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I. Introduction

IRCRAFT loss of control is a major cause of aviation accidents

and fatalities [1,2]. Flight envelope protection (FEP) is an
effective strategy to prevent aircraft loss of control caused by aggres-
sive or excessive pilot/autopilot commands [3,4]. The study of FEP
has attracted wide attention in the aerospace control community; see
[3-11.

Study on envelope protection is generally focused on two main
tasks: violation prediction and violation prevention. To predict pos-
sible violations of envelope limit, methods such as neural networks,
dynamic trim, and steady-state analysis have been explored [8—13].
Neural networks were used to predict the future value of limited
parameters and estimate command or control margins [8—11]. The
dynamic trim concept assumes that the fast states of an aircraft such as
angular rates are in steady state while the slow states such as attitudes
are varying. Based on this concept, the future value of a state can be
predicted [12]. In [13], steady-state analysis was conducted to obtain
the steady-state values of angle of attack from different reference
pitch commands in different flight conditions. These values were then
used to compute the maximum reference pitch command. In the latter
task, to prevent envelope violations two strategies have been pro-
posed: pilot cueing and direct intervention. In the first strategy,
warning signals such as audible, tactile, and visual cues or their
combinations are generated to notify the pilot of possible envelope
violations, and the pilot has to take effective actions to prevent any
violation [§8,14,15]. In the second case, the envelope protection
module intervenes directly and adjusts the control or command
signals to avoid a violation [7,9,13,16]. This paper focuses on the
task of direct intervention.
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There have been extensive results on direct interventions. In [16],
fuzzy logic was employed to develop a control blending logic to mix
pilot inputs with limit protection inputs. In [13], areference command
limit was computed and compared with the pilot command input to
keep the latter inside the limit. A safe response profile was prescribed
close to the boundary in [9], and when an envelope violation was
foreseen, corrections to the command/control channel were made
following this response profile. Reference [17] proposed a protection
method using an inner-loop/outer-loop-type controller that generated
constraints on the outer loop command corresponding to the con-
straints on the inner loop command. Reference [18] presented a
switched envelope protection method with several controllers
running in parallel with a linear switching logic. The study in
[19,20] developed and tested state-limiting systems for the X-48B
blended-wing—body aircraft with angle tracking controllers. In this
formulation the angle of attack and sideslip angle limiters can modify
the damping ratio and natural frequency of the closed-loop systems
when the angles are close to their limits, avoiding large overshoot and
the associated limit violations. The study in [3] compared several
envelope protection approaches for implementation on small aircraft
and concluded that for practical implementation, command limiting
was superior to control limiting. A command limiting approach was
proposed in [21], where the dynamic inversion control laws were
used to anticipate limit exceedences, and the scheme switched to a
model following control law for envelope protection whenever a limit
was about to be violated. An adaptive envelope protection algorithm
was presented in [22], where a control architecture involving separate
pilot command filtering was employed. A dynamic inversion control
architecture coupled with an artificial neural network was proposed
in [23] for component damage estimate and control gain adjustment.

In [24], a command limiting strategy based on potential field
method was proposed for bank angle protection of an aircraft model
with a proportional-integral (PI) roll rate control augmentation sys-
tem (CAS). The potential field method with a gradient descent
algorithm has been widely used in robot motion planning and
unmanned aerial vehicle (UAV) path planning to avoid obstacles;
see [25-27]. The attractive potential fields drive the vehicle to the
goal position while the repulsive potential fields prevent it from
colliding with obstacles. Employing a similar idea, in [24] the
envelope boundary was treated as a virtual obstacle and a repulsive
potential field was constructed close to and beyond it while the pilot
reference command played the role of the attractive potential field.
A gradient descent rule with the repulsive potential field generated a
protection command signal that was superimposed onto the pilot
command such that when the protected state was far from the
envelope boundary, the pilot command would not be modified, and
when the protected state approached the boundary, the pilot com-
mand was reduced to prevent a violation of the limit. With this
approach, only the measured system states were used by the envelope
protection algorithm, and violation prediction was not required. In
[28], this method was further improved by including the roll rate into
the potential function for enhanced performance.

