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The impact of nuclear shape on the 
emergence of the neutron dripline

Naofumi Tsunoda1, Takaharu Otsuka2,3,4,5 ✉, Kazuo Takayanagi6, Noritaka Shimizu1,  
Toshio Suzuki7,8, Yutaka Utsuno1,5, Sota Yoshida9 & Hideki Ueno3

Atomic nuclei are composed of a certain number of protons Z and neutrons N.  
A natural question is how large Z and N can be. The study of superheavy elements 
explores the large Z limit1,2, and we are still looking for a comprehensive theoretical 
explanation of the largest possible N for a given Z—the existence limit for the 
neutron-rich isotopes of a given atomic species, known as the neutron dripline3.  
The neutron dripline of oxygen (Z = 8) can be understood theoretically as the result  
of single nucleons filling single-particle orbits confined by a mean potential, and 
experiments confirm this interpretation. However, recent experiments on heavier 
elements are at odds with this description. Here we show that the neutron dripline 
from fluorine (Z = 9) to magnesium (Z = 12) can be predicted using a mechanism that 
goes beyond the single-particle picture: as the number of neutrons increases, the 
nuclear shape assumes an increasingly ellipsoidal deformation, leading to a higher 
binding energy. The saturation of this effect (when the nucleus cannot be further 
deformed) yields the neutron dripline: beyond this maximum N, the isotope is 
unbound and further neutrons ‘drip’ out when added. Our calculations are based on a 
recently developed effective nucleon–nucleon interaction4, for which large-scale   
eigenvalue problems are solved using configuration-interaction simulations. The 
results obtained show good agreement with experiments, even for excitation energies 
of low-lying states, up to the nucleus of magnesium-40 (which has 28 neutrons). The 
proposed mechanism for the formation of the neutron dripline has the potential to 
stimulate further thinking in the field towards explaining nucleosynthesis with 
neutron-rich nuclei.

In the accepted simple picture, protons and neutrons in an atomic nucleus 
are confined by a mean potential, filling single-particle orbits. Like elec-
trons in hydrogen-like atoms, these single-particle orbits have shell struc-
ture and magic numbers (Z, N=2, 8, 20, 28, 50, ....) as conceived by Mayer 
and Jensen5,6. These single-particle orbits for neutrons are displayed sche-
matically in Fig. 1a, b for the example of the magnesium-32 nucleus (32Mg; 
Z = 12, N = 20). In Fig. 1a, all neutron orbits below N = 20 (a magic number) 
are occupied, forming a neutron closed shell. A closed shell implies a 
spherical shape in general (Fig. 1c). However, if single-particle orbits are 
only partially filled, the picture is altered. If the nucleons are scattered, 
giving rise to longer mutual distances (Fig. 1d), a weaker binding is induced 
because of the short-range attractive nuclear force. On the other hand, if 
the nucleons are closely configured, forming an ellipsoid (Fig. 1e), mutual 
distances between the nucleons become shorter, resulting in stronger 
binding due to the nuclear force. Thus, an ellipsoidal shape7–9 can arise.

For the example of 32Mg, if neutrons are excited across N = 20 magic 
gap (Fig. 1b), orbits below and those above N = 20 are both partially 
filled. A deformed shape can then arise. The binding energy is increased 
by the deformation. If this effect is large enough that its energy gain 

overcomes the energy needed to promote neutrons across the magic 
gap, this state is low in energy, and is called an ‘intruder’ (Fig. 1b, e).  
If the intruder becomes the ground state as in 32Mg, it is called an inver-
sion10–14, a breaking of Mayer–Jensen’s magic scheme (Fig. 1a, c).

Here we present a theoretical description of magic number, shell, 
shape and dripline properties of nuclei with Z = 9–12. Experimentally 
known neutron driplines are reproduced for Z = 9 and 10. Likewise, 
experimental excitation energies of low-lying states are reproduced, 
confirming the validity of this calculation. In isotopes of Z = 10–12, as 
N increases from 20, the ellipsoidal shape deformation remains large, 
which results in strong binding. This effect, however, terminates at a 
certain N, and the isotope chain reaches the dripline. This mechanism 
is in contrast to the traditional scenario in which, near driplines, the last 
neutrons occupy loosely bound single-particle states15–18.

Nuclear chart, exotic nuclei and dripline
The nuclear analogue of the periodic table is the Segrè chart (or nuclear 
chart). Figure 2a shows a part of it for Z = 1–16. Each square in this chart 
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corresponds to an individual nucleus with specific values of Z and N. 
Black squares imply stable nuclei, which have infinite or long enough 
lifetimes. The element name and the mass number, A = Z + N, are indi-
cated. Stable nuclei constitute most of the matter on the Earth. Orange 
squares indicate the remaining nuclei, called exotic nuclei. Exotic nuclei 
can exist for finite, usually rather short, lifetimes, because they decay 
into other nuclei through radioactive decay, primarily through β decay1, 
eventually reaching stable nuclei after sequential decays. Thus, exotic 
nuclei are literally ‘exotic’ in nature. They are, however, produced con-
stantly in the Universe as intermediate products in stellar nucleosyn-
thesis or in nuclear reactors.

The chain of isotopes (that is, the horizontal span in N for each Z) in 
the Segrè chart ends at the neutron dripline. Its location on the chart, 
as well as its underlying mechanism, is one of the most intriguing prob-
lems of nuclear physics at present, and is our focus here. Figure 2a 
indicates that as Z increases, the dripline moves farther right in the 
Segrè chart; more protons in a nucleus means that the nucleus can hold 
more neutrons1. We also note that some nuclei with odd N do not exist 
near the dripline. The dripline has been established experimentally up 
to Z = 10; see below.

Stable and exotic nuclei are called bound nuclei, in the sense that 
protons and neutrons are put together by nuclear forces indefinitely 
or until radioactive decays change them to other nuclei. Open squares 
in Fig. 2a mean unbound systems, which are usually called unbound 
‘nuclei’ regardless of their instability against neutron (or proton) emis-
sions, and can be observed, for instance, as resonance-like peaks in 
the emission spectra. By identifying relevant unbound nuclei such 
as those indicated by open squares in Fig. 2a, one can experimentally 
confirm the dripline.

