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ABSTRACT

Context. A realistic parametrization of convection and convective boundary mixing in conventional stellar evolution codes is still the
subject of ongoing research. To improve the current situation, multidimensional hydrodynamic simulations are used to study convec-
tion in stellar interiors. Such simulations are numerically challenging, especially for flows at low Mach numbers which are typical for
convection during early evolutionary stages.
Aims. We explore the benefits of using a low-Mach hydrodynamic flux solver and demonstrate its usability for simulations in the
astrophysical context. Simulations of convection for a realistic stellar profile are analyzed regarding the properties of convective
boundary mixing.
Methods. The time-implicit Seven-League Hydro (SLH) code was used to perform multidimensional simulations of convective helium
shell burning based on a 25 M� star model. The results obtained with the low-Mach AUSM+-up solver were compared to results when
using its non low-Mach variant AUSM+

B-up. We applied well-balancing of the gravitational source term to maintain the initial hydro-
static background stratification. The computational grids have resolutions ranging from 180 × 902 to 810 × 5402 cells and the nuclear
energy release was boosted by factors of 3 × 103, 1 × 104, and 3 × 104 to study the dependence of the results on these parameters.
Results. The boosted energy input results in convection at Mach numbers in the range of 10−3–10−2. Standard mixing-length theory
predicts convective velocities of about 1.6×10−4 if no boosting is applied. The simulations with AUSM+-up show a Kolmogorov-like
inertial range in the kinetic energy spectrum that extends further toward smaller scales compared with its non low-Mach variant. The
kinetic energy dissipation of the AUSM+-up solver already converges at a lower resolution compared to AUSM+

B-up. The extracted
entrainment rates at the boundaries of the convection zone are well represented by the bulk Richardson entrainment law and the corre-
sponding fitting parameters are in agreement with published results for carbon shell burning. However, our study needs to be validated
by simulations at higher resolution. Further, we find that a general increase in the entropy in the convection zone may significantly
contribute to the measured entrainment of the top boundary.
Conclusion. This study demonstrates the successful application of the AUSM+-up solver to a realistic astrophysical setup. Compress-
ible simulations of convection in early phases at nominal stellar luminosity will benefit from its low-Mach capabilities. Similar to
other studies, our extrapolated entrainment rate for the helium-burning shell would lead to an unrealistic growth of the convection
zone if it is applied over the lifetime of the zone. Studies at nominal stellar luminosities and different phases of the same convection
zone are needed to detect a possible evolution of the entrainment rate and the impact of radiation on convective boundary mixing.
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1. Introduction

Mixing induced by convection in the stellar interior plays an
essential role in the evolution of stars. Parametrizing its com-
plex multidimensional nature in one-dimensional (1D) stellar
evolution codes is, however, particularly difficult. A reliable pre-
scription of convective effects in 1D codes is still lacking today
and the resulting stellar evolution models depend on the spe-
cific choice of the employed paramterization and the particular
parameter values. This is, for example, demonstrated in recent
studies by Kaiser et al. (2020) and Davis et al. (2019) on uncer-
tainties in core properties and nucleosynthesis for massive stars.

With asteroseismic data of observed stars, it is possible to
determine properties of the stellar interiors (see Aerts 2021 for
a detailed review). They can be utilized to narrow down the
range of possible parameters. It is now possible to determine
that some convective boundary mixing models provide a bet-
ter fit to certain asteroseismic observations than others (e.g.,
Viani & Basu 2020; Angelou et al. 2020; Michielsen et al. 2019;
Pedersen et al. 2018, 2021), but probing the small-scale physics
of the mixing is beyond the reach of even state-of-the-art astero-
seismology.

A complimentary approach to improve the current situa-
tion is to perform multidimensional simulations by numerically
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Fig. 1. Convective regions during the evolution of an 1D 25 M� star
model simulated with the MESA code. Shaded regions correspond to
convection zones. The color-shading represents the mixing-length the-
ory (MLT)-predicted Mach number. The black solid line denotes the
total mass of the model. The red vertical line indicates the point in the
evolution at which the SLH simulations start and the mass extent of the
initial model. The green lines indicate the mass entrainment at the upper
and lower boundaries as extracted from the 3D hydrodynamic simula-
tions. See discussion in Sect. 5.4.

solving the equations of fluid dynamics for realistic stellar mod-
els. In such simulations, convection develops self-consistently
and their detailed analysis provides insights into the fundamen-
tal processes at play. This way, currently used parametrizations
of convection in 1D codes can be constrained or discarded and
new prescriptions may be developed.

The complex problem of convection and associated mixing
of material across the interfaces into stable zones in the stellar
context is subject of active, ongoing research. Numerical simu-
lations become particularly challenging when the flow of interest
is slow compared to the speed of sound, that is for small values
of the Mach number

Ma =
v

csound
, (1)

where v is the flow velocity and csound is the local speed of sound.
One challenge is the restricted step size of conventional explicit
time stepping schemes which must be smaller than the sound
crossing time of a single grid cell for numerical stability. Thus,
at low Mach numbers, an excessively large number of time steps
is needed to evolve the slow flow and explicit schemes become
inefficient. Additionally, artifacts of the numerical discretization
must be kept at a very low level because inaccuracies can quickly
lead to spurious velocities at the same order as the flow of inter-
est. Hence, appropriate numerical techniques must be chosen
carefully.

For massive stars, low-Mach number flows typically arise in
convection during the early phases of stellar evolution, see for
example the evolution of the 25 M� star depicted in Fig. 1. Inac-
curacies in the 1D prescription of convection in these phases
propagate to all subsequent evolutionary phases and also enter
predictions for the final stages of stars and observables. We

therefore believe that successful simulations of these challeng-
ing settings are crucial to further improve the agreement between
stellar modeling and observations.

One approach to meet the challenges of low-Mach flows is
to modify the underlying hydrodynamic equations. This is, for
example, done in the MAESTRO code (Almgren et al. 2007;
Nonaka et al. 2010; Fan et al. 2019), where the Euler equations
are modified to exclude the physics of sound waves and to ensure
the correct scaling of leading-order terms in the low-Mach limit.
This permits larger time steps and increases the efficiency for
slow flows. An example for low-Mach simulations with the
MAESTRO code are the three-dimensional (3D) simulations of
core hydrogen burning by Gilet et al. (2013). Another approach
is to perform implicit time stepping while solving the unmodi-
fied Euler equations, including sound waves. The time step size
is then only restricted by the desired accuracy at which the flow
is to be followed. This is for example employed by the MUSIC
code in combination with a staggered spatial grid. Benchmark
tests have shown that the code is able to evolve flows at Mach
numbers down to Ma ≈ 10−6 (Viallet et al. 2016) and that a
hydrostatic atmosphere remains stable (Goffrey et al. 2017).

The Seven-League (SLH) hydro code, which is used for the
simulation presented here, is designed to tackle the numerical
difficulties of low-Mach flows. It uses implicit time stepping
and solves the fully compressible Euler equations. Further-
more, it applies special numerical flux functions with enhanced
low-Mach capabilities in combination with well-balancing tech-
niques to improve the representation of slow flows. This way,
the SLH code is able to capture flows at low and moderate Mach
numbers on the same grid.

The work we present in this paper aims at contributing to
the recent effort to improve the understanding of the complex
behavior of convection by means of hydrodynamic simula-
tions. We demonstrate the benefits from using the low-Mach-
number flux AUSM+-up even at moderate Mach numbers. For
this, 3D simulations of convective He-shell burning in a 25 M�
star are presented and analyzed regarding general properties of
the turbulent convection. In addition, we complement recent
efforts to characterize convective boundary mixing by means
of multidimensional simulations (e.g., Meakin & Arnett 2007;
Woodward et al. 2015; Jones et al. 2017; Cristini et al. 2017,
2019; Pratt et al. 2017, 2020; Higl et al. 2021).

The paper is structured as follows: In Sect. 2 we briefly
describe the basic properties of the SLH code. In Sect. 3 the
initial conditions for the simulations are presented along with a
detailed description of mapping the 1D model to the SLH grid
and the applied energy boosting. In the 1D and two-dimensional
(2D) test simulations presented in Sect. 4 we assess the hydro-
static stability of the initial profile using the Cargo–LeRoux
well-balancing method and determine the required amount of
artificial energy boosting. The corresponding 3D simulations are
analyzed in Sect. 5 regarding properties of the turbulent convec-
tive flow and boundary mixing. Section 6 summarizes the results.

2. The Seven-League Hydro (SLH) code

The hydrodynamic simulations presented in this paper are per-
formed with the SLH code (Miczek 2013; Edelmann 2014). It
solves the fully compressible Euler equations in a finite volume
approach. The underlying equations are formulated in general,
curvilinear coordinates and mapped onto a logically rectangular
computational grid, following the method of Kifonidis & Müller
(2012). This allows one to construct almost arbitrary grid
geometries that can be adapted to the physical setup that is
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investigated (Miczek 2013). The Helmholtz equation of state
(EoS) (Timmes & Swesty 2000) is implemented and accounts
for radiation pressure and degeneracy effects. The hydrodynamic
equations are coupled to a nuclear reaction network (Edelmann
2014).

The SLH code is designed to simulate hydrodynamic phe-
nomena in the context of stellar astrophysics for flows at
low and intermediate Mach numbers. The following discus-
sion briefly summarizes how the numerical challenges, espe-
cially for low-Mach flows, are approached in SLH. For a more
in-depth description of the applied methods we refer the reader
to Edelmann et al. (2021), Edelmann (2014), and Miczek (2013).

2.1. Flux Solver

Miczek et al. (2015) and Barsukow et al. (2017) demonstrated
that low-Mach flows require special numerical flux functions
because common schemes, as for example the popular Roe
solver (Roe 1981), suffer from excessive numerical dissipation.
A variety of flux functions with improved low-Mach capabili-
ties can be found in the literature. One promising method that
seems to be applicable to problems in stellar astrophysics is
the AUSM+-up scheme (Liou 2006) which is implemented into
SLH with a slight modification. As described in Edelmann et al.
(2021), the SLH implementation uses two independent parame-
ters to control the velocity diffusion ( fa) and pressure diffusion
( f p

a ), respectively. The original AUSM+-up scheme only uses a
single parameter. It has been demonstrated by Horst et al. (2020)
that compared to the classical Roe scheme the AUSM+-up solver
significantly improves the accuracy at which internal gravity
waves can be followed for group velocities at low Mach num-
bers. For all simulations with the AUSM+-up solver presented
in this paper, we set the parameters to the values f p

a = 0.1 and
fa = 10−10, which has proven to yield robust results in previous
test simulations.

In Sect. 5 we compare simulations with the AUSM+-up
solver with its basic variant AUSM+

B-up in order to demonstrate
the improved results when using AUSM+-up. The AUSM+

B-up
scheme is a subclass of the AUSM+-up scheme and is obtained
by disabling the scaling of the incorporated velocity and pres-
sure diffusion with Mach number. This scaling ensures the cor-
rect behavior of leading terms of the pressure field in the limit of
Ma→ 0 (see Liou 2006, Sec. 3.2 for details). Hence, AUSM+

B-up
does not have enhanced low-Mach capabilities. In SLH, the
AUSM+

B-up solver option is obtained by setting f p
a = fa = 1.

2.2. Well-balancing

Maintaining hydrostatic equilibrium is not trivial in finite vol-
ume codes because commonly gravity is discretized differently
than the conserved variables and enters the equations in an
operator-split approach. Hence, even if the initial data on the
computational grid is formally in perfect hydrostatic equilib-
rium, a residual source term in the momentum and energy parts
of the Euler-equations will remain (see, e.g., Käppeli & Mishra
2016; Popov et al. 2019; Berberich et al. 2021; Edelmann et al.
2021). For the SLH code, Edelmann et al. (2021) demonstrate
that proper well-balancing techniques allow to simulate convec-
tion at Ma ∼ 10−4. However, this requires methods that have
become available only after the simulations of helium shell burn-
ing were carried out. In the simulations presented here, we use
the multidimensional extension (Edelmann et al. 2021) of the
1D Cargo–LeRoux well-balancing scheme (Cargo & Le Roux
1994). Edelmann et al. (2021) show that it is not possible to per-

form simulations at Mach numbers considerably smaller than
Ma ∼ 10−3. At Mach numbers below this threshold the flow
is deteriorated by discretization errors. Thus, for our study, the
energy generation from helium burning that drives the convec-
tion has to be boosted by three orders of magnitude to increase
the convective velocities, see Sects. 3.2 and 4.2. Still, Cargo–
LeRoux well-balancing is crucial to maintain the background
stratification, as demonstrated in Sect. 4.1.