In both [24,28], a quadratic potential field was used in the design,
and the final envelope protection command took the form of either a
proportional (P) or a proportional-derivative (PD) attitude tracking
control law with a time-varying gain. This result is similar to some
methods proposed in other studies [7,29,30]. In these approaches, the
reference command was compared with the protection command and
the smaller one was sent to the vehicle. In this paper, a command
limiting method based on an exponential potential field is explored
for systems with an angular rate CAS. With the exponential func-
tions, the FEP command is integrated with the reference command
and corrects it directly without any violation prediction. Comparison
with the reference command is also not required due to the property of
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exponential functions. Stability analysis using Lyapunov theory is
provided to justify the design. A simulation example is presented for
pitch angle protection of a nonlinear UAV model to verify the design.

The rest of this paper is organized as follows. In Sec. II, the
problem of command limiting control law design is formulated. In
Sec. III, the command limiting design using exponential potential
functions is proposed and analyzed. Simulation examples are dis-
cussed in Sec. IV and conclusions are drawn in Sec. V.

II. Problem Formulation

An nth-order linear system in the controllability canonical form is
considered, where the first state x; () needs soft protection such that it
should not overshoot excessively over a given limit X,, > 0. This
state can represent the attitude of an aerial vehicle, e.g., the pitch
angle. The remaining x;(¢), i = 2,3, ..., n — 1 represent other states
of the aerial vehicle with arate CAS. The system is represented by the
following equation of motion:

x(1) = Ax(1) + bxp (1), x(0) = xo (€]
where the state x(£) = [x;(), x,(¢), ..., x,(?)]", the matrix
0 1 0 0
0 0 1 0
A= .
0 -a,_y -a,, - -a

and the vector b =[0,0,...,a,_,]", with a; >0,i=1,2,3,...,
n—1, xg = [X10, X205 - - - » Xpo]" is the initial condition, and x,.(f) is
the rate command. Assume that the pilot’s reference rate command
r(t) is a bounded positive signal with lower bound r, > 0 and upper
bound r,,. The control design objective is to develop a command
limiting signal x,.(#) such that the state x, (¢) converges to a design
value X, below the limit X ,,.

In this study, the command limiting control law consists of two
components, the original reference command r(f) and the protection
command (), such that

Xoe (1) = r(1) +1,(1) 2

In the next section, the command limiting design based on expo-
nential potential functions will be discussed.

III. Command Limiting Design Using Exponential
Potential Functions
In this section, an exponential repulsive potential function is
proposed to develop the command limiting control law, followed
by stability analysis and some discussion on a tuning parameter.

A. Command Limiting Control Law

Let h =[1,(1,85,....¢8,]T, where §; €R,i=1,2,...,n—1
are design parameters to be chosen. Consider the following expo-
nential repulsive potential function:

Urep (X(l‘)) = enth(t) 3)

where 7 is a positive tuning parameter taking values in a neighbor-
hood of 1. The protection control law is then generated by the
following gradient descent law:

r,(t) = p(1) oU;—p(x) = B(H)ne™ O @)
X

The following total command limiting control signal can be
obtained:

52c0) = 7(0) + 7y (0) = r(O(1 = 0HOKD) - (5)
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if §(¢) is chosen as

r(1)

ﬁ(t) =- ne(”Xd) (6)

It will be shown in the stability analysis that if {;,i = 1,2,...,
n — 1, satisfy some conditions, the state x;(f) will converge to the
value X for the given positive reference command r(7).

