an instance of 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑆𝑒𝑟𝑣𝑖𝑐𝑒 ,𝑚𝑦𝑠𝑒𝑟𝑣𝑖𝑐𝑒 , which is the
FUT. Next, it acts the FUT (line 17 and line 18). Lastly, the test case
asserts the value of 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 and 𝑛𝑢𝑚 with𝑀𝑜𝑐𝑘𝐸𝑚𝑎𝑖𝑙𝑀𝑎𝑛𝑎𝑔𝑒𝑟

(line 19 and 20). They confirm that 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 is true, indicating
method 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 is executed; and that 𝑛𝑢𝑚 equals 2, indicating
that two emails are sent (one asks the customer to confirm; the
other sends a confirmation of subscription).

2.2.2 Mocking by Mockito. Mockito offers three aspects of capa-
bilities for mocking. First, Mockito allows easy creation of a mock

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(a) Mocking by Inheritance

(b) Mocking by Mockito

Figure 1: A Motivating Example
object as a “mock” or a “spy”. The “mock” is a completely faked
object and is entirely instrumented to track the interactions with it.
In comparison, the “spy” wraps a real instance of the mocked object.
The “spy” should be used when the execution of real methods is
necessary in testing. Second, Mockito offers light-weighted method
stubbing for controlling the behaviors of the mock object for testing
purposes. Mockito provides dedicated syntax for different types
of behavior—i.e. a void method, a return method, or a method for
throwing exceptions. Third, Mockito provides explicit mechanism
for verifying the behaviors/status of the mock objects. For instance,
Mockito can ensure whether a mock method is being called or not,
check on the number of calls made on a particular method, and
take care of the order of calls, etc..

In Figure 1b, Mockito directly creates a “mock” of the EmailMan-
ager (line 26), since the goal is to avoid its real execution and focus
on its interactions with 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 . In line 27-29, we stub
the mocking behavior when 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 is invoked. The 𝑠𝑒𝑛𝑑𝐸𝑚𝑎𝑖𝑙

should do nothing, since we want to avoid sending real emails. Thus,
there is no need to stub it. Acting the FUT (line 31 and line 32) re-
mains the same as using inheritance. Finally, in line 33 and 34, we
directly verify the execution of 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒 and 𝑠𝑒𝑛𝑑𝐸𝑚𝑎𝑖𝑙 .

2.2.3 Benefits of Mockito Over Inheritance. Mockito enables ex-
plicit and easy to understand testing logic. It allows easy creation
of mock objects for different levels of function isolation (i.e. “mock”
and “spy”). The verify functions in Mockito provide an explicit
mechanism for checking the execution and status of the mock
objects. In comparison, inheritance requires the developer to manu-
ally craft additional attributes/features in the subclass for tracking
the execution of the mock objects. For example, new attributes,
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑 and 𝑛𝑢𝑚, are used to keep track of method execution
in the mock object. The logic behind the attributes is implicit, and
may blur the testing logic.

Mockito decouples test and production code to ease the mainte-
nance of the test code. Renaming methods/interfaces or reordering

parameters in the production code will not break the test code,
since Mockito wires the mock objects at run-time. In comparison,
inheritance relationship increases the coupling between the test
and production code. This unnecessarily cripples the inheritance hi-
erarchy and increases maintenance difficulty. When the production
code changes, its subclasses have to change accordingly.

Mockito improves the cohesion of test design by enforcing the
“AAA” pattern of unit test case. Method stubbing through Mockito
cohesively associates with the mock object when it is arranged
in the test case. In comparison, in inheritance, the mock behavior
(which is part of the “Arrange”) is defined in a separate subclass
through method overriding. It is detached from where the behavior
is used for testing. This increases the cognitive load for understand-
ing the test behavior.

3 EMPIRICAL STUDY
We first conduct an empirical study to investigate whether it is
feasible and how to automatically replace inheritance by Mockito.

3.1 Dataset
We select five open source projects as our empirical study subjects—
they are Dubbo [6], Druid [7], Accumulo [8], Cayenne [9], and
CloudStack [10]. We select these projects because, first, they are
popular open source projects from diverse problem domains. Sec-
ond, test-production inheritance is common—each project contains
81 (CloudStack) to 291 (Druid) test subclasses for mocking. Thirdly,
we are able to run the test cases in these projects, which is impor-
tant for verifying the correctness of the manual refactoring. Most
importantly, these projects already use Mockito.

3.2 Study Process
For each case where a test subclass inherits or implements a produc-
tion class or interface, we investigate the following questions: Can
we manually refactor the inheritance by using Mockito based on our
understanding? If so, is the refactoring process automatable? If not,
what is the reason that makes the refactoring—and the automation—
infeasible? One author—the driver—manually reviews and refactors
each test subclass, and the research team meets weekly to inspect
and discuss the manual refactoring solutions:

(1) If the manual refactoring is not feasible or not successful,
the driver records detailed reasons.

(2) For each refactored case, the driver summarizes the key
refactoring steps, and determines whether the refactoring
procedure can be automated. If automation is not possible,
the driver records the reasons.

(3) In the weekly meetings, the team: i) discuss and improve the
manual refactoring solutions, and ii) discuss and define the
auto-refactoring problem formalization.

3.3 Findings
Overall, 25% (208) of the test-production inheritance cases in the
empirical study can be potentially refactored automatically. This
non-trivial portion of cases motivate the design of our automated
refactoring framework. Later, it is confirmed that these 25% cases
can indeed be refactored fully automatically by applying our imple-
mented refactoring framework (Section 5).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

Table 1: Manual Refactoring Datasets

Proj. #SubCl. Succ. Others
Infeasible Not-Auto Exec. Iss.

Dubbo 148 43 (29%) 79 (53%) 12 (8%) 14 (9%)
Druid 291 66 (23%) 173 (59%) 12 (4%) 40 (14%)
Accumulo 161 46 (29%) 85 (53%) 21 (13%) 9 (6%)
Cayenne 151 40 (26%) 99 (66%) 10 (7%) 2 (1%)
CloudStack 81 13 (16%) 58 (72%) 3 (4%) 7 (9%)
Sum 832 208 (25%) 494 (59%) 58 (7%) 72 (9%)

Figure 2: Illustration of Refactoring
Table 1 shows the details. The first column (“Proj.”) lists the

project names. The second column (“#SubCl.”) indicates the total
number of test subclasses in a project. The third column (“Succ.”)
shows the total number (percentage) of test subclasses that can
be successfully replaced by using Mockito. That is, the refactoring
of 208 (25%) cases from the five projects can be automated. The
other cases are in three categories: 1) The refactoring is not feasible
(column “Infeasible”). Either certain design features in the inheri-
tance are not suitable for refactoring; or there are detailed technical
issues that prevent the refactoring. 2) Although manual refactor-
ing is feasible, full automation of the refactoring is not possible
(column “Not-Auto”) because of the complicated design of the in-
heritance that requires case-by-case understanding for refactoring.
For example, some test subclass contains an inner class definition.
Refactoring requires in-depth understanding of the inner class. And
3) the refactoring is not successful due to issues with test execution
(column “Exec. Iss.”). In these cases, we either have issues executing
related test cases; or the test behavior changes after refactoring for
reasons that require case-by-case investigation.

4 PROBLEM FORMALIZATION
Based on the 208 successful refactoring cases from the empirical
study, we formalize the auto-refactoring problem. It is a conversion
from the left side to the right side:

𝑅𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 (𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒) → 𝑐𝑜𝑑𝑒 ′
𝑚𝑜𝑐𝑘𝑖𝑛𝑔

.

4.1 Before Refactoring
A refactoring candidate 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 can be abstracted as a triad:

𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 =< 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠, 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 >

Here, 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 extends the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 . The 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠

leverages 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to assist testing. The left-side code snip-
pets in Figure 2 illustrates the formalization of 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 .

The 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 is further consisted of four key elements (The
convention “[]*” indicates that there is zero or more of a design
element). The upper-left code snippet illustrates an example test-
SubClass.

𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 =< [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟]∗, [𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒]∗,
[𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑑𝑒𝑛𝑀𝑒𝑡ℎ𝑜𝑑]∗, [𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑]∗ >

• constructor creates a 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance.
• attribute is for tracking the execution of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .
• overriddenMethod defines dummy implementation of a func-
tion in 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 .

• privateMethod defines additional function in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .
A 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 leverages the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 for testing, which can be

formalized as following:

𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 =< [𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒]+ >

𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 =< [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛], [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒]+ >

A 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 contains at least one 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 . A 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 involves
a 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 in two parts for fulfilling the testing goal: 1) con-
struction, which invokes a 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to create an
instance; and 2) reference, which accesses the attributes or call the
methods of the instance. The lower-left code snippet of Figure 2
illustrates a simple example.

