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Abstract: Direct numerical simulations were performed to study the effects of the domain size of
a minimal flow unit (MFU) and its inherent periodic boundary conditions on flow physics of a
turbulent channel flow in a range of 200 ≤ Reτ ≤ 1000. This was accomplished by comparing
turbulent statistics with those computed in sub-domains (SD) of extended domain simulations. The
dimensions of the MFU and SD were matched, and SD dynamics were set to minimize artificial
periodicities. Streamwise and spanwise dimensions of healthy MFUs were found to increase linearly
with Reynolds number. It was also found that both MFU and SD statistics and dynamics were healthy
and in good agreement. This suggests that healthy MFU dynamics represent extended-domain
dynamics well up to Reτ = 1000, indicating a nearly negligible effect of periodic conditions on MFUs.
However, there was a small deviation within the buffer layer for the MFU at Reτ = 200, which
manifested in an increased mean velocity and a tail in the Q2 quadrant of the u′-v′ plane. Thus, it
should be noted that when considering an MFU domain size, stricter criteria may need to be put in
place to ensure healthy turbulent dynamics.

Keywords: turbulence; flow physics; direct numerical simulation; minimal flow units; extended
flow units

1. Introduction

Embedded in a turbulent flow is inherent intermittency. The dynamics of wall-
bounded turbulence fluctuate between high, intermediate, and low-drag states in a stochas-
tic fashion, which illuminates the self-sustaining process in shear flows [1–4]. The most
straightforward simulation approach to identify the intermittency and self-sustaining
structures is the so-called minimal flow unit (MFU) approach [5]. A minimal flow unit is
the smallest simulation domain for a given set of parameters, such as Reynolds numbers,
containing the essential self-sustaining elements for which turbulence persists. In MFUs,
turbulent statistics are spatially correlated, indicating that the entire domain completely
experiences the same dynamics. Accordingly, temporally intermittent phenomena can be
readily identified by spatial averaging. Thus, the MFU dynamics allow one to concentrate
only on the temporal intermittency of turbulence. However, it should be noted that an MFU
should at least maintain "healthy" near-wall turbulence that reproduces the self-sustaining
process and statistical characteristics of full turbulence [6–9]. In particular, an MFU should
be able to contain a single ejection and sweep event by which streamwise streaks and
vortices are sustained [10].

In an extended domain, turbulent statistics become less correlated in space and the
intermittency becomes both spatial and temporal in nature. In this situation, spatially-
averaged statistics could mix information together from different regions, which makes
identification of spatiotemporal intermittency difficult to recognize. Moreover, the effects
of the computational domain size on turbulent dynamics could be profound [11]. In addi-
tion, as the Reynolds number increases, the spatiotemporal intermittency becomes more
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noticeable [12–14]. A natural question is how closely the MFU dynamics are related to the
spatiotemporal intermittency in a spatially extended domain. This extended domain can
be thought of as a more experimentally realizable flow for which no artificial periodicities
are imposed [15]. There have been studies to draw the links between minimal-domain
temporal intermittency and extended-domain spatiotemporal intermittency for the transi-
tional Reynolds number regime [15,16], but it has yet to be explored for higher Reynolds
numbers until now, which is a focus of the present work.

