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I. Introduction

A IRCRAFT loss of control is a major cause of aviation accidents

and fatalities [1,2]. Flight envelope protection (FEP) is an

effective strategy to prevent aircraft loss of control caused by aggres-

sive or excessive pilot/autopilot commands [3,4]. The study of FEP

has attracted wide attention in the aerospace control community; see

[5–7].

Study on envelope protection is generally focused on two main

tasks: violation prediction and violation prevention. To predict pos-

sible violations of envelope limit, methods such as neural networks,

dynamic trim, and steady-state analysis have been explored [8–13].

Neural networks were used to predict the future value of limited

parameters and estimate command or control margins [8–11]. The

dynamic trim concept assumes that the fast states of an aircraft such as

angular rates are in steady state while the slow states such as attitudes

are varying. Based on this concept, the future value of a state can be

predicted [12]. In [13], steady-state analysis was conducted to obtain

the steady-state values of angle of attack from different reference

pitch commands in different flight conditions. Thesevalueswere then

used to compute themaximum reference pitch command. In the latter

task, to prevent envelope violations two strategies have been pro-

posed: pilot cueing and direct intervention. In the first strategy,

warning signals such as audible, tactile, and visual cues or their

combinations are generated to notify the pilot of possible envelope

violations, and the pilot has to take effective actions to prevent any

violation [8,14,15]. In the second case, the envelope protection

module intervenes directly and adjusts the control or command

signals to avoid a violation [7,9,13,16]. This paper focuses on the

task of direct intervention.

There have been extensive results on direct interventions. In [16],
fuzzy logic was employed to develop a control blending logic to mix
pilot inputswith limit protection inputs. In [13], a reference command
limit was computed and compared with the pilot command input to
keep the latter inside the limit. A safe response profilewas prescribed
close to the boundary in [9], and when an envelope violation was
foreseen, corrections to the command/control channel were made
following this response profile. Reference [17] proposed a protection
method using an inner-loop/outer-loop-type controller that generated
constraints on the outer loop command corresponding to the con-
straints on the inner loop command. Reference [18] presented a
switched envelope protection method with several controllers
running in parallel with a linear switching logic. The study in
[19,20] developed and tested state-limiting systems for the X-48B
blended-wing–body aircraft with angle tracking controllers. In this
formulation the angle of attack and sideslip angle limiters canmodify
the damping ratio and natural frequency of the closed-loop systems
when the angles are close to their limits, avoiding large overshoot and
the associated limit violations. The study in [5] compared several
envelope protection approaches for implementation on small aircraft
and concluded that for practical implementation, command limiting
was superior to control limiting. A command limiting approach was
proposed in [21], where the dynamic inversion control laws were
used to anticipate limit exceedences, and the scheme switched to a
model following control law for envelope protectionwhenever a limit
was about to be violated. An adaptive envelope protection algorithm
was presented in [22], where a control architecture involving separate
pilot command filtering was employed. A dynamic inversion control
architecture coupled with an artificial neural network was proposed
in [23] for component damage estimate and control gain adjustment.
In [24], a command limiting strategy based on potential field

method was proposed for bank angle protection of an aircraft model
with a proportional-integral (PI) roll rate control augmentation sys-
tem (CAS). The potential field method with a gradient descent
algorithm has been widely used in robot motion planning and
unmanned aerial vehicle (UAV) path planning to avoid obstacles;
see [25–27]. The attractive potential fields drive the vehicle to the
goal position while the repulsive potential fields prevent it from
colliding with obstacles. Employing a similar idea, in [24] the
envelope boundary was treated as a virtual obstacle and a repulsive
potential field was constructed close to and beyond it while the pilot
reference command played the role of the attractive potential field.
A gradient descent rule with the repulsive potential field generated a
protection command signal that was superimposed onto the pilot
command such that when the protected state was far from the
envelope boundary, the pilot command would not be modified, and
when the protected state approached the boundary, the pilot com-
mand was reduced to prevent a violation of the limit. With this
approach, only themeasured system states were used by the envelope
protection algorithm, and violation prediction was not required. In
[28], this method was further improved by including the roll rate into
the potential function for enhanced performance.
In both [24,28], a quadratic potential field was used in the design,