2.3. Time stepping

To circumvent the small time step sizes of explicit time march-
ing schemes, the SLH code applies implicit time stepping.
Here, the time step size is not restricted by numerical stabil-
ity requirements but only by the desired accuracy at which the
flow is to be followed. At low Mach numbers, the large time
steps and hence smaller number of total steps overcompensates
the higher computational costs of a single step compared with
explicit schemes. For the simulations presented in this paper the
ESDIRK23 scheme (Hosea & Shampine 1996) is used, which is
second order accurate in time. The resulting system of nonlinear
equations is solved with the Newton-Raphson method.

For all simulations presented here, linear reconstruction is
used. Slope limiter are usually required to diminish oscillations
at steep gradients. However, the partially discontinuous spatial
derivatives of common limiters deteriorate the convergence rate
of the Newton-Raphson method. Further tests are needed to
explore their possible applications in implicit SLH simulations.

3. Model setup

3.1. Construction of the initial model

The initial conditions for the hydrodynamic SLH simulation are
based on an 1D model obtained with the open-source stellar evo-
lution code MESA (Paxton et al. 2011, 2013, 2015, 2019),

The model corresponds to a 25 M� star at solar metallic-
ity (Z = 0.014) evolved until the exhaustion of core oxygen
burning. The model develops a convective helium burning shell
(at log10(time left). 4 in Fig. 1) following core helium burning.
The numerical settings are similar to Kaiser et al. (2020) (see
their Sect. 3) and briefly summarized here. Convective zones are
determined using the Schwarzschild criterion, which neglects
chemical gradients. It states that regions are convective if the
superadiabaticity ∆∇ is positive, that is

∆∇ := ∇ − ∇ad > 0, (2)

where ∇ad denotes the adiabatic temperature gradient while
the actual temperature gradient of the gas is given by ∇ =
d ln T/d ln P.

Convection is parametrized using MLT and a mixing length
of `MLT = 1.6 HP, where HP denotes the pressure scale height

HP = −
dr
dP

P. (3)

To model convective boundary mixing (CBM), the
exponentially-decaying diffusion approach of Freytag et al.
(1996) and Herwig et al. (1997) is used. The corresponding
diffusion coefficient is (Herwig et al. 1997):

DCBM = D0( f0) exp
−2

[
r − r0( f0)

]
fCBM HCB

P

 , (4)
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where the free parameter fCBM determines the extent of the
CBM in terms of the pressure scale height at the boundary of
the convection zone HCB

P . For the top boundary of convective
regions, D0( f0) is the MLT diffusion coefficient evaluated at
r0( f0) = rCB − ( f0 Hp) where rCB is the radius of the boundary as
given by Eq. (2). The free parameter f0 ensures that the diffusion
coefficient is calculated inside the convection zone to avoid the
sharp drop in D in the immediate vicinity of the boundary. The
diffusion coefficient DCBM is applied for radii larger than r0( f0)
until it drops below 102 cm s−1. For the bottom boundary of con-
vective regions, the scheme is adapted to apply CBM below the
convective boundary. The initial 1D model was obtained with
the parameters fCBM = 0.022 and 0.0044 for the top and bottom
boundaries, respectively. At both boundaries, f0 = 0.025 was
used. We refer to Kaiser et al. (2020) for a discussion of these
parameters and the related uncertainties.

Our simulations focus on convection in the helium-burning
shell. The red vertical line in Fig. 1 indicates the evolutionary
point at which the SLH simulations start and the extent in mass
coordinates of the simulation domain. It corresponds to the early
phase of helium-shell burning when the radial extent of the shell
is still relatively small. Compared with later phases, this enables
a better resolution at convective boundaries for a fixed comput-
ing budget. Choosing the convective shell also allows us to study
two boundaries rather than only one for convective cores.

Models from stellar evolution codes typically exhibit step-
like transitions in the 1D profiles, for example in the profiles
of species abundances or thermodynamic quantities such as
entropy. Even with moderate CBM parameters, such as used
in the 1D input models, convective boundaries are very narrow.
This is problematic for conventional hydrodynamic simulations
because, if possible at all, a high number of grid cells is neces-
sary to spatially resolve such transitions. Furthermore, we found
in preliminary 2D test simulation that the steep gradients lead to
strong initial flows in the convection zone. This effect was dimin-
ished, yet not fully resolved, for low resolution runs by applying
rather strong smoothing to the initial profiles.

SLH simulations require the initial conditions to accurately
fulfill the equation of hydrostatic equilibrium. This is not guar-
anteed for the 1D input profiles after they have been smoothed.
Therefore, the equation of hydrostatic equilibrium needs to be
integrated again while prescribing the profile of one thermody-
namic quantity from the 1D MESA profiles. It is important that
in this process the convection zone, characterized by a negative
Brunt-Väisälä frequency (BVF), is maintained. For a nonrotating
star, the BVF is given by (e.g., see Maeder 2009, Sect. 6.4.1)

N2 =
gδ
HP

(
∇ad − ∇ +

ϕ

δ
∇µ

)
, (5)

where g is the magnitude of the gravitational acceleration, δ =
−(∂ ln ρ/∂ ln T )P,µ, ϕ = (∂ ln ρ/∂ ln µ)P,T , and the gradient in
mean molecular weight µ reads ∇µ = d ln µ/d ln P. These quan-
tities are determined by the EoS. For the simulations presented
here, we follow the approach of Edelmann et al. (2017) to repro-
duce a given 1D profile of the superadiabaticity ∆∇. This allows
one to directly control the extent of the convective region in the
initial condition if the chemical gradient can be neglected in the
convection zone, as is the case for our model. It also ensures that
the value of ∆∇ is reasonably close to zero and does not lead to
an initial convective flow that is mainly driven by an excess in
superadiabaticity. We construct the initial model on a radial grid
that is much finer than the actual computational grid in SLH. For
the computational grid, the initial state is obtained by interpo-
lating from the fine grid to the positions of the respective cell
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Fig. 2. Initial profiles for the underlying 1D MESA model (dashed) and
the mapped SLH model (solid lines). The shaded areas mark the con-
vection zone for mapped profiles (blue) and MESA profiles (orange).
The oscillatory behavior of the energy generation is a numerical artifact
at negligible amplitudes.

centers. Because of the fine input grid, interpolation errors are
negligibly small.

Preliminary SLH simulations revealed that setting the
superadiabaticity on the SLH grid to a value of −1.5 × 10−5

whenever ∆∇MESA > −10−3 leads to a gentle transition from
the initial hydrostatic stratification to fully developed convection
and avoids a large initial peak in kinetic energy at the onset of
convection. The slightly stable stratification would considerably
hinder convection if the nominal luminosity was used. Because
we have to increase the energy input anyway, this is not an issue
for the simulations presented here.

In addition to the convective shell, parts of the radiative
zones which lie above and below the convection zone are
included in the computational domain. Their respective radial
extent is chosen to be one half of the extent of the convection
zone itself. This way, the impact of the top and bottom boundary
conditions will be reduced while keeping the computational cost
at a moderate level.

The resulting profiles after smoothing and mapping the
region of interest from the 1D stellar model to the computational
grid are shown in Fig. 2. The density closely follows the profiles
as given by the 1D MESA input model. However, smoothing
changes the profile of the BVF and alters the size of the con-
vection zone (shaded areas in Fig. 2). Especially the position of
the bottom boundary changes and the convection zone starts at a
somewhat larger radius in the mapped model.

In Sect. 5.4 we measure the mass entrainment across the
boundaries of the convective zone. An often employed quan-
tity to characterize the resistance to such a mixing (also called
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stiffness) is the bulk Richardson number RiB. For comparability,
we follow the notation of Cristini et al. (2017, 2019) (C+17 and
C+19 hereafter) and write

RiB =
∆B l
v2

rms
, (6)

where vrms is the rms velocity of the convection and the integral
length scale l of the convection is set to one half of the pressure
scale height at the boundary. The buoyancy jump ∆B is given by

∆B =

∫ rc+∆r

rc−∆r
N2 dr, (7)

where rc is the radial position of the respective boundary. The
integration width ∆r is a somewhat arbitrary parameter but
should be chosen such that it includes the full region of the
evanescent convective flow at the boundaries. Following C+19,
we set ∆r to a quarter of the local pressure scale height. Com-
pared to our measurements of the boundary widths given in
Sect. 5.6 (see Table 5), this seems to be an appropriate value for
the top boundary but might overestimate the bottom boundary.

The definition of C+17 for l and ∆r is not applicable for
convection zones that are thinner than a pressure scale height
and some form of correlation function of the turbulent flow field
might be more appropriate. This, however, is not easily obtained
in 1D stellar evolution codes. Generally, the definition of l and
∆r is ambiguous in the astrophysical literature which makes it
difficult to directly compare the values of the bulk Richard-
son number in simulations carried out by different groups
(see for example Meakin & Arnett 2007; Arnett et al. 2009;
Salaris & Cassisi 2017; Cristini et al. 2017; Collins et al. 2018;
Higl et al. 2021).

To assess the impact of the applied smoothing on the stiff-
ness, we compare the numerator of Eq. (6) for the original 1D
MESA input model and the mapped SLH model at the respec-
tive top and bottom boundary. We find

(∆B l)MESA

(∆B l)SLH

∣∣∣∣∣
bot
≈ 2.9,

(∆B l)MESA

(∆B l)SLH

∣∣∣∣∣
top
≈ 1.6, (8)

which indicates that the mapping only has a moderate impact on
the stiffness of the boundary.

Due to the computational costs involved, not all nuclear
species of the MESA nuclear network can be included to the
SLH simulation. Instead, we only account for 4He, 12C, 16O,
20Ne, and 22Ne. The abundance profile of each species, except
for 22Ne, is taken directly from the MESA model and smoothed
in the same way as the other input profiles. The abundance of
22Ne follows from the condition

∑
i Xi = 1 in every cell, where

Xi is the mass fraction of species i. The resulting profiles are
shown in the middle panel of Fig. 2.

Although the smoothing procedure causes the SLH model to
slightly deviate from the original 1D MESA model, the MESA
model involves uncertainties of its own. Therefore, we still con-
sider the SLH model to be representative of typical conditions
expected in He-burning shells of massive stars.

3.2. Energy generation and boosting

The energy release is calculated using the JINA REACLIB reac-
tion files (Cyburt et al. 2010) and displayed in the lowest panel
of Fig. 2. From the profile of the energy generation rate as given
directly by the MESA model (dashed line) it is apparent that the
peak of nuclear burning does not coincide with the convection

zone (orange shade) but instead is located somewhat beneath.
This is common for burning shells, which develop convection
above the energy peak where the temperature gradient becomes
steeper than the adiabatic one.

To ensure that convection is driven by the actual energy input
and not by numerical artifacts, the nominal energy input must be
boosted. The strength of the required boosting is determined in
Sect. 4.2. We couple the boosting of the energy generation to the
abundance of 4He such that only regions are boosted where the
mass fraction of 4He is higher than 90% of the initial abundance
in the convection zone, that is for abundances higher than 0.87.
The energy input is turned off everywhere else.

3.3. Thermal diffusion

Thermal radiation is treated in the diffusion limit in SLH. This
is justified by the high optical depth in the interior regions of
stars. While the 1D input profile from the MESA code is in ther-
mal balance, that is the energy flux equals the integrated energy
generation, this is not true anymore within the convection zone
of the SLH simulations with boosted energy generation. Radia-
tive effects certainly are crucial over the long timescales cov-
ered in simulations of stellar evolution. However, for the much
shorter dynamical timescales we expect the imbalance to be of
minor importance: Following the same arguments as Horst et al.
(2020), we calculate the thermal adjustment timescale (e.g.,
Maeder 2009, Sect. 3.2.) via

τdiff(∆xdiff) ∼
(∆xdiff)2

K
, K =

4 a clight T 3

3 κ ρ2 CP
, (9)

where ∆xdiff is a typical diffusion length scale, the radiation con-
stant a = 7.57 × 1015 erg cm−3 K−4 and CP denotes the specific
heat of the gas at constant pressure. All other values have their
usual meanings. The opacity κ that enters the thermal diffusivity
K is taken from the 1D MESA profile. Because advective and
diffusive processes have a different temporal and spatial scaling,
it is not clear how to scale the opacity with our energy boosting.
Therefore, we keep the opacity at its stellar value in this study.