Prior to proceeding to the present work, we aim to provide a brief description of
the minimal flow unit and its potential connection to William W. Willmarth’s legacy in
turbulent flows. Direct numerical simulations (DNSs) based on minimum flow units have
been extensively performed for a variety of purposes, including understanding near-wall
turbulent dynamics [17–20] and flow control [21–23]. A minimum flow unit involves the
periodic computational domain, which has the minimum spanwise length of approximately
100 wall units and the minimum streamwise length of approximately 250–350 wall units [5].
Interestingly, an MFU with the minimum lengths could capture the turbulence intensity
at the near-wall in a turbulent channel experiment performed by Wei and Willmarth [24].
However, lengths too small to accommodate the large-scale structure are likely to result in
a statistical abnormality and minimal log layer in a mean velocity [5]. Although the outer
portion of the boundary layer might not significantly influence the inner-layer statistics to
some extent [25], the influence of the outer layer flow on near-wall flow structures becomes
important when there is a significant cancellation in the logarithmic layer. Thus, it is worth
noting that the deterioration of near-wall turbulence with narrow MFU domains for higher
Reynold numbers could result in the disappearance of the logarithmic region in the mean
velocity profile. This situation can be referred to as "unhealthy" turbulence. As mentioned
above, ejection and sweep events should be accommodated for valid MFU dynamics.
These events could be related to Reynolds stress and coherent structures by means of the
so-called quadrant analysis. This approach was advanced by Willmarth and Lu [26–29].
This quadrant analysis will be employed in the current study to draw connections between
MFU dynamics and extended-domain dynamics.

This paper is organized as follows. Section 2 presents the problem formulation and
numerical details for the current study. In Section 3, we present the size of minimal flow
units and compare MFU statistics and dynamics to ones for a sub-domain of the same size
embedded in an extended domain, for which quadrant analysis was employed. Finally, a
summary and implications of the present investigation are given in Section 4.

2. Problem Formulation

We consider a direct numerical simulation (DNS) of an incompressible Newtonian
fluid in the plane Poiseuille (channel) geometry, driven by constant volumetric flux Q. The
domain was aligned such that the x, y, and z coordinates corresponded to the streamwise,
wall-normal, and spanwise directions, respectively. For all DNSs, periodic boundary
conditions were imposed in the x and z directions with the maximum wavelengths of Lx
and Lz, and a no-slip boundary condition was imposed at the top and bottom walls y = ±h,
where h = Ly/2 is the channel half-height. However, data analyzed from the extended
domain DNS were taken from a sub-domain (SD) which matches the fundamental periods
of the MFU, namely, Lx and Lz. An SD was located in the middle of the extended domain
to minimize any potential artificial effects of periodic boundaries. The laminar centerline
velocity for a given volumetric flux is given by Ucl = (3/4)Q/h. Using the channel half-
height h and the laminar centerline velocity Ucl as the characteristic length and velocity
scales, the non-dimensionalized continuity and Navier-Stokes equations are given as

∇ · u = 0, (1)
∂u
∂t

+ u · ∇u = −∇p +
1

Rec
∇2u. (2)
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The Reynolds number for the given centerline velocity is defined as Rec = Uclh/ν,
where ν is the kinematic viscosity of the fluid. Inner scales used to non-dimensionalize
quantities are the friction velocity uτ =

√
τw/ρ and the wall unit δν = ν/uτ , where ρ is

the fluid density and τw is the time- and area-averaged wall shear stress. Quantities non-
dimensionalized by the inner scales are denoted with the usual superscript "+". The friction
Reynolds number is then defined by Reτ = uτh/ν = h/δν. For the current simulations,
friction Reynolds numbers of Reτ ≈ 200, 500, 700, and 1000 were considered. For this range
of Reynolds numbers, the size of MFUs was Lx ≈ h and Lz ≈ 0.75h, whereas for a typical
extended domain, Lx = 5h and Lz = 3h were used. Simulations were performed using the
opensource code Channelflow [30].

A numerical grid system was generated on Nx×Ny×Nz (in x, y, and z) meshes, where
a Fourier–Chebyshev–Fourier spectral discretization was applied to all field variables. The
domain sizes used varied depending on the friction Reynolds number, but typical grid
spacings used in the streamwise and spanwise directions were ∆x+ ≈ 7. 5 and ∆z+ ≈ 5,
respectively, for the range of Reynolds numbers studied in the MFUs. The nonuniform
Chebyshev spacing used in the wall-normal direction of MFUs resulted in ∆y+min ≈ 0.25 at
the wall and ∆y+max ≈ 12 at the channel center for the various Reynolds numbers studied.
For the extended domains, streamwise and spanwise grid spacings were close to ones
in MFUs. Grid system and resolution parameters are provided in Table 1. Note that the
wall-normal spacing in the extended domains seems coarser, but it is still the same order
as that used in the MFUs and other studies found in high-Reynolds-number literature
[11,13]. A convergence check was also done—spatial resolution was increased and all the
quantities reported in the current study were recalculated, yielding negligible changes
from the results reported here. Each simulation run is sufficiently long (more than 20,000
h/Ucl time units) to ensure meaningful spatiotemporal averages.