Configuration-interaction calculation up to driplines
Here we study the stable and exotic nuclei in the isotopic chains of 
fluorine (F, Z = 9), neon (Ne, Z = 10), sodium (Na, Z = 11) and magnesium 
(Mg, Z = 12). Wide ranges of N are covered. Particle–hole excitations 
across the N = 20 magic gap, an example of which is shown by dark pink 
arrows in Fig. 1b, are crucial in many of these nuclei. Other particle–hole 
combinations should be included, and multiple particle–hole excita-
tions can occur. Consequently, two major shells below and above the 
magic number 20 (the sd and pf shells, respectively, as shown in Fig. 1a, 

b) must be explicitly treated in the theoretical calculation. We take the 
16O closed shell, where all single-particle orbits below the magic number 
8 are fully occupied (brown circles in Fig. 1a, b). The sd and pf shells 
provide single-particle states where active (or valence) nucleons can 
move around, interacting with each other. This interaction has been 
derived4, via the extended Kuo–Krenciglowa (EKK) method19–21, from 
the fundamental chiral-effective-field-theory (χEFT) interaction by 
Machleidt and Entem22 stemming from quantum chromodynamics 
(Methods). The derivation of an effective NN interaction like this is not 
trivial. For example, relevant earlier methods may encounter difficulties 
of divergence, once both the sd and pf shells are included21. The EKK 
method resolves this difficulty. The contributions from three-nucleon 
forces (3NF) are further included into this effective NN interaction4,23, 
where the 3NF represents effects of virtual excitations to the Δ particle, 
that is, the Fujita–Miyazawa force24 (Methods). The present effective 
interaction, called EEdf1, is thus constructed4. The Schrödinger equa-
tion is solved for this interaction using a configuration-interaction-type 
calculation, called the shell-model calculation in nuclear physics (Meth-
ods). We note that in traditional shell-model calculations, some parts 
of the NN interaction are usually adjusted by using experimental data 
(see this review13). In addition, ab initio shell-model-type approaches 
have worked well recently, but some difficulties appear when going 
through N = 20; see, for example, refs. 25,26.

The nine nuclei with Z = 10–12 and N = 20–22 are often referred to 
collectively as the island of inversion12, named after their intruder 
ground states (Methods). A number of earlier works have been reported 
on many nuclei in and near the island of inversion (see reviews13,27). 
More recently, those nuclei have also been described by the EEdf1 inter-
action4,27–32. Here we extend the application of the EEdf1 calculation 
towards driplines. Figure 3 displays such results for the excitation ener-
gies of the 21

+ and 41
+ states in even-N Ne and Mg isotopes. We observe 

a good agreement with experiment, including those (Ne with N = 22 
and Mg with N = 24, 26 and 28) measured after the derivation of the 
EEdf1 interaction. Low-lying 21

+ and 41
+ energy levels are usually good 

indicators of substantial ellipsoidal deformation, and this is the case 
for N ≥ 20 in Fig. 3.

We note that configuration-interaction calculations to solve the 
present eigenvalue problem cannot be performed for N = 24–30 within 
the traditional computational method, that is, the diagonalization of a 
Hamiltonian matrix, because the dimensions of the matrix exceed the 
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circles) forming the N = 20 closed shell. b, As in a, but two neutrons are excited 
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shown by pink arrows. c–e, Spherical and ellipsoidal shapes. c, The shape is 
spherical, for instance, for the ground state with N and Z being magic numbers. 
d, A typical configuration of valence nucleons without substantial correlations 
among them. e, An ellipsoidal deformed shape formed by closely configured 
valence nucleons with strong correlations.



68  |  Nature  |  Vol 587  |  5 November 2020

Article

current limit33, which is 1011. We employ the Monte Carlo shell model, 
which enables us to solve this eigenvalue problem to a good approxima-
tion by means of selected important basis vectors for a given many-body 
state34,35 (see recent applications36–38 and Methods).

Ground-state energy, dripline and magic number
We calculate the ground-state energies relative to that of the 16O nucleus 
and compare them to experimental data (Fig. 4). A good agreement 
is seen in each panel. Although the NN interaction was derived as 
described above, the single-particle energies with respect to the 16O 
inert core were fitted as free parameters for the original EEdf1 Ham-
iltonian4 (Methods). In principle, the single-particle energies can be 
derived, but more studies are needed to achieve an accuracy compa-
rable to that of the effective NN interaction. The validity of these fitted 
values has been confirmed by comparison to a number of experimental 
data not only of energy levels but also of electromagnetic properties 
or spectroscopic factors4,28–32. Although the derivation of the effective 
NN interaction does exhibit a certain ab initio aspect, this fit prevents 
us from calling the present calculation fully ab initio.

We now calculate the ground-state energies of the four isotopic 
chains up to their driplines. The driplines obtained by the original EEdf1 
calculation differ somewhat from recent experimental ones for F and 
Ne isotopes39. To retain the advantage of the successful application 

of the original EEdf1 calculation, we simply shift all the single-particle 
energies by the same amount, Δε. This shift changes neither excitation 
energies nor wavefunctions, but varies the ground-state energies.

As shown in the Methods, Δε = 0.82 MeV appears to be appropriate, 
and so we use it in this work. Figure 4 shows the ground-state energies 
for each chain of isotopes: as N starts to increase, the ground-state 
energy first comes down, and reaches a minimum point. Beyond this 
minimum point, the ground-state energy becomes higher, meaning 
that a certain energy can be released by breaking this nucleus into a 
lighter one and some fragment(s) including neutron(s); this nucleus 
is unbound. The minimum points (red arrows) in Fig. 4 correspond to 
the driplines. Figure 4 displays only isotopes with even values of N. 
This is because near the dripline, isotopes with odd values of N show 
higher ground-state energies, and what is relevant to the dripline is 
the comparison between even-N isotopes.

Figure 4 indicates that the present calculation reproduces observed 
driplines39 at 31F and 34Ne as well as the probable candidate at 39Na, and 
predicts the dripline at 42Mg (Fig. 2a, Methods and Extended Data Fig. 1). 
Earlier dripline works show similarities and differences to this work: 
for example, a mean-field calculation3 predicted driplines at N = 24 ± 2 
and 32 ± 2 for Ne and Mg isotopes, respectively, while an empirical 
approach40 predicted driplines at 29F, 34Ne, 37Na and 40Mg.

