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Impact of Confirmation Bias on Competitive
Information Spread in Social Networks

Yanbing Mao , Emrah Akyol , and Naira Hovakimyan

Abstract—This article investigates the impact of confir-
mation bias on competitive information spread in the social
network that comprises individuals in a social network and
competitive information sources at a cyber layer. We formu-
late the problem of information spread as a zero-sum game,
which admits a unique Nash equilibrium in pure strate-
gies. We characterize the dependence of pure Nash equi-
librium on the public’s innate opinions, the social network
topology, as well as the parameters of confirmation bias.
We uncover that confirmation bias moves the equilibrium
toward the center only when the innate opinions are not
neutral, and this move does not occur for the competitive
information sources simultaneously. Numerical examples
in the context of well-known Krackhardt’s advice network
are provided to demonstrate the correctness of theoretical
results.

Index Terms—Competitive information spread, confirma-
tion bias, innate opinion, Nash equilibrium, social network
topology, zero-sum game.

I. INTRODUCTION

MATHEMATICAL models for the opinion formation in
networks have been an important research subject for

decades, see e.g., [1], [2]. A few well-known models include
the DeGroot model [3] (whose roots go back to [2] and [4]) that
considers opinion evolution within a network in terms of the
weighted average of individuals’ connections, where weights
are determined by influences. The Friedkin–Johnsen model [5]
incorporates individual innate opinions, thereby making the
model more suitable to several real-life scenarios, as well as real
applications, e.g., optimal investment for competing camps [6]
and debiasing social influence [7]. In [8], a bounded confidence
model is presented where individuals are influenced by their
neighbors that are not too far from their opinion. The majority
of the recent works are variations of these models, with a few
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exceptions. An overview of opinion dynamic models can be
found in relevant tutorial papers, see, e.g., [9], [10], and the
references therein.

While opinion evolution models have always been an active
research area, recently with the wide use of social media [11],
in conjunction with automated news generation with the help of
artificial intelligence technologies [12], they have gained vital
importance in studying misinformation spread and polarization.
In this regard, confirmation bias (CB) plays a key role. CB
broadly refers to cognitive bias toward favoring information
sources that affirm existing opinion [13]. It is well understood
that CB helps create “echo chambers” within networks, in which
misinformation and polarization thrive, see, e.g., [14] and [15].

In this article, we study competitive information spread in so-
cial networks, with a particular focus on the impact of CB on the
results. Competitive information spread has been studied exten-
sively in recent years. Building on the DeGroot model [3], Zhao
et al. in [16] investigated how to enhance a competitor’s com-
petitiveness through adding new communication links to normal
agents to maximize the number of supporters or the support-
ing degree toward a competitor. Rusinowska and Taalaibekova
in [17] proposed a model of competitive opinion formation with
three persuaders, who, respectively, hold extreme, opposite, and
centrist opinions, while Grabisch et al. in [18] investigated the
model of influence with a set of nonstrategic agents and two
strategic agents that have fixed but opposed opinions. Dhamal
et al. in [6] incorporated opponent stubborn agents into the
Friedkin–Johnsen model [5]. Employing diffusion dynamics,
Eshghi et al. in [19] studied optimal allocating of a finite budget
across several advertising channels. Meanwhile, Proskurnikov
et al. in [20] studied the opinion dynamics with negative weights,
which models antagonistic or competitive interactions, with its
origins dating back to the seminal work of Altafini [21]. We
note, however, that these prior works on competitive camps and
competitive/antagonistic interactions do not consider CB in their
analysis.

Among the aforementioned opinion evolution models, CB
can be modeled within the context of bounded confidence mod-
els [11] such as the Hegselmann–Krause model [8] and its recent
variations [22]. However, these models involve a discontinuity
in the influence impact: An individual is either influenced by
an information source (or her neighbors) fully or not at all,
depending on the opinion differences. This binary influence
effect renders the analysis of the steady-state point difficult in
general. As a remedy, in [23], a new opinion dynamics model is
proposed as a variation of the Friedkin–Johnsen model [5] with
a continuous bias model.