and the final envelope protection command took the form of either a
proportional (P) or a proportional-derivative (PD) attitude tracking
control law with a time-varying gain. This result is similar to some
methods proposed in other studies [7,29,30]. In these approaches, the
reference commandwas compared with the protection command and
the smaller one was sent to the vehicle. In this paper, a command
limiting method based on an exponential potential field is explored
for systems with an angular rate CAS. With the exponential func-
tions, the FEP command is integrated with the reference command
and corrects it directly without any violation prediction. Comparison
with the reference command is also not required due to the property of
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exponential functions. Stability analysis using Lyapunov theory is
provided to justify the design. A simulation example is presented for
pitch angle protection of a nonlinear UAVmodel to verify the design.
The rest of this paper is organized as follows. In Sec. II, the

problem of command limiting control law design is formulated. In
Sec. III, the command limiting design using exponential potential
functions is proposed and analyzed. Simulation examples are dis-
cussed in Sec. IVand conclusions are drawn in Sec. V.

II. Problem Formulation

An nth-order linear system in the controllability canonical form is
considered,where the first state x1�t�needs soft protection such that it
should not overshoot excessively over a given limit Xm > 0. This
state can represent the attitude of an aerial vehicle, e.g., the pitch
angle. The remaining xi�t�; i � 2; 3; : : : ; n − 1 represent other states
of the aerial vehiclewith a rate CAS. The system is represented by the
following equation of motion:

_x�t� � Ax�t� � bx2c�t�; x�0� � x0 (1)

where the state x�t� � �x1�t�; x2�t�; : : : ; xn�t��⊤, the matrix

A �

2
6664
0 1 0 · · · 0

0 0 1 · · · 0

..

. ..
. ..

.

0 −an−1 −an−2 · · · −a1

3
7775

and the vector b � �0; 0; : : : ; an−1�⊤, with ai > 0; i � 1; 2; 3; : : : ;
n − 1, x0 � �x10; x20; : : : ; xn0�⊤ is the initial condition, and x2c�t� is
the rate command. Assume that the pilot’s reference rate command
r�t� is a bounded positive signal with lower bound r0 > 0 and upper
bound rm. The control design objective is to develop a command
limiting signal x2c�t� such that the state x1�t� converges to a design
value Xd below the limit Xm.
In this study, the command limiting control law consists of two

components, the original reference command r�t� and the protection
command rp�t�, such that

x2c�t� � r�t� � rp�t� (2)

In the next section, the command limiting design based on expo-
nential potential functions will be discussed.

III. Command Limiting Design Using Exponential
Potential Functions

In this section, an exponential repulsive potential function is
proposed to develop the command limiting control law, followed
by stability analysis and some discussion on a tuning parameter.

A. Command Limiting Control Law

Let h � �1; ζ1; ζ2; : : : ; ζn−1�⊤, where ζi ∈ R; i � 1; 2; : : : ; n − 1
are design parameters to be chosen. Consider the following expo-
nential repulsive potential function:

Urep�x�t�� � eηh
⊤x�t� (3)

where η is a positive tuning parameter taking values in a neighbor-
hood of 1. The protection control law is then generated by the
following gradient descent law:

rp�t� � β�t� ∂Urep�x�
∂x1

� β�t�ηeηh⊤x�t� (4)

The following total command limiting control signal can be
obtained:

x2c�t� � r�t� � rp�t� � r�t�
�
1 − eη�h⊤x�t�−Xd�

�
(5)

if β�t� is chosen as

β�t� � −
r�t�

ηe�ηXd� (6)

It will be shown in the stability analysis that if ζi; i � 1; 2; : : : ;
n − 1, satisfy some conditions, the state x1�t� will converge to the

value Xd for the given positive reference command r�t�.
In the following part, some fundamental properties of the expo-

nential function will be discussed for a better understanding of the

control law. In the discussion, the tuning parameter η is set to 1 for

simplicity and the conclusion extends to η in a neighborhood of 1.