Assuming as typical length scale the radial grid spacing
of the finest resolution that will be used (810 radial cells, see
Sect. 5), we find a mean adjustment timescale of τdiff(δr810) =
5×102 h. The timescale is shortest at the outermost regions where
the opacity is the smallest, but is always larger than 102 h (see
Fig. B.1). This is at the order of our longest runs, which, how-
ever, have lower radial resolution than what is assumed in this
estimate. Taking the convection zone as typical length scale we
obtain τdiff(δrCZ) ≈ 4 × 107 h ≈ 4.5 × 103 yr which is orders of
magnitude longer than all of our simulations. We therefore con-
clude that for the particular simulations presented here the effect
of thermal diffusion is negligible and that the thermal imbalance
due to our increased energy input does not impact the global
structure of the star over the duration of our simulations.

3.4. Discretizing the computational domain

To reduce the computational costs, we have to use a
spherical-wedge grid geometry, although this choice elimi-
nates the large-scale flows seen in comparable 4π simulations
of Woodward et al. (2015), Jones et al. (2017), Andrassy et al.
(2020), and Gilet et al. (2013). The chosen wedge geometry
reduces the computational cost by a factor of 32 compared to a
full 4π simulation at the same vertical and horizontal resolution.

For the 4π simulations mentioned above, we calculate the
aspect ratios (we adopt here the formulation of Jones et al. 2017)
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as (rtop − rbot)/rtop, where rtop, rbot denote the radial position of
the bottom and top boundary of the convection zone. The aspect
ratio for the He-flash simulation of Woodward et al. (2015) is
about 0.67, for the O-shell simulation of Jones et al. (2017),
Andrassy et al. (2020) it is about 0.5 and for the H-core burn-
ing of Gilet et al. (2013) it is 1. With decreasing aspect ratio,
the maximum possible size of convection cells decreases and
so does the impact of restricting the flow to a spherical wedge.
The He-shell simulation presented here has an aspect ratio of
only 0.32. Furthermore, the study by Gilet et al. (2013) indicates
that, while the flow morphology differs distinctly between their
hydrogen core simulations for full 4π and single octant domains,
basic turbulent properties and mixing rates are in a reasonable
agreement. From this, we expect that the imprint of the restricted
geometry on our results is sufficiently small. However, the influ-
ence of the domain size should be assessed in more detail in
future studies.

We set the horizontal extent of the computational domain to
be as twice as large as the vertical extent of the convection zone.
This enables the formation of two large vortices, a typical phe-
nomenon we observe in 2D and 3D simulations. The correspond-
ing opening angle is about 45◦. The constant grid spacing giving
cell aspect ratios ranging from roughly unity at the bottom to one
half at the top of the domain.

The lowest resolution that will be used in this study has 180
vertical cells and 90 horizontal cells. This ensures that the pres-
sure scale height is resolved by at least 25 cells and that the initial
transitions from radiative to convective regions as given by the
profile of the BVF are resolved by at least 20 cells.

Periodic boundary conditions are employed in horizontal
direction. In both radial directions, layers of two cells are added
(ghost cells). They are initialized with the mapped hydrostatic
state but are not evolved in time.

4. 1D and 2D test simulations

While proper turbulent behavior of convection can only be fol-
lowed in 3D simulations, much cheaper 1D and 2D simula-
tions are well suited to test stability and basic properties of the
initial hydrostatic stratification. Such low-dimensional simula-
tions are utilized in this section to demonstrate that applying
the Cargo–LeRoux well-balancing method successfully stabi-
lizes the hydrostatic stratification described in Sect. 3, even at
low resolution. Furthermore, a series of 2D simulations is pre-
sented to estimate the required strength of the artificial boost of
the nuclear energy release.

4.1. Testing the impact of the Cargo–LeRoux well-balancing
in 1D and 2D

To demonstrate the capabilities of well-balancing, we performed
1D simulations with and without the Cargo–LeRoux method.
For these simulations, the energy input was switched off.

In Fig. 3, the change in the BVF and the pressure are shown
after simulating 10 h of physical time (about 500 sound cross-
ing times) in 1D. If the hydrostatic stratification was perfectly
maintained, the initial profiles would stay constant in time. How-
ever, for a grid with 180 radial cells, it is obvious that the for-
mally static setup changes considerably if no well-balancing
is applied. The BVF has increased its value in the convection
zone and the top boundary of the convection zone has moved
inward. The relative pressure change is on the order of 10−3

throughout the domain. In contrast, the BVF profile does not vis-
ibly change in the run with Cargo–LeRoux well-balancing. The
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Fig. 3. Profiles of the BVF (upper panel) and relative change in pressure
(lower panel) after simulating 10 h of physical time with and without
well-balancing. Nr denotes the number of radial cells that are used for
the discretization.
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Fig. 4. Flow morphology in terms of Mach number in a 2D wedge after
simulating 10 h of physical time. The nuclear energy release has been
boosted by a factor of 1 × 104. The left panel corresponds to a simula-
tion that applies Cargo–LeRoux well-balancing while well-balancing is
absent in the simulation shown on the right. The domain is discretized
by 180 × 90 cells.

relative pressure changes are about 10−8 which is 4 orders of
magnitude smaller. The simulations shown in Fig. 3 apply the
lowest radial resolution that is used for the 3D simulations in
Sect. 5. The spurious change of the background stratification
is expected to decrease at higher resolutions even if no well-
balancing is applied. Indeed, for 540 radial cells, the overall
changes decrease considerably. Yet, deviations from the ini-
tial stratification are still visible and the change in pressure is
significant.

Hence, the 1D simulations indicate that, especially at low
resolution, well-balancing is necessary to maintain hydrostatic
equilibrium at a sufficient accuracy. This is further confirmed in
the heated 2D counterparts of the 1D simulations. For a moderate
energy input the setup is evolved for 10 h of physical time in 2D
wedge geometry. The resulting flow is depicted in Fig. 4. The
simulation with Cargo–LeRoux well-balancing has developed
the typical large coherent convective eddies inside the convec-
tion zone that are driven by the energy input. This is clearly dif-
ferent from the flow that develops if no well-balancing is applied.
Because of the changing background, the BVF has become too
large, such that the energy input is not sufficient to establish con-
vection. Instead, only at the base of the convection zone where
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the heating has its maximum a narrow band of small-scale eddies
emerges.

4.2. Testing artificial boosting of nuclear burning in 2D
simulations

Boosting the physical energy generation from nuclear burning is
a common technique in multidimensional simulations of steady
convection, especially in early stellar evolutionary phases. As
predicted by mixing-length theory and confirmed in numerical
studies (see, e.g., C+19 or Andrassy et al. 2020) the convective
velocity vconv scales as

vconv ∝ L1/3, (10)

where L is the luminosity in the convection zone. Thus, increas-
ing the energy input leads to larger velocities.

Higher velocities can be beneficial for several reasons. As
discussed in Sect. 2, convectional finite-volume schemes based
on Riemann solvers have difficulties to resolve flows at low
Mach numbers. Therefore, artificial boosting can be used to
move the flow-velocities to regimes that are more suitable for the
applied numerical scheme. Furthermore, if explicit time stepping
is used, higher velocities improve the ratio of permitted time step
size to the timescale of the flow. This reduces the computational
costs.

Another purpose of applying energy boosting is to run simu-
lations with the same setup but different boosting strengths. This
allows one to investigate the properties of mixing at the bound-
aries and the entrainment rate as functions of convective veloci-
ties for a single stratification. This has been done in later phases
of stellar evolution for example by C+19 or Andrassy et al.
(2020) and is also utilized in Sect. 5.

The obvious downside of the artificial energy boosting is that
the simulations do not represent the physical situation in the
original stellar model anymore. In 1D stellar evolution codes,
the structure of a star critically depends on the balance between
energy generation (e.g., by nuclear burning), cooling processes
(e.g., by escaping neutrinos) and energy transport within the star
(e.g., by radiation or convection). This balance is disturbed if
the energy input is changed. While we think it is still possible
with such simulations to assess the effect of dynamical phenom-
ena such as turbulent mixing and excitation of waves, they are
probably not suitable to study the long-term behavior of convec-
tion where the interplay between turbulence and thermal diffu-
sion might become important.

Apart from the reasons mentioned above, a sufficient energy
boosting is also necessary to increase the velocity above the
numerical threshold at about Ma ≈ 10−3 for SLH simulations
with the Cargo–LeRoux well-balancing method. To assess by
how much the energy generation has to be increased for the 3D
simulations, a set of 2D wedge simulations is performed with
varying strengths of the energy boosting. The resolution is set to
180 × 90 cells (lowest resolution in the 3D runs) and the sim-
ulations are performed for boosting factors ranging from 1 (no
boosting) to 3 × 104. The resulting temporal mean of the root-
mean square (rms) Mach number Marms as a function of energy
input is then compared to the scaling law in Eq. (10). In order to
determine the region for which the rms value of the Mach num-
ber is calculated, the convection zone is identified by means of
the gradient of the advected passive scalar, as will be explained
in Sect. 5.1. For the size of the time frame, we consider the
convective turnover time
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Fig. 5. Measured rms Mach number as function of the input energy rate
ė in 2D (blue) and 3D simulations (orange). Vertical error bars corre-
spond to the standard deviation of the average over the time frame of
∆Nτconv = 10. The dashed lines reflect the scaling law in Eq. (10). Num-
bers given in the boxes correspond to energy boosting factors for the
lowest and the three highest boostings. The green cross marks the Mach
number of Ma ≈ 1.6 × 10−4 as predicted by MLT at the nominal energy
generation rate in the original MESA model.

τconv =
2∆CZ

vrms
, (11)

where ∆CZ is the radial extent of the convection zone and vrms
the rms velocity within the area spanned by ∆CZ and the horizon-
tal extent of the domain. By taking τconv as the underlying unit
of time, we account for the different speed at which the hydro-
dynamical processes evolve for different driving strengths. To
finally determine the time frame for which vrms is determined,
we calculate the number of covered turnover times Nτconv as

Nτconv (t) =

∫ t

t0

1
τconv(t′)

dt′. (12)

Using Eq. (12) automatically accounts for different lengths and
characteristics that may arise for initial transients for different
luminosity boosting and resolutions. Therefore, we find it more
convenient to define a time frame in terms of Nτconv instead of
finding a suitable physical time interval by hand.

To account for the fact that the boosted region may change
during a simulation, the energy release is integrated over the
domain and averaged for the considered time frame of t ∈[
t(Nτconv = 10), t(Nτconv = 20)

]
.

As shown in Fig. 5, the data points of the three highest boost-
ings (3 × 103, 1 × 104, and 3 × 104) closely follow the expecta-
tion of Eq. (10). For lower energy boosting, we find deviations
from the scaling. The corresponding flow patterns along with
the detected boundaries are shown in Fig. B.2. The flow of the
2D simulation with the lowest boosting clearly differs from the
other 2D simulations. The appearance of incoherent, small-scale
patterns in SLH simulations of convection is likely an indi-
cation that the flow is driven by numerical artifacts (see also
Edelmann et al. 2021). Based on these results, we conclude that
the set of boosting factors b ∈

[
3 × 103, 1 × 104, 3 × 104

]
is suit-

able for the subsequent 3D simulations.

5. 3D SLH results

After the basic properties of the stellar model have been tested
in 1D and 2D hydrodynamic simulations, this section presents
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Table 1. Properties of the 3D simulations with a boosting factor of 3 × 104.

Resolutions 180 × 902 360 × 1802 540 × 3602 810 × 5402

num. flux AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up

∆ttot [h] 128.45 65.70 18.27 18.41 10.87 14.53 3.32 2.38
∆Nconv 44.88 21.87 6.24 5.51 3.16 4.62 1.32 0.87
τconv [h] 3.04 2.93 2.25 2.42 2.68 2.63 2.35 2.84
Marms

[
10−2

]
1.07 1.01 1.08 0.98 0.86 0.88 1.00 0.81

Notes. Simulations with 810×5402 cells are restarted from the corresponding 540×3602 simulations at Nτconv = 3.1 (AUSM+-up) and Nτconv = 3.6
(AUSM+

B-up). Legend: ∆ttot: total covered stellar time. ∆Nτconv : total number of turnover times. τconv: mean convective turnover time averaged for
the last available 0.5Nτconv , respectively. Marms: rms Mach number corresponding to τconv.