In this article, building on preliminary analysis in [24], we
analyze the information spread over a network with two competi-
tive information sources, where the only control variables are the
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opinions of information sources. We adopt the opinion dynamics
in [23] with two information sources and a (state-dependent)
piecewise linear CB model. We formulate the problem as a
zero-sum game and show that this game admits a unique Nash
equilibrium which is in pure strategies. We particularly study
the impact of CB on the Nash equilibrium. We analyze how the
equilibrium achieving strategies depend on the public’s innate
opinions, the network topology, as well as the CB parameters.

This article is organized as follows. In Section II, we present
preliminaries. The problem is formulated in Section III. In
Section IV, we investigate the Nash equilibrium and the impact
of CB on Nash equilibrium. We present numerical simulations
in Section V. Finally, Section VI concludes this article.

II. PRELIMINARIES

A. Notation

Let Rn and Rm×n denote the set of n-dimensional real vectors
and the set of m× n-dimensional real matrices, respectively. N
represents the set of the positive integers, and N0 = N ∪ {0}.
We define I as the identity matrix with proper dimension. We
let 1 denote the vector of all ones. The superscript “�” stands
for the matrix transposition. For a vector x ∈ Rn, ‖x‖ stands for
its l1 norm, i.e., ‖x‖ =

∑n
i=1 |xi|. For W = [wij ] ∈ Rn×n, we

use ‖W‖1 and ‖W‖∞ to denote maxj=1,...,n{
∑n

i=1 |wij |} and
maxi=1,...,n{

∑n
j=1 |wij |}, respectively.

The social network considered in this article is composed of
n individuals. The interaction among the individuals is modeled
by a digraph G = (V ,E), where V = {v1, . . . , vn} is a set
of vertices representing the individuals and E ⊆ V × V is a
set of edges representing the influence structure. We take the
network to have no self-loops, i.e., for any vi ∈ V , we assume
that (vi, vi) /∈ E. A node vj is said to be reachable from node vi
if there is a directed path from vi to vj in digraphG. A digraphG
is strongly connected if every two nodes are mutually reachable;
G is quasi-strongly connected if for every two nodes vi and vj ,
there is a node vu from which both vi and vj are reachable.

B. Opinion Dynamics

In this article, we adopt the opinion evolution model in the
presence of two competitive information sources in [23]

xi(k + 1) = αi(xi(k))si +
∑
j∈V

wijxj(k) + w(xi(k))h

+ w(xi(k))g, i ∈ V . (1)

In the following, we describe the elements of this model.
1) xi(k) ∈ [0, 1] is individual vi’s opinion at time k. This

opinion evolves in time as described in (1).
2) si ∈ [0, 1] is individual vi’s innate opinion which is fixed

in time. We define the extremal innate opinions as follows:

s � max
i∈V

{si} , s � min
i∈V

{si} .

3) wij represents the influence of individual vj on vi,

wij =

{
> 0, if (vi, vj) ∈ E

= 0, otherwise.

This is a standard model parameter, with its origins dating
back to the seminal work of Friedkin and Johnsen [5]. In

this article, we do not consider antagonistic interactions,
as studied in [20], which would imply negative values for
wij .

4) h and g are the opinions of competitive information
sources (or stubborn individuals), Hank and Georgia, re-
spectively. Their objectives are to move the public opinion
to two extremes they represent. We assume that the values
of g, h satisfy the following:

1 ≥ h ≥ s ≥ s ≥ g≥0. (2)

This assumption states that the information sources are
more extreme than the most extreme innate opinion of
the public, prior to any external influence.

5) w(xi(k)) and w(xi(k)) are the state-dependent influence
weights of information sources Hank and Georgia on
individual vi. These weights model “symmetric” confir-
mation bias as

w(xi(k)) = β − γ |xi(k)− h| (3a)

w(xi(k)) = β − γ |xi(k)− g| (3b)

where β ∈ R and γ ∈ R are bias parameters. The model
indicates that every individual in social networks has
access to both information sources, which is due to in-
formation overload in the modern information era [11],
[25]. Throughout this article, we make the following
assumption on the bias parameters and influence weights.
Assumption 1: Given W ∈ Rn×n, β ∈ R, and γ ∈ R

β ≥ γ≥0 (4a)

1−max {‖W‖∞, ‖W‖1} ≥ max {2β, 4γ} (4b)

W has a positive eigenvector. (4c)

Here, the CB model (3) is assumed to be piecewise linear.
We note that in the original model used in [23], this
bias function is taken in general possibly nonlinear and
decreasing.