Consider the command limiting control law given in Eq. (5) with

η � 1 for the system in Eq. (1). Properties of the exponential function

indicate that when h⊤x�t� is much smaller than Xd, the exponential

term is close to zero and the following holds:

1 − e�h⊤x�t�−Xd� ≈ 1; h⊤x�t� ≪ Xd (7)

In this case, the total command is approximately equal to r�t� and
the state x2�t�will track the command signal r�t� with a satisfactory
performance from the CAS. The effect of the protection command on

the reference command is negligible.
As x1�t� increases and approachesXd and consequently �h⊤x�t� −

Xd� approaches zero, the magnitude of the exponential term

increases. The total command can be written as

x2c�t� � −K�x�t�; t��h⊤x�t� − Xd� (8)

where

K�x�t�; t� � r�t�
X∞
n�1

�h⊤x�t� − Xd�n−1
n!

Since it can be verified that

X∞
n�1

xn−1

n!
> 0; ∀ x ∈ R (9)

this control law is equivalent to a state feedback control law with a

time-varying gain whose magnitude increases as the value of

�h⊤x�t� − Xd� increases. Hence, when the protected state approaches
Xd, the gain will increase, resulting in a faster convergence of x1�t� to
Xd. In the next part, the stability of the closed-loop system will be

analyzed.

B. Stability Analysis

With the command limiting control law defined in Eq. (5), the

following closed-loop system can be obtained:

_x�t� � Ax�t� � br�t�
�
1 − eη�h⊤x�t�−Xd�

�
; x�0� � x0 (10)

which has an equilibrium at xe � �Xd; 0; · · · ; 0�⊤. For stability analy-
sis, a change of coordinates is conducted to move the equilibrium to

the origin, and the following system is obtained (note that the original

notations are retained to represent the new states after the change of

coordinates):

_x�t� � Ax�t� � br�t�
�
1 − eηh

⊤x�t�
�
; x�0� � x0 − xe (11)

To facilitate the stability analysis, define a symmetric matrix

Pn � �pi;j�ni;j�1
(12)

where pi;j � pj;i, p1;n � 1, and pi�1;n � ζi; for i � 1; 2; 3; : : : ;
n − 1, and ζi’s were introduced previously. Let ζ0 � 1. Further let
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pi;j � pi;nan−j � pj�1;nan�1−i − pi−1;j�1; 1 ≤ i ≤ j < n (13)

and pi;j � 0 otherwise. For the system in Eq. (11), pick

ζi; i � 1; 2; : : : ; n − 1, such that the following conditions are satis-

fied:

pi;i�1 − ζian−i < 0; i � 1; 2; 3; : : : ; n − 1 (14)

which can be expanded as

8>>><
>>>:

an−2 < ζ1an−1;
ζ1an−3 � ζ3an−1 − p1;4 < ζ2an−2;

..

.

ζn−2 < ζn−1a1

(15)

The following theorem about the stability of the system in

Eq. (11) holds:
Theorem 1: If there exist ζi; i � 1; 2; : : : ; n − 1, satisfying the

inequalities in Eq. (15) such that the following command signal

stabilizes the system in Eq. (1)

x2c�t� � −r0h⊤x�t� (16)

then the system inEq. (11) is globally uniformly exponentially stable.
Proof: The proof is in the Appendix.
Remark: In general, a full state feedback defined in Eq. (16) exists

for an aerial vehicle equipped with an angular rate CAS such that an

attitude tracking controller can be developed for the vehicle. To

implement the proposed command limiting design successfully,

numerical optimization methods can be conducted to find ζi’s, which
satisfy the inequalities in Eq. (15) and yield a controller with good

performance.

C. Role of the Tuning Parameter

Recall that the potential function was defined by

Urep�x�t�� � eηh
⊤x�t� (17)

and the total command is generated by

x2c�t� � r�t�
�
1 − eη�h⊤x�t�−Xd�

�
(18)

In this control law, the positive η affects where the FEP law starts to

make significant modifications to the reference command r�t�. It also

affects the rate of convergence of x1�t�. The idea is illustrated in

Fig. 1. The figure shows the plot of the function y � 1 − eη�x−Xd�with
η � 0.5, 1, and 2. From these plots, one can notice that with a larger η,
the protection command will start to generate significant corrections
at a larger x value, and the total command will be steeper close to the
design valueXd.With a smaller η, themodification starts farther from
the limit and the total control command is smaller. The role of this
coefficient will be further shown in simulations.