In the following part, some fundamental properties of the expo-
nential function will be discussed for a better understanding of the
control law. In the discussion, the tuning parameter 7 is set to 1 for
simplicity and the conclusion extends to # in a neighborhood of 1.
Consider the command limiting control law given in Eq. (3) with
n = 1 forthe systemin Eq. (1). Properties of the exponential function
indicate that when 4" x(#) is much smaller than X, the exponential
term is close to zero and the following holds:

1 —e®x0=XD) 1, W x(r) < X, ©)

In this case, the total command is approximately equal to r(¢) and
the state x, (¢) will track the command signal r(7) with a satisfactory
performance from the CAS. The effect of the protection command on
the reference command is negligible.

As x, (1) increases and approaches X, and consequently (h7x(f) —
X,) approaches zero, the magnitude of the exponential term
increases. The total command can be written as

Xe (1) = =K (x(1), ) (hTx(1) — X) ®)
where
2 (hTx(f) = X,)"!
K. =r0 ) ==
Since it can be verified that

o xn—l

>0, VxeR ©)]
n!

n=1
this control law is equivalent to a state feedback control law with a
time-varying gain whose magnitude increases as the value of
(h"x(f) — X)) increases. Hence, when the protected state approaches
X 4, the gain will increase, resulting in a faster convergence of x; (¢) to
X, In the next part, the stability of the closed-loop system will be
analyzed.

B. Stability Analysis
With the command limiting control law defined in Eq. (3), the

following closed-loop system can be obtained:

(1) = Ax(1) + br(r) (1 - e”(hT"(‘)_Xd)), x(0)=x, (10)
which has an equilibrium at x, = [X,, 0, -- -, 0]". For stability analy-
sis, a change of coordinates is conducted to move the equilibrium to
the origin, and the following system is obtained (note that the original
notations are retained to represent the new states after the change of
coordinates):

(1) = Ax(1) + hr(t)(l - e”hT)‘(’)), x(0)=xp—x, (1)

To facilitate the stability analysis, define a symmetric matrix
Pn =[pi<j]?_j:1 (12)

where p; ;= p;;, pi,=1, and p;yy, =¢;, fori=1,2,3,...,
n — 1, and ¢;’s were introduced previously. Let {, = 1. Further let
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Pij = PinGn—j t PjxinGni-i — Pi—1,jy1» 1 <i<j<n (13)

and p;; =0 otherwise. For the system in Eq. (11), pick
{ivi=1,2,...,n—1, such that the following conditions are satis-
fied:

Piivt = $in—; <0, i=123,...,n—-1 (14)

which can be expanded as

ap <&ya,_i,

C1a,_3 + {30, — P14 <8ra,,
. (15)

Cna <Cpray

The following theorem about the stability of the system in
Eq. (11) holds:

Theorem 1: If there exist {;,i = 1,2,...,n— 1, satisfying the
inequalities in Eq. (15) such that the following command signal
stabilizes the system in Eq. (1)

Xo. (1) = —rohTx(1) (16)

then the system in Eq. (11) is globally uniformly exponentially stable.

Proof: The proof is in the Appendix.

Remark: In general, a full state feedback defined in Eq. (16) exists
for an aerial vehicle equipped with an angular rate CAS such that an
attitude tracking controller can be developed for the vehicle. To
implement the proposed command limiting design successfully,
numerical optimization methods can be conducted to find {;’s, which
satisfy the inequalities in Eq. (15) and yield a controller with good
performance.

C. Role of the Tuning Parameter
Recall that the potential function was defined by

Upep(x(1)) = 70 an
and the total command is generated by
Xy (1) = r(l)(l - ewﬁx(r)—xd)) (18)

In this control law, the positive 5 affects where the FEP law starts to
make significant modifications to the reference command r(¢). It also

(z—Xa)

y=1—¢"

>
2t 1
3+ 1
-4
Xd
T

Fig.1 Plotsof y = 1 — ¢1¢~Xa),
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affects the rate of convergence of x;(f). The idea is illustrated in
Fig. 1. The figure shows the plot of the function y = 1 — ¢"*~Xa) with
n = 0.5, 1, and 2. From these plots, one can notice that with alarger,
the protection command will start to generate significant corrections
at a larger x value, and the total command will be steeper close to the
design value X ;. With a smaller 7, the modification starts farther from
the limit and the total control command is smaller. The role of this
coefficient will be further shown in simulations.