6) αi(xi(k)) is the “resistance parameter” of individual vi
and is determined in such a way that it satisfies

αi(xi(k)) +
∑
j∈V

wij + w(xi(k)) + w(xi(k)) = 1 (5)

∀i ∈ V and ∀k ∈ N0. This is a standard assumption
common in all classical opinion dynamics models, see,
e.g., [5]–[7]. The entire model essentially represents that
individuals form opinions by taking weighted averages
over a convex polytope of different contributing factors.

Remark 1: Confirmation bias refers to the tendency to acquire
or process new information in a way that confirms one’s precon-
ceptions and avoids contradiction with prior belief [13]. We note
that function (3) is more like state-dependent social influence
weights used to model homophily [26], [27], which is a remedied
version of bounded confidence models. While following [11]
wherein a bounded confidence model is leveraged to describe
confirmation bias in the era of information overload, the model
(3) is also used in this article to describe the confirmation bias
to some extent, which is motivated by following observations.
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1) Both polarization and homogeneity are the results of the
conjugate effect of confirmation bias and social influ-
ence [28], [29].

2) Confirmation bias happens when a person gives more
weight to evidence that confirms their beliefs and
undervalues evidence that could disprove it [30].

Remark 2: We assume that individual–individual influence
weights wijs are trust-based and fixed, whose motivations are
as follows.

1) Social influence among individuals is based on the trust
(e.g., cognition-based trust and knowledge-based trust)
which tends to vary little over a long period of time, with
exception being the swift trust which is required in the
environments wherein there is little or no time to develop
trust among persons [31].

2) Cognitive factors that can influence trust decisions are
founded on a deeper knowledge of the other person and
the stability of the other’s behavior across time and con-
texts [31].

We note that the fixed influence weightswijs can also describe
the conformity behavior in social network to some extent, i.e.,
without information sources and innate opinions, an individual
updates her opinion as an average of her neighbors [3].

Remark 3: The model (3) describes the symmetric bias for
the social problems, e.g., Senate or House Member evolving
ideology [32], whose implicit (e.g., binary or triple) mapping
can be ignored. To capture the asymmetric bias, e.g., in US
President Election, model (3) updates as

w(xi(k))=β−γ |xi(k)−h|+υh((h−xi(k))(xi(k)−0.5))

w(xi(k))=β−γ |xi(k)−g|+υh((g−xi(k))(xi(k)−0.5))

where the added terms correspond to the implicit triple mapping,
υ > 0 and h(·) denotes the Heaviside step function. The inves-
tigation of competitive information spread under asymmetric
confirmation bias is beyond the scope of our article, which
constitutes a part of our future research directions.

Remark 4: We obtain from (3) and (5) that

αi(xi(k)) = 1−
∑
j∈V

wij − w(xi(k))− w(xi(k))

= 1−
∑
j∈V

wij−2β+(|xi(k)−h|+|xi(k)−g|) γ

≥ 1−
∑
j∈V

wij − 2β

which indicates that to guarantee the nonnegativeness of
αi(xi(k)), we require 1−∑

j∈V wij≥2β for any i ∈ V , or

1− ‖W‖∞ ≥ 2β (6)

which holds under Assumption 1. We note that Assumption 1,
in conjunction with (5), also guarantees the nonnegativeness of
state-dependent influence weights (3) and the convergence of
dynamics in (1), whose detailed proofs are included in the proof
of Theorem 1 (see Appendix B).

We next express (1) in the vector form

x(k + 1)=A(x(k))s+Wx(k) +W(x(k))h+W(x(k))g
(7)

where we define

s � [s1, . . . , sn]
� ∈ Rn (8a)

x(k) � [x1(k), . . . , xn(k)]
� ∈ Rn (8b)

W � [wij ] ∈ Rn×n (8c)

A(x(k)) � diag{α1(x1(k)), . . . , αn(xn(k))}∈Rn×n (8d)

W(x(k)) � [w(x1(k)), . . . , w(xn(k))]
� ∈ Rn (8e)

W(x(k)) � [w(x1(k)), . . . , w(xn(k))]
� ∈ Rn. (8f)