Figure 2b exhibits a schematic picture of an underlying mechanism 
of the dripline: neutrons fill single-particle orbits in the mean potential, 
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but the last neutron cannot occupy any bound orbit. As this neutron 
must go away, the nucleus is unbound. This scenario basically repre-
sents the situation of the oxygen isotopes. The two highest bound 
orbits, the 1d5/2 (lower) and 2s1/2 (higher) orbits (Fig. 1a, b), are fully 
occupied. The next orbit is the 1d3/2 orbit. In oxygen isotopes, there is 
a new magic number N = 16, with a sizeable gap between the 1d3/2 and 
2s1/2 orbits (see a review27) partly due to the tensor force41. The 1d3/2 
orbit is located high in energy, because of this gap, at positive energy 
or the continuum. This feature remains unchanged in oxygen isotopes 
due to 3NF (ref. 23). In fact, 26O and 28O have been known experimen-
tally to be unbound (open squares in Fig. 2a), locating the dripline at 
the 24O nucleus42,43. Thus, the magic number/shell structure and the 
dripline can be linked directly. As the mean potential is mainly due to 
the proton–neutron interaction, the mean potential for neutrons is 
shallower for smaller Z, because of fewer protons. Neutron orbits are 
then lifted up in energy, and the highest orbit can be pushed up into 
the continuum. Thus, the neutron dripline moves to smaller N value 
as Z decreases, although the actual mechanism can be more complex. 
If the last bound single-particle state of neutrons is loosely bound, an 
outward tunnelling may occur, ending up with a neutron halo, that is, 
an extremely extended neutron density distribution15–18. The coupling 
of such loosely bound states to continuum states is of current interest, 
leading to an open system44.

Another dripline mechanism and nuclear shapes
We next discuss how the dripline is determined in neon and magnesium 
isotopes. We decompose the effective NN interaction, vNN, into three 
components according to their effects (not their origins):

v v v v= + + (1)NN mono pair rest

where vmono, vpair and vrest denote the monopole, pairing and rest interac-
tions, respectively. This decomposition is made uniquely for a given 
vNN (Methods). We start with a simple explanation of them. We take two 

single-particle orbits j and j′. The monopole interaction represents 
an average effect between a nucleon in j and another in j′ for vNN (see 
a review27). The average is taken over all possible quantum states of 
these two nucleons. The effect of the monopole interaction is given 
by the product of the occupation numbers of the orbit j and that in j′. 
It resembles the bond between two interacting objects.

The pairing interaction in atomic nuclei induces nucleon-pair cor-
relations in the angular momentum space in the same way as the BCS 
(Bardeen–Cooper–Schrieffer) pairing in linear momentum space in 
condensed matter. The pairing interaction is then extracted from vNN 
after the removal of the monopole component, as a component acting 
on two neutrons (or two protons) in the same orbits but in opposite 
directions, coupled to Jπ = 0+ (where J is total angular momentum and π 
is parity). This interaction moves such a pair from an orbit to another, 
keeping Jπ = 0+, and is one of the major sources of binding energy.

The ‘rest’ interaction collectively implies all other terms after extract-
ing the monopole and the pairing components from vNN. Although the 
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rest interaction consists of many terms with various effects, the effect 
most relevant to this work is the generation of more binding energies 
for stronger ellipsoidal (or quadrupole) deformation, illustrated in 
Fig. 1e. Because other effects may also provide some binding energies, 
the contribution of the rest interaction is referred to as ‘rest (such as 
quadrupole)’ in Figs. 4 and 5a as well as in the text.

Figure 4a–d displays the contributions of these three terms, as well 
as the contribution of the Coulomb interaction evaluated as in the 
previous work4. All these contributions are shown relative to the values 
for the 16O core. The effects of the single-particle energy are negative 
in Fig. 4, and the positive Coulomb effects are cancelled by part of the 
single-particle energy effects.

The monopole interaction effectively changes the single-particle 
energies (see a review27). It is therefore natural to combine the effect of 
the single-particle energy (grey in Fig. 4) and that of the monopole inter-
action (green), and to call it the combined-monopole effect, including 
the Coulomb effect as well. This combined effect is seen as the lower 
edge of the green area in Fig. 4. If this edge comes down as N is increased, 
added neutrons are bound as far as the combined-monopole effect is 
concerned. For Ne isotopes, the lower edge of the green area comes 
down to N = 30, even beyond the dripline. Similar trends are seen for Na 
and Mg isotopes. This means that an added neutron gains some binding 
energy from the combined-monopole effect even beyond the dripline. 
So there must be another mechanism to push the driplines back to 
the right places. The pairing interaction is basically irrelevant to this, 
because its effect is rather stable as a function of N around the driplines.

Figure 5a displays the contribution of the rest (such as quadrupole) 
interaction. We focus on the Mg case first: as N increases from 16, this 
contribution becomes larger in magnitude but comes to the turning 
point at N = 22. Although it does not change much until N = 26, it rises 
rapidly for N > 26. Note that a similar trend is expected for the quad-
rupole deformation, which can be quantified, for example, by elec-
tric quadrupole properties. In fact, a consistent enhancement of their 
values is seen in the present calculation, exhibiting agreement with 
experiment for lighter isotopes4 while heavier ones are experimental 
challenges. The ground-state energy is lowered until the turning point 
at N = 30 (Fig. 4d). Thus, the rest (such as quadrupole) contribution 
and the ground-state energy show different turning points. We point 
out that the combined-monopole effect changes, as a function of N, 
almost linearly as −2.4 MeV per N in the range N = 22–32. The rest (such 
as quadrupole) contribution, however, exhibits a different pattern, 
like a parabola. In going from N = 30 to 32, it becomes too weak to be 
compensated by the monopole effect, lifting the N = 32 ground state 
above the N = 30 ground state in energy. Thus, the Mg dripline is placed 

at N = 30. Neither magic number N = 20 or N = 28 characterizes the nuclei 
being discussed: for example, the neutron 1d3/2 orbit (Fig. 1a) remains 
only about half-filled still in the 42Mg ground state, implying that the 
intruder nature persists beyond the island of inversion12,45. The para-
bolic behaviours14 as a function of N in Fig. 5a are stretched both ways 
far beyond N = 20 and 28, whereas if these magic numbers dominated 
the structure of these nuclei, the parabolas would end there.

Figure 2c displays this situation intuitively: the variation of the shape 
and ground-state energy are depicted as a function of N, starting from 
a spherical shape at a higher energy. By adding neutrons, the ellip-
soidal deformation evolves, giving the nucleus additional binding 
energy (second object from left in Fig. 2c). Because such deforma-
tion is a realization of the Jahn–Teller effect46, special superpositions 
of single-particle states are needed to enlarge the deformation. We 
note that besides the superpositions in the pf shell, there can be other 
superpositions by neutron holes (Fig. 1b). The deformed ground-state 
wavefunction contains some of these superpositions (second object 
from left in Fig. 2c). At a certain value of N, all available superpositions 
are in the wavefunction, implying that this extra binding effect is satu-
rated, marking a maximum (third object from left in Fig. 2c). After this 
point, additional neutrons weaken the deformation, for instance, yield-
ing triaxial shapes (on the far right in Fig. 2c).