IV. Simulation Example: Pitch-Angle Protection
for a UAV Model

In this section, the effectiveness of the proposed envelope protec-
tion method is verified via simulation study. The protection of pitch
angle θ�t� for a UAV is considered. The UAV model used in this
simulation was developed by the Uninhabited Aerial Vehicle Labo-
ratories at the University of Minnesota [31]. This high-fidelity sim-
ulation can model nonlinear bare airframe dynamics, actuator
dynamics, and measurement uncertainties. It is an appropriate sim-
ulation environment to test the proposed command limiting design.
More information on this UAV model can be found in [32]. For this
UAV model, a pitch-rate CAS is designed based on a linear model
obtained at a trim condition with a speed of 23 m∕s at an altitude of
200 m, and then the command limiting design is implemented. The
speed controller and bank angle controller associated with the model
are used without modifications to maintain the forward speed and
zero bank angle during the simulation.
The pitch-rate CAS accepts pitch-rate command qc�t� and is

developed based on the short-period mode of this model. The
pitch-rate CAS control law is given by

ucas�t� � Kqq�t� � KIxI�t� (19)

where q�t� is the pitch rate of the UAV, and xI�t� �
∫ t
0qc�τ� − q�τ� dτ is the integrator state. With this CAS, the equa-

tions ofmotion of the systemwith states θ�t�, q�t�,w�t�, and xI�t� are
written below:

2
6664

_θ
_q
_w
_xI

3
7775�

2
6664

0 1 0 0

0 −15.51 −1.673 61.86

−0.8066 21.90 −6.359 8.176

0 −1 0 0

3
7775
2
6664
θ
q
w
xI

3
7775�

2
664
0

0

0

1

3
775qc
(20)

where w�t� is the speed along z axis of the body frame. Let the state

vector be x�t� � �θ�t�; q�t�; w�t�; xI�t��⊤. Assume that the positive
limit for the pitch angle is θd � 20 deg. With the command limiting
control law and a positive pitch rate reference command, the system
will converge to an equilibrium. At the equilibrium point, we have
θe � θd and qe � 0. Then we can solve forwe and xIe for this point.
Let xe denote this equilibrium point. Consider the following com-
mand limiting control law:

qc�t� � qr�t�
�
1 − eη�h⊤x�t�−Xd�

�
(21)

where Xd � h⊤xe and qr�t� is the reference command. The equilib-
rium point xe can be shifted to the origin by a change of coordinates.
For this shifted system, there exists a similarity transformation
z�t� � Tx�t�, which transforms it into

2
664
_z1
_z2
_z3
_z4

3
775 �

2
664
0 1 0 0

0 0 1 0

0 0 0 1

0 −az3 −az2 −az1

3
775
2
664
z1
z2
z3
z4

3
775�

2
664
0

0

0

1

3
775qc (22)

For stability analysis, note that the command limiting control law
becomesFig. 1 Plots of y � 1 − eη�x−Xd�.
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qc�t� � qr�t�
�
1 − eηh

⊤T−1z�t�
�

(23)

Let h⊤z � h⊤T−1 � d ⋅ �1; ζ1; ζ2; ζ3�, where d is equal to the first

element of hz and is used to normalize the result. The conditions for

ζ1, ζ2, and ζ3 from Eq. (15) are

8<
:
az3ζ1 > az2;
az2ζ2 > az1ζ1 � az3ζ3 − 1;
az1ζ3 > ζ2

(24)

Choose appropriate values for h such that these conditions on ζ1,
ζ2, and ζ3 are satisfied. Then the following Lyapunov function

a) Constant reference commands b) Sinusoidal reference commands

Fig. 2 Pitch-rate command limiting for pitch-angle protection: linearized model.
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d) Sine wave command

Fig. 3 Pitch-rate command limiting for pitch-angle protection: responses to various reference commands.
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V�z� � 1

2
z⊤P4z (25)

where

P4 �

2
664
az3 az2 az1 1

az2 ζ1az2 � ζ2az3 − az1 ζ1az1 � ζ3az3 − 1 ζ1
az1 ζ1az1 � ζ3az3 − 1 ζ2az1 � ζ3az2 − ζ1 ζ2
1 ζ1 ζ2 ζ3