4.2 After Refactoring
The original 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒 is refactored into 𝑐𝑜𝑑𝑒 ′

𝑚𝑜𝑐𝑘𝑖𝑛𝑔
, which

eliminates 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 and replaces it by a mock object:

𝑐𝑜𝑑𝑒 ′
𝑚𝑜𝑐𝑘𝑖𝑛𝑔

=< 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠, 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′ >

Thus 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 becomes 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′, and each 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 in it be-
comes 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′:

𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′ =< [𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′]+, [𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑 ′]∗ >

𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′ =< [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′], [𝑠𝑡𝑢𝑏𝑀𝑒𝑡ℎ𝑜𝑑]∗, [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ′]+ >

As illustrated in the right-side code snippet in Figure 2, testClass′
is composed of testCase′ and [privateMethod′]. The [privateMethod′]
is the [privateMethod] moved from testSubClass to testClass′. And,
each refactored testCase’ is consisted of 1) [construction′] to create
a mock object of the productionClass, which replaces the instance
created by [construction] in testCase; 2) [stubMethod], which re-
places the [overridenMethod] in testSubClass; and 3) [reference′]
to the mock object, which replaces the respective [reference] to
the testSubClass instance in testCase. We will explain the formal
refactoring procedure in Section 5.2.

5 REFACTORING FRAMEWORK
The auto-refactoring framework, implemented as an Eclipse-plugin 1,
addresses the above formalization with two components:

1) Identifying refactoring candidates. After loading a project
in Eclipse, a user first selects the scope, e.g. the entire project, a
package, or a group of files, from which refactoring candidates
should be identified. The identification relies on the AST Parser of
Eclipse JDT [14] to filter out cases that cannot be refactored based
on the detailed code syntax.

1https://github.com/wx930910/JMocker

https://github.com/wx930910/JMocker

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Refactoring Candidate Identification-Filters

ID Filter Criterion (What condition to look for?) Rationale (Why is it not feasible/automatable?)
F-1.1 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 implements multiple production

interfaces.
This indicates that the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 mocks multiple production interfaces.
Mocking multiple 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 is not recommended [11].

F-1.2 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 overrides JDK APIs— particularly
hashCode() or equals().

“Only mock types you own” [43]—avoid mocking JDK APIs. Plus, mocking
the two APIs will break Mockito since it is built upon them [12].

F-1.3 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 defines a new public method; this
method is not in the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 .

The 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 no longer “mocks” the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 , when it
contains extra, new behaviors.

F-1.4 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 has self-reference (e.g. declaring
itself as an attribute).

Self-reference implies self-mocking—a mock object cannot mock itself.

F-1.5 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 contains a method that returns a
generic type.

The generic type indicates uncertain mocking behavior; a mock object
should have certain behavior.

F-2.1 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 is not instantiated through its
constructor.

The 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 is not used anywhere (no need to mock) or is
instantiated through dynamic binding (thus cannot use Mockito).

F-2.2 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 contains special code annotations The annotations are mostly project specific or from a special library [13].
Mockito does not support them.

F-2.3 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 has external access to a protected
attribute/method in the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝐶𝑙𝑎𝑠𝑠 .

Mockito does not support the access to protected elements. This requires a
more powerful framework, such as PowerMock [3]

F-3.1 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 instance is passed as a parameter
across multiple test cases/methods in a 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 .

It requires manual effort to create a good test design, where a mock object
and the related variables pass along test cases and methods.

F-3.2 A 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 creates and uses a collection (e.g. Set or
Map) of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 instances.

It requires manual effort to create a good test design with a collection of
mock objects and the variables that associate with each mock object.

F-3.3 A 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 contains an inner class definition. It requires manual understanding to properly refactor the inner class.

2) Refactoring each candidate. The tool will notify users the
list of identified refactoring candidates (i.e. sub-classes). The user
needs to select a candidate to proceed with the refactoring. The
implementation of refactoring relies on the ASTRewrite mechanism
of the Eclipse JDT [14].

Next, we introduce the details of each step.

5.1 Refactoring Candidate Identification
Based on the empirical study, we construct a taxonomy of 11 ex-
clusion criteria to automatically exclude test subclasses that do not
match the problem formalization—i.e. those that are not feasible
to refactor or the refactoring cannot be automated. In Table 2, we
list the detailed filtering conditions (column 2), as well as the ratio-
nale of each filtering condition (column 3). For the sake of clarify,
we organize the 11 filtering conditions in three general layers: 1)
Layer1—F-1.1 to F-1.5—which excludes cases that are not suitable
for mocking; 2) Layer2—F-2.1 to F-2.3—which excludes cases that
cannot be refactored due to detailed implementation limitations
with Mockito; and 3) Layer3—F-3.1 to F-3.3—which excludes cases
with complicated design that cannot be refactored automatically.

5.2 Auto-Refactoring Procedure
Figure 3 shows the refactoring procedure to convert 𝑐𝑜𝑑𝑒𝑖𝑛ℎ𝑒𝑟𝑖𝑡𝑎𝑛𝑐𝑒
to 𝑐𝑜𝑑𝑒 ′

𝑚𝑜𝑐𝑘𝑖𝑛𝑔
for each refactoring candidate identified from the

previous step. Our approach involves five logical parts:

(1) Create mock object: This step constructs a mock object using
Mockito to replace the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 instance, and ensures
that they have equivalent initial status.

(2) Preservemocking behavior: This step extracts the overridden
methods and moves the private methods in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to
ensure that the mock object has equivalent behavior as the
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance.

(3) Preserve references to themock object: This step ensures that
the execution/verification of the mock object is equivalent
to that of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance.

(4) Infrastructure Procedure-translateToMocking: This proce-
dure cross-cuts the three previous parts to ensure that the
refactoring follows the mocking syntax.

(5) Create MockMethod for code reusability: This applies when
multiple test cases could reuse the mock object creation.

In the following subsections, we will explain each part in detail.

5.2.1 Step1-Create Mock Object. This step creates a mock object
using Mockito to replace the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance. To ensure that
the initial status of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance and the mock object
are equivalent, the following three sub-steps are performed:

Step-1.1: Replace 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance creation by mock ob-
ject creation. There are two ways to do so—through spy or mock,
as illustrated in Figure 4a and Figure 4b, respectively. Spy creates
a real object; while mock creates a complete mock or fake object.
Based on the empirical study, if the productionClass is an interface
without any method definition, we should use mock, since an in-
terface cannot be instantiated as a real object. In comparison, if
the productionClass has method implementation, we should use spy
to ensure that the mock object has the same behavior as the real
object, except for the purposely stubbed methods. There are other
minor syntax variations for spy and mock, summarized here 2.

Step-1.2: Extract the 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′.
This ensures that the status of the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance is pre-
served for the mock object. We observed two types of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠
attributes from the empirical study, which are treated differently.

The first type of attribute is the “counter/checker” as shown in the
motivating example in Figure 1. These attributes are for tracking
the execution of the mock object. We recognize the type using
three heuristics: 1) it is a boolean or an int; 2) it is only read/written
in a certain methods of the mock object; and 3) it is asserted for
checking the execution of the associated methods. Mockito has a
designated mechanism—Mockito.verify—for verifying its execution.
Thus, there is no need to preserve this type of attributes. Instead, we

2https://sites.google.com/view/mockrefactoring

https://sites.google.com/view/mockrefactoring

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

Figure 3: Automated Refactoring Procedure

(a) “Spy" and “doAnswer"

(b) “Mock" and “thenAnswer"

Figure 4: Mock Object Creation and Stub Method
just keep a record of the tracked methods and verify their execution
later using Mockito.verify to replace the assertions.

The other type of attributes are in diverse types, and could be
referenced anywhere in 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 . The way that we extract such
an attribute from the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′ depends on how
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 is originally used in 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 . More specifically, if
the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance is an attribute of the 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 , the at-
tribute of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 will become an attribute for 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′, to
ensure the same access scope. Otherwise, if the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 in-
stance is created as a local variable inside a 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 , the attribute
of 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 will become a local variable in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′.

Step-1.3: Extract the constructor logic from 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to
[𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′]. This ensures that the mock object has equivalent
initial status as the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance. If the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 in-
stance is created using a default constructor, this step can be skipped.
If 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance is created using a non-default constructor
(which comes with additional settings for the created instance),

the constructor logic needs to be extracted to [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′]. Each
statement in the constructor needs to be translated to follow the syn-
tax after the refactoring. Here, an infrastructure procedure named
translateToMocking takes the code body of the constructor as input,
and translates each statement following the mocking syntax. Since
translateToMocking cross-cuts all three logic steps of the refactoring
procedure, we will introduce its details in Section 5.2.4.