Table 2. Properties of the 3D simulations with a grid size of 180 × 902 cells.

Boosting 3 × 103 1 × 104 3 × 104

num. flux AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up

∆ttot [h] 199.92 183.11 139.68 97.45 128.45 65.70
∆Nconv 30.61 22.61 34.00 20.70 44.88 21.87
τconv [h] 6.13 7.24 4.27 4.61 3.04 2.93
Marms

[
10−2

]
0.40 0.33 0.65 0.56 1.07 1.01

Notes. Quantities have the same meaning as in Table 1.

Table 3. Properties of the 3D simulations with a grid size of 360× 2402

cells.

Boosting 3 × 103 1 × 104 3 × 104

num. flux AUSM+-up AUSM+-up AUSM+-up

∆ttot [h] 9.48 15.86 10.20
∆Nconv 1.40 4.05 4.06
τconv [h] 6.86 3.85 2.39
Marms

[
10−2

]
0.33 0.61 1.09

Notes. Quantities have the same meaning as in Table 1.

the results regarding turbulent flow properties and entrainment
obtained from 3D simulations. We analyze the results for varying
resolution and convective driving. To demonstrate that the low-
Mach AUSM+-up flux scheme is beneficial even for moderate
Mach numbers, the respective results are compared to its basic
version AUSM+

B-up that is not expected to show enhanced low-
Mach capabilities. A comparison to more commonly used flux
functions, such as the Roe solver, would have been a more obvi-
ous choice. This was not possible as the applied Cargo–LeRoux
well-balancing method is not fully compatible with the Roe
scheme. However, in Sect. 5.2, we show for a reduced domain
that the numerical diffusivity is similar for AUSM+

B-up and the
Roe scheme.

A major restriction for our 3D simulations is posed by the
available computational resources. While a higher resolution is
certainly desirable, it considerably reduces the physical time for
which we could follow convection. However, convection has to
be covered for several turnover times τconv in order to analyze
mixing processes at the boundaries of the convection zone. We
therefore can only investigate the effect of boundary mixing at
the lowest resolution of 180×902. At higher resolution, our sim-
ulations only cover a few multiples of τconv which is too short to
track mixing at the boundaries but is sufficient to extract prop-

erties of turbulence. In this section we present simulations with
resolutions ranging from 180 × 902 to 810 × 5402. The basic
properties of the simulations are summarized in Tablea 1–3. We
note that the radial resolution from 360 × 1802 to 540 × 3602

cells changes by a factor of 1.5, while the corresponding num-
ber of horizontal cells changes by a factor of 2. This was done
inadvertently, but we are confident that it does not prevent the
comparison of the results between the different resolutions. The
simulations at a resolution of 810× 5402 cells are restarted from
the corresponding simulations at 540 × 3602 at a stage of fully
developed convection. This avoids the slow initial transients and
hence reduces computational costs.

To conclude the 2D scaling test of the previous section, the
scaling relation Eq. (10) is shown for the lowest resolution and
the AUSM+-up solver in Fig. 5 (orange crosses). The 3D data is
in good agreement with the expected scaling. The corresponding
flow patterns are found in Fig. B.2 at a resolution of 180 × 902.
From MLT, a convective velocity of MaMLT ≈ 1.6 × 10−4 is pre-
dicted. If we extrapolate from the 3D results to stellar luminosity
we find a value of Maext ≈ 4.0× 10−4. The ratio Maext/MaMLT ≈

2.5 is similar to what has been obtained by Jones et al. (2017).
This ratio indicates a reasonable agreement, taking into account
that MLT only provides an order-of-magnitude estimate and that
the results from our simulations need to be extrapolated to nom-
inal luminosity.

5.1. Tracing the boundaries of the convection zone

For the analysis that is presented in the subsequent sections, the
top and bottom radii of the convection zone, rCZ,0 and rCZ,1, have
to be extracted from the simulations. This can be done in differ-
ent ways, for example by considering the radii where the decline
in the horizontal velocity is steepest (Jones et al. 2017), where
the species abundance gradient is steepest (Meakin & Arnett
2007), or where the mean atomic weight is equal to its averaged
value within the convective and adjacent stable zone (C+17).
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Furthermore, to avoid the use of averages which might underes-
timate the effect of strong but rare mixing events, extreme value
statistics could be used (Pratt et al. 2017) or the standard devia-
tion of a dynamical quantity like the kinetic energy (Higl et al.
2021).

Our approach is to advect ρX with the fluid flow where X is a
passive scalar. Its initial distribution increases at a constant slope
from −1 at the bottom boundary of the computational domain
to 1 at the top (dashed line in Fig. 6). The passive scalar will
quickly be mixed within the convection zone while forming a
transition between the initially linear decrease and a flat region.
The position of the boundaries is then defined as the radius where
the spatial gradient of the horizontally averaged passive scalar is
largest. We find that after an initial redistribution of the scalar by
the onset of convection our method gives robust results.

This definition of the boundary position is similar to using
the abundance gradient. However, it does not depend on the ini-
tial 1D structure in terms of strength and position of the gradi-
ents. Furthermore, the abundance and passive scalar profiles are
immediate measurements of the mixing compared to measuring
for example overshooting events or standard deviations, which
are linked to mixing only indirectly.

For an exemplary simulation, Fig. 6 shows the profile of the
advected passive scalar at the start of the simulation and around
t
(
Nτconv = 10

)
. The efficient mixing by convection has homoge-

nized the passive scalar within the convection zone. At the top
and bottom boundary of the computational domain, the profile
of the passive scalar is almost not distinguishable from the initial
distribution. The orange shaded area denotes the convection zone
according to the criterion N2 < 0 and it is clearly visible that this
definition underestimates the extent of the convection zone. The
bottom and top boundaries of the convection zone as given by
the maximum absolute value of the radial gradient of the passive
scalar are shown as blue dots. There are small amounts of numer-
ical under- and overshoots in the profile of the passive scalar.
This is due to a lack of slope-limiter for reconstruction for the
implicit time stepping.

5.2. Kinetic energy spectra and comparison with turbulence
theory

Kolmogorov (1941) (see also Landau & Lifshitz 1987) predicts
that the spectrum of kinetic energy εkin in 3D isotropic turbu-
lence follows

εkin(`) ∝ v̂2(`) ∝ `−5/3, (13)

where ` is the angular order. Although stellar convection is not
isotropic on large scales, many numerical experiments reveal
spectra similar to this prediction on sufficiently small scales
(Porter & Woodward 2000; Gilet et al. 2013; Verma et al. 2017,
C+17). The spectra of turbulent convection in 3D typically
divide into three regions (see Arnett et al. 2015 for a more
detailed discussion): At large spatial scales, that is at small val-
ues of the angular order `, the energy from heating is injected
into the flow, forming the integral range. At somewhat smaller
scales, or equivalently for larger `, the inertial range forms that
follows the scaling of Eq. (13). The inertial range extends down
to the small scales where dissipating effects such as viscosity
become relevant and turbulent kinetic energy is transformed into
internal energy. This leads to a steeper drop in εkin(`) for larger
` and marks the dissipation range. In the stellar context, it is
impossible to resolve the spatial scales where physical viscos-
ity takes place. Thus, in implicit large eddy simulations (ILES),
the effect of viscosity is not modeled explicitly but follows from
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Fig. 6. Horizontal mean of the advected passive scalar for a simulation
with a resolution of 180 × 902. The initial distribution of the scalar is
shown as dashed line, the solid line represents the time-averaged profile
for t ∈

[
t
(
Nτconv = 9.9

)
, t

(
Nτconv = 10.1

)]
. The blue shaded area corre-

sponds to the minimal and maximal value of the passive scalar at the
corresponding radius for the latest considered snapshot. The radii at
which the absolute value of the radial derivative is largest are indicated
by dots. They define the position of the top and bottom boundaries.
The shaded orange area marks the convective region according to the
stability criterion N2 < 0. Vertical dashed lines denote the respective
boundary widths which are defined in Sect. 5.6.

the numerical viscosity inherent in the applied numerical scheme
at small scales (see, e.g., Arnett et al. 2015, 2018). This is the
case for the SLH code that solves the Euler equations which fol-
low from the Navier-Stokes equations for vanishing viscosity but
does not apply any subgrid scale model for turbulent dissipation.
It therefore is desirable to resolve the scaling Eq. (13) to the
smallest scales possible while still having a numerically stable
scheme. Hence, one way to compare the quality of numerical
schemes is to compare their respective range in ` for which they
reproduce an inertial range with a scaling according to Eq. (13).

In the following, we present the spectra for the 3D SLH
simulations and compare the low-Mach AUSM+-up solver to
the AUSM+

B-up scheme. In setups with an approximate spheri-
cal symmetry, the spatial spectra of turbulent flows are typically
given in terms of power spectra for spherical harmonics. This
makes use of the fact that a given function F(ϑ, ϕ) on the spher-
ical surface can be decomposed into spherical harmonics as

F(ϑ, ϕ) =

∞∑
`=0

∑̀
m=−`

f`mY`m(ϑ, ϕ), (14)

where f`m is the amplitude for the corresponding spherical har-
monic Ylm of angular degree ` and angular order m. For our anal-
ysis we apply the open-source shtools1 (Wieczorek & Meschede
2018), a collection of Fortran90 and Python libraries for spher-
ical harmonics data analysis. To decompose the velocity fields
that result from our simulations, we proceed as follows:

The shtools assume that the input data is provided for the
whole spherical surface. The computational domain in our sim-
ulations, however, is a spherical wedge. We therefore expand the
ϕ − ϑ plane covered by our simulations to the full spherical sur-
face. For this, the data from our simulation is repeated periodi-
cally to fill the regions that are not covered by the computational
domain, see Fig. 7. This gives slightly weaker artifacts than zero-
padding.

To further reduce the artifacts introduced by our limited
domain, we make use of the ability of shtools to apply an arbi-
trary window function to extract localized spectra. The shtools
construct the windows automatically and provide the user the

1 https://shtools.oca.eu
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Fig. 7. Expansion of the velocity data for one exemplary 3D wedge sim-
ulation. Color coded is the velocity component in ϕ-direction. The red
square marks the actual computational domain. The rest of the plane is
filled by periodically repeating the simulation data in ϑ and ϕ direction.
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Fig. 8. Spectra of the radial kinetic energy component. The blue and
orange line correspond to simulations with the Roe and AUSM+

B-up
schemes of a reduced domain that only contains a fraction of the con-
vection zone. The gray line shows the spectrum for a simulation of the
full domain with the AUSM+

B-up solver, the same grid spacing, but a
different energy boosting. The amplitudes have been normalized such
that they are unity at ` = 200 to ease the comparison. The dashed line
marks the Kolmogorov-scaling according to Eq. (13). The vertical dot-
ted line at `max = 60 denotes the spectral width of the applied window
functions for the runs with 270 × 1802 cells. For ` ≤ `max, their spectra
are dominated by the convolution with the window function and do not
reflect real data. The horizontal axis is truncated at the spectral width
of the window function for the 540 × 3602 run which corresponds to
`max = 25.

option to restrict the bandwidth of the created windows by an
upper limit `max. The necessary bandwidth of the window func-
tion increases with smaller localized areas. The shtools then cal-
culate different realizations of window functions that have their
power concentrated in the considered region within the ϑ − ϕ
plane. The spectra of all windows are averaged (multitaper, see
also Wieczorek & Simons 2005). For the input of the multita-
per spectrum, we set `max to a sufficiently high value to obtain
at least 10 window realizations from shtools which have 99% of
their power localized in the computational domain.

The spectra that are presented in the following are taken at a
constant radius in the middle of the convection zone. This is jus-
tified if the flow is isotropic, which is not the case at large scales
(small `) but a reasonable assumption at small scales. Isotropy is
also a necessary condition for the Kolmogorov-scaling Eq. (13)
to form. The extracted spectra are averaged over roughly one
convective turnover time.