3
775 ≻ 0

(26)

can be used to show that the closed-loop system is exponentially

stable.
In the following simulation example with the linearized system,

h � �1; 0; 0; 1.01�⊤ and η � 1 are used. Simulation results are shown

in Fig. 2. Simulation results indicate that the proposed method can

provide effective command limiting performance for both constant

and time-varying reference commands on this linear system.
Next, nonlinear simulation results are presented. The positive limit

of the pitch angle is again θd � 20 deg and the negative limit is set to

θ−d � −15 deg. Sensor noise is added to the simulation for high

fidelity. Note that the negative command limiting design is developed

based on the same idea and then integrated with the positive com-

mand limiting control law. The total command is defined as

qc�t� �

8><
>:

qr�t�
�
1 − eη�h⊤x�t�−Xd�

�
; if qr�t� ≥ 0;

qr�t�
�
1 − e−η�h

⊤x�t�−X−
d
�
�
; if qr�t� < 0

(27)

where X−
d can be obtained similarly as Xd for the negative limit. For

the nonlinear model, η � 0.5 and the same h is used. One can notice

that if the reference command qr�t� is nonnegative, the protection for
θd is effective; otherwise, the protection for θ

−
d is effective. When the

state is far away from either limit, the correction to the pilot command

is negligible due to the property of the exponential function.
Figure 3 presents the time responses of the UAV model to various

reference commands. Figure 3a indicates that when the magnitude of

the reference command is small and the protected state is far away

from the limit, the total command qc�t� is almost identical to the

reference command qr�t�, and the effect of the command limiting

component is negligible. Figure 3b shows the response to a reference

command with larger magnitude. As the protected state θ�t�
approaches the limit, the command limiting component takes effect

and modifies the reference command qr�t� such that the protected

state θ�t� converges to the design values θd or θ−d , and hence envelope
protection is achieved. Figures 3c and 3d depict the responses to a

triangle wave and a sine wave reference command, respectively. The

command limiting control law works as expected and provides
effective envelope protection in both cases.
To further show the role that the tuning parameter η plays in the

performance of the command limiting control law, Fig. 4 presents the
time responses of the UAV model augmented with the command
limiting control law using different η’s. As discussed earlier, the value
of η influences the point where the command limiting control law
takes significant effect, as well as the rate of convergence of the
protected state (here θ). These two figures further verify these con-
clusions. With a smaller η, the correction to the reference command
starts at a point farther from the envelope limit thanwith a larger η, the
modification to the reference command changes slower, and the rate
of convergence of the protected state is smaller. This also implies an
earlier interference with pilot operations. With a larger η, the protec-
tion is initiated closer to the limit and a faster correction to the
reference command is made. The plots also suggest that when η
becomes larger than 1, the difference between responses becomes
smaller: for example, the difference between η � 1 and η � 2 is very
small. Hence, η can be tuned in a proper neighborhood of 1.

V. Conclusions

In this study, a command limiting control law for FEP based on
exponential potential functions was proposed. In the design, the
reference command was treated as an attractive potential function,
and repulsive potential functions were designed such that as the
protected state approached the envelope limit, the value of the repul-
sive potential function increased, generating a protection signal to
reduce the reference command and provide envelope protection. The
protection command can bemerged with the reference command due
to the property of exponential functions. The contribution of the
protection command remains negligible when the protected state is
far from the limit, but increases as the limit approaches. The tuning
parameter can adjust the position where the command limiting con-
trol law starts to make significant correction to the reference com-
mand. Lyapunov stability theory was employed to analyze the
closed-loop system with the proposed command limiting design,
and simulation examples in a nonlinear UAV simulation environment
were presented to verify the effectiveness of the design.

Appendix: Proof of Theorem 1

Proof of Theorem 1: Consider the symmetric matrix Pn defined in
Eqs. (12) and (13). First we show that the symmetric matrix Pn is
positive definite by studying the closed-loop system consisting of the
system in Eq. (1) and the command signal defined in Eq. (16). The
closed-loop system is written below:

_x�t� � Ax�t� − br0h
⊤x�t�; x�0� � x0 (A1)

which can be further written as

0 5 10 15 20

-5

0

5

0 5 10 15 20
-20

-10

0

10

20

Limit

17 18 19
-15

-10

a) Sensor noise on

0 5 10 15 20

-5

0

5

0 5 10 15 20
-20

-10

0

10

20

Limit

b) Sensor noise off

Fig. 4 Pitch-rate command limiting for pitch-angle protection: responses with different η’s.
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_x�t� � A0x�t�; x�0� � x0 (A2)

where A0 � A − br0h
⊤.