5.2.2 Step2-Preserve Mocking Behavior. This preserves the mock-
ing behaviors by treating the overriddenMethods and private-Methods
in the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠:

Step-2.1: Extract the 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑑𝑒𝑛𝑀𝑒𝑡ℎ𝑜𝑑 in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to the
𝑠𝑡𝑢𝑏𝑀𝑒𝑡ℎ𝑜𝑑 which directly associates with the mock object cre-
ated/used in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′. There are two common ways to stub a
method: doAnswer and thenAnswer. The thenAnswer adds addi-
tional actions to the stubbed method [15]. It ensures type safety
thus should be preferred whenever possible. While, doAnswer en-
tirely replaces the original method behavior [46], working similar
to method overridden in inheritance. Based on empirical experi-
ence, thenAnswer works with objects created using mock; while the
spy object should work with doAnswer to preserve the “overridden"
behavior. Figure 4 illustrates doAnswer in Figure 4a (line 20 to line
24) and thenAsnwer in Figure 4b (line 20 to line 23) respectively.
They are used to replace the overridden methods between line 2 to
line 7 in Figure 4a and in Figure 4b. In addition, there are specific
method stubbing syntax for different kinds of behaviors, summa-
rized here 2. For example, doReturn and thenReturn are for stubbing
methods that just return certain objects.

Note that the internal logic of the overridden methods in Fig-
ure 4 is straightforward —i.e. without referencing attributes or
methods in the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 . Thus we can directly move them to
the stub method blocks. If the internal logic has a reference to the
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 attributes/methods, we also need to use translateTo-
Mocking procedure to convert the syntax before moving.

Step-2.2:Move each private method from 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 to test-
Class′. These methodmovements cannot be directly copy-and-paste
due to the overall syntax change. Similarly, we use the translateTo-
Mocking procedure to convert the method syntax when moving it.
In addition, the method signature may need to be updated accord-
ingly, to take additional input parameters, for accessing the local
variables in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′ which were the attributes in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 .

5.2.3 Step3-Preserve Reference to the Mock Object. In a 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ,
there could be references to the attributes and/or methods of the
𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 instance—as such the instance is created for facilitat-
ing testing. To ensure that the behavior of 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 and 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′
remains consistent, we need to preserve these references on the

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

mock object. Again, we use the translateToMocking procedure to pre-
serve [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒]∗ in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 to be the respective [𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ′]∗
in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′.

5.2.4 Infrastructure Procedure—translateToMocking. As mentioned
earlier, each previous step relies on the translateToMocking proce-
dure 3, which takes a certain code body in the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠—e.g.
methods, constructors, referrence statements—as input, and convert
them follow the syntax after refactoring.

For each statement, 𝑠𝑡𝑚, in the input code body, this procedure
makes the following conversions: If 𝑠𝑡𝑚 has a reference to an at-
tribute in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝑐𝑙𝑎𝑠𝑠 , it is treated in two different ways depending
on the attribute type. First, if the attribute is a “checker/counter”, we
just remove 𝑠𝑡𝑚, since there is no need to keep track of this attribute
anymore. The respective assertion statements, where the attribute is
checked, are replaced by theMockVerify statements of the associated
methods. Second, if the attribute is a general type (i.e. other than a
“checker/counter”), we just replace the attribute in 𝑠𝑡𝑚 by the respec-
tive local variable in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′—or the attribute in the 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑠 ′—
depending on where the attribute is extracted in step 1.2. If 𝑠𝑡𝑚
contains reference to a 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑 in the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 , we re-
place the reference to be the 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑜𝑑 ′ in 𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 ′.Similarly,
if 𝑠𝑡𝑚 contains reference to an 𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑑𝑒𝑛𝑀𝑒𝑡ℎ𝑜𝑑 in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 ,
we replace this reference by the stub method (created in step 2.1)
associated with the mock object in 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒 ′.

5.2.5 Create MockMethod for Code Reusability. A testSubClass
could be created and used in multiple 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 . For each con-
structor in 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 , the respective [𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛′] block after
refactoring—generated by Step 1.1, 1.2, and 1.3, as well as all the
[𝑠𝑡𝑢𝑏𝑀𝑒𝑡ℎ𝑜𝑑] blocks—generated by Step 2.1—can be reused when-
ever this constructor is called. To prevent code-clone in such cases,
we encapsulate these blocks within a separate MockMethod in the
𝑡𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠 for reuse. However, the MockMethod is not appropriate
when there exists external reference to the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠’s attributes
in the 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 . The external reference to the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠 at-
tributes cannot be preserved, since the attributes become the local
variables in the MockMethod. Thus, the condition to apply Mock-
Method includes: 1) the mock object is reused in multiple 𝑡𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑠 ′;
and 2) there was no reference to the 𝑡𝑒𝑠𝑡𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠’s attributes before
refactoring.

6 EVALUATION
6.1 Evaluation Dataset
We select four new projects, with a total of 610 test subclasses.
They are: JackRabbit—an open source content repository for the
Java platform [16], Log4J2—a Java-based logging utility [17], Qpid-
Proton-J—a high-performance, lightweight messaging library [18],
Apache Commons—which focuses on all aspects of reusable Java
Components, with 40 subprojects, including Commons-Collections,
Commons-Lang, Commons-Logging, etc. To avoid bias, we inten-
tionally select these projects since their domains differ from the
training dataset. The rationale of other selection criteria is similar
to that of the training dataset in Section 3.

3Due to space limit, the pseudo-code of this procedure can be found here

6.2 Research Questions
We aim to evaluate our approach in different aspects by five RQs.

• RQ1: How generally applicable is the refactoring framework?
We report the number and percentage of test subclasses that
are filtered out in the identification, and that are successfully
refactored, when applied to the evaluation dataset.

• RQ2: Do the test behaviors remain consistent before and after
the refactoring with injected mutations? Mutation testing is a
proxy for evaluating the behaviour preservation of the refac-
tored test cases in terms of detecting potential defects. We
use mutation testing to inject potential defects, as mutants,
into the production code. Behaviour preservation means that
the same mutants should be covered and killed (or survived)
consistently by the test cases before and after the refactoring.

• RQ3: How does the refactoring affect code complexity? We
report the code complexity measured by the LOC, #methods,
and #fields, as well the amount of dependencies from test to
production code and among the test code.

• RQ4: What is the performance of our refactoring framework?
We report the execution times in identifying refactoring
candidates and in performing the refactoring, respectively.

• RQ5: How is the quality of the auto-refactoring solutions in real-
developers’ opinion? And how does it compare to the manual
refactoring solution implemented by developers? We conduct
a user study involving full-time developers to both manually
implement refactoring and review the refactoring solutions
generated by our framework. The goal is to understand the
value, benefits, and quality of our refactoring solutions, espe-
cially when compared to manual refactoring by developers.

RQ1 to RQ4 are answered by quantitative evaluation; RQ5 is
answered by qualitative evaluation.

6.3 Quantitative Evaluation Results (RQ1-RQ4)
RQ1: In Table 3, in all four projects (row “Total”), there are totally
610 test sub-classes (column “#SubCl.”). Among these, 217 (column
“F-1”), 50 (column “F-2”), and 86 (column “F-3”) cases are filtered
out by the three filtering layers (Section 5.1). Therefore, there are
257 (42%) (column “#Candidates”) identified as feasible refactoring
candidates. Furthermore, the refactoring of 27 (4%) test sub-classes
leads to compile errors (column “Comp.”) due to syntax issues that
were not captured in the dataset of the empirical study. In addition,
16 (3%) test sub-classes, after the refactoring, lead to test behavior
discrepancies (column “Discre.”) due to special cases. For example,
some test cases use the metadata of the test subclass at run-time,
and they fail after the refactoring. One can keep refining our ap-
proach by incorporating these special cases. However, like any
learning process, it is impossible to guarantee 100% generalizability
under unknown, new data. Totally, 214 cases (column “Succ.”) are
successfully refactored.

Summary: Our approach successfully refactors 214 cases—
indicating a 83% (214/257) successful rate over the feasible
cases and 35% (214/610) successful rate over all 610 test sub-
classes. This suggests good applicability of our approach.

https://sites.google.com/view/mockrefactoring#h.35xsyfz0n6ep

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

Table 3: Applicable Auto-Refactoring in Testing Datasets

Proj. #SubCl. Identification Refactoring
F-1 F-2 F-3 #Candidates Comp. Discre. Succ.