In [23], it is shown that similar dynamics converge to a
unique steady state, independent of the initial opinions, for more
general bias functions and information sources. Here, we show
that the derived convergence condition (4) is more relaxed for
this more specific model. Moreover, we analytically analyze
the steady-state point achieved by the opinion dynamics. We
reiterate that the primary advantage of the model described in
(1), in contrast with the classical bounded confidence models
such as the Hegselmann–Krause model [8], is that (1) allows us
to examine the steady-state point analytically. This is because
the state-dependent weights in the classical models can be equal
to zero when the opinion distance is larger than the confidence
bound, which renders analysis difficult, while state-dependent
weights in (1) are nonzero for almost all scenarios. For an
analytical expression, similar settings are imposed on state-
dependent susceptibility of polar opinion dynamics [33], [34].
Before presenting our results formally, we define the following
matrices:

E � I −W + (g − h) γI ∈ Rn×n (9)

D � diag

⎧⎨⎩∑
j∈V

w1j ,
∑
j∈V

w2j , . . . ,
∑
j∈V

wnj

⎫⎬⎭ ∈ Rn×n. (10)

With these definitions at hand, we present our convergence
result, whose proof appears in Appendix B.

Theorem 1: For any x(0), the dynamics in (1) converge to

x∗(g, h) = E−1 (I −D − 2βI + (h− g)γI) s

+ E−1
(
(h+ g)β1+ (g2 − h2)γ1

)
. (11)

Remark 5: In light of the Gershgorin circle theorem, we
straightforwardly verify from (4) and (9) that all of the eigen-
values of E are nonzero, thus, E is invertible.

III. PROBLEM FORMULATION

In this work, we analyze the values of information sources (or
stubborn individuals as referred in some prior work, e.g., [6])
Hank and Georgia would provide in a setting, where they strive
to move the steady-state opinion (whose exact expression is
provided in Theorem 1) of the network to the two binary ex-
tremes. This problem constitutes an unconstrained zero-sum
game between Hank and Georgia, with continuous strategy
spaces g ∈ [0, s] and h ∈ [s, 1], for which Nash equilibria are
sought.

At first glance, it might be tempting to conclude that the
trivial choice of g = 0 and h = 1 are the equilibrium achieving
strategies for Hank and Georgia. Indeed, we formally show that
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(in Section IV-B, Corollary 2) these strategies are equilibrium-
achieving, in the absence of CB. However, this is exactly the
aspect in which CB renders this problem a formidable research
challenge. The strategic considerations incentivize Hank and/or
Georgia to move toward the center (from extremal positions of
h = 1 and g = 0) to increase their influence over the public
opinion. More broadly, we explore the following questions in
this article.

Q1: What are the properties of Nash equilibrium? Is it
unique? Does it exist in pure or mixed strategies?

Q2: How does CB impact equilibrium achieving strategies?
Q3: Does CB affect both Hank and Georgia symmetrically in

the sense that they move to the center at equal amounts
at the equilibrium? Do they move simultaneously, or
only one of them moves?

Let us now recall a technical lemma regarding the eigenvector
and eigenvalue of network adjacency matrix.

Lemma 1: [35] Let G = (V ,E) be a connected weighted
graph. Assume there is a positive vector c̄, such that the adja-
cency matrix A satisfies Ac̄ = λ̄c̄. Then, λ̄ = maxi∈V{|λi(A)|}
and the eigenvalue has multiplicity 1.

Remark 6: Lemma 1 is a consequence of the Perron–
Frobenius theorem on nonnegative matrices [36]. We note that
the Perron–Frobenius theorem requires the adjacency matrix A
to be irreducible, i.e., the implicit digraph G must be strongly
connected, while Lemma 1 removes this strict requirement, such
that the digraph G can be quasi-strongly connected with the
strong component being aperiodic. This is the motivation behind
(4c) in Assumption 1.

We formulate the problem as a zero-sum game, whose cost
function in light of Lemma 1 is

f(g, h) = c�x∗(g, h) (12)

wherex∗(g, h) is computed via (11), and c = [c1, c2, . . . , cn]
� ∈

Rn is the eigenvector associated with the largest eigenvalue of
W�

W�c = λc, λ = max
i∈V

{|λi(W )|} . (13)

Remark 7: The cost function f(g, h) = 1�x∗(g, h) in [6]
indicates that the decision maker treats individuals’ opinions
equally, which, however, does not hold in many real social
examples. For example, in a company, the CEO usually has
larger decision-making power than managers. Motivated by this
observation, we assign relative scores, i.e, the entries of vector
c, to all individuals in a network based on the concept that
the high-scoring individual contributes more influence to the
decision-making than the low-scoring individual. According to
(13), the score vector c in the cost function (12) is referred
to the vector of out-eigenvector centralities that measures the
importance of an individual in influencing other individuals’
opinions [37].