In order to demonstrate the improved performance of the
low-Mach AUSM+-up solver, we compare it to its basic vari-
ant AUSM+

B-up. The AUSM solver family is not yet widely used
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Fig. 9. Spectra of the radial kinetic energy component for the
AUSM+

B-up and AUSM+-up solver at a resolution of 810 × 5402 cells
and an energy boosting of b = 3×104. The amplitudes are normalized to
unity at ` = 50 for better comparability. Dotted vertical lines mark the
angular degree ` at which the relative deviation from the Kolmogorov-
law is one decade. For the AUSM+

B-up solver this happens at ` ≈ 470,
for the AUSM+-up solver at ` ≈ 920. The horizontal axis is truncated at
the spectral width of the applied window function (`max = 25).

in the astrophysical community. To get an idea how AUSM+
B-up

compares to the well-known Roe scheme, we compare their
spectra for a reduced domain, which only contains a subset of
the convection zone. This is necessary because we find numer-
ical artifacts for Roe in combination with Cargo–LeRoux well-
balancing that lead to spurious flows in the stable regions at radii
where abundances change.

Their spatial resolutions are the same as for the 540 × 3602

simulations of the full domain. The result is shown in Fig. 8.
The spectra demonstrate that, at least within the convection zone,
the AUSM+

B-up and the Roe solver are both dissipative and do
not show an inertial range. For comparison, the spectrum of
a simulation which has the same spatial resolution but using
the AUSM+

B-up scheme is added to the figure along with the
Kolmogorov-law Eq. (13). The similarity between the Roe and
AUSM+

B-up solver is also evident in the flow pattern, Fig. B.3.
The spectra for the highest available resolution and the full

domain are shown in Fig. 9. We find that the AUSM+
B-up and

AUSM+-up solver both show a well-defined inertial range where
the slope closely follows the prediction of a Kolmogorov spec-
trum. The vertical dotted lines in Fig. 9 mark the scale at which
there is a significant deviation from the Kolmogorov-law. From
this measure we find that the inertial range of the AUSM+-up
solver extends toward scales that are about a factor two smaller
compared to the AUSM+

B-up solver.
In Fig. 10 the turbulent convective velocity field is depicted

for a slice through the three-dimensional domain for a single
snapshot. The AUSM+-up scheme clearly shows smaller struc-
tures in the flow field as compared with AUSM+

B-up on the same
computational grid. This is also apparent in Fig. 11 which shows
the magnitude of vorticity |∇ × u|, where u is the velocity vec-
tor. To further illustrate the advantages of the low-Mach flux
AUSM+-up over AUSM+

B-up, we compare in Fig. 12 the spectra
at different resolutions. We find that for the AUSM+-up solver,
a grid resolution of 360 × 1802 gives an inertial range that is
comparable to the 810 × 5402 resolution of simulations with
AUSM+

B-up.

5.3. Comparing numerical dissipation from RA-ILES results

The comparison of the kinetic energy spectra is comple-
mented by analyzing the different simulations in the terms of
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AUSM+-up solver (right). The data is taken from the latest available snapshot, respectively.

Reynolds averaged implicit large eddy simulations (RA-ILES)
(Mocák et al. 2014; Arnett et al. 2019). The fundamental idea
is to separate the different components of the Navier-Stokes
equations into mean and fluctuating parts and to determine them
by analyzing numerical simulations. The physical interpretation
of these parts then gives useful insight into the complex interplay
between different processes that act in turbulent convection and
at the boundaries of the convection zone.

While the RA-ILES framework provides a wealth of equa-
tions (see Mocák et al. 2014 for an extensive overview), we
focus on analyzing the equation for turbulent kinetic energy. It
allows one to quantify the effect of implicit numerical dissipa-
tion of kinetic energy that is inherent in all ILES. This equa-
tion has been used in several publications in the past (see, e.g.,
Arnett et al. 2009; Mocák et al. 2014, 2018), and aided the anal-
ysis of the effects of resolution and convective driving (C+17,
C+19) or different strengths of stratification (Viallet et al. 2013).
Following the formulation of Mocák et al. (2014), the time evo-
lution for the kinetic energy of an inviscid fluid can be written
as

∂t(ρ̄ε̃k) + ∇r(ρ̄ ṽr ε̃k) = −∇r ( fP + fk) + Wb + WP, (15)

where εk is the specific kinetic energy, fP = P′v′r the acoustic flux,
fk = ρvr

′′εk
′′ the turbulent kinetic energy flux, Wb = ρ vr

′′ g̃r the
buoyancy work, WP = P′d′′ the turbulent pressure dilatation, and
d = ∇ · u. The radial component of the gravitational acceleration
is denoted by gr. The definition of the Reynolds average q, Favre
average q̃, and the corresponding fluctuations q′, q′′ for a quan-
tity q are given in Appendix A. For a more detailed discussion
of the individual terms, see for example Meakin & Arnett (2007),
Viallet et al. (2013), or Mocák et al. (2014).

Because numerical solutions are only approximations to the
true solution, Eq. (15) will in general not be fulfilled exactly in
hydrodynamic simulations. Instead, there will be a residual Nεk

between the left-hand and right-hand side. In energy conserv-
ing methods like finite volume schemes, Nεk then measures the
numerical dissipation of kinetic energy into internal energy, the
fundamental property of ILES. The exact value of Nεk depends
on the details of the numerical scheme, the resolution, but also
on the specific physical problem at hand. Generally, the value
of Nεk cannot be controlled in ILES. However, extracting the
terms in Eq. (15) from a hydrodynamic simulation, the strength
of numerical dissipation that acted for the considered time in a
specific simulation can be determined from the average value of
Nεk .

We calculate all the terms in Eq. (15) for the AUSM+
B-up

and AUSM+-up solver at different resolutions. Third-order cen-
tral differences are used to evaluate the gradients. Except for the
highest resolution, the results are averaged over the time inter-
val of t ∈

[
t
(
Nτconv = 2

)
, t

(
Nτconv = 3

)]
which is the maximum

overlapping time frame. For the highest resolution, the simula-
tions are averaged over only ∆Nτconv = 0.6. Ideally, the averages
would be performed over several turnover times to improve the
statistics. While our short time frames probably make a quanti-
tative comparison of the components less robust, we think that
a qualitative comparison is still meaningful and that the main
characteristics of Eq. (15) are captured.

In Fig. 13 the profiles of the individual terms of Eq. (15)
are depicted for successively increasing resolutions2. We find

2 In the RA-ILES analysis framework of SLH, all required fluctua-
tions are calculated and stored already during the simulation, such that
we have data for every single time step. However, there was a flaw in
the calculation of the velocity divergence for the simulations presented
here. Therefore, the velocity divergence had to be re-calculated in a
post-processing step, for which the 3D velocity data is only available
for the stored grid files but not for every time step. Fortunately, only
the value of WP is affected which is, however, small in general and the
impact of the post-processing is negligible.
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our results in qualitative agreement with simulations of oxygen
burning (Viallet et al. 2013, Fig. 8) and carbon burning (Fig. 9 of
C+17, see also C+19). The small but noticeable nonzero values
for the left-hand side of Eq. (15) (dashed lines in Fig. 13) are due
to the short time interval considered. For comparison, we recal-
culated in Fig. 14 the results for the lowest resolution but a time
interval that covers ∆Nτconv = 10. Here, the time evolution of the
kinetic energy is close to zero.

The dominant part on the right-hand side is the buoyancy
work Wb that is positive in the convection zone and changes sign
at the boundaries to the stable layers. The acoustic and turbulent
kinetic energy fluxes show a more complex behavior and change
signs several times in the convection zone. The pressure dilata-
tion term WP takes a rather low value for all simulations owing
to the fact that the density stratification within the convection

zone is small. As shown by Viallet et al. (2013), the situation
can be different in other setups. They find that in the convec-
tive envelope of a 5 M� red giant star, pressure dilatation con-
tributes a significant part to the overall budget of Eq. (15) as the
convection zone spans several pressure scale-heights. In general,
we do not find significant qualitative differences between dif-
ferent resolutions and between the AUSM+

B-up and AUSM+-up
solver. At the lowest resolution with AUSM+-up, small oscilla-
tions on the grid level are visible for the acoustic flux fP within
the convection zone. However, they vanish for increasing resolu-
tion. At high resolution, we find oscillations in fP at the domain
boundaries, the origin of which is not completely clear. We sus-
pect an interplay of better resolved internal gravity waves with
the constant ghost cell boundaries. This inevitably leads to shear
because velocities are set to zero in the boundary cells.

The dotted lines in Fig. 13 correspond to the numerical dissi-
pation of kinetic energy Nεk acting in the respective simulation.
In general, the dissipation is distributed over the whole convec-
tion zone and vanishes in the stable layers. For the AUSM+-up
solver, some smaller oscillations are visible near the bound-
aries which stem from the oscillations in fP. Comparing the
results of the AUSM+

B-up and AUSM+-up solver at each reso-
lution, the profiles of Nεk have similar amplitudes in the main
part of the convection zone. However, for the simulations using
the AUSM+

B-up solver, the numerical dissipation shows a dis-
tinct peak at the bottom boundary. The peak height and width
decreases with increasing resolution. The same behavior was
found by C+17 for carbon-shell burning and by Viallet et al.
(2013) for oxygen-shell burning. However, this peak is absent
in the simulations using the AUSM+-up solver. From the shape
and position of the peak of Nεk in the plots for the AUSM+

B-up
solver it seems that the peak is due to an imbalance between the
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Fig. 13. Profiles of the different components of kinetic energy equation in the RA-ILES framework, Eq. (15). The resolution increases from top
to bottom. The left column corresponds to results using the AUSM+

B-up solver and the right column to results using the AUSM+-up solver. All
simulations boost the nuclear energy generation by a factor of 3× 104. The profiles are averaged for roughly one convective turnover time. Similar
to Viallet et al. (2013), the components are multiplied by the geometrical factor 4πr2.

acoustic flux fp and Wb. Although the peak in fp appears to be
similar in shape and amplitude for the two solvers, a more pro-
nounced opposed peak in Wb seems to counteract the gradient of
fp in the AUSM+-up runs.

We directly compare the numerical dissipation Nεk for the
different simulations in Fig. 15. For AUSM+-up, the amplitudes
seem to be converged already for the lowest resolution, although
low-resolution runs show oscillations in the numerical dissipa-
tion. Also for the AUSM+

B-up solver, the dissipation in the bulk
of the convection zone seems not to depend strongly on the res-
olution. This is consistent with the expected independence of

the turbulent dissipation rate from the effective viscosity, which
is set by the grid scale. However, at the bottom boundary, the
peak decreases with increasing resolution and seems to con-
verge toward a value that is similar to the dissipation of the
AUSM+-up solver. These results are fully in line with the simu-
lations shown in Figs. 1 and 2 of Arnett et al. (2018) which sum-
marize the numerical dissipation in oxygen- and carbon-shell
burning simulations with the PROMPI code. For their highest-
resolution run, they find that the peak at the bottom boundary
seems to merge with the bulk dissipation. This indicates that
the low-Mach AUSM+-up solver improves the behavior at the
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bottom boundary, even at moderate Mach numbers and moder-
ate resolution.

5.4. Convective boundary mixing

An important process in stellar interiors is the entrainment of
material from stable layers at the boundaries of a convection
zone into the convective region. This has implications for the
star’s further evolution because the entrained material serves as
fuel for the burning region. Despite its importance, it needs to
be parametrized in conventional 1D stellar evolution simulations
due to its inherently multidimensional nature. For the various
types of convection, for example in shallow zones in the stellar
interior or extended regions in the envelope of solar-like stars,
different physical mechanisms are dominant. It is therefore of
interest to develop and validate different possible parametriza-
tions with the help of multidimensional simulations.