IV. Simulation Example: Pitch-Angle Protection
for a UAV Model

In this section, the effectiveness of the proposed envelope protec-
tion method is verified via simulation study. The protection of pitch
angle 6(r) for a UAV is considered. The UAV model used in this
simulation was developed by the Uninhabited Aerial Vehicle Labo-
ratories at the University of Minnesota [31]. This high-fidelity sim-
ulation can model nonlinear bare airframe dynamics, actuator
dynamics, and measurement uncertainties. It is an appropriate sim-
ulation environment to test the proposed command limiting design.
More information on this UAV model can be found in [32]. For this
UAV model, a pitch-rate CAS is designed based on a linear model
obtained at a trim condition with a speed of 23 m/s at an altitude of
200 m, and then the command limiting design is implemented. The
speed controller and bank angle controller associated with the model
are used without modifications to maintain the forward speed and
zero bank angle during the simulation.

The pitch-rate CAS accepts pitch-rate command ¢.(¢) and is
developed based on the short-period mode of this model. The
pitch-rate CAS control law is given by

ucas(t) = qu(l‘) + lel(t) (19)

where ¢(t) is the pitch rate of the UAV, and x;(t) =
/ 04.(t) — q(7) dr is the integrator state. With this CAS, the equa-
tions of motion of the system with states (¢), g (), w(t), and x;(¢) are
written below:

0 0 1 0 0 0 0

gl 0 -1551 ~1.673 6186 || ¢ | |0

w |~ | —0.8066 21.90 -6.359 8.176 || w 0 |9

)-CI 0 —1 O 0 Xy 1
(20)

where w(r) is the speed along 7 axis of the body frame. Let the state
vector be x(¢) = [0(t), (1), w(?), x;(1)]T. Assume that the positive
limit for the pitch angle is 6, = 20 deg. With the command limiting
control law and a positive pitch rate reference command, the system
will converge to an equilibrium. At the equilibrium point, we have
6, = 0, and g, = 0. Then we can solve for w, and x;,, for this point.
Let x, denote this equilibrium point. Consider the following com-
mand limiting control law:

4c(1) = g, () (1 = 00X @

where X, = h'x, and g,(¢) is the reference command. The equilib-
rium point x, can be shifted to the origin by a change of coordinates.
For this shifted system, there exists a similarity transformation
z(t) = Tx(t), which transforms it into

) 0 1 ) 2 0
Z.2 _ 0 O 1 O 22 0
1o 0o 0o 1 ||a|T|of4 @
24 0 —a;3 —Ap —ag <4 1

For stability analysis, note that the command limiting control law
becomes
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4e(t) = g, (01 = 0 23)

Let h] = h"T~' =d -[1,¢,,&, (3], where d is equal to the first
element of /1, and is used to normalize the result. The conditions for
{1, &, and {3 from Eq. (19) are

— =g
= —4q
B0
N ]
=
[~
0 5 10 15
30
20 - — —
"0
i)
3,
=)
10 1
0 5 10 15

time [s]

a) Constant reference commands
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a;gy > ax,
a6y > a; ¢ +asts—1, 24
a,63 > &

Choose appropriate values for / such that these conditions on ¢,
£, and {3 are satisfied. Then the following Lyapunov function

30 F . /.—-.\‘ — /".\_
/ \, qr a
= S, ! 1
w0 N, %
3 TN\ VS
> 4 NN J
S N PRI
- \.\.\."/./‘
0 5 10 15
30
20 — — —
&0
]
=
=)
10 1
0 . .
0 5 10 15

time [s]

b) Sinusoidal reference commands

Fig. 2 Pitch-rate command limiting for pitch-angle protection: linearized model.