Here, Hank’s objective is to maximize f(g, h), while Geor-
gia’s objective is to minimize f(g, h). We next define two
different notions

ŝ �
∑
i∈V

ĉisi, χ �
∑
i∈V

ĉi
∑
j∈V

siwij , ĉi �
ci∑

j∈V cj
. (14)

We note that ŝ represents the eigencentrality weighted average
of innate opinions over the network. In the special case of neutral
public opinions, i.e, si = 1/2 for all i, it follows from (13)

that χ =
∑

i∈V

∑
j∈V ciwij

2
∑

l∈V cl
= c�W1

2c�1 = λc�1
2c�1 = λ

2 , which holds
regardless of the remaining network parameters.

We express the cost function as a function of g and h in the
following corollary whose proof appears in Appendix C.

Corollary 1: The cost function (12) can be expressed as

f(g, h)

=
((1−2β+(h−g)γ)ŝ−χ+(h+g)β+(g2−h2)γ

1−λ+(g−h)γ
c�1. (15)

This game can be viewed from two different perspectives,
each of which provides a lower/upper bound for the value of
the cost function f(g, h) defining the game. The first one is a
max-min optimization problem for Hank maxh ming{f(g, h)},
where Hank expresses her opinion h to maximize f(g, h), antic-
ipating the rational best response of Georgia g∗(h), as formally
stated below

g∗(h) � argmin
g∈[0,s]

{f(g, h), for all h ∈ [s, 1]} (16a)

h∗ � argmax
h∈[s,1]

{f (g∗(h), h)} . (16b)

Similarly, a min-max optimization for Georgia would be
ming maxh{f(g, h)}. In this scenario, Georgia acts as the
leader, with the objective to minimize f(g, h) while taking the
best response of Hank into account. The strategies are referred
to the pair (h∗, g∗), such that

h∗(g) � argmax
h∈[s,1]

{f(g, h), for g ∈ [0, s]} (17a)

g∗ � argmin
g∈[0,s]

{f(g, h∗(g))} . (17b)

In the next section, we formally show that this game indeed
admits a unique, pure-strategy Nash equilibrium, and hence,
solving one of these optimization problems would be sufficient
to derive the equilibrium-achieving strategies g∗ and h∗.

IV. NASH EQUILIBRIUM

We first recall the definition of strategic form game, which
will be used to investigate the properties of Nash equilibrium.

Definition 1: [38] A strategic form game is a triplet〈
I, (Ai)i∈I, (ui)i∈I

〉
, where

1) I is a finite set of players;
2) Ai is a nonempty set of available actions for player i;
3) ui : A → R is the cost function of player i, where A =∏

i∈I Ai.
We then transform the zero-sum games (16) and (17) to a

strategic form game:
〈
I, (Ai)i∈I, (ui)i∈I

〉
, where

I={Hank,Georgia}, AGeorgia=[0, s], AHank=[s, 1] (18a)

uGeorgia(aGeorgia, aHank) = −f(g, h) (18b)

uHank(aHank, aGeorgia) = f(g, h). (18c)

A. Existence and Uniqueness of Nash Equilibrium

We start with the properties of Nash equilibrium, which
are formally stated in the following theorem whose proof is
presented in Appendix D.
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Theorem 2: The Nash equilibrium (g∗, h∗) is unique and it is
in pure strategies.

We proceed with the analysis of the aforementioned Nash
equilibrium in the absence, and in the presence of CB.

B. Nash Equilibrium Without CB: γ = 0

We start with the case of no CB for which we have the intuitive
solution, (g∗, h∗) = (0, 1), regardless of the remaining problem
parameters. We note that in our model setting γ = 0 in (3)
yields “the no CB scenario.” Our result is stated formally in
the following theorem whose proof is given in Appendix E.

Corollary 2: When no individual holds CB toward the opin-
ions of information sources Hank and Georgia, the pure Nash
equilibrium of the competitive information spread problems (16)
and (17) is (g∗, h∗) = (0, 1).