The present study provides statistical information about the flow at increasing Reynolds
numbers, with the goal of offering insights into the effect of periodic boundary conditions
used in minimal flow units on MFU statistics and their connections to statistics of a sub-
domain embedded within an extended domain. The sizes of the MFU domain were selected
such that "healthy" turbulence was sustained. Healthy turbulence refers to the notion that
the statistical properties of a flow are maintained and well represented by fundamental
turbulent characteristics, even when using an MFU. Specifically, besides Jiménez and Moin
[5], we also refer to healthy turbulence as when the friction Reynolds number saturates to
its empirically predicted value and when flow statistics such as mean and fluctuating char-
acteristics agree with those from extended domain simulations and experiments. Overly
small domains can cause loss of fidelity in velocity fluctuations that may cause significant
differences in flow structures, and subsequently, the statistical behavior of a flow, leading
to unhealthy turbulence (see Section 3.2 for unhealthy cases).

Table 1. A summary of grid systems and resolutions for extended domain and minimal flow unit
(MFU) simulations.

Reτ Nx Ny Nz ∆x+ ∆y+
min ∆y+

max ∆z+

200 (MFU) 256 (64) 81 (121) 256 (84) 7.8 (6.2) 0.33 (0.13) 7.8 (6.4) 4.7 (2.2)
500 (MFU) 256 (86) 125 (161) 256 (84) 7.8 (5.2) 0.32 (0.17) 12.6 (8.8) 4.7 (4.0)
700 (MFU) 256 (86) 151 (181) 256 (102) 7.8 (6.9) 0.15 (0.24) 14.7 (12.0) 4.7 (4.7)
1000 (MFU) 256 (96) 191 (181) 256 (140) 7.8 (7.5) 0.14 (0.33) 16.5 (16.9) 6.3 (4.8)

3. Results
3.1. Minimal Flow Units up to Reτ = 1000

In adopting a similar approach to the MFU methodology [31,32], we fixed the domain
length Lx and found the minimal domain width Lz that could sustain the turbulence. However,
a larger Lx was sometimes needed if the flow relaminarized even with increasing Lz. As
reported in the previous works [5,11], the minimum spanwise length that sustains turbulence
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may be associated with an abnormality or unhealthy characteristics in mean velocity profiles,
especially for higher Reynolds numbers (see Section 3.2 for details). To produce healthy
turbulence in an MFU, the minimum domain size, especially in the spanwise direction, is
chosen to ensure that the mean velocity profile collapses reasonably well with the logarithmic
profile and that the wall shear stress agrees well with that of the extended domain. Figure
1 shows the MFU sizes for each Reynolds number studied. Figure 1a shows the maximum
streamwise and spanwise wavelengths for each Reynolds number. The wavelengths in
both streamwise and spanwise directions appear to increase linearly with Reynolds number.
While these values are close to minimal values for sustaining healthy turbulence at these
Reynolds numbers, it is possible to use smaller domains. For instance, while not explicitly
enforced, the streamwise wavelength for all Reynolds numbers was larger than the spanwise
wavelength for all cases. For a range of Reynolds numbers studied, smaller streamwise
wavelengths could still allow for sustained healthy turbulence. Moreover, unlike the spanwise
wavelength, changing the streamwise wavelength with the spanwise wavelength fixed seems
to barely affect the healthiness of the turbulence. However, it should be noted that when
the spanwise length L+

z < 0.75Reτ, it caused MFU dynamics to become unhealthy for the
Reynolds numbers studied (see Section 3.2 for details). Figure 1b shows the resultant area of
the domain for each Reynolds number. Since both streamwise and spanwise wavelengths
increase approximately linearly with Reynolds number, it is readily seen that the area
increases in an approximately quadratic manner.