JackRabbit 71 15 4 9 43 (60%) 3 (4%) 0 (0%) 40 (56%)
Log4J2 100 31 19 17 33 (33%) 5 (5%) 3 (3%) 25 (25%)
Qpid-Proton-J 34 13 0 12 9 (26%) 0 (0%) 0 (0%) 9 (26%)
Commons 405 158 27 48 172 (42%) 19 (5%) 13 (3%) 140 (35%)
Total 610 217 50 86 257 (42%) 27 (4%) 16 (3%) 214 (35%)

RQ2:We use PIT [19], a state-of-the-art mutation testing system,
to generate mutators. Table 4 summarizes all the generated default
mutators [20] and their percentage in our dataset.

Table 4: Applicable Default Mutators by Pitest

Mutator Description %
Negate Conditions mutate all conditions by its logical negation 33%
Void Method Calls remove method calls to void methods 26%
Empty/Null Returns replace return values with an ‘empty’ or ‘null’ 18%
True/False Returns mutates a true return value to be false and vice versa 9%
Math replaces binary arithmetic operations with another operation 6%
Primitive Returns replace int, short, long, char, float and double return values with 0 4%
Conditionals Boundary replaces the relational operators with their boundary counterpart 4%
Increments replaces increments with decrements and vice versa 1%

The execution of the mutations are reported in Table 5. Column
2 shows the number of refactored test cases executing the mutants,
ranging from 126 (Qpid) to 2510 (Commons). Column 3 shows
the number of successfully mutated production classes by PIT,
accounting for 35% to 56% of all production classes called by the
test cases in Column 2. The reason why some production classes
are not mutated is because they are abstract class or interfaces with
little real method implementation and PIT cannot apply mutation
operators to them. For example, if there is no method that returns
a boolean type, the operator True/False Returns (see Table 4) cannot
be applied. Column 4 shows that a total of 51811 mutants—from
1156 (Qpid) to 35902 (Commons) in each project—are generated.

Table 5: Mutation Status Change

Proj. #T.Cs #P.(%M) #Mut. Covered Killed Survived
Before After Before After Before After

JackRabbit 431 107 (47%) 9730 3803 (39%) ✓ 2981 +1, -2 822 +2, -1
Log4J2 424 152 (35%) 5023 1548 (31%) ✓ 992 ✓ 556 ✓

Qpid-Proton-J 126 43(51%) 1156 332 (29%) ✓ 298 ✓ 34 ✓

Commons 2510 700(56%) 35902 17120 (48%) +3 12709 +121, -120 4411 +123, -121
Total 3491 1002 (50%) 51811 22803 (44%) +3 16980 +122, -122 5823 +125, -122

Column 5 and 6 report the coverage statistics of executing the
mutants before and after the refactoring. Among all mutants, 332
(29%) to 17120 (48%) are covered before applying our refactoring
approach. The coverage on the mutants remains highly consistent
after the refactoring, except for 3 (out of totally 51811) mutants.
The discrepancy on these 3 mutants needs further investigation.
Note that not all mutants are covered since we use the test cases
supplied by the projects, which do not achieve 100% coverage. In
addition, we only execute test cases affected by the refactoring.

Among the covered mutants, we observe (Column 7 — column
10) that, except Commons and JackRabbit, the mutation status
(Killed or Survived) remains consistent before and after refactoring.
Column 7 and 9 show the number of mutants that are killed and
survived before the refactoring. Columns 8 and 10 show the number
of mutants that change the execution status (killed/survived) after
the refactoring. For example, the Commons project, in column 8,
+121 indicates that, after the refactoring, an additional 121 mutants
are killed; and -120 indicates that 120 mutants no longer got killed
after the refactoring. The numbers in columns 8 and 10 should sum

to the number in column 6—mutants that change their coverage.
We sample 30 mutants to investigate the reasons for the change.
We find that, in all 30 cases, the behaviors of the tests become non-
deterministic after injecting the mutants—the status changes even
without refactoring. Thus, the non-determinism is caused by the
mutations instead of the refactoring.

Summary: The coverage of the mutants before and after
applying our approach is highly consistent (< 0.001% of the
generated mutants changed coverage). The test cases, after
refactoring, consistently cover, kill, or survive with 99% of
the 51,811 mutants injected into the production code. This
indicates that our approach generally preserves test behaviors
in term of detecting potential defects.

RQ3: We investigate the complexity in two main aspects: 1) the
basic complexity metrics, including the LOC, #Methods, and #Fields;
and 2) the coupling, in terms of the number of dependencies, from
test to production code, and that among the test code. Table 6 shows
the study results.

Columns 2–13 report the average LOC, #Methods, and #Fields
before the refactoring, and the average, minimal and maximal per-
centage of increase after the refactoring over all refactoring cases.
A negative percentage indicates that the measure decreases. We
observe that after the refactoring, 1) the LOC averagely increases
4% to 8% for each refactoring case. This is due to cases where the
reusable mock method (Section 5.2.5) is not applicable. And 2) both
the #Methods and the #Fields decreases, in average by 5% to 14%
and 9% to 22% respectively. The decrease is due to Step 1.2 and Step
2.1 (Section 5.2).

Columns 14–15 report the test-to-production coupling in terms
of the number of dependencies before the refactoring in the entire
system, and the percentage of increase after the refactoring (column
“#(%In.) of T-P Dps.”). A negative percentage indicates decreasing
the dependencies after the refactoring. Here, we separate the inher-
itance (column “Inherit.”) and other general dependencies (column
“Regular”). We observe that: 1) the number of test-to-production
inheritance non-trivially decreased by 24% (Log4J2) to 38% (JackRab-
bit); and 2) the number of test-to-production regular dependencies
decreased by up to 12% (JackRabbit). Similarly, In columns 16–17,
we examine the number of dependencies among the test classes, and
the percentage of increase after the refactoring (column “#(%In.)
of T-T Dps.”). We separate the inheritance relationship and any
other dependencies. We observe that: 1) the number of inheritance
relationship among test classes decreased in JackRabbit and Com-
mons, by 8% and 1%, respectively, and remained stable in the other
two projects; and 2) the regular dependencies among test classes
decreased by 7% or 9% in projects except JackRabbit.

Summary: The refactoring overall decreases code complex-
ity. In particular, it non-trivially decouples the test from the
production code, by removing 24% to 38% of the inheritance
and 5% to 12% of the regular dependencies. It also decouples
the test code itself—removing the internal inheritance by up
to 8% and regular dependencies by up to 9%. Meanwhile, it
slightly increases the LOC of the refactored test classes, but
more obviously decreases the number of methods and fields.

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 6: Code Complexity Change

Proj. LOC Method Field # (%In.) of T-P Dps. # (%In.) of T-T. Dps.
#Avg. Avg. %In. Min. %In. Max %In. #Avg. Avg. %In. Min. %In. Max %In. #Avg. Avg. %In. Min. %In. Max %In. Inherit. Regular Inherit. Regular

JackRabbit 353 4% -45% 61% 64 -5% -88% -1% 6 -9% -100% 0% 37 (-38%) 225 (-12%) 329 (-8%) 956 (-0%)
Log4J2 108 8% -24% -50% 17 -11% -78% 0% 4 -20% -100% 0% 100 (-24%) 445 (-10%) 16 (0%) 75 (-7%)
Qpid-Proton-J 178 6% 1% 33% 28 -14% -80% 0% 6 -22% -100% 0% 34 (-26%) 264 (-9%) 22 (0%) 75 (-7%)
Commons 261 4% -9% 126% 29 -5% -67% 12% 7 -11% -100% 0% 399 (-35%) 4010 (-5%) 168 (-1%) 737 (-9%)

RQ4: Table 7 shows the running time (in seconds) of the frame-
work. Column “#TestCl.” shows the total number of test classes
in each project—131 (Qpid) to 3599 (Commons). This is the initial
input size to the candidate identification. Among these, we identify
34 (Qpid) to 405 (Commons) test subclasses, which are processed
by the three filtering layers (Section 5.1). The detection time ranges
from 30 to 250 seconds per project. The average execution time of
refactoring each case ranges from 0.7 (JackRabbit) to 1.5 (Log4J2)
seconds, with the standard deviation of 0.4 (Qpid) to 2.2 (Log4J2).

Table 7: Auto-refactoring Performance

Proj. Detection Time (s) Refactoring Time (s)
#TestCl. #SubCl. Total-T #Case Avg-T Max-T Min-T Std

JackRabbit 1060 71 42 26 0.7 2.2 0.3 0.6
Log4J2 1069 100 203 26 1.5 10.6 0.3 2.2
Qpid-Proton-J 131 34 30 9 0.9 1.7 0.4 0.4
Commons 3599 405 250 139 1.0 11.4 0.2 1.3
Total 5859 610 535 200 1.0 11.4 0.2 1.3

Summary: The run-time performance of the framework is
a few minutes for detecting all refactoring candidates in a
project, and a few seconds for refactoring each case. This
suggests that our approach is efficient.