time [s]

a) Doublet command of magnitude 2 deg/s

time [s]

¢) Triangle wave command

time [s]

b) Doublet command of magnitude 5 deg/s

time [s]

d) Sine wave command

Fig.3 Pitch-rate command limiting for pitch-angle protection: responses to various reference commands.
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q [deg/s]

0 [deg]

time [s]

a) Sensor noise on
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q [deg/s]
o
=3
Lo
S =N
oo o

0 [deg]

time [s]

b) Sensor noise off

Fig. 4 Pitch-rate command limiting for pitch-angle protection: responses with different 7’s.

V(z) = %ZTPM (25)

where

azs az az 1
an Qan+6asz—ay Gan+Gaz—1 & |

a;  Gag+8Gasz—1 Gag+8Gapx-§¢ &

1 &i & {3
(26)

can be used to show that the closed-loop system is exponentially
stable.

In the following simulation example with the linearized system,
h =1[1,0,0,1.01]" and # = 1 are used. Simulation results are shown
in Fig. 2. Simulation results indicate that the proposed method can
provide effective command limiting performance for both constant
and time-varying reference commands on this linear system.

Next, nonlinear simulation results are presented. The positive limit
of the pitch angle is again 6, = 20 deg and the negative limit is set to
07 = —15 deg. Sensor noise is added to the simulation for high
fidelity. Note that the negative command limiting design is developed
based on the same idea and then integrated with the positive com-
mand limiting control law. The total command is defined as

g/ (1= e OX0) if g, (1) 2 0,

. @7
g/ (1 = e OXD),if g,() <0

q.(t) =

where X7, can be obtained similarly as X, for the negative limit. For
the nonlinear model, # = 0.5 and the same # is used. One can notice
that if the reference command ¢, (7) is nonnegative, the protection for
0, is effective; otherwise, the protection for 87 is effective. When the
state is far away from either limit, the correction to the pilot command
is negligible due to the property of the exponential function.

Figure 3 presents the time responses of the UAV model to various
reference commands. Figure 3a indicates that when the magnitude of
the reference command is small and the protected state is far away
from the limit, the total command ¢.(¢) is almost identical to the
reference command ¢,(¢), and the effect of the command limiting
component is negligible. Figure 3b shows the response to a reference
command with larger magnitude. As the protected state 6(r)
approaches the limit, the command limiting component takes effect
and modifies the reference command ¢,(¢) such that the protected
state 6(f) converges to the design values 8, or 6, and hence envelope
protection is achieved. Figures 3¢ and 3d depict the responses to a
triangle wave and a sine wave reference command, respectively. The

command limiting control law works as expected and provides
effective envelope protection in both cases.

To further show the role that the tuning parameter # plays in the
performance of the command limiting control law, Fig. 4 presents the
time responses of the UAV model augmented with the command
limiting control law using different#’s. As discussed earlier, the value
of 7 influences the point where the command limiting control law
takes significant effect, as well as the rate of convergence of the
protected state (here ). These two figures further verify these con-
clusions. With a smaller #, the correction to the reference command
starts at a point farther from the envelope limit than with alarger#, the
modification to the reference command changes slower, and the rate
of convergence of the protected state is smaller. This also implies an
earlier interference with pilot operations. With a larger #, the protec-
tion is initiated closer to the limit and a faster correction to the
reference command is made. The plots also suggest that when 7
becomes larger than 1, the difference between responses becomes
smaller: for example, the difference betweenn = 1 andn = 2 is very
small. Hence, # can be tuned in a proper neighborhood of 1.