Figure 1. (a) The maximum streamwise and spanwise wavelengths for minimal flow units as functions
of Reynolds number. Lines correspond to a linear fit. (b) Corresponding area A+ = L+x × L+z for each
MFU as a function of Reynolds number. As expected, the solid line corresponds to a quadratic fit.

To ensure the healthiness of turbulent dynamics in MFU and sub-domain (SD) in an
extended domain, Figure 2 shows a time series of area-averaged wall shear rates for both
MFU and SD at each Reynolds number. It is clearly observed that there is good agreement
between the two simulations for all Reynolds numbers, as the time series for the MFU
and SD are nearly indistinguishable. As such, both mean and fluctuation characteristics
agree quite well. To quantify this, the percent difference of the root-mean-square wall shear
rates between MFU and SD was calculated. It is shown on the right of Figure 2 that for all
Reynolds numbers, the percent difference (r) is less than 2%. It is also shown by power
spectral density (not shown) that the most dominant frequencies of the wall shear stress
are in good agreement between the MFUs and SDs.
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Figure 2. Time series of area-averaged wall shear rates for MFU (solid lines) and SD (dashed lines)
in an extended domain at Reτ = 200, 500, 700, 1000. Both time series are nearly indistinguishable,
indicating that mean and fluctuation characteristics agree quite well. Note that r is the percent
difference of the root-mean-square wall shear rates between MFU and SD.

3.2. Healthiness of Minimal Flow Units

For the current MFU simulations, we used the minimum domain size that would
sustain healthy turbulence. Figure 3 shows the effects of the streamwise and spanwise
lengths on mean velocity profiles at Rec = 12,000, Rec = 19,800, and Rec = 28,800. As seen
in the figure, the streamwise length did not have a noticeable effect on the mean velocity
profile at each Reynolds number. However, the spanwise length did have a significant
effect when L+

z < 0.75Reτ . For L+
z ≈ 0.75Reτ at each Reynolds number, the mean velocity

profile follows the Prandtl-von Kármán log law and shows a small deviation from the
logarithmic profile around the channel center. Thus, it can still refer to healthy turbulence
for this spanwise length. Note that for L+

z > 0.75Reτ , a slightly healthier mean velocity
is visible around the channel center. It appears to suggest that it is reasonable to choose
L+

z ≈ 0.75Reτ as an MFU spanwise length for the Reynolds numbers shown in Figure 3
when focusing on near-wall turbulence.
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Figure 3. Healthy and unhealthy streamwise mean-velocity profiles for MFUs with various values
of L+

x and L+
z at (a) Rec = 12,000, (b) Rec = 19,800, and (c) Rec = 28,800. For these Reynolds

numbers, when L+
z < 0.75Reτ , the mean velocity profiles appear to become unhealthy in regard to

the logarithmic law.

For a decrease in the spanwise length from L+
z ≈ 0.75Reτ , however, the MFU turbu-

lence becomes unhealthy, as evidenced by a significant deviation of mean velocity profiles
from the log law starting at y+ ∼ O(100). As the spanwise length gets smaller, a deviation
from the logarithmic law gets more severe. This unhealthy turbulence might stem from
the fact that the small domain, particularly in the spanwise direction, fails to represent the
large-scale coherent structures [11], which results in deteriorated turbulent characteristics
despite no sign of relaminarization. However, it is worth mentioning that for Reynolds
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numbers as small as Rec = 6000 (Reτ ≈ 245), reducing the domain size, particularly in
the spanwise direction, is more likely to cause relaminarization [5]. In addition, a smaller
domain size also causes an unrealistic reduction of wall shear stress and thus a smaller
value of Reτ for a fixed value of Rec, as seen in Figure 3. By increasing the domain size,
especially in the spanwise direction, the unrealistic reduction of wall shear stress can be
avoided, which in turn increases Reτ . Note that a further increase in a domain size from
MFU size at a fixed Rec does not lead to any noticeable change in Reτ , which confirms the
capability of the current MFU domain sizes to produce healthy turbulence. Nevertheless,
unhealthy turbulence might be still observed for such small Reynolds numbers within tiny
ranges of the spanwise length even with a saturated or correct Reτ .