6.4 Qualitative Evaluation (RQ5)
6.4.1 Study Design. Participants: We invite six full-time devel-
opers from a software company, who remain anonymous in the
study. According to the entrance survey, the participants are well
qualified in this study. Four participants have 1 to 4 years working
experience as a software engineer/developer. And the other two
have 5-9 years and 10+ years of experience. All participants have
experience with unit testing. Plus, they all have prior experience
with JUnit and Mockito—four participants with 1 to 4 years, one
with 5-9 years, and one with 10+ years.

Study Cases: We select a total of six test cases that use test
subclasses from our study dataset. These cases are in two distinc-
tive sets, 𝑆1 and 𝑆2, each with three cases. Each set is selected to
ensure that the three cases are comprehensive to cover all features
illustrated in the problem formalization in Section 4 and all possible
refactoring steps introduced in Section 5.2. In addition, the logic of
the selected cases are easy to understand such that developers can
finish the study in a few hours.

Study Process: Both sets, 𝑆1 and 𝑆2, are given to all six partici-
pants. Each participant implements manual refactoring on one set—
namely, the implementation set, and reviews the auto-refactoring
solutions to the other set—namely the review set. Of a particular
note, the participants are not told that the provided solutions are
auto-generated by our tool. 𝑆1 and 𝑆2 serve different roles for dif-
ferent participants. For example, for participant #1, 𝑆1 serves as the
implementation set and 𝑆2 serves as the review set; then for partici-
pant #2, 𝑆1 and 𝑆2 switch the roles—𝑆1 for review and 𝑆2 implement.
We ask each participant to first implement manual refactoring on

the implementation set and then review the provided solutions for
the review set. After refactoring/reviewing a case, the participant
takes a survey to evaluate the value, the quality (only for review
case), and the benefits of refactoring. As such, each case is manually
refactored by three participants, and the respective auto-refactoring
solution is reviewed by another three participants. Thus, each case
receives six survey results—three for the manual refactoring and
three for the provided auto-refactoring solution—from all six par-
ticipants. This minimizes individual biases of participants.

The study is held remotely on the AWS servers [21]. The imple-
mentation cases are loaded and configured in Eclipse. The review
cases are provided with the GitHub links to the original case, as
well as the links to the commit id and a diff view of the provided
auto-refactoring solution. This is the same environment as the
participants normally perform code review in their daily work.

Manual Refactoring Status: As shown in Table 8, for each
case, at least one in three participants successfully performs manual
refactoring. We obtain a total of 13 successful manual refactoring
versions out of the 18 manual refactoring attempts on the six cases.
Among these, five manual refactoring versions each takes 5-10
minutes, one takes 10-15 minutes, and seven takes more than 15
minutes to finish. In summary, 72% of the manual refactoring
cases are successful, and most cases require more than 15
minutes to refactor manually.

Table 8: Successful Manual Refactoring

Case1 Case2 Case3 Case4 Case5 Case6
Succ. Participants 2/3 1/3 2/3 2/3 3/3 3/3
Time1 (#Min) 5-10 >15 >15 >15 5-10 5-10
Time2 (#Min) >15 - >15 5-10 10-15 5-10
Time3 (#Min) - - - - >15 >15

Survey Questions: The survey questions are listed below. Note
that “(I&R)” indicates the question applies to both the implementa-
tion and review cases; “(R)” indicates that the question only applies
to the review cases.

• SQ1 (R): Rate the quality of the provided refactoring solution.(1-
6 Scale). And please provide any suggestions (Open Ended).

• SQ2 (I&R): Rate your agreement with this statement: Using
mocks instead of sub-classing improved the code quality of this
example. (1-4 Scale). Explain your rating (Open Ended).

• SQ3 (I&R): Rate your agreement with these statements regard-
ing the benefits of mocks: The refactored code—
– makes the test design more cohesive/concise (Scale 1-6).
– makes the test conditions more explicit (Scale 1-6).
– is less coupled from the production code (Scale 1-6).

• SQ4 (I&R): Do you see any other benefits or drawbacks from
this refactoring?

SQ1 focuses on assessing the quality of the auto-refactoring solu-
tions. SQ2 assesses the general benefits of refactoring. SQ3 and SQ4
evaluate the detailed benefits (or drawbacks) of the refactoring. For

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

SQ2 to SQ4, we also investigate the discrepancies between imple-
ment and review cases to show how the auto-refactoring solution
is different from the manual refactoring.

6.4.2 Study Results. SQ1 (R): Figure 5 shows the participants’
rating on the quality of auto-refactoring solutions. The x-axis is
the case ID. The y-axis is the score in the scale of 1 (poor) to 6
(excellent)—overall, a score of 4 or above indicates a positive opinion.
The size of (and the number in) each circle shows the three scores
given to each case. We observe that, for each case, at least one
participant rates positively—score at least 4. In particular, case 4
and case 5 receive unanimous positive scores. And case 3 and case
6 receive 2 (out of 3) positive scores.

Figure 5: SQ1: Quality of Auto-Refactoring Solution
We investigate the comments from the participants. We find

that the the negative scores fall into three types: 1) The criticism is
about the original test design, which is irrelevant to the Mockito-
based refactoring (Case 1, case 3, and case 6). 2) Participants have
misunderstandings on the reviewed cases (case 2). There are two
sub-classes involved in case 2—one of them cannot be refactored
due to F-1.1 (Section 5.1). However, the participant thinks that we
should also refactor it. The other misunderstanding is that the
participant suggests using mock method (Section 5.2.5) when it is
not appropriate. 3) There exists subjective preferences—one par-
ticipant favors the separated test subclass and test case before the
refactoring in case 1, rather than merging the logic of the subclass
with the test case. Overall, participants rate positively on the
refactoring solutions generated by our tool.

SQ2 (I&R): As shown in Figure 6, in 17 out of the total 18
implementation cases, participants agree or strongly agree that
using mocks instead of inheritance improves the code quality. The
response on the review cases is highly consistent—in 13 out of 18
cases, participants agree or strongly agree that the code quality
improves. The disagreement on the review cases is due to two
reasons 1) participants expect to see improvements on the test
design/logic itself; and 2) participants prefer to separate the mock
behaviors in a subclass. Overall, participants agree that using
mocks to replace inheritance improves the code quality.

SQ3 (I&R): Table 9 summarizes ratings on the refactoring bene-
fits in cohesion/conciseness, explicit, and decoupling. We report the
mean rating (column “Mean”) of each benefit on the implementation
(on row 1) and review (on row 2) cases separately. In addition, a
rating of 4 (“Somewhat Agree”) or above indicates positive opinion—
thus we also report the percentage of rating of 4 and above (Column
“Agree%”) on each benefit. The discrepancies of the ratings between
the implementation and review cases are summarized in row 3.

We observe that for the majority cases—at least 77% and 61%
of the implementation and review sets respectively—participants

Figure 6: SQ2: Improved Code Quality (Impl. vs. Review)

Table 9: Refactoring Benefits (Implementation vs. Review)

Benefits Cohesion/Concise Explicit Decoupled
Mean Agree% Mean Agree% Mean Agree%

Implementation 5.3 100% 5.2 85% 4.5 77%
Review 3.8 61% 3.8 67% 4.1 72%
Discrepancy 1.5 39% 1.5 18% 0.4 5%

agree with these benefits. However, the agreement is weaker on
the review cases compared to the implementation cases. The review
cases receive 0.4 to 1.5 lowermean rating, and 5% to 39% less positive
rating. This indicates that the manual refactoring by developers
boosts these benefits on more cases and to a higher degree.

To further investigate the causes of the discrepancies, we re-
viewed the code difference between the manual refactoring and
the auto-refactoring solutions. We find that the discrepancies are
largely due to the improvements participants made to the test logic
and design, such as simplifying the test logic and removing redun-
dancy. In conclusion, our auto-refactoring framework alone
helps developers reap the three benefits to some extent. For
further benefits, developers should improve the test itself.

SQ4 (I&R): The participants report additional benefits for the
implementation cases, including improved readability and under-
standability (four cases), maintainability (one case), and test power
(two cases). Similarly, in two, one, and one review cases, participants
report these three benefits aswell. The readability/understandability
and maintainability are associated with the three benefit aspects
surveyed in SQ4. The improved test power is because Mockito al-
lows additional verification of the mock object execution/status.
A notable drawback on the review cases is that the original code
comments, which explain the test logic, are not preserved after the
refactoring. In summary, our approach can improve the read-
ability/understandability and maintainability the test code,
and can make the test more powerful. However, the draw-
back is that the original code comments cannot be retained.