V. Conclusions

In this study, a command limiting control law for FEP based on
exponential potential functions was proposed. In the design, the
reference command was treated as an attractive potential function,
and repulsive potential functions were designed such that as the
protected state approached the envelope limit, the value of the repul-
sive potential function increased, generating a protection signal to
reduce the reference command and provide envelope protection. The
protection command can be merged with the reference command due
to the property of exponential functions. The contribution of the
protection command remains negligible when the protected state is
far from the limit, but increases as the limit approaches. The tuning
parameter can adjust the position where the command limiting con-
trol law starts to make significant correction to the reference com-
mand. Lyapunov stability theory was employed to analyze the
closed-loop system with the proposed command limiting design,
and simulation examples in a nonlinear UAV simulation environment
were presented to verify the effectiveness of the design.

Appendix: Proof of Theorem 1
Proof of Theorem 1: Consider the symmetric matrix P, defined in
Egs. (12) and (13). First we show that the symmetric matrix P, is
positive definite by studying the closed-loop system consisting of the
system in Eq. (1) and the command signal defined in Eq. (16). The
closed-loop system is written below:

x(t) = Ax(t) — brohTx(t), x(0) = xq (Al)

which can be further written as
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X(1) = Apx(1), x(0) = xo (A2)

where Ay = A — broh'.
Consider the following Lyapunov function candidate:

Vx) = %xTan (A3)

The time derivative of the Lyapunov function candidate is then

. 1, 1 .1
V(x) = EXTP"X + EXTP"X = ExT(AgP,, + P,Ap)x

n
= Z'x?(l’i—l,i = im1an-i1)
i=2
n
+ inxj(pi—l,j + Dijo1 = PinGn—j+1 = PjnGn—it1)

ij=1
i<j

— a1 ro(xy + Gt o +Emx,)? (A4

Equation (13) guarantees that the coefficients of the cross terms
X;xj, i < j, are zero. Hence

V(x) = ZX%(Pi—l,i =Cin1-iv1)
i=2
=@y ro(xy + S0t o +m1x,)? (A5)
The conditions in Eq. (14) on {;’s assure that the coefficients of the
square terms x7,i = 2,3,..., n, are negative, and this implies that
the time derivative of the Lyapunov function candidate is negative

definite. In fact, the time derivative of the Lyapunov function can be
further written as

V(x) = —xTOPx (A6)

where Q) is positive definite with its elements defined by

oo a,_1ro, 1= 1,
Qnii -

2 .
Cict@poipr — Pi1i + @naigro, 1>1,

" ay_1§j-170, i=1,j>1,
' ap18icijoire, P> 1, >
Hence the following equation holds:
AJP, + P,Ag = =20, (A8)

Since the closed-loop linear system in Eq. (Al) is assumed to be
exponentially stable and Q;° is positive definite, the symmetric
matrix P, is positive definite [33].

Next, we show that the nonlinear system in Eq. (11) is exponen-
tially stable. Consider the same Lyapunov function candidate defined
in Eq. (A3). The time derivative of the Lyapunov function candidate
for the system in Eq. (11) is

n
Vix) = Z-x?(l’i—l,i = im1@n-iy1)
i=

n

+ E XiXj(Pic1j + Pijo1 = PinGn—jr1 = PjnGn—it1)
£
NS

+a, r()(hTx)(1 = ™'™) (A9)

Similarly, Eq. (13) guarantees that the coefficients of the cross
terms x;x;, i < j, are zero. Hence

ENGINEERING NOTES

ap_| r(t)

V(x) = lez(pi—l.i = Cim1ay—iy1) + B (nhTx)(1 = ')
p

(A10)

The conditions in Eq. (14) on {;’s again assure that the coefficients
of the square terms x%, i =2,3,...,n, are negative.