Viallet et al. (2015) suggest to use the local Pécletnumber,
the ratio of advective and diffusive timescales, in the bound-
ary region to distinguish between different types of convective
boundary mixing. Estimating the typical velocity v and length
scale l of convection through MLT, we find a minimum Péclet-
number within the convection zone of

Pe =
ul
K

=
3Dmlt

K
≈ 5 × 104 � 1, (16)

where K is the thermal diffusivity (see Eq. (9)) and DMLT =
1/3 uMLT lMLT is the diffusion coefficient obtained from MLT.
The large Pécletnumber implies minor importance of radiation
for the mixing, in accordance with our estimates in Sect. 3.3.
The artificial boosting will increase the Pécletnumber even fur-
ther in the hydrodynamic simulations. Following Viallet et al.
(2015), at Pe � 1 mixing can be thought to occur via turbulent
entrainment, where small-scale instabilities are caused by the
shear created by overturning convective cells at the boundaries
(see Viallet et al. 2013 for a detailed description). As demon-
strated by Meakin & Arnett (2007) for stellar convection, tur-
bulent entrainment can be characterized in terms of the bulk
Richardson entrainment law

ve

vrms
= A Ri−n

B , (17)

where ve is the entrainment velocity of the top or bottom con-
vective boundary, vrms the rms velocity in the convection zone,
and RiB the bulk Richardson number (see Eq. (6)). For the
results presented in the following, we have checked by visually
inspecting the time evolution of the density and boundary pro-
files that ve is dominated by mass entrainment and the impact
of thermal expansion is negligible. The analysis with respect to
Eq. (17) is reported in various other studies which generally find
an agreement with the measured entrainment (e.g., Gilet et al.
2013, Müller et al. 2016, C+17, C+19, Higl et al. 2021). In the
following, we extend these studies for the case of helium shell
burning.

By fitting Eq. (17) to simulations of mixing across bound-
aries at different RiB, the value of A and n can be determined.
In shell simulations, this is possible either by measuring the
entrainment at the bottom and top boundary in a single simula-
tion (different RiB because of different BVF profiles, e.g., C+17),
by measuring entrainment in simulations with different convec-
tive driving (different RiB because of varying vrms), or both (e.g.,
C+19).

To extract meaningful results, such simulations need to be
run for multiple convective turnover times. Furthermore, as
pointed out by Woodward et al. (2015), the resolution must
be sufficiently high for obtaining converged entrainment rates
across the boundaries. To relate the different grid sizes that
have been used in the aforementioned studies, we compare the
number of vertical grid cells (#CZ) that are located within the
convection zones. Only grids that have been used to derive an
entrainment rate are considered here. This simple comparison
neglects the impact of restricted domains and does not consider
the different stiffness of transitions from stable to convection
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zones. However, it still gives an estimate of the scales that are
resolved by the grid compared to the global scale of the con-
vection zone. Woodward et al. (2015) find entrainment rates that
are in reasonable agreement for simulations with #CZ = 219
(grid sizes of 7683) and more cells. Most of the simulations
presented by Jones et al. (2017) have #CZ = 170, while they
show for one particular case that entrainment agrees with the
results of a simulation with #CZ = 341 (grid sizes of 7683 and
15363, respectively). The highest resolution used by C+17 to
determine the entrainment rate has #CZ = 256 (for a grid of
5123). Our computational resources only allow to run simula-
tions long enough on grids with 180 × 902 cells which corre-
sponds to #CZ = 105. This resolution might not be sufficient and
we cannot test whether the results presented in this section are
converged. However, our analysis still provides a first glimpse
on what coefficients might be expected for the He-shell burn-
ing. Moreover, we are able to compare the results from the
low-Mach AUSM+-up solver to AUSM+

B-up and assess whether
the bulk Richardson scaling can be reproduced even at low
resolution.

We determine the entrainment rate ve in Eq. (17) from the
mean radial position over time of the top and bottom bound-
ary, respectively. The positions of the boundaries are extracted
as described in Sect. 5.1, the values for vrms consider the entire
convection zone.

The plots on the left of Fig. 16 show the evolution of the
boundary positions for the boosting factors 3 × 103, 1 × 104,
and 3 × 104 when using the AUSM+-up solver. Qualitatively,
the behavior is as expected: A higher boosting factor leads to
stronger convection, faster entrainment of the passive scalar, and
thus to a faster moving boundary. The entrainment velocity at the
bottom boundary is considerably smaller than at the top bound-
ary. According to Eq. (17) this is expected for a larger value of
RiB which is indeed confirmed in the right panel, where the data
for the bottom boundary reside at RiB > 103. A similar situation
is observed for simulations with the AUSM+

B-up solver, shown
in Fig. 17.

In order to fit Eq. (17) to the data, we consider the time
frame of t ∈

[
t
(
Nτconv = 10

)
, t

(
Nτconv = 20

)]
. The lower limit is

given by the end of the initial transient in the evolution of the
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Table 4. Summary of the basic properties of the simulations shown in Figs. 16 and 17.

Boosting factors 3 × 104 1 × 104 3 × 103

num. flux function AUSM+-up AUSM+
B-up AUSM+-up AUSM+

B-up AUSM+-up AUSM+
B-up

τconv [h] 2.69 2.86 3.96 4.32 6.21 7.40
vB

e

[
102 cm s−1

]
−6.14 −6.05 −4.86 −4.52 −2.54 −2.55

vT
e

[
103 cm s−1

]
7.80 7.60 2.60 2.20 0.77 0.71

vT
e /v∆s 0.45 0.54 0.39 0.52 0.34 0.41

uB
cell

[
cell τ−1

conv

]
−0.10 −0.10 −0.11 −0.12 −0.09 −0.11

uT
cell

[
cell τ−1

conv

]
1.23 1.28 0.61 0.56 0.28 0.31

vrms

[
106 cm s−1

]
1.08 1.04 0.66 0.62 0.40 0.35

RiB
B

[
103

]
1.74 1.99 3.29 4.07 6.76 9.44

RiTB
[
102

]
0.44 0.43 1.02 1.09 2.62 3.35

Notes. All data is obtained by considering a time interval of ∆Nτconv = 10. Legend: τconv : mean convective turnover time. vB
e , vT

e : entrainment
velocities at the bottom and top boundary. vT

e /v∆s: Ratio of the entrainment velocity at the top boundary to the velocity estimated by a general
entropy increase within the convection zone, see text and Eq. (21). uB

cell, uT
cell : number of vertical grid cells crossed by the bottom (top) boundary

over the period of one τconv. vrms : rms velocity in the convection zone. RiB
B, RiT

B : bulk Richardson number at the bottom and top boundary.

passive scalar. The length of the shortest simulations constitutes
the upper limit, such that the same time frame can be used for
both sets of simulations. The extracted values listed in Table 4
reveal that the bottom boundaries move only by about one cell
during the entire considered time frame of ∆Nτconv = 10.0. This
indicates that our grid is not fine enough to properly track this
subtle shift, which is also suggested from the thin boundary
widths measured for the bottom boundary, see Sect. 5.6. An
additional complication arises by the profile of energy genera-
tion (Fig. 2) which has its peak beneath the convection zone.
Because we do not increase the efficiency of radiative diffu-
sion in accordance with the artificial boosting, internal energy
will accumulate below the convection zone. This leads to a
local increase in the BVF and the boundary gets stiffer. Hence,
the entrainment velocity decreases when the bottom boundary
approaches the peak of the energy generation. Because of this
artificial phenomenon and the unresolved boundary motion we
exclude the data points of the bottom boundaries from the anal-
ysis.

Using a least-square fit of Eq. (17) to the extracted data, we
find

ln AA+-up = −2.15 ± 0.04, nA+-up = 0.74 ± 0.01,
ln AA+

B-up = −2.64 ± 0.39, nA+
B-up = 0.62 ± 0.08, (18)

where the errors correspond to the standard deviation of the fit-
ting parameters. We note that the errors are obtained without
taking the individual error bars shown in Figs. 16 and 17 into
account. The standard deviation in RiB and the spread in the
entrainment velocity are likely correlated between some of the
data points and subject to systematic shifts. Therefore, we think
a treatment in terms of proper error propagation could be mis-
leading. The error bars are shown nonetheless in the figures to
give an idea of the general variability of the data points. The
small uncertainties given in Eq. (18) thus indicate only that our
data is well represented by Eq. (17) but should not be taken as a
measure of the overall accuracy of our analysis.

The results with the AUSM+-up and AUSM+
B-up schemes

are similar, but the dependence of the entrainment on the bulk
Richardson number is somewhat steeper for AUSM+-up. As
a rough test for convergence, the set of simulations with the
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Fig. 18. Time evolution of the fit parameters A (blue solid line) and n
(orange dashed line) for a fixed time frame of ∆Nτconv = 5 and moving
central time.

AUSM+-up solver has been restarted after the initial transient
on grids with a resolution of 360 × 2402. The flow state is inter-
polated to the finer grids using constant interpolation. The cor-
responding tracks of the radial boundary positions are shown as
thick red lines in Fig. 16. For the top boundary, the entrainment
rate is similar to the low resolution runs. At the bottom bound-
aries, entrainment appears to be slightly faster. Generally, the
better resolved simulations follow a similar trend as the low res-
olution runs. However, more data is needed for a stronger state-
ment on convergence and to extract meaningful estimates for A
and n also from the better resolved simulations. Another parame-
ter that impacts the results is the considered time interval. Using
the full data of the AUSM+-up runs shown in Fig. 16, we extract
the parameters A and n for a fixed length of ∆Nτconv = 5 but
for a changing central time (Fig. 18). We find that the value of
the exponent n increases from n ≈ 0.4 and settles to a value of
n ≈ 0.75 for central times later than t

(
Nτconv = 20

)
. The value

of ln A changes in a very similar way from ln A ≈ −3.5 to
ln A ≈ −2.5. Figure 18 reveals that the values settle after cen-
tral Nτconv ≈ 20. Therefore, it seems more appropriate to consider
the time interval of t ∈

[
t
(
Nτconv = 17.5

)
, t

(
Nτconv = 25

)]
to deter-

mine best-fitting values of A and n. The upper limit is given by
the time the top boundary reaches the top of the computational
domain and boundary conditions will start to affect the results.
We obtain

ln AA+-up = −2.24 ± 0.45, nA+-up = 0.76 ± 0.10, (19)
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see also Fig. B.4. These values are similar to the previous
result. However, considering the peak in the evolution in Fig. 18
between Nτconv = 10 and Nτconv = 20, this might be a coinci-
dence. There is not sufficient data for the simulations with the
AUSM+

B-up solver to repeat this calculation but we expect it to
show a similar trend.

The results given in Eqs. (18) and (19) are within the regime
0.5 ≤ n ≤ 1, which is compatible with values reported in lab-
oratory and numerical experiments (see, e.g., Meakin & Arnett
2007 and C+17 for a discussion and corresponding references).
Our fitting parameters are similar to the findings of C+19 for the
carbon shell. They obtain parameters3 of ln AC19 = −2.98± 0.13
and nC19 = 0.74 ± 0.04. In contrast, Meakin & Arnett (2007)
report ln AM07 = 0.062 ± 0.87 and nM07 = 1.05 ± 0.21 and also
the results of Jones et al. (2017) and Andrassy et al. (2020) agree
with an exponent of n ≈ 1, as pointed out by Müller (2020). Fur-
ther simulations are needed to scrutinize the values of A and n,
also keeping in mind that different values may exist for different
stellar convection zones.

Combining the results of Eq. (19) with the MLT prediction
of MaMLT ≈ 10−4 and RiB = 7 × 104 for the 1D MESA model,
we find a mass entrainment rate of

ṁe = 4πr2ρMaMLT csound ARi−n
B

= 9.6 × 10−11 M� s−1, (20)

for the top boundary. The value for the bottom boundary is
about a factor ten smaller. This confirms the finding of previ-
ous 3D hydro simulations (e.g., C+17) that lower boundaries
of convective shells are stiffer and thus have less entrainment
than the top boundaries. The associated growth of the convec-
tive region at the upper and lower boundaries using these rates
until the end of the evolution is indicated by green lines in Fig. 1.
This illustrates that, while the much stiffer lower boundary only
slightly changes, the upper boundary considerably moves out-
ward. At the rate of the mass entrainment of Eq. (20), the total
mass of the initial convection zone of 1.1 M� is doubled within
350 yr. However, a substantial growth of the convection zone
leads to different bulk Richardson numbers at the boundaries
and thus change the mass entrainment rate. Moreover, as seen
in Fig. 1, the convection zone is growing also in the 1D evolu-
tion calculation. The mass entrainment rate given in Eq. (20) is
therefore only representative for a short fraction of the shell’s
lifetime at the evolutionary time the simulation was calculated.
It is also a warning that one cannot simply use numerical val-
ues like entrainment rates extracted from single 3D simulations
and apply them at different phases of stellar evolution. Instead, it
is best to use theoretical prescriptions like the entrainment law.
Recently, 1D stellar evolution models using the entrainment law
on the main-sequence have been computed by Scott et al. (2021)
and better reproduce the mass dependence of the main-sequence
width. New 1D models during other phases of stellar evolution
will be needed to assess the ability of the entrainment law to
represent convective boundary mixing in 1D models throughout
stellar evolution.