Potential Improvements: Finally, we compare the auto and
manual refactoring solutions. This leads to a summary of (potential)
improvements. First, we should import Mockito static methods in
refactoring to simplify the code. At the time of writing, this issue is
fixed. Second, we can further enhance the usage of Mockito, such as
verifying execution order of mock objects, using argument captor,
checking input argument value and type. However, this potentially
relies on dynamic analysis. Finally, more future work should focus
on improving the general test design, such as removing redundant
code and simplifying the test logic. We plan to address the last two
directions in our future work.

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Summary: 1) Participants generally rate positively on the
refactoring solutions generated by our framework. 2) Partic-
ipants agree that the refactoring solutions generated by the
framework improve the cohesion/conciseness of test code,
make test condition more explicit, and decouple test code
from production code. They also point out additional benefits,
including readability/understandability and more powerful
test. However, to further enhance these benefits, developers
need to improve the test logic itself with manual effort. Thus,
our tool can serve as an efficient first step in refactoring. 3) A
obvious draw-back of our framework is that the original code
comments cannot be retained after refactoring.

7 LIMITATIONS AND THREATS TO VALIDITY
Our framework has five limitations. First, it only focuses on re-
placing inheritance by using Mockito for mocking. It does not
improve the test case logic/design itself. In addition, compared to
manual refactoring created by developers, our framework is limited
in leveraging the advanced features of Mockito, such as verifying
execution order of mock objects. In manual refactoring, the us-
age of advanced features is based on manual understanding of the
test intention. This could potentially be automated by dynamically
analyzing the test case execution. However, our framework cur-
rently is purely based on static code analysis. Third, our framework
won’t preserve the code comments after the refactoring. Fourth,
although we generated a total of 51,811 mutants to evaluate the
test behaviour preservation of test cases, we cannot guarantee that
the test behaviour preserves under all possible defects. Since it is
impossible to exhaustively evaluate the test behaviors under all pos-
sible defects through generating mutants. Lastly, our framework is
limited to Java and Mockito. However, the overall design principle
of mocking and refactoring rationale in this work should still hold
for other languages and mocking frameworks. We plan to address
these limitations in the future.

Only very limited empirical evidence is available to show that
inheritance-based mocking leads to code that is more difficult to
maintain than using a mocking framework [68]. In this work, we
investigate this problem in a qualitative study involving real devel-
opers (RQ5) and the results indicate that using a mocking frame-
work can improve test code quality and achieve the three aspects of
benefits that relate to maintainability (SQ2 and SQ3 in Section 6.4.1)
compared to using inheritance. However, we acknowledge that
the conclusion may vary depending on the group of participants.
Another external threat to validity is that the benefits of using a
mocking framework over inheritance requires that the user has
preliminary understanding of the mocking framework. If a user has
zero prior knowledge, he/she may find inheritance easier to use and
understand. Particularly, the participants in the qualitative evalua-
tion all have prior experience with Mockito. This poses an internal
threat to validity towards the findings reported in Section 6.4.

8 RELATEDWORK
Software Refactoring: Significant software development cost is
devoted to software maintenance [51, 53, 60, 80], as software be-
comes more complex and drifts away from its original design [38,

49, 59, 76]. Refactoring is an important maintenance activity that
restructures a system and improves code quality [23, 26, 26, 40, 42,
59, 66, 84, 85]. Kim showed that refactoring is challenging and there
generally lacks tool support [54]. In past years, researchers pro-
posed methods and tools to automate the refactoring process [25,
28, 41, 44, 52, 57, 62, 77–79, 87, 88]. Most refactoring tools focus on
detecting and refactoring God Classes [27, 29, 37, 41, 42], and elim-
inating Code Clone [25, 50, 58, 72, 77, 78]. Tsantalis et. al proposed
a refactoring approach to replace state checking (i.e. if/else) with
polymorphism to reduce code complexity [79]. Despite numer-
ous prior works, we are the first to focusing on refactoring
the usage of inheritance by using mocking framework, to
improve unit testing design.

Test Code Smells: Code smell is a surface indication that usu-
ally corresponds to a deeper problem in the system [42]. Test
smells are the sub-optimal design choices in test code [61, 82].
They can make test cases less effective and more difficult to under-
stand [30, 33–35, 75, 82, 86]. There are various techniques and tools
to support automated test smell analysis [32, 45, 47, 55, 69, 71, 82, 83].
Van Deursen et. al defined a catalog of 11 test smells [82]. Based
on this catalog, Van Rompaey et. al introduced a metric-based tech-
nique to identify two smells, General Fixture and Eager Test [83].
Greiler et. al developed a Maven plugin to detect test fixture related
smells and provide guidance for refactoring them [47]. Santana et.
al implemented an Eclipse plugin to refactor Assertion Roulette and
Duplicate Assert [71]. Other works foucs on analyzing the impact
of test smells [31, 67, 75, 81]. To our best knowledge, no prior
work investigated sub-optimal practice in unit test mocking.

9 CONCLUSION
We proposed a refactoring framework and implemented it as an
Eclipse-Plugin [22] to automatically search for the usage of inher-
itance and replace it by Mockito for mocking. The framework is
built upon the empirical experience drawn from five open-source
projects. We evaluated our framework on four open-source projects,
both quantitatively and qualitatively. The quantitative evaluation
proved that our framework was generally applicable to new dataset
that was independent from the empirical study. The refactoring
solution generally preserves test behaviors in term of detecting
defects (in terms of mutants). The refactoring reduced the code
complexity—particularly decoupled test code from production code.
Lastly, the framework provided efficient run-time performance on
real-life projects. The qualitative evaluation, involving experienced
developers, suggested that auto-refactoring solutions by our frame-
work were of good quality. Furthermore, the refactoring solutions
improved the quality of the unit test cases in various aspects, such as
improving the cohesion/conciseness, readability/understandability
and maintainability of the test code, made test condition more
explicit and the test cases more powerful.

ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science Foun-
dation (NSF) under grants CCF-1909085 and CCF-1909763.

REFERENCES
[1] [n.d.]. https://easymock.org/.
[2] [n.d.]. https://site.mockito.org/.

https://easymock.org/
https://site.mockito.org/

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Xiao Wang, Lu Xiao, Tingting Yu, Anne Woepse, Sunny Wong

[3] [n.d.]. https://powermock.github.io/.
[4] [n.d.]. https://junit.org/junit5/.
[5] [n.d.]. https://wiki.python.org/moin/PyUnit.
[6] [n.d.]. https://dubbo.apache.org/.
[7] [n.d.]. https://druid.apache.org/.
[8] [n.d.]. https://accumulo.apache.org/.
[9] [n.d.]. https://cayenne.apache.org/.
[10] [n.d.]. https://cloudstack.apache.org/.
[11] [n.d.]. https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/

MockSettings.html#extraInterfaces-java.lang.Class...-.
[12] [n.d.]. https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-

of-mockito.
[13] [n.d.]. https://github.com/FasterXML/jackson-annotations/wiki/Jackson-

Annotations.
[14] [n.d.]. https://projects.eclipse.org/projects/eclipse.jdt.
[15] [n.d.]. https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/

stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-.
[16] [n.d.]. https://jackrabbit.apache.org/jcr/index.html.
[17] [n.d.]. https://logging.apache.org/log4j/.
[18] [n.d.]. https://qpid.apache.org/.
[19] [n.d.]. https://pitest.org/.
[20] [n.d.]. https://pitest.org/quickstart/mutators/.
[21] [n.d.]. https://aws.amazon.com/lightsail/.
[22] [n.d.]. https://doi.org/10.5281/zenodo.5111183
[23] Mesfin Abebe and Cheol-Jung Yoo. 2014. Trends, opportunities and challenges

of software refactoring: A systematic literature review. international Journal of
software engineering and its Applications 8, 6 (2014), 299–318.