Next we verify that given r(t) > ry > 0,V ¢ > 0, the second term
in the above time derivative of the Lyapunov function candidate is
negative semidefinite, which is equivalent to

(nh"x)(1 = ™) <0, VxeRr (A1)

Consider the following function of y:

) =0-e)y, yER (A12)

The first and second derivatives of this function with respect to y
are then

ff=1-0+1, [f'O)=-0+2) (A13)

which implies that f'(y) = 0 < y = 0 and f'/(0) = —2. This indi-
cates that f(y) attains its global maximum at y = 0 and f(0) = 0.
Hence we conclude that

J=(0-¢)y<0, VyeR (A14)

Based on this result, the following inequality holds:

(hTx)(1—e™*) <0, VxeR" (A15)

Then, if the conditions in Eq. (14) hold, the following result can be
obtained:

V(x) < Zx%(pi—l,i — Pintn-i+1) 0 (A16)

i=2

Hence, the system in Eq. (11) is uniformly stable [34]. This also
suggests that for any ¢ > 0 there exists § = J(¢) such that

[x(O)|| <= ||x()|| <e, V>0 (A17)

Consider the function f(y) defined in Eq. (Al2) again. In the
following, we show that within a neighborhood of the origin, the
function f(y) is bounded from above by some negative quadratic
function. That is, for any €, > 0, there exists ¢ = c(e,) > 0 such that

Iyl <€ = f(y) < —cy? (A18)

Figure Al illustrates the intersections of f(y) and —cy? for three
different values of ¢, which indicates that such c exists.
Consider the following function g(y):

g =)+ ey =0 -e)y+cy* =y(1—e +cy).
yeR (A19)

In the following study, let ¢ € (0, 1). For a given ¢,, one needs to
find a ¢ such that g(y) <0. Again, taking the first and second
derivative of g(y) yields

g =f')+2cy=1-¢e"(y+ 1)+ 2cy,
8" =" +2c==-"(y+2)+2 (A20)

One of the solutions to g’(y) =0 is y = 0. Since g''(y) <0,
Vy>0 and g’(0) =0, then g’(y)<0,Vy >0, and hence
f() < —cy*,V y > 0. One solution to g(y) = 0 is y = 0, and the
other solution satisfies
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Fig. A1 Plots of f(y) and —cy?.
l1—e’+cy=0 (A21)
Hence, giveny = —e, < 0, by the mean value theorem there exists

ce = e withe, <y < 0 such that the following equation holds:
l—e™ +ce, =0 (A22)
since Eq. (A21) can be written as
ce-(0—¢,) = €0 — e (A23)
Then for any y € [—¢,, 0], the following inequality holds:
l—e’+cy20 (A24)
Hence, for any y € [—¢,, 0], the following is true:
g =y(l—e +cy) <0 (A25)

Further, since g(y) <0,V y > 0, thenfory € [—e,, €,] there exists
a ¢ such that

fO) <—cy? (A26)

The larger the e,, the smaller the c(e,).
From previous steps of the stability analysis, it has been proved that
the state vector satisfies

x(l <e, Yt>0 (A27)

and consequently the following inequality holds for some positive
value €:

|nhTx(t)| <€, Yt>0 (A28)

Hence, there exists ¢ = c¢(e;) such that

h™x)(1 = e™*) < —c- (yh"x)%, YV xeR" and|ghTx| < ¢
(A29)

It follows that the time derivative of the Lyapunov function
satisfies

V(x) < lez(pi—l,i = &i1ay_iy1) — ap_ner(f)(hTx)* (A30)
i=2

Since r(f) > rg > 0, the time derivative of the Lyapunov function
further satisfies

ENGINEERING NOTES 447

n

V(x) < Zx?(pi—l,i —{ic1n_iz1) — ay_ynerg(hTx)* = —xTQjx
i=2
(A31)
where the positive definite matrix Q}} is defined by

. na,_cry, i=1,
nii = > .
Cimi@poiy1 — Pi1i T nay1§ijcrg, > 1,

nau_1¢j-1¢ro, i=1,j>1,
Zii = . L (A32)
’ na,_1§i—i§j_icrg, i>1,j>1
This leads to
V(x) < ~Ain (Q0) 1312 (A33)
Since P, is positive definite, the following is true:
j’min(Pn)”xnz < V(x) < Amax(Pn)”xnz (A34)
Hence the system is globally uniformly exponentially stable [34].
This completes the proof. O
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