On top of this effect, as explained above for Mg isotopes, there is a 
displacement between the minimum point of the rest (such as quad-
rupole) effect and the dripline, mainly due to the combined-monopole 
effect (arrows in Fig. 5a). If this monopole effect is weaker, the displace-
ment becomes smaller. In fact, there is no such effect for F isotopes (see 
the top part of Fig. 5a). For Ne isotopes, the monopole effect changes 
by approximately −0.9 MeV per N in the range N = 20–28, producing a 
smaller displacement of ΔN = 2, as compared to ΔN = 6 (8) for Na (Mg) 
isotopes (Fig. 5a). We note that the pairing interaction is included in the 
present calculation but does not change the basic trend. Thus, for the 
isotopes being discussed, the dripline is given by the saturation of the 
rest (such as quadrupole) effect combined with the present outward 
displacement. Because the present effective NN interaction has been 
derived from the basic nuclear forces (see Methods for their possible 
variations), both effects are expected to be robust, providing a visible 
example of the dripline mechanism.

It is then of particular importance to examine the present approach 
by comparing with experimental data near the dripline. For this ques-
tion, we present the energy levels of 40Mg, for which experimental data 
became available very recently47. Despite a plausible claim about the 
incapability of “any currently published calculations”47, Fig. 5b exhibits 
a nice agreement for the energy levels of 40Mg. In this case, the Monte 
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arrows indicate the displacements mainly due to the single-particle-energy 

plus monopole (that is, combined monopole) effects (Fig. 4). The 40Mg nucleus 
is indicated by a circle. b, On the left, theoretical energy levels below 2.5 MeV 
are shown, including the prolate ground (red) and triaxial side (blue) rotational 
bands. The shapes of the bands are shown by illustrative symbols. On the right, 
the experimental levels are shown47.
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Carlo Shell Model (MCSM) calculation yields a rotational band built 
on the ground state with a prolate shape (red), and another rotational 
band with a triaxial shape at very low excitation energy (blue). This 
agreement seems to suggest the validity of the present approach.

We now comment on the traditional view that loosely bound neutrons 
characteristic of dripline nuclei may show notable coupling to con-
tinuum states, referred to as “open system”44. When the gain of the 
combined-monopole effect with one more neutron is denoted as ϵ, −ϵ 
represents, as a rough estimate, the energy needed to promote a neu-
tron from the ground state to a loosely bound state, assuming that all 
effects except for the combined-monopole effect are unchanged 
(Fig. 2d). In the case of Mg isotopes, the open-system scheme may show 
up, in this estimate, with excitation energies around −ϵ ≈ 2.4 MeV, apart 
from other effects. As ϵ is much smaller for F isotopes, this coupling 
can occur at lower excitation energy. It is of great interest to see such 
variations. If N is an odd integer, the pairing and rest (such as quadru-
pole) effects are weaker. This is one of the reasons why only even-N 
isotopes appear near driplines, and the open system may be found in 
low-lying states with odd N, for example48.

Prospects
Here we have described a mechanism for the dripline of atomic 
nuclei, to which both the variation of the shape deformation and the 
combined-monopole effect contribute. Although this mechanism is 
not very sensitive to details, the agreement with a variety of experi-
mental data and the ab initio nature of the effective NN interaction 
enhance the reality of the mechanism. The patterns of the monopole 
and rest effects in Fig. 4 have been observed in other regions of the 
Segrè chart27, and their combination, naturally and robustly, gives us 
the present dripline mechanism, in which the EEdf1 interaction provides 
their precise magnitudes. It is remarkable that the driplines of F, Ne 
and probably Na isotopes are described within a single framework of 
EEdf1 interaction, despite the large structural changes observed. The 
excited states are described also, including the recent data for 40Mg. 
As a general outcome, this work proposes two dripline mechanisms: 
one with a single-particle nature and the other with shape deformation 
(the collective mode), as shown in Fig. 2b, c, respectively. These two 
mechanisms are complementary, and may appear alternatively as Z 
increases. For instance, the mechanism in Fig. 2b may return for the 
magic number Z ≈ 20. The interplay of single-particle versus collective 
aspects has been studied in many facets of nuclear structure49,50, and is 
now shown to be crucial also to the dripline. Including intermediate situ-
ations, it is of great interest where and how these two mechanisms arise 
as Z changes as well as how one can observe them experimentally, for 
example, by measuring ellipsoidal deformation of the nuclei towards 
driplines. The relation between fission and the present mechanism is 
of interest as the limiting case of the dripline in heavy nuclei.
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Methods

EKK method
The EEdf1 interaction is derived by using the EKK method, which is 
explained here. The EKK method is a version of many-body perturba-
tion theory. The many-body perturbation theory stands for a group 
of the methods for deriving the effective interaction designed for a 
given model space (for example, the sd or sd-pf shells), starting from the 
nuclear force in vacuum51. The Kuo–Krenciglowa (KK) method52 is also 
one of the many-body perturbation theories, and has been used conven-
tionally and successfully for this purpose51. One cannot, however, utilize 
the KK method for a model space composed of more than one major 
shell, owing to the divergence problem of the perturbative expansion.

In the framework of many-body perturbation theory, including the 
EKK and KK methods, a bare nuclear force in vacuum is renormalized 
to an effective interaction for the designated model space. The renor-
malization is materialized by perturbative techniques to take in the 
effects of the virtual excitation to the outside of the model space. This 
is the reason for the divergence in the KK method, because the naive 
treatment of the energy denominator leads to a divergence if the model 
space comprises more than one major shell. Unfortunately, this has 
been a fundamental issue of many-body perturbation theories.

To describe many exotic nuclei, the model space composed of more 
than one major shell (for example, the sd-pf shell) is essential but one 
cannot access, using the KK method, this interesting and fruitful region 
of the Segrè chart. The EKK method has overcome this difficulty by 
re-summing the perturbative series so that one can avoid the divergence. 
The re-summation is performed with a formula similar to the Taylor expan-
sion but in the operator form. One can avoid the divergence by choosing 
an appropriate value of the ‘origin’ of the expansion, without changing 
the result, as long as the summation of the series converges. The detailed 
derivation and explanation of the EKK method are shown in refs. 19–21.