The expansion of the convection zone seen in the 1D evolu-
tion is part of a global restructuring of the star after core helium
burning. Turbulent entrainment does not contribute as it is not
included in our 1D calculation. However, the growth may be

3 We note that the value and error of A given in their Fig. 14 mix linear
(for A value) and logarithmic (for the uncertainty) scales. The values
presented here are recalculated from the same data set in terms of the
natural logarithm.
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Fig. 19. Initial entropy profile and profiles after 17.5 and 25 convective
turnover times for the 3D simulation with a grid of 180 × 902 cells,
the AUSM+-up solver, and an energy boosting of b = 3 × 104. Vertical
dotted lines mark the region that is considered to calculate the mean
entropy gradient in the radiation zone ∆sRZ/∆r from the initial entropy
profile.

attributed to a process that is likely also present in our hydrody-
namic simulations: In a simplified picture, the heating through
nuclear burning successively increases the entropy within the
convection zone. This leads to a small region at the top boundary
where it exceeds the entropy at the immediate beginning of the
radiation zone. This region is unstable and will merge with the
convection zone. We estimate the speed v∆s at which this process
would move the outer boundary by

v∆s =

(
∆sCZ

∆t

)/ (
∆sRZ

∆r

)
, (21)

where ∆sCZ/∆t is the ratio of the mean temporal increase in
entropy inside the convection zone and sRZ/∆r corresponds to
the mean entropy gradient at t = 0 for a region above the top
boundary. For the simulation with the highest boosting that was
used to obtain the results in Eq. (19) we find a ratio of

v∆s

vT
e
≈ 60%, (22)

where vT
e is the entrainment velocity at the top boundary as mea-

sured from the advected passive scalar. The considered profiles
to calculate v∆s are plotted in Fig. 19, the spatial entropy gradient
is calculated considering the initial model. The ratios of our other
simulations range between 30% to 50% and are listed in Table 4.
This is similar to the value of 49% found by Andrassy et al.
(2020) for carbon-shell burning while Meakin & Arnett (2007)
find a maximum ratio of 17% for oxygen shell burning4. These
values suggest that a considerable fraction of the entrainment
speed could be contributed through increasing entropy. Conse-
quently, this process needs to be disentangled from the growth
through turbulent entrainment before the entrainment accord-
ing to Eq. (17) is used in stellar evolution codes or compared
between simulations of different convection zones.

5.5. Characterizing the mixing

It is not trivial to determine the details of the – possibly small-
scale – events that lead to turbulent mixing. In their PPMstar

4 It is not clear to us whether Meakin & Arnett (2007) calculated the
spatial entropy gradient in the radiation zone or at the transition from
convection to radiation zone. In the latter case, the gradient is much
steeper, the estimated velocity will be smaller, and we would obtain a
ratio similar to that of Meakin & Arnett (2007). However, we think that
only the gradient above the boundary transition is relevant.
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simulations, Woodward et al. (2015), Jones et al. (2017), and
Andrassy et al. (2020) find that trains of small Kelvin-Helmholtz
rolls emerge at the boundary. However, they do not appear in
regions of largest shear but rather at the point where two convec-
tive cells turn and move back into the convection zone.

From our 2D visualizations we are not able to easily find
large scale, coherent modes. In order to identify possible corre-
lations between the strength of shear and the amount of mixing
in our simulations, we use a simple analysis of the velocity field
at the top boundary: For a narrow region below the top boundary,
we measure along radial rays the volume-weighted deviation of
the passive scalar from its mean in the convection zone

P̃S(ϑ, ϕ) =

∑
r∈[rPS,rP] V(r, ϑ, ϕ)

[
PS(r, ϑ, ϕ) − PS(ϑ, ϕ)

]∑
r∈[rPS,rP] V(r, ϑ, ϕ)

, (23)

where PS denotes the value of the passive scalar, PS(ϕ, ϑ) is
the average over the middle third of the convection zone, and
V the volume of the grid cell. The radii rPS, rP define the con-
sidered radial domain, where rP corresponds to the beginning
of the transition to the stable zone at the top of the convection
zone, as defined in Sect. 5.6 and rPS = 0.95 rP. The value of the
passive scalar is larger above the top boundary compared to its
mean (see Fig. 6). Hence, a positive deviation from the mean cor-
responds to an entrainment event. The considered domain does
not include mixing directly at the boundary because there, devi-
ations are usually large but do not necessarily descend into the
convection zone.

In addition, we estimate the strength of shear by

S h(ϑ, ϕ) =

∫ rS

rPS

√(
∂rvϕ

)2
+ (∂rvϑ)2 dr, (24)

where vϑ, vϕ denotes the ϑ, ϕ-velocity components. Because the
shear at the boundary matters here, we extend the considered
zone to rS which coincides with the end of the transition to the
radiation zone as defined in Sect. 5.6. The different regions are
indicated in Fig. 20. With the described procedure we obtain data
pairs that correlate shear strength to mixing strength. Our sim-
ple approach does not consider that the mixing events will also
depend on the history of the velocity field and its gradient along
the individual downflows. However, it still gives some measure
of the correlation between shear and mixing: The characteristic
time scale for global changes of the flow field is given by the turn
over time. The animated versions5 of Fig. 20 illustrate that the
mixing events detected between the dashed-dotted line and the
dashed line happen on time scales which are much shorter. If
the mixing were caused by Kelvin-Helmholz instabilities over-
turning the whole boundary layer one may assume that they grow
fastest in regions of strongest shear. We then would expect the
rapidly-growing Kelvin-Helmholz rolls to become detectable in
the layer where we measure P̃S after a fraction of the global
turnover time scale. However, the shear layers caused by the
overturning of the large scale flows at the convective boundary
should be present for as long as the global turnover time scale.
The extracted data pairs can therefore be used to investigate a
possible correlation between shear strength and mixing.

The result for the AUSM+-up solver at a resolution of
180 × 902 is shown in Fig. 21 for increasing energy boostings.
In all simulations, the counts of positive passive scalar fluctu-
ations cluster at the lower end of the measured shear strength
range. At slightly negative deviations, a narrow band with a

5 https://zenodo.org/record/4776452
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Fig. 20. Fluctuations of the passive scalar PS from its mean value PS for
a snapshot of the 3D simulation at a resolution of 810 × 5402 cells and
a boosting factor of 3 × 104. The mean PS is taken over the inner third
of the convection zone. The dashed-dotted line corresponds to rPS, the
dashed line to rP and the dotted line to rS. Their meanings are explained
in the main text.

high number of counts forms which stretches over a larger range
of shear strengths. As indicated by the blue lines, at smaller
shear strengths mixing events dominate over “no mixing” events.
The noisy profile at the strongest shear can be attributed to the
small number of total counts (thin line) and corresponding poor
statistics.

The evidence of mixing at the lower end of the range is in line
with the fact that the horizontal velocity naturally has to decrease
where strong downflows form because the velocity is redirected
inward there. The narrow band corresponds to rays with no mix-
ing events such that the contained passive scalar is slightly below
but very close to the average within the convection zone. If the
energy boosting is increased, convection gets more vigorous and
hence the narrow band extends toward larger shear strengths.
Mixing follows this trend, but still dominantly appears at lower
shear strengths. By visually inspecting the flow morphology of
their 3D simulations, Woodward et al. (2015) find that mixing
predominately occurs in regions where two large convective cells
meet and overturn. The premixed material that accumulates in
the wedge between two cells somewhat beneath the boundary
has a sufficiently small buoyancy force with respect to the bulk of
the convection zone such that the downflows are strong enough
to bring the material inward. Because of the decreasing horizon-
tal velocity of the turning cells, this premixed region will neces-
sarily have weaker shear (as measured by Eq. (24)) compared to
the region where the fluid moves almost horizontally. The results
of our analysis seem to support this picture.

In Fig. 22 we compare in a similar histogram the results of
the AUSM+-up and AUSM+

B-up solver at the runs with high-
est resolution. The direct comparison shows that shear values
spread over a larger range for the AUSM+-up solver, which can
be attributed to its better-resolved turbulent flow (see Figs. 9
and 10). The AUSM+

B-up solver shows slightly stronger mixing
events. The apparent return toward positive deviations at large
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Fig. 21. Histogram of fluctuations of the passive scalar P̃S (Eq. (23)) as
a function of shear strength for simulations with the AUSM+-up solver
and a resolution of 180 × 902. The boosting strength increases from
top to bottom. The lowest panel combines all three histograms to ease
the direct comparison. The values of fluctuations and shear strengths
are extracted in a narrow band below the top boundary of the convec-
tion zone, as illustrated in Fig. 20. The histograms are normalized by
the total number of counts, that is the number of horizontal grid cells
multiplied by the number of considered grid files. The blue lines indi-
cate the relative excess of mixing events (positive passive scalar fluctua-
tion) or “no mixing” events (negative passive scalar fluctuation) relative
to the total number of events for the respective shear strength. The
width of the lines is scaled linearly with the relative contribution of the
counts at the respective shear strength to the global number of counts.
A thick line therefore indicates a significant contribution while the thin
lines at very small and large shear strengths indicate a negligible con-
tribution to the total amount of events. The considered time frame is
t ∈

[
t
(
Nτconv = 17.5

)
, t

(
Nτconv = 25

)]
.

shear is insignificant due to the small number of total counts at
larger shear, as indicated by the thin line.

5.6. Boundary width

Another characteristic of convection is the shape of the boundary
layers between the convection zone and the convectively stable
zones. While the boundary width has to be parametrized in 1D
stellar evolution codes, it develops self-consistently in hydrody-
namic simulations. As can be seen in Fig. 6, the transition that
forms during the simulation is not sharp but rather changes grad-
ually across a certain vertical width. This is due to at least two
processes. The first, and most important, is partial mixing across
the boundary layer by turbulent entrainment. The second, which
is less important in the simulations presented in this study, is the
deformation of the boundary layer producing an undulated sur-
face rather than a perfectly spherical surface. Neither of these
processes exist in most 1D models, which generally assume a
sharp step-like boundary. The exception is 1D models using par-
tial mixing beyond the convective boundary such as the prescrip-
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Fig. 22. Same as Fig. 21, but here for the AUSM+
B-up (top panel) and

AUSM+-up (bottom panel) solver at a resolution of 810 × 5402 and
an energy boosting of 3 × 104. The considered time frame spans over
∆Nτconv = 0.5, including the respective latest snapshot of each run.

tions of exponentially decaying mixing by Freytag et al. (1996)
and Herwig et al. (1997).

Comparisons to asteroseismology (e.g., Moravveji et al.
2016; Arnett & Moravveji 2017; Michielsen et al. 2019;
Pedersen et al. 2021) also support smoother over step-like
boundaries. More work is needed to better understand the shape
boundaries since they can have a decisive impact on the evolution
and nucleosynthesis (e.g., Battino et al. 2016).

In this section we compare the transition layer widths for sim-
ulations with different resolutions, flux solvers and boostings.
Our approach to extract the widths is similar to the procedure
described by C+17 but instead of abundance profiles we use the
passive scalar as tracer. We define the inner radii of the transitions
at the bottom (top) of the convection zone as the radii at which the
horizontal mean of the passive scalar is larger than its initial value
at this radius plus (minus) 0.05. The outer radius of the transitions
at the bottom (top) is taken to be the radius at which the horizontal
mean of the passive scalar is below (above) the spatial mean over
the inner third by 0.05. To determine the corresponding radii, the
profile of the passive scalar is interpolated. The resulting widths
are shown exemplarily in Fig. 6, marked by vertical dashed lines.
The absolute value of the width depends on the particular choice
of the thresholds for the deviations from the initial profile. How-
ever, it still gives a measure for the relative dependence on resolu-
tion, boosting strength and numerical flux solver. We have verified
that the trends found for the boundary widths do not depend on the
specific choice of the threshold value.