3.3. Mean Flow Properties

Figure 4 compares the mean streamwise velocity profiles for MFUs and SDs from
different simulations at various Reynolds numbers. Regardless of Reynolds number or
domain size, the profiles collapse agreeably onto the viscous sublayer and logarithmic
profiles. Slight bumps are shown at the channel center for all simulations, which are
reasonable [11]. One observation to note is the profile for the MFU at Reτ = 200 within the
buffer region (y+ ≈ 10–30). It is slightly elevated not only compared to its SD counterpart,
but also compared with all larger Reynolds number simulations. While the MFU profile
for the rest of the channel agrees reasonably well with its SD counterpart and the log-law
profile, similar anomalous behavior has been observed before in MFUs. It was found that
for too small a domain size at Reτ = 950, a bump in a mean velocity profile was present
near the channel center [33], and statistics above y ≈ Lz/3 ≈ 0.25h were incorrect [6]. This
resulted in an accelerated flow near the core of the flow. As the weak anomalous behavior
in the present study was observed in the buffer layer at Reτ = 200, it may suggest that
the domain size was too small to capture dynamics reliably. Additionally, the observed
anomaly in the previous study was at a significantly larger Reynolds number [11]. To
further test the log-law behavior, the inset in Figure 4 shows the diagnostic function of Ξ+:

Ξ+ = y+
∂U+

m
∂y+

, (3)

which becomes constant and equal to the inverse of the von Kármán constant κ if the mean
velocity profile displays a logarithmic layer. Aside from the obvious Reτ = 200 case, there
are plateaus over a range within the log-law region, exhibiting logarithmic behavior. While
the MFU diagnostic function near the core deviates from the SD values, there is good
agreement between the two in the logarithmic region of the flow, suggesting MFU captures
the mean behavior of the flow reasonably well. It should also be noted that despite a slight
discrepancy in the log-law slope of 1/κ, the von Kármán constant values are still within
the reported range of 0.38–0.41 [11,13,34].

Figure 5 presents the mean-squared velocity fluctuations at the channel center. This
quantity gives statistical information on the strength of velocity fluctuations at the core of
the flow, which can also be used to compare differences in behavior between MFU and SD.
The fluctuations at the centerline for MFU and SD are in good agreement for all Reynolds
numbers. These values are also in good agreement with values shown by Lozano-Durán
and Jiménez [11]. However, differences between MFU and SD are seen at low Reynolds
numbers again, perhaps because the smaller domain size is too small to capture dynamics
reliably. In addition, differences between the current study and Lozano-Durán and Jiménez
(2014) could result from the same reason.
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Figure 4. Mean velocity profiles for minimal flow units (MFU) and sub-domains (SD) for various
Reynolds numbers along with the viscous sublayer and logarithmic law. Inset: Log-law diagnostic
function Ξ+. The dashed horizontal line is 1/κ, where κ is the von Kármán constant and κ = 0.384.

Figure 5. Mean-squared velocity fluctuations of minimal flow units (MFU) and sub-domains (SD) at
the channel center for various Reynolds numbers. 4 are values obtained from Lozano-Durán and
Jiménez [11] for larger domain simulations (L-D 2014).