EEdf1 interaction and its single-particle energies
The first application of the EKK method was carried out for the study 
of the nuclei around the island of inversion, as described in ref. 4. We 
outline here how the effective interaction for the shell model calcula-
tion was constructed.

The χEFT interaction proposed by Entem and Machleidt22,53 was taken 
with Λ = 500 MeV, as the nuclear force in vacuum mentioned above, up 
to the next-to-next-to-next-to-leading-order (N3LO) in the χEFT. It was 
then renormalized by the Vlowk approach54,55 with a cutoff of 
ΛVlowk = 2.0 fm−1, in order to obtain a low-momentum interaction decou-
pled from high-momentum phenomena. This treatment helps to gener-
ally improve the convergence of the many-body perturbation theory 
calculation, which is in this case, the EKK method. The EKK method was 
then adopted in order to obtain the effective NN interaction for the sd-pf 
shell, by including the so-called Q̂-box, which incorporates unfolded 
effects coming from the outside of the model space51, up to the third 
order and its folded diagrams. As the single-particle basis vectors, the 
eigenfunctions of the three-dimensional harmonic oscillator potential 
were taken as usual. On top of this, the contributions from the Fujita–
Miyazawa 3NF were added in the form of the effective NN interaction. 
The Fujita–Miyazawa force24 represents effects of the virtual excitation 
from a nucleon to a Δ baryon by pion-exchange processes. It has been 
discussed and included in many works, for instance56,57. While the 3NFs 
may contain other terms, the Fujita–Miyazawa force is considered to 
produce dominant contributions to binding energies, as shown, for 
instance, in ref. 23. Furthermore, its major and important roles have 
recently been clarified also from the viewpoint of the χEFT interaction58. 
The other terms are still under discussions with variations of their 
strength parameters among different χEFT approaches, and their effects 
are expected to be small with respect to the present issues. We thus 
retained the Fujita–Miyazawa force in evaluating contributions from 
the 3NFs, but other 3NFs will be discussed later.

The effective NN interaction for the sd-pf shell was thus constructed, 
and was named the EEdf1 interaction. There are seven single-particle 
orbits in the sd-pf shell. Their single-particle energies are determined 
by the fit, as stated in the main text. We note that only the single-particle 
energies are fitted and the interaction between valence nucleons in 
the sd-pf shell is derived as mentioned above. Because of the isospin 
symmetry, a proton orbit has the same energy as the corresponding 
neutron orbit except for the Coulomb contribution, which is assumed 
to be equal to all proton orbits (for a given nucleus) as usual. The values 
of the seven single-particle energies were determined so as to repro-
duce observables such as the ground-state energies of N < 20, the 21

+ 
level of 30Ne, 32Mg, 34Si, and the excitation energies of several states of 
31Mg. The fit was not like a χ2-fit but was done so as to reproduce basic 
patterns of these observables. The single-particle energies of the 2p1/2 
and 1f5/2 orbits are constrained by the GXPF1 values59, as described also 
in ref. 4. We note that no structure data of neutron-rich exotic nuclei 
with N > 20 were used in this fit.

The EEdf1 interaction and the single-particle energies attached to 
it were thus constructed. It has been extensively applied to a variety 
of cases: many experimental data other than those used for the fit are 
described well, as one can find not only in Figs. 3, 4, but also in the 
results shown in refs. 4,27–32.

As stated in the main text, the single-particle energies need to be 
refined from the original EEdf1 values. In the present work, we shift them 
by the same amount, Δε. We first investigate, for each isotopic chain, 
which nucleus becomes the dripline as a function of Δε. As shown in 
Extended Data Fig. 1, the original values of the single-particle energies 
(Δε = 0) are too low, and the calculated dripline appears too far from 
the experimentally observed location in the Segrè chart. By increas-
ing the Δε value, the dripline is shifted to smaller N values, that is, to 
lighter isotopes (Extended Data Fig. 1). The driplines were assigned 
experimentally to 31F and 34Ne very recently39, suggesting the range 
Δε = 0.82–1.17 MeV. Regarding the chain of Na isotopes, a preliminary 
report indicates, with one event, that 39Na is bound39. The nucleus 37Na 
is known to be bound60. If the dripline is on 39Na, Δε = 0.82–0.87 MeV is 
obtained (dark pink belt in Extended Data Fig. 1). As it is very unlikely 
from empirical systematics that 41Na is bound, we exclude this possibil-
ity. We thus adopt Δε = 0.82 MeV, the lower boundary of the range. This 
range, 0.050 MeV, is the uncertainty of this study and limits, for instance, 
the precision of the one-neutron separation energy; it is too small to be 
visible in Extended Data Fig. 1. The 40Mg isotope is known to be bound61, 
and the predicted dripline of Mg isotopes is 42Mg (Extended Data Fig. 1).

Uncertainty quantification
The comparisons to experimental data stated in the previous section 
reinforce the validity of the EEdf1 interaction for the present study. 
While this kind of comparison is a standard way to ensure the validity 
of a given theoretical scheme, another approach, called the uncertainty 
quantification, has been investigated in recent years3,62–64. By using this 
approach, different treatments of a common nuclear force in vacuum 
can be compared in order to see the variable range of the outcome. In 
the present work, we have discussed the uncertainty due to the range 
of the shift Δε, giving rise to limited precision of the neutron separation 
energies. This affects only ground-state energies.

Recently, a variety of ab initio effective NN interactions have been 
proposed25,26,65–76; different choices of the nuclear force in the free space 
and varying recipes of its renormalization lead to different effective NN 
interactions. To reinforce our findings including the dripline mecha-
nism, therefore, it is desirable to perform the uncertainty quantification 
analysis by adopting other effective NN interactions into the present 
scheme. Although such a full-scale calculation is ideal, it is at present 
not feasible because of limited computational resources. We therefore 
explore how results are varied by changing the interactions.