[24] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge
University Press. https://doi.org/10.1017/9781316771273

[25] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague, and Kostas
Kontogiannis. 2000. Advanced clone-analysis to support object-oriented system
refactoring. In Proceedings Seventh Working Conference on Reverse Engineering.
IEEE, 98–107. https://doi.org/10.1109/WCRE.2000.891457

[26] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb. 2020. Automatic
software refactoring: a systematic literature review. Software Quality Journal 28,
2 (2020), 459–502. https://doi.org/10.1007/s11219-019-09477-y

[27] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2010. A
two-step technique for extract class refactoring. In Proceedings of the IEEE/ACM
international conference on Automated software engineering. 151–154. https:
//doi.org/10.1145/1858996.1859024

[28] Gabriele Bavota, Malcom Gethers, Rocco Oliveto, Denys Poshyvanyk, and An-
drea de Lucia. 2014. Improving software modularization via automated analysis
of latent topics and dependencies. ACM Transactions on Software Engineering
and Methodology (TOSEM) 23, 1 (2014), 1–33. https://doi.org/10.1145/2559935

[29] Gabriele Bavota, Rocco Oliveto, Andrea De Lucia, Giuliano Antoniol, and Yann-
Gaël Guéhéneuc. 2010. Playing with refactoring: Identifying extract class oppor-
tunities through game theory. In 2010 IEEE International Conference on Software
Maintenance. IEEE, 1–5. https://doi.org/10.1109/ICSM.2010.5609739

[30] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE, 56–65. https://doi.org/10.1109/ICSM.2012.
6405253

[31] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? an empirical study. Empirical
Software Engineering 20, 4 (2015), 1052–1094. https://doi.org/10.1007/s10664-
014-9313-0

[32] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley Profes-
sional.

[33] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2017. Developer testing in the ide: Patterns, beliefs,
and behavior. IEEE Transactions on Software Engineering 45, 3 (2017), 261–284.
https://doi.org/10.1109/TSE.2017.2776152

[34] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering. 179–190.
https://doi.org/10.1145/2786805.2786843

[35] Stefan Berner, RolandWeber, and Rudolf K Keller. 2005. Observations and lessons
learned from automated testing. In Proceedings of the 27th international conference
on Software engineering. 571–579. https://doi.org/10.1109/ICSE.2005.1553603

[36] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103. https://doi.
org/10.1109/FOSE.2007.25

[37] Alexander Chatzigeorgiou, Spiros Xanthos, and George Stephanides. 2004. Evalu-
ating object-oriented designs with link analysis. In Proceedings. 26th International
Conference on Software Engineering. IEEE, 656–665. https://doi.org/10.1109/ICSE.
2004.1317487

[38] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. 1994. Using metrics to
evaluate software system maintainability. Computer 27, 8 (1994), 44–49. https:
//doi.org/10.1109/2.303623

[39] Ermira Daka and Gordon Fraser. 2014. A survey on unit testing practices and
problems. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. IEEE, 201–211. https://doi.org/10.1109/ISSRE.2014.11

[40] Karim O Elish and Mohammad Alshayeb. 2009. Investigating the effect of refac-
toring on software testing effort. In 2009 16th Asia-Pacific Software Engineering
Conference. IEEE, 29–34. https://doi.org/10.1109/APSEC.2009.14

[41] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2012. Identification and application of extract class refactorings in object-oriented
systems. Journal of Systems and Software 85, 10 (2012), 2241–2260. https:
//doi.org/10.1016/j.jss.2012.04.013

[42] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional. https://doi.org/10.1007/3-540-45672-4_31

[43] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe Walnes. 2004. Mock roles,
not objects. In Companion to the 19th annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications. 236–246. https:
//doi.org/10.1145/1028664.1028765

[44] George Ganea, Ioana Verebi, and Radu Marinescu. 2017. Continuous quality
assessment with inCode. Science of Computer Programming 134 (2017), 19–36.
https://doi.org/10.1016/j.scico.2015.02.007

[45] Vahid Garousi, Baris Kucuk, and Michael Felderer. 2018. What we know about
smells in software test code. IEEE Software 36, 3 (2018), 61–73. https://doi.org/
10.1109/MS.2018.2875843

[46] Java Code Geeks. [n.d.]. Mockito Programming Cookbook. https:
//www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-
Programming-Cookbook.pdf.

[47] Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey. 2013. Automated
detection of test fixture strategies and smells. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. IEEE, 322–331. https:
//doi.org/10.1109/ICST.2013.45

[48] Jeff Grigg. 2012. http://wiki.c2.com/?ArrangeActAssert/.
[49] Tor Guimaraes. 1983. Managing application program maintenance expenditures.

Commun. ACM 26, 10 (1983), 739–746. https://doi.org/10.1145/358413.358421
[50] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. 2012. Identifying, tailoring,

and suggesting form template method refactoring opportunities with program
dependence graph. In 2012 16th European Conference on Software Maintenance
and Reengineering. IEEE, 53–62. https://doi.org/10.1109/CSMR.2012.16

[51] Clemente Izurieta and James M Bieman. 2007. How software designs decay: A
pilot study of pattern evolution. In First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007). IEEE, 449–451. https:
//doi.org/10.1109/ESEM.2007.55

[52] Yoshio Kataoka, Michael D Ernst, William G Griswold, and David Notkin. 2001.
Automated support for program refactoring using invariants. In Proceedings IEEE
International Conference on Software Maintenance. ICSM 2001. IEEE, 736–743.
https://doi.org/10.1109/ICSM.2001.972794

[53] Chris F. Kemerer and Sandra Slaughter. 1999. An empirical approach to studying
software evolution. IEEE transactions on software engineering 25, 4 (1999), 493–509.
https://doi.org/10.1109/32.799945

[54] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field
study of refactoring challenges and benefits. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. 1–11.
https://doi.org/10.1145/2393596.2393655

[55] Negar Koochakzadeh and Vahid Garousi. 2010. A tester-assisted methodology
for test redundancy detection. Advances in Software Engineering 2010 (2010).
https://doi.org/10.1155/2010/932686

[56] Madhuri R Marri, Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram
Schulte. 2009. An empirical study of testing file-system-dependent software
with mock objects. In 2009 ICSE Workshop on Automation of Software Test. IEEE,
149–153. https://doi.org/10.1007/s10664-018-9663-0

[57] Philip Mayer and Andreas Schroeder. 2014. Automated multi-language artifact
binding and rename refactoring between Java and DSLs used by Java frameworks.
In European Conference on Object-Oriented Programming. Springer, 437–462. https:
//doi.org/10.1007/978-3-662-44202-9_18

[58] Davood Mazinanian, Nikolaos Tsantalis, Raphael Stein, and Zackary Valenta.
2016. JDeodorant: clone refactoring. In Proceedings of the 38th international
conference on software engineering companion. 613–616. https://doi.org/10.1145/
2889160.2889168

[59] Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126–139. https://doi.org/10.
1109/TSE.2004.1265817

[60] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer, Robert
Hirschfeld, and Mehdi Jazayeri. 2005. Challenges in software evolution. In Eighth
InternationalWorkshop on Principles of Software Evolution (IWPSE’05). IEEE, 13–22.
https://doi.org/10.1109/IWPSE.2005.7

[61] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Educa-
tion. https://doi.org/10.1145/1869542.1869622

https://powermock.github.io/
https://junit.org/junit5/
https://wiki.python.org/moin/PyUnit
https://dubbo.apache.org/
https://druid.apache.org/
https://accumulo.apache.org/
https://cayenne.apache.org/
https://cloudstack.apache.org/
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html#extraInterfaces-java.lang.Class...-
https://javadoc.io/static/org.mockito/mockito-core/3.1.0/org/mockito/MockSettings.html#extraInterfaces-java.lang.Class...-
https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito
https://github.com/mockito/mockito/wiki/FAQ#what-are-the-limitations-of-mockito
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://github.com/FasterXML/jackson-annotations/wiki/Jackson-Annotations
https://projects.eclipse.org/projects/eclipse.jdt
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/stubbing/OngoingStubbing.html#thenAnswer-org.mockito.stubbing.Answer-
https://jackrabbit.apache.org/jcr/index.html
https://logging.apache.org/log4j/
https://qpid.apache.org/
https://pitest.org/
https://pitest.org/quickstart/mutators/
https://aws.amazon.com/lightsail/
https://doi.org/10.5281/zenodo.5111183
https://doi.org/10.1017/9781316771273
https://doi.org/10.1109/WCRE.2000.891457
https://doi.org/10.1007/s11219-019-09477-y
https://doi.org/10.1145/1858996.1859024
https://doi.org/10.1145/1858996.1859024
https://doi.org/10.1145/2559935
https://doi.org/10.1109/ICSM.2010.5609739
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1109/ICSE.2005.1553603
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/ICSE.2004.1317487
https://doi.org/10.1109/ICSE.2004.1317487
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1109/APSEC.2009.14
https://doi.org/10.1016/j.jss.2012.04.013
https://doi.org/10.1016/j.jss.2012.04.013
https://doi.org/10.1007/3-540-45672-4_31
https://doi.org/10.1145/1028664.1028765
https://doi.org/10.1145/1028664.1028765
https://doi.org/10.1016/j.scico.2015.02.007
https://doi.org/10.1109/MS.2018.2875843
https://doi.org/10.1109/MS.2018.2875843
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-Programming-Cookbook.pdf
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-Programming-Cookbook.pdf
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Mockito-Programming-Cookbook.pdf
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/ICST.2013.45
http://wiki.c2.com/?ArrangeActAssert/
https://doi.org/10.1145/358413.358421
https://doi.org/10.1109/CSMR.2012.16
https://doi.org/10.1109/ESEM.2007.55
https://doi.org/10.1109/ESEM.2007.55
https://doi.org/10.1109/ICSM.2001.972794
https://doi.org/10.1109/32.799945
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1155/2010/932686
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1007/978-3-662-44202-9_18
https://doi.org/10.1007/978-3-662-44202-9_18
https://doi.org/10.1145/2889160.2889168
https://doi.org/10.1145/2889160.2889168
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.1145/1869542.1869622