In Table 5 the resulting widths are listed for simulations
applying the AUSM+

B-up and AUSM+-up solver at a fixed res-
olution of 180 × 902 for varying boosting strength. We find
that generally the top boundary width is larger than the bottom
boundary. This is in line with the much higher bulk Richard-
son number at the bottom boundary (Table 4). The top boundary
broadens with increasing energy input because stronger driving
leads to stronger convection and eventually to enhanced mixing
that reaches further into the stable zone. In addition, the inter-
face gets more deformed. This is in accordance with the results
reported by C+17. Also the transition of the bottom boundary
widens with increasing driving and is generally narrower for runs
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Table 5. Boundary widths of the bottom and top boundaries for different energy boosting factors at a resolution of 180 × 902 cells.

AUSM+
B-up AUSM+-up

Boost δr, bot δr, top δr, bot δr, top[
108 cm

] [
108 cm

]
3.0 × 103 1.57 ± 0.07 5.27 ± 0.22 2.11 ± 0.11 3.70 ± 0.05
1.0 × 104 1.72 ± 0.07 6.51 ± 0.37 2.25 ± 0.08 4.51 ± 0.12
3.0 × 104 1.93 ± 0.06 8.88 ± 0.37 2.30 ± 0.09 5.71 ± 0.33

δr, bot δr, top δr, bot δr, top[
10−2 Hp

] [
10−2 Hp

]
3.0 × 103 5.58 ± 0.25 15.41 ± 0.63 7.52 ± 0.40 10.81 ± 0.15
1.0 × 104 6.17 ± 0.24 18.94 ± 1.07 8.11 ± 0.29 13.13 ± 0.36
3.0 × 104 7.01 ± 0.23 25.63 ± 1.08 8.40 ± 0.31 16.48 ± 0.96

Notes. The upper set shows the widths in units of cm while the lower set shows the widths in terms of the mean pressure scale height over the
boundary width. The values are averages taken over a time interval of ∆Nτconv = 10, starting at t

(
Nτconv = 10

)
. Errors correspond to the standard

deviation of the temporal averages.
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Fig. 23. Profiles of the advected passive scalar for different energy input
boostings. All simulations use the AUSM+-up solver. The profiles are
taken at t

(
Nτconv = 15

)
, crosses denote the beginning and end of the

boundary transition zone, as defined in the text. Following the approach
of C+17, the profiles are shifted by the radial position of the bottom
(rb,bot) and top (rb,top) boundary, respectively. The different amplitudes
of the passive scalar below the bottom and above the top boundary are
due to the fact that the initial profile is linear, see Fig. 6. Larger boost-
ing leads to faster entrainment and the top boundary will have already
moved toward larger radii, that is larger values of the passive scalar, for
the snapshot shown in Fig. 23.

with the AUSM+
B-up solver. However, because of the stiffness of

the bottom boundary, changes are only subtle. With a radial grid
spacing of about 0.6×108 cm, the bottom boundaries are resolved
by a few cells only. The relative changes are even on the sub-
grid level and can only be followed by interpolation. Hence, the
robustness of these results is difficult to assess.

Figure 23 illustrates the boundary widths for one particular
point in time. This is similar to Fig. 12 of C+17 for the carbon-
burning shell simulations: For the top boundary, the broadening
with increasing energy input is clearly visible but it is less obvi-
ous at the bottom boundary.

The time evolution of the boundary widths is shown in
Fig. 24. The upper transition exhibits some variability over
time with an amplitude that increases with the driving strength.
Almost no fluctuations are visible for the bottom boundary. A
slight trend toward shallower transitions is noticeable. These
results confirm the general dependence of the boundary width
on the stiffness and driving strength.

To assess the impact of resolution, we compare the widths at
a boosting factor of 3× 104 for simulations on successively finer
grids in Table 6. Because the finer resolved simulations cover
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Fig. 24. Widths of the upper (dashed lines) and lower (solid lines)
boundary for different strengths of the energy generation boosting as
a function of convective turnover times τconv. All simulations use the
AUSM+-up flux.

less convective turn over times, the averages are taken at earlier
times compared to the data listed in Table 5.

For both flux functions we find that the widths of the upper
boundary noticeably decrease when the grid is refined from a
resolution of 180 × 902 to 360 × 1802. For even finer grids, the
width changes only slightly, which is confirmed in the bound-
ary profiles shown in Fig. 25. While the results seem to be
converged for the respective flux functions, there is still a dis-
crepancy between the solvers at the bottom boundary which per-
sists even for the highest resolution. This offset is much larger
than the small fluctuations of the width for the lower boundary
(Fig. 26). However, we note that the boundaries for the high-
est resolution runs need some time to adapt to the increased
grid resolution and that boundary widths at early times may still
change, as indicated in Fig. 24. Therefore, larger time intervals
are needed for a stronger statement on the convergence.

6. Conclusion

Our study complements the exploration of convective boundary
mixing in stellar interiors with multidimensional hydrodynamic
simulations of convective helium-shell burning. The initial strat-
ification is based on an 1D MESA model of a 25 M� star.
Gilkis & Soker (2016) use the MAESTRO code to perform
hydrodynamic simulations of convective helium-shell burning
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Table 6. Boundary widths of the bottom and top boundaries for different resolutions and a boosting factor of 3 × 104.

AUSM+
B-up AUSM+-up

Resolution δr, bot δr, top δr, bot δr, top[
108 cm

] [
108 cm

]
180 × 902 2.10 ± 0.03 7.22 ± 0.12 1.94 ± 0.04 5.65 ± 0.12
360 × 1802 1.93 ± 0.08 5.35 ± 0.19 1.38 ± 0.03 4.41 ± 0.09
540 × 3602 1.73 ± 0.04 4.88 ± 0.16 1.26 ± 0.04 4.76 ± 0.20
810 × 5402 1.49 ± 0.04 4.60 ± 0.13 1.07 ± 0.03 4.61 ± 0.10

δr, bot δr, top δr, bot δr, top[
10−2 Hp

] [
10−2 Hp

]
180 × 902 7.52 ± 0.12 21.10 ± 0.34 6.96 ± 0.16 16.53 ± 0.35
360 × 1802 6.90 ± 0.30 15.64 ± 0.55 4.94 ± 0.09 12.87 ± 0.27
540 × 3602 6.17 ± 0.14 14.26 ± 0.47 4.48 ± 0.16 13.96 ± 0.57
810 × 5402 5.30 ± 0.15 13.44 ± 0.39 3.83 ± 0.11 13.47 ± 0.29

Notes. Quantities have the same meaning as in Table 5. The values are averages over a time range of ∆Nτconv = 0.5, the central time is t
(
Nτconv = 4.2

)
.

Due to insufficient data, the central time is set to t
(
Nτconv = 2.9

)
for the run with the AUSM+-up solver at a resolution of 540 × 3602 cells.
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Fig. 25. Similar to Fig. 23 but for a fixed energy boosting factor of 3 ×
104 and varying resolution. All simulations use the AUSM+-up solver.
The profiles are taken at Nτconv = 4.5, except for the run with a grid of
540 × 3602 cells. Here, the profile is taken at Nτconv = 3.1, the latest
available snapshot.

in a 15 M� star. Their study, however, focuses on the angu-
lar momentum distribution within the convection zone and the
boundaries to stable layers above and below the convective shell
are not analyzed in detail.

Our 2D and 3D hydrodynamic simulations in spherical-
wedge geometry are performed with the time-implicit, finite-
volume Seven-League Hydro (SLH) code. We calculate the
hydrodynamic fluxes with the low-Mach AUSM+-up scheme
in combination with Cargo–LeRoux well-balancing. Because
previous SLH simulations with this combination had shown
that convection is represented properly only for Mach numbers
above 10−3, the energy input had to be boosted to increase the
velocities. We applied boosting factors ranging from 3 × 103 to
3×104. This results in Mach numbers ranging from ∼5×10−3 to
∼1 × 10−2. The employed grid resolutions range from 180 × 902

cells up to 810 × 5402 cells.
In order to assess the performance of the AUSM+-up solver,

we compare different diagnostic values to a variant of this
scheme, denoted as AUSM+

B-up, that does not employ the
improved low-Mach capabilities. The flow morphology of fully
developed convection at a resolution of 810 × 5402 reveals that
AUSM+-up reproduces significantly more small-scale structures
than the AUSM+

B-up scheme (Fig. 10). This is confirmed by the
corresponding kinetic energy spectrum (Fig. 9). The spectrum
obtained with the AUSM+-up scheme has an inertial range that
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Fig. 26. Same as Fig. 24 but for a resolution of 810 × 5402 and a fixed
energy boosting of 3 × 104.

reaches down to scales a factor of two smaller than in the spec-
trum for the AUSM+

B-up scheme. The numerical dissipation as
obtained from the RA-ILES kinetic energy equation shows an
improved behavior at the bottom boundary and indicates that
the dissipation is converged already at rather low resolution
(Fig. 13). For the AUSM+

B-up solver, convergence is found only
at the highest resolution of 810 × 5402 cells. These results indi-
cate that a low-Mach method is beneficial already at moderate
Mach numbers. In a future study, simulations of convection with
the AUSM+-up solver will be compared in detail to more widely
used approaches, as, for example, to the PPM method.

We analyzed the entrainment rate at the boundaries of the con-
vection zone in terms of the bulk Richardson number (Eq. (6)).
For this, a series of simulations with varying boosting strength
has been carried out on grids with 180 × 902 cells. We found
an exponent of n = 0.76 (Fig. 16) which is compatible with
C+17 and C+19 but smaller than results reported for example
by Meakin & Arnett (2007) or Andrassy et al. (2020) who find
n ≈ 1. Furthermore, in our simulations a considerable frac-
tion of the measured entrainment velocity may be attributed to
entropy increase in the convection zone due to the energy release.
This is an important aspect if the results of entrainment studies
from hydrodynamic simulations are to be used in 1D calculations.
Recently, the Bulk-Richardson entrainment scaling was applied
to stellar evolution calculations (Staritsin 2013; Scott et al. 2021).
Scott et al. (2021) show that it naturally leads to a mass-dependent
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efficiency of CBM, which is suggested by observations. However,
their study indicates that values of n < 1 result in a too effi-
cient mixing and that the values for A that are commonly found
in hydrodynamic simulations are too large. Future simulations,
especially at nominal luminosity, may help to identify the origins
of this discrepancy, also regarding the question whether it is appli-
cable only to a subset of convection zones during stellar evolution
as suggested by Viallet et al. (2015).

Measuring the widths of the transitions from the convection
zone to the adjacent stable zones showed that the transition is
wider for the 180 × 902 resolution compared with simulations
on finer grids. This indicates that our results may not be numeri-
cally converged and that our higher-resolution simulations need
to be continued to verify the robustness of our result for the
entrainment rate. We further assessed the relation between shear
strength and mixing events in our simulations and found that
mixing occurs not in the regions of strongest shear but rather at
lower values in the range of measured shear strengths (Fig. 21).
This is consistent with the findings of Woodward et al. (2015).

Our study has demonstrated that the low-Mach AUSM+-up
solver is suitable to address setups that base on realistic stellar
models if well-balancing is used. Recently, the Deviation well-
balancing scheme of Berberich et al. (2021) was added to the
SLH code. In simplified convective test simulations presented by
Edelmann et al. (2021), the achieved Mach numbers reach Ma ≈
10−4. These velocities are in the regime of convective veloci-
ties predicted by MLT in early evolutionary phases of stars. The
combination of the new Deviation well-balancing method and the
AUSM+-up solver is a promising approach for future SLH simu-
lations of stellar convection in the low-Mach regime without the
need of artificially boosted energy generation.
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Appendix A: Reynolds and Favre decomposition

The Reynolds decomposition splits a quantity q(r, ϑ, ϕ, t) in its
mean value q(r) averaged over space and time

q(r) =
1

∆t∆Ω

∫
∆t

∫
∆Ω

q(r, ϑ, ϕ, t) dΩ dt, (A.1)

where dΩ = sinϑ dϕ dϑ and the fluctuation q′ is defined as

q′(r, ϑ, ϕ, t) = q(r, ϑ, ϕ, t) − q(r). (A.2)

The Favre decomposition separates a quantity q into the density-
weighted average

q̃(r) =
ρq
ρ

(A.3)

and the corresponding fluctuation q′′ defined via

q′′(r, ϑ, ϕ, t) = q(r, ϑ, ϕ, t) − q̃(r). (A.4)

Appendix B: Supplementary plots
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Fig. B.1. Thermal adjustment timescale τdiff according to Eq. (9). The
typical length scale is taken to be the radial grid spacing of the 3D sim-
ulation run with the highest resolution presented in Section 5.
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