The present work uses the cutoff parameter ΛVlowk = 2.0 fm−1 in the Vlowk 
calculation54,55. We vary ΛVlowk from 2.0 fm−1 to 1.8 fm−1 and 2.2 fm−1. Note 



that ΛVlowk = 1.8 fm−1, 2.0 fm−1 and 2.2 fm−1 were used in earlier works, such 
as ref. 77. The χEFT N3LO NN interaction mentioned above22,53 is renormal-
ized with these three values of ΛVlowk, and is further transformed, by the 
EKK method, into the effective NN interaction for configuration-interaction 
calculations. The expectation values of such effective NN interactions 
are calculated with respect to the ground-state wavefunctions obtained 
in the work described in the main text. Although the third-order Q̂-boxes 
were included in the EKK calculation for the results shown in the main 
text, this comparison with different values of ΛVlowk is made at the 
second-order Q̂-box, for the sake of simplicity. The Ne and Mg isotopes 
with N ≥ 16 are considered up to near their driplines. The comparison 
shows rather weak dependence on ΛVlowk. The expectation values appear 
to be similar for the three different values of ΛVlowk, for a given isotope in 
both Ne and Mg isotopic chains (Extended Data Fig. 2). The change of 
this expectation value from 26Ne to 38Ne is more directly related to the 
driplines, and is shown to be insensitive to the ΛVlowk value: it is −57.16 MeV, 
−57.57 MeV and −58.27 MeV, respectively, for ΛVlowk = 1.8 fm−1, 2.0 fm−1 and 
2.2 fm−1. The deviation is ≱ 1%. The Mg isotopes show a similar insensitiv-
ity: the corresponding changes from 28Mg to 44Mg are −102.62 MeV, 
−102.10 MeV and −101.49 MeV. The third-order Q̂-box results are slightly 
above these second-order Q̂-box results (Extended Data Fig. 2). This can 
be a hint of good convergence as a function of the Q̂-box order, and 
enhances the validity of the present comparison.

We also found, in the analysis stated above, that the monopole, pair-
ing and rest (such as quadrupole) components in equation (1) depict 
similarly weak dependences on ΛVlowk. The expectation values of the 
rest (such as quadrupole) term by the second-order Q̂-box calculation 
provide an example of the insensitivity to the ΛVlowk value (Extended 
Data Fig. 3), including the location of its maximum magnitude (N = 22, 
that is, 32Ne and 34Mg), which has exactly the same location as in Fig. 5. 
This indicates that the second-order results already carry essential 
properties of the structure evolution. Such similarities between the 
second- and third-order results are seen also for the monopole and 
pairing terms.

Another variation is investigated for the 3NF. The Fujita–Miyazawa 
3NF, which we adopt here, does not contain the so-called cD and cE con-
tact terms78,79. Although there are various options of 3NF that include 
these terms, we use the following two frequently used 3NFs: one given 
by Hebeler et al.77 (option of 2.0/2.0 (EM ci values) for Vlowk) and the 
other by Gazit et al.80. We obtain effective NN interactions from these 
3NFs first by deriving density-dependent NN interactions from them81, 
and then by having the density dependence integrated out with the 
normal density. Similarly to the cutoff dependences discussed above, 
we calculate the expectation values of such effective NN interactions 
with respect to the ground-state wavefunctions of the Ne and Mg iso-
topes with N ≥ 16 up to near the driplines (Extended Data Fig. 4). The 
resultant expectation values derived from the 3NF of Gazit et al.80 show 
quite good agreement with the values obtained from the currently used 
Fujita–Mitazawa 3NF. We note that cD = 0.83 and cE = −0.052 are adopted 
besides the standard c1c3c4 term80. In fact, the expectation value of 
the Fujita–Mitazawa (Gazit et al.) 3NF is 11.2 (12.3) MeV for 28Mg and 
46.4 (49.2) MeV for 44Mg. This close relation indicates that the Fujita–
Mitazawa 3NF adopted in this work may be, especially in practice, not 
too far from the 3NFs used in other approaches, providing us with an 
indication of the robustness of the present dripline mechanism. The 
3NFs of Hebeler et al.77, where cD ≈ 1.6–1.7 and cE ≈ −0.1, show some 
systematic deviations from the results of the Fujita–Mitazawa 3NF, but 
this deviation is not large and varies smoothly as a function of N. The 
difference between this 3NF and the Fujita–Mitazawa 3NF can then be 
remedied by shifting the value of the parameter Δε by −0.5 MeV, that 
is, from the present value of 0.82 MeV to 0.32 MeV (see the columns 
labelled ‘Hebeler et al.−0.5N’ in Extended Data Fig. 4). In other words, 
by using such a value of Δε, one can probably describe the existence 
and structure of the nuclei of interest in a similar way to the present 
work, in terms of basically the same mechanism. We note that cD and cE 

are smaller in the delta-full formulation58, where the excitation to the 
Δ particle is more explicitly included.

We now look at some individual terms in equation (1) coming from 
the 3NF. Although the cD and cE contact terms contribute, as a general 
property, to the rest (such as quadrupole) term, the actual contribution 
is quite small. For example, the expectation value of the rest term from 
the 3NF of Gazit et al.80 remains 1.3 MeV for 34Mg to 40Mg with a decrease 
afterwards, whereas the total effect of this 3NF is of much larger mag-
nitude, varying between −29 MeV and −26 MeV for 34Mg to 40Mg. Thus, 
the 3NF produces rather minor effects on the rest (such as quadrupole) 
term. On the other side, the 3NF effect on the monopole term is notable. 
We sketch how it occurs. Single-particle energies of valence nucleons are 
lowered by Δ–hole excitations, but this lowering should be reduced by 
the Pauli blocking due to other valence nucleons. Such blocking effects 
can be incorporated by the monopole term of the Fujita–Mitazawa 3NF 
as described in ref. 23, and this effect is usually rather sizeable and general 
because of its origin. The dominance of the monopole effect over the 
other two terms in equation (1) is seen commonly in the 3NFs of Hebeler 
et al.77 and Gazit et al.80, resulting in cancellation of the total attractive 
monopole effect (20–30% in the case of Fig. 4).

Summarizing the discussions above, the NN interaction of the χEFT 
was renormalized in the present work by the Vlowk calculation54,55 with 
the cutoff parameter ΛVlowk. The effects of the effective NN interaction 
for the configuration-interaction calculation are shown to be insensitive 
to this parameter around the present value, up to three decomposed 
components: monopole, pairing and rest. The 3NF affects mostly the 
monopole term of this effective NN interaction, and its effects are quite 
similar among the different 3NF options, or can be made so by a simple 
tuning. From these findings, the dripline mechanism proposed in this 
work appears to be natural and robust with respect to the variations 
of NN interactions.