3.4. Quadrant Analysis

Willmarth and Lu pioneered the use of Reynolds shear stress to describe the structure
of turbulence in wall-bounded flows [26]. They utilized the so-called u′-v′ plane to shed
light on the notion of turbulent bursts, or short, infrequent spikes in turbulent kinetic
energy observed in turbulent flows. This same style of analysis was applied here using
joint probability density functions (JPDF) of the distributions of streamwise and wall-
normal velocity fluctuations. Shown in Figure 6 are the JPDFs for the MFU and SD at each
Reynolds number. These values were taken at a wall-normal plane at y+ ≈ 30.
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Figure 6. Contours of joint probability density functions for streamwise and wall-normal velocity
fluctuations in a wall-normal plane at y+ ≈ 30 for MFUs (solid lines) and SDs (dashed lines) in an
extended domain. Values were normalized by their respective friction velocities. Reτ = (a) 200, (b)
500, (c) 700, and (d) 1000.

Overall, the shapes and levels of the distributions are in good agreement among the
MFUs and SDs for all Reynolds numbers, showing almost no differences. This strongly
suggests that MFU near-wall dynamics capture SD near-wall dynamics quite well. The
majority of events occurred in quadrants Q2 and Q4, corresponding to ejections and sweeps,
respectively, as was to be expected [35,36]. As the Reynolds number was increased, the
distribution spread outward, and larger fluctuations were observed, which was also to be
expected. For lower Reynolds numbers, it appears that the flow experienced more frequent
and larger fluctuations along the negative u′-axis for MFU simulations. This is especially
apparent for the MFU case at Reτ = 200, as there is a "tail" that formed in the Q2 quadrant
corresponding to large negative u′ fluctuations and small positive v′ fluctuations. This
same structure is not present in the JPDF in the SD data at Reτ = 200. This is in agreement
with the trend seen in Figure 4 for the MFU at Reτ = 200, which resulted in a larger mean
velocity. This discrepancy at Reτ = 200 could be explained by the fact that as the length
scale of small-scale motions was found to be about 1000 wall units, an MFU domain was
not sufficiently large to capture these small-scale motions at this Reynolds number [37]. For
Reτ = 700 and 1000, however, the difference between the distributions of MFUs and SDs is
negligible, as seen in Figure 6c,d, suggesting that MFU dynamics represent large-domain
dynamics well up to Reτ = 1000.

4. Discussion

In this study, the effect of domain size on statistical behavior in a minimal flow unit
(MFU) with periodic boundary conditions was investigated by direct numerical simulations
up to Reτ = 1000. To accomplish this, the statistics from the MFU were compared with
statistics from a sub-domain (SD) of the same dimensions as the MFU in an extended
domain simulation. MFU dimensions were found by increasing the streamwise and
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spanwise dimensions until turbulence was maintained and Reτ saturated to its empirically
predicted value. As one might expect, the minimal domain size necessary to meet these
conditions increases with Reynolds number. Both streamwise and spanwise dimensions
increase linearly with Reynolds number, and thus, the planar area increases in a quadratic
manner. It was also found that when the spanwise length L+

z < 0.75Reτ , MFU dynamics
tended to become unhealthy for Reynolds numbers studied (see Figure 3).

Overall, there was good agreement between the wall shear rate dynamics and mean
velocity profiles of MFU and SD simulations. Both MFU and SD profiles collapsed well
onto the viscous sublayer and log-law profiles. These findings suggest that healthy MFU
dynamics could represent more realistic extended-domain dynamics. The mean-squared
streamwise velocity fluctuations at the centerline were also in good agreement, with MFU
values slightly lower than their SD counterparts at lower Reynolds numbers. The values
are slightly lower than those observed in previous extended domain simulations but are
still agreeable [11].

A non-trivial finding was an observation that despite meeting these criteria for MFU
(i.e., sustained turbulence and saturation of Reτ), a simulation may still offer incorrect
statistics in the bulk of the flow. While the behavior of the area-averaged wall shear rate
was in great agreement for both MFU and SD, the mean velocity profile could still be
incorrect. At Reτ = 200, this could be observed by the increase in the mean velocity profile
in the buffer region of the MFU compared with all other simulations. There was also a
distinct "tail" in the Q2 quadrant of the u′-v′ JPDF, which was absent in the SD of extended
domain simulations. This suggests that some additional criteria should be put in place to
ensure healthy flow statistics when using MFUs.
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