An Automatic Refactoring Framework for Replacing Test-Production Inheritance by Mocking Mechanism ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

[62] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel Ó Cinnéide. 2014. Recommendation system for software refactoring
using innovization and interactive dynamic optimization. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering. 331–
336. https://doi.org/10.1145/2642937.2642965

[63] Shaikh Mostafa and Xiaoyin Wang. 2014. An empirical study on the usage of
mocking frameworks in software testing. In 2014 14th international conference on
quality software. IEEE, 127–132. https://doi.org/10.1109/QSIC.2014.19

[64] Glenford J Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. 2004. The
art of software testing. Vol. 2. Wiley Online Library. https://doi.org/10.1002/
9781119202486

[65] Jagadeesh Nandigam, Venkat N Gudivada, Abdelwahab Hamou-Lhadj, and Yon-
glei Tao. 2009. Interface-based object-oriented design with mock objects. In 2009
Sixth International Conference on Information Technology: New Generations. IEEE,
713–718. https://doi.org/10.1109/ITNG.2009.268

[66] William F Opdyke. 1992. Refactoring object-oriented frameworks. (1992).
[67] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea

De Lucia. 2016. On the diffusion of test smells in automatically generated test code:
An empirical study. In 2016 IEEE/ACM 9th International Workshop on Search-Based
Software Testing (SBST). IEEE, 5–14. https://doi.org/10.1145/2897010.2897016

[68] Gustavo Pereira and Andre Hora. 2020. Assessing Mock Classes: An Empirical
Study. In 2020 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). IEEE, 453–463. https://doi.org/10.1109/ICSME46990.2020.00050

[69] Stefan Reichhart, Tudor Gîrba, and Stéphane Ducasse. 2007. Rule-based Assess-
ment of Test Quality. J. Object Technol. 6, 9 (2007), 231–251.

[70] Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22–29. https://doi.org/10.1109/MS.2006.91

[71] Railana Santana, Luana Martins, Larissa Rocha, Tássio Virgínio, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. RAIDE: a tool for Assertion Roulette
and Duplicate Assert identification and refactoring. In Proceedings of the 34th
Brazilian Symposium on Software Engineering. 374–379. https://doi.org/10.1145/
3422392.3422510

[72] Sandro Schulze and Martin Kuhlemann. 2009. Advanced analysis for code clone
removal. In Proceedings des Workshops der GI-Fachgruppe Software Reengineering
(SRE), erschienen in den GI Softwaretechnik-Trends 29 (2). Citeseer, 10–12.

[73] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2017.
To mock or not to mock? An empirical study on mocking practices. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 402–412. https://doi.org/10.1109/MSR.2017.61

[74] Davide Spadini, Maurício Aniche, Magiel Bruntink, and Alberto Bacchelli. 2019.
Mock objects for testing java systems. Empirical Software Engineering 24, 3 (2019),
1461–1498. https://doi.org/10.1007/s10664-018-9663-0

[75] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto
Bacchelli. 2018. On the relation of test smells to software code quality. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 1–12. https://doi.org/10.1109/ICSME.2018.00010

[76] Gábor Szoke, Csaba Nagy, Rudolf Ferenc, and Tibor Gyimóthy. 2016. Designing
and developing automated refactoring transformations: An experience report.
In 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Vol. 1. IEEE, 693–697. https://doi.org/10.1109/SANER.
2016.17

[77] Robert Tairas and Jeff Gray. 2009. Get to know your clones with CeDAR. In
Proceedings of the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications. 817–818. https://doi.org/10.
1145/1639950.1640030

[78] Robert Tairas and Jeff Gray. 2012. Increasing clone maintenance support by
unifying clone detection and refactoring activities. Information and Software
Technology 54, 12 (2012), 1297–1307. https://doi.org/10.1016/j.infsof.2012.06.011

[79] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2010. Identification of refac-
toring opportunities introducing polymorphism. Journal of Systems and Software
83, 3 (2010), 391–404. https://doi.org/10.1016/j.jss.2009.09.017

[80] Qiang Tu et al. 2000. Evolution in open source software: A case study. In Pro-
ceedings 2000 International Conference on Software Maintenance. IEEE, 131–142.
https://doi.org/10.1109/ICSM.2000.883030

[81] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical inves-
tigation into the nature of test smells. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering. 4–15. https:
//doi.org/10.1145/2970276.2970340

[82] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001). Citeseer,
92–95.

[83] B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger. 2007. On The Detection
of Test Smells: A Metrics-Based Approach for General Fixture and Eager Test.
IEEE Transactions on Software Engineering 33, 12 (2007), 800–817. https://doi.
org/10.1109/TSE.2007.70745

[84] Frens Vonken and Andy Zaidman. 2012. Refactoring with unit testing: A match
made in heaven?. In 2012 19th Working Conference on Reverse Engineering. IEEE,
29–38. https://doi.org/10.1109/WCRE.2012.13

[85] William C Wake. 2004. Refactoring workbook. Addison-Wesley Professional.
[86] Andy Zaidman, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. 2011.

Studying the co-evolution of production and test code in open source and in-
dustrial developer test processes through repository mining. Empirical Software
Engineering 16, 3 (2011), 325–364. https://doi.org/10.1007/s10664-010-9143-7

[87] Marcelo Serrano Zanetti, Claudio Juan Tessone, Ingo Scholtes, and Frank
Schweitzer. 2014. Automated software remodularization based on move refac-
toring: a complex systems approach. In Proceedings of the 13th international
conference on Modularity. 73–84. https://doi.org/10.1145/2577080.2577097

[88] Liming Zhao and Jane Huffman Hayes. 2011. Rank-based refactoring decision
support: two studies. Innovations in Systems and Software Engineering 7, 3 (2011),
171–189. https://doi.org/10.1007/s11334-011-0154-3

https://doi.org/10.1145/2642937.2642965
https://doi.org/10.1109/QSIC.2014.19
https://doi.org/10.1002/9781119202486
https://doi.org/10.1002/9781119202486
https://doi.org/10.1109/ITNG.2009.268
https://doi.org/10.1145/2897010.2897016
https://doi.org/10.1109/ICSME46990.2020.00050
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1145/3422392.3422510
https://doi.org/10.1145/3422392.3422510
https://doi.org/10.1109/MSR.2017.61
https://doi.org/10.1007/s10664-018-9663-0
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/SANER.2016.17
https://doi.org/10.1109/SANER.2016.17
https://doi.org/10.1145/1639950.1640030
https://doi.org/10.1145/1639950.1640030
https://doi.org/10.1016/j.infsof.2012.06.011
https://doi.org/10.1016/j.jss.2009.09.017
https://doi.org/10.1109/ICSM.2000.883030
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1109/WCRE.2012.13
https://doi.org/10.1007/s10664-010-9143-7
https://doi.org/10.1145/2577080.2577097
https://doi.org/10.1007/s11334-011-0154-3

	Abstract
	1 INTRODUCTION
	2 BACKGROUND AND MOTIVATION
	2.1 Unit Testing
	2.2 A Motivating Example

	3 EMPIRICAL STUDY
	3.1 Dataset
	3.2 Study Process
	3.3 Findings

	4 PROBLEM FORMALIZATION
	4.1 Before Refactoring
	4.2 After Refactoring

	5 REFACTORING FRAMEWORK
	5.1 Refactoring Candidate Identification
	5.2 Auto-Refactoring Procedure

	6 EVALUATION
	6.1 Evaluation Dataset
	6.2 Research Questions
	6.3 Quantitative Evaluation Results (RQ1-RQ4)
	6.4 Qualitative Evaluation (RQ5)

	7 LIMITATIONS AND THREATS TO VALIDITY
	8 RELATED WORK
	9 Conclusion
	References