The background of the features shown above with the case studies 
may be discussed as follows. First, as far as the ground and low-lying 
states are concerned, the low-momentum part of the effective NN 
interaction is more relevant than the high-momentum part. This fea-
ture is further strengthened for long-wavelength phenomena such as 
the shell structure and the shape evolution, which we focus on in this 
work. Second, all reasonable ‘recipes’ of the renormalization54,55,82,83 
probably lead to effective NN interactions with similar low-momentum 
properties, which is a natural consequence of the guiding principle 
for deriving the effective NN interaction: low-momentum properties 
of the original interaction must be reproduced. Third, because the 
EEdf1 interaction explains experiments rather well for low-energy and/
or long-wavelength phenomena, we expect little room for substantial 
improvement by changing interactions. We thus expect that the present 
description of the interplay between the monopole and the rest effects 
by the EEdf1 interaction is close to the ultimate picture of the dripline, 
which can be shared by other ab initio effective NN interactions. This 
is also because the EEdf1 interaction was derived from one of the most 
frequently adopted nuclear forces in free space22,53.

Configuration-interaction calculation or shell-model calculation
The shell-model calculation is one of the standard methods in the nuclear 
many-body problem. It is similar to the configuration-interaction calcula-
tion in other fields of science. The single-particle orbits are defined first, 
on top of the inert core (or closed shell) (Fig. 1a). Protons and neutrons are 
put into these orbits. They are called valence protons or neutrons. Slater 
determinants are composed of single-particle states of these valence 
nucleons. We can construct the Hilbert space spanned by such Slater 
determinants. The matrix element of the Hamiltonian is calculated for 
each pair of the Slater determinants. Once all matrix elements are cal-
culated, the matrix is diagonalized, to solve the Schrödinger equation. 
We then obtain energy eigenvalues of this Hamiltonian as well as their 
wavefunctions, from which we can calculate various physical quantities. 
This is an outline of the conventional shell-model calculation.
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The number of such Slater determinants is called the shell-model 

dimension, and is crucial for the feasibility of actual computation. 
The maximum number of dimensions for which the conventional 
shell-model calculation can be performed is about 1011 at present33. 
Although this number of dimensions has been increased on average 
by a factor of two every two years, there are a number of highly inter-
esting or important projects beyond this limit. In fact, the maximum 
shell-model dimension in the present work is 7.45 × 1011 for 36Mg, which 
is well above the current limit stated above. The MCSM was introduced 
to overcome this difficulty34,35, and is explained in the Methods. The 
shell-model interaction is also being studied for lighter nuclei in ab 
initio frameworks, for instance70,72–74.

Island of inversion
The island of inversion stands for the nine nuclei of Z = 10–12 and 
N = 20–22 in the Segrè chart. Although this terminology was introduced 
in ref. 12, the corresponding phenomena had earlier been recognized 
widely, as reviewed in refs. 13,27. The island of inversion has served as a 
useful concept since then, in shell-model (configuration-interaction) 
calculations (for example, refs. 12,13,27,45,84–86, in comparison to a large 
number of experiments, such as in refs. 87–94).

Because N = 20 is one of the magic numbers, the natural expectation 
is a neutron closed-shell ground state with a spherical shape (Fig. 1a, c). 
Intruder states with deformed shapes may then be found among excited 
states. In the picture of the island of inversion, however, an intruder 
state gains a large binding energy and becomes the ground state. This 
extra binding energy is due to a strong ellipsoidal deformation (Fig. 1e). 
If the closed shell structure remains (Fig. 1a), such strong deformation 
does not occur. On the other hand, particle–hole excitations across the 
N = 20 magic gap (Fig. 1b) can generally lead to strong deformation by 
creating or increasing valence particles in the pf shell and holes in the sd 
shell, as shown in Fig. 1b. Thus, the deformation and the particle–hole 
excitation are linked in the island of inversion. In the original picture of 
the island of inversion12, the inversion occurs also for N = 21 and 22, but 
not for N > 22. The contribution from protons is also needed for a strong 
deformation: the deformation can be stronger for Z = 10–12, owing to 
particular occupations of proton single-particle orbits. Thus, the island 
of inversion picture suggests that the intruder ground states (that is, 
the ‘inversion’ phenomenon) emerge in the designated area of the Segrè 
chart, and that the nuclei outside the island of inversion are ‘normal’, 
having spherical ground states and retaining the N = 20 magic number.

The ellipsoidal deformation is a general phenomenon in atomic 
nuclei7–9, and is not necessarily connected to particle–hole excitations 
across some magic gap. On the other side, a strong deformation can 
result in substantial particle–hole excitations over a magic gap, as a 
matter of the balance between the strength of the deformation and 
the size of the magic gap. In this sense, the mechanism of the island 
of inversion is a part of the general view of the nuclear deformation.

The island of inversion picture limits the nuclei with the ‘inversion’ 
to the nine nuclei mentioned above. This has been extensively stud-
ied; see recent reviews13,27 for instance. It has been shown, however, in  
ref. 4, where the same framework was taken as the present work, that 
substantial particle–hole excitations occur in the ground states of rel-
evant isotopes with N < 20, contrary to the island of inversion picture of 
ref. 12. This is partly due to the shell evolution, meaning that the magic 
gap at N = 20 becomes smaller as a function of Z (ref. 27). The question 
then arises as to what happens in the nuclei with N > 22. This work shows 
the results up to the driplines, and as we show, the N = 20 closed-shell 
structure is kept broken all the way. The strong deformation persists 
up to the dripline, while the degree of the deformation varies.

Monte Carlo shell model
The MCSM34,35 uses Slater determinants as the basis vectors, similarly 
to the conventional shell-model calculation. However, the Slater deter-
minants are not the same as those used in the conventional one. A basis 

vector for the MCSM calculation is a Slater determinant composed 
of ‘stochastically and variationally’ deformed single-particle states: 
Each such single-particle state is given by a certain superposition of 
the original single-particle states with amplitudes determined by sto-
chastic and variational methods. By having some MCSM basis vectors 
produced and selected in this way, we diagonalize the Hamiltonian, and 
obtain energy eigenvalues and their wavefunctions.

These MCSM basis vectors are obtained one by one so that the energy 
eigenvalue of the state of interest is lowered sufficiently by adding a 
new one. For each MCSM basis vector, the single-particle amplitudes 
mentioned above need to be determined properly. They are searched 
by the stochastic process and are improved in the variational way. 
Because of the superposition over all single-particle states, the sym-
metries of the configuration-interaction Hamiltonian are lost, and 
the projection onto the angular momentum, the parity, and so on is 
carried out for the MCSM basis vector, already in the selection process 
of the basis vectors. Many candidates of such Slater determinant are 
tried and abandoned, keeping only those making sufficient contribu-
tions. Although there are a number of methodological refinements 
practically, we do not mention them here. Usually, we keep 50–100 
MCSM basis vectors thus selected and polished. Since the computa-
tion can be quite large, the world’s largest supercomputers, such as 
the K-computer (https://www.r-ccs.riken.jp/en/k-computer/about/), 
have been used.