C. Nash Equilibrium With CB (γ �= 0)

Before stating our main result, we define two simple functions
that are used in the description of the equilibrium

q(g, h) � (β + γŝ− 2γh)a1 + b1γ + γ2h2 (19)

m(g, h) � (β − γŝ+ 2γg)a2 + g2γ2 − b2γ (20)

with

a1 = 1− λ + γg (21)

b1 = (1− 2β − gγ)ŝ− χ+ gβ + g2γ (22)

a2 = 1− λ − hγ (23)

b2 = (1− 2β + hγ) ŝ+ hβ − h2γ − χ. (24)

These functions are related to the partial derivatives of the cost
function f(g, h) as follows:

∂f(g, h)

∂h
=

q(g, h)c�1
(a1 − γh)2

(25)

∂f(g, h)

∂g
=

m(g, h)c�1
(a2 + gγ)2

. (26)

We next define the following auxiliary functions:

r(g)�−
√
(1−λ)(1−λ−β+2gγ)−(2−λ−2β)γŝ−2gβγ+γχ

γ

+
1− λ

γ
+ g (27)

w(h)�
√
(1−λ)(1−λ−2hγ−β)+(2−λ−2β)γŝ+2hβγ−χγ

γ

− 1−λ

γ
+ h. (28)

With these definitions at hand, we present the Nash equilibrium
in the following theorem, and its proof in Appendix F.

Theorem 3: The Nash equilibrium (g∗, h∗) for the competi-
tive information spread problems (16) and (17) is as follows.

1) If m(0, 1) ≥ 0

(g∗, h∗) =

⎧⎪⎨⎪⎩
(0, 1), if q(0, 1) ≥ 0

(0, s), if q(0, s) ≤ 0

(0, r(0)), otherwise.

(29)

2) If m(s, 1) ≤ 0

(g∗, h∗) = (s, 1). (30)

3) Otherwise

(g∗, h∗) = (w(1), 1). (31)

Remark 8: Through comparing (29) with (30) and (31), we
conclude that if m(0, 1) ≥ 0, Georgia’s pure strategy is fixed as
g∗ = 0; otherwise,Hank’s strategy is fixed as h∗ = 1.

Remark 9: In the scenario of neutral innate opinions, i.e., s1 =
s2 = . . . = sn = 1

2 , we have ŝ = 1
2 and χ = λ

2 , substituting,
which into m(0, 1) and q(0, 1) yields m(0, 1) = q(0, 1) ≥ 0. In
light of Theorem 3, the Nash equilibrium is (g∗, h∗) = (0, 1),
which indicates that CB does not move equilibrium when the
public’s innate opinions are neutral.

Remark 10: A rather interesting observation of Nash equi-
librium here is the following: CB can influence only Hank’s or
Georgia’s pure strategy, while it cannot influence both of them
simultaneously. In other words, either Hank or Georgia moves
to the center (or neither does so), but under no condition both
Hank and Georgia move toward the center at equilibrium.

Remark 11: The studied problem of competitive information
spread assumes that the social dynamics (1) and the cost function
(12) are known to information sources. Theorem 3 indicates that
the information sources need to explore the inference algorithms
of social network topology, innate opinions, and confirmation
bias parameters included in model (1) and cost function (12) for
optimal information spread strategies. These observations first
inspired our proposed inference mechanism of network topology
and confirmation bias [39]. Cost-function inference is a much
more challenging and deeper problem than learning dynamics
and it has deep roots to inverse optimality, which was first
investigated by Kalman in his seminal paper “When is a linear
control optimal” in [40] and then later studied by the machine
learning community in the context of inverse reinforcement
learning. To address this problem, we will propose a method
inspired by the work in [41], which can be thought of as an
extension of inverse optimality for nonlinear systems based on
Hamilton–Jacobi–Bellman theory.

Remark 12: Theorem 3 indicates that the studied problem
in this article can address a security concern in social networks,
where the attacker influences public opinions through dispersing
misinformation, while the defender counters the influence of
misinformation on public opinions by spreading truthful in-
formation. The dependencies of Nash equilibrium presented
in Theorem 3 also indicate that the defender can hinder the
attacker’s optimal information spread strategy through pre-
serving the privacy of cooperative individuals’ communication
topology and their associated innate opinions and confirmation
bias parameters from inference by attacker [39].

D. Impact of CB

Substituting γ = 0 into q(0, 1) and m(0, 1) straightforwardly
yields