Consider the following Lyapunov function candidate:

V�x� � 1

2
x⊤Pnx (A3)

The time derivative of the Lyapunov function candidate is then

_V�x� � 1

2
_x⊤Pnx�

1

2
x⊤Pn _x � 1

2
x⊤�A⊤

0Pn � PnA0�x

�
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1�

�
Xn
i;j�1
i<j

xixj�pi−1;j � pi;j−1 − pi;nan−j�1 − pj;nan−i�1�

− an−1r0�x1 � ζ1x2� · · · �ζn−1xn�2 (A4)

Equation (13) guarantees that the coefficients of the cross terms

xixj; i < j, are zero. Hence

_V�x� �
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1�

− an−1r0�x1 � ζ1x2� · · · �ζn−1xn�2 (A5)

The conditions in Eq. (14) on ζi’s assure that the coefficients of the
square terms x2i ; i � 2; 3; : : : ; n, are negative, and this implies that

the time derivative of the Lyapunov function candidate is negative

definite. In fact, the time derivative of the Lyapunov function can be

further written as

_V�x� � −x⊤Qr0
n x (A6)

where Qr0
n is positive definite with its elements defined by

Qr0
nii �

(
an−1r0; i � 1;

ζi−1an−i�1 − pi−1;i � an−1ζ
2
i−1r0; i > 1;

Qr0
nij �

(
an−1ζj−1r0; i � 1; j > i;

an−1ζi−1ζj−1r0; i > 1; j > i
(A7)

Hence the following equation holds:

A⊤
0Pn � PnA0 � −2Qr0

n (A8)

Since the closed-loop linear system in Eq. (A1) is assumed to be

exponentially stable and Qr0
n is positive definite, the symmetric

matrix Pn is positive definite [33].
Next, we show that the nonlinear system in Eq. (11) is exponen-

tially stable. Consider the same Lyapunov function candidate defined

in Eq. (A3). The time derivative of the Lyapunov function candidate

for the system in Eq. (11) is

_V�x� �
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1�

�
Xn
i;j�1
i<j

xixj�pi−1;j � pi;j−1 − pi;nan−j�1 − pj;nan−i�1�

� an−1r�t��h⊤x��1 − eηh
⊤x� (A9)

Similarly, Eq. (13) guarantees that the coefficients of the cross

terms xixj; i < j, are zero. Hence

_V�x� �
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1� �
an−1r�t�

η
�ηh⊤x��1 − eηh

⊤x�

(A10)

The conditions in Eq. (14) on ζi’s again assure that the coefficients
of the square terms x2i ; i � 2; 3; : : : ; n, are negative.
Next we verify that given r�t� > r0 > 0, ∀ t ≥ 0, the second term

in the above time derivative of the Lyapunov function candidate is

negative semidefinite, which is equivalent to

�ηh⊤x��1 − eηh
⊤x� ≤ 0; ∀ x ∈ Rn (A11)

Consider the following function of y:

f�y� ≔ �1 − ey�y; y ∈ R (A12)

The first and second derivatives of this function with respect to y
are then

f 0�y� � 1 − ey�y� 1�; f 0 0�y� � −ey�y� 2� (A13)

which implies that f 0�y� � 0 ⇔ y � 0 and f 0 0�0� � −2. This indi-
cates that f�y� attains its global maximum at y � 0 and f�0� � 0.
Hence we conclude that

f�y� � �1 − ey�y ≤ 0; ∀ y ∈ R (A14)

Based on this result, the following inequality holds:

�ηh⊤x��1 − eηh
⊤x� ≤ 0; ∀ x ∈ Rn (A15)

Then, if the conditions in Eq. (14) hold, the following result can be

obtained:

_V�x� ≤
Xn
i�2

x2i �pi−1;i − pi;nan−i�1� ≤ 0 (A16)

Hence, the system in Eq. (11) is uniformly stable [34]. This also

suggests that for any ϵ > 0 there exists δ � δ�ϵ� such that

kx�0�k < δ ⇒ kx�t�k < ϵ; ∀ t ≥ 0 (A17)

Consider the function f�y� defined in Eq. (A12) again. In the

following, we show that within a neighborhood of the origin, the

function f�y� is bounded from above by some negative quadratic

function. That is, for any ϵy > 0, there exists c � c�ϵy� > 0 such that

jyj < ϵy ⇒ f�y� ≤ −cy2 (A18)

Figure A1 illustrates the intersections of f�y� and −cy2 for three
different values of c, which indicates that such c exists.
Consider the following function g�y�:

g�y� ≔ f�y� � cy2 � �1 − ey�y� cy2 � y�1 − ey � cy�;
y ∈ R (A19)

In the following study, let c ∈ �0; 1�. For a given ϵy, one needs to
find a c such that g�y� ≤ 0. Again, taking the first and second

derivative of g�y� yields

g 0�y� � f 0�y� � 2cy � 1 − ey�y� 1� � 2cy;

g 0 0�y� � f 0 0�y� � 2c � −ey�y� 2� � 2c (A20)

One of the solutions to g 0�y� � 0 is y � 0. Since g 0 0�y� < 0;
∀y ≥ 0 and g 0�0� � 0, then g 0�y� < 0; ∀ y > 0, and hence

f�y� ≤ −cy2; ∀ y ≥ 0. One solution to g�y� � 0 is y � 0, and the

other solution satisfies
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1 − ey � cy � 0 (A21)

Hence, given y � −ϵy < 0, by the mean value theorem there exists
cϵ � ey0 with ϵy < y0 < 0 such that the following equation holds:

1 − e−ϵy � cϵϵy � 0 (A22)

since Eq. (A21) can be written as

cϵ ⋅ �0 − ϵy� � e0 − eϵy (A23)

Then for any y ∈ �−ϵy; 0�, the following inequality holds:

1 − ey � cϵy ≥ 0 (A24)

Hence, for any y ∈ �−ϵy; 0�, the following is true:

g�y� � y�1 − ey � cϵy� ≤ 0 (A25)

Further, sinceg�y� ≤ 0;∀ y > 0, then for y ∈ �−ϵy; ϵy� there exists
a c such that

f�y� ≤ −cy2 (A26)

The larger the ϵy, the smaller the c�ϵy�.
Fromprevious steps of the stability analysis, it has been proved that

the state vector satisfies

kx�t�k < ϵ; ∀ t ≥ 0 (A27)

and consequently the following inequality holds for some positive
value ϵ1:

jηh⊤x�t�j < ϵ1; ∀ t ≥ 0 (A28)

Hence, there exists c � c�ϵ1� such that

�ηh⊤x��1 − eηh
⊤x� ≤ −c ⋅ �ηh⊤x�2; ∀ x ∈ Rn and jηh⊤xj < ϵ1

(A29)

It follows that the time derivative of the Lyapunov function
satisfies

_V�x� ≤
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1� − an−1ηcr�t��h⊤x�2 (A30)

Since r�t� > r0 > 0, the time derivative of the Lyapunov function
further satisfies

_V�x� <
Xn
i�2

x2i �pi−1;i − ζi−1an−i�1� − an−1ηcr0�h⊤x�2 � −x⊤Qη
nx

(A31)

where the positive definite matrix Qη
n is defined by

Qη
nii �

(
ηan−1cr0; i � 1;

ζi−1an−i�1 − pi−1;i � ηan−1ζ
2
i−1cr0; i > 1;

Qη
nij �

(
ηan−1ζj−1cr0; i � 1; j > i;

ηan−1ζi−1ζj−1cr0; i > 1; j > i
(A32)

This leads to

_V�x� ≤ −λmin�Qη
n�kxk2 (A33)

Since Pn is positive definite, the following is true:

λmin�Pn�kxk2 ≤ V�x� ≤ λmax�Pn�kxk2 (A34)

Hence the system is globally uniformly exponentially stable [34].
This completes the proof. □
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