Decomposition of the interaction
A given effective NN interaction, vNN, scatters a pair of nucleons in 
single-particle orbits j1 and j2 into a pair of single-particle orbits j3 and 
j4, conserving their total angular momentum J and parity π. The isospin 
T is relevant also, but is omitted here. This process is expressed by the 
so-called two-body matrix element

j j J v j j J⟨ , ; | | , ; ⟩. (2)π
NN

π
3 4 1 2

The monopole interaction13,27, vmono in equation (1), is defined as an 
interaction with a constant strength (coupling constant) common to 
any pair of a nucleon in orbit j1 and the other nucleon in orbit j2. This 
constant strength should reproduce the average effect of vNN for the 
orbits j1 and j2, and hence is given by the monopole matrix element

V j j
J j j J v j j J

J
( , ) =

∑ (2 + 1)⟨ , ; | | , ; ⟩

∑ (2 + 1)
, (3)m J

π
NN

π

J
1 2

1 2 1 2

where J in the summation takes all possible values with certain limita-
tions due to the Pauli principle for the cases with j1 = j2 (same orbit). 
The monopole matrix element is indeed the average over all possible 
orientations when a nucleon is in the orbit j1 and the other in the orbit j2. 
The monopole interaction keeps quantum states of these two nucleons. 
The strength varies in general if j1 or j2 is changed. It is analogous to the 
bond between two quantum objects (like atoms), in the sense that only 
average effects are carried (without fine details). A more precise and 
pedagogical explanation, including isospin properties, can be found 
in a review article27. We point out once again that the monopole inter-
action is uniquely determined from a given effective NN interaction.

The pairing interaction, vpair, is represented by the two-body matrix 
elements

j j J v v j j J⟨ , ; = 0 | − | , ; = 0 ⟩. (4)π
NN mono

π
3 3

+
1 1

+

We consider the pairing interaction between neutrons and the pairing 
interaction between protons, whereas the one between a proton and a 
neutron is not considered in this work. The pairing interaction then rep-
resents an interaction acting on two identical fermions in time-reversal 
states, which is analogous to the BCS pairing of electrons in con-
densed matter. To avoid double counting, the monopole-interaction 

https://www.r-ccs.riken.jp/en/k-computer/about/


component is subtracted from vNN in equation (4), but this is a minor 
point because of the (2J + 1) factor in equation (3) and J = 0 for the pair-
ing. In fact, the contribution of the monopole component of the pairing 
interaction, which is included not in the pairing segment but in the 
monopole segment in Fig. 4, is small (less than about 2 MeV) and does 
not change rapidly as a function of the neutron number. We point out 
that the pairing interaction favours states of spherical shapes.

The rest interaction is given by:

v v v v= – − (5)NNrest mono pair

As mentioned in the main text, vrest contains many terms, but the most 
dominant one in the present issue is the quadrupole–quadrupole 
interaction, for which the main contribution comes from the coupling 
between the proton quadrupole operator and the neutron quadrupole 
operator. Because of the construction, three terms, vmono, vpair and vrest, 
exclude each other, and their total sum constitutes the interaction vNN.

Data availability
All data relevant to this study are shown in the paper, but if more details 
are needed, they are available from the corresponding author upon 
reasonable request.

Code availability
Several codes for the conventional shell-model (configuration- 
interaction) calculation are available, of which we used KSHELL33 in 
the present work. Reasonable inquiries about the MCSM code will be 
responded to by the corresponding author.
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Extended Data Fig. 1 | Dripline nucleus in each chain of isotopes as a 
function of Δε. The single-particle energies are shifted from their original 
values by the same amount, Δε, which is the vertical axis. The dark pink belt 

indicates the range of Δε suggested by the recent experiment39 identifying 31F, 
34Ne and 39Na as dripline nuclei, while the light pink belt is obtained similarly but 
by assuming 37Na is the dripline nucleus of Na isotopes.
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Extended Data Fig. 2 | Dependences of the ground-state energy on the 
cutoff parameter of the Vlowk approach. The ground-state expectation value 
of the effective NN interaction originating in the χEFT NN forces by Entem and 
Machleidt22,53 (Methods) are shown for the Ne and Mg isotopes. a, Ne; b, Mg. For 
each isotope, the second (orange), third (red) and fourth (grey) columns 

depict, respectively, this quantity obtained with the cutoff parameter 
ΛVlowk = 1.8 fm−1, 2.0 fm−1 and 2.2 fm−1 by the second-order Q̂-box calculation  
in the EKK process. For comparison, the third-order Q̂-box result with 
ΛVlowk = 2.0 fm−1 is shown by the first (green) column. All values are shown 
relative to their corresponding N = 16 values.
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Extended Data Fig. 3 | Dependences of the rest interaction contribution on 
the cutoff parameter of the Vlowk approach. Cutoff dependences of the 
ground-state expectation value of the rest (such as quadrupole) term of the 
effective NN interaction originating in the χEFT NN forces by Entem and 
Machleidt22,53 (Methods) are shown for the Ne and Mg isotopes. a, Ne; b, Mg. For 
each isotope, the orange, red and grey lines depict, respectively, this quantity 

obtained with the cutoff parameter ΛVlowk = 1.8 fm−1, 2.0 fm−1 and 2.2 fm−1 by  
the second-order Q̂-box calculation in the EKK process. For comparison, the 
third-order Q̂-box result with ΛVlowk = 2.0 fm−1 is shown by the green line.  
All values are shown relative to their corresponding N = 16 values. The dripline 
isotopes suggested by the present work are indicated by star symbols.
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Extended Data Fig. 4 | Ground-state expectation value of the 3NF for the Ne 
and Mg isotopes. a, Ne; b, Mg. For each isotope, the second (orange), third 
(green) and fourth (red) columns depict, respectively, this quantity obtained 
with the 3NF of Gazit et al.80, that of Hebeler et al.77 and that of Hebeler et al. 

with single-particle energy shift (labelled ‘Hebeler et al.−0.5N ’) (Methods). For 
comparison, the same quantity by the Fujita–Miyazawa 3NF is shown by the 
first (blue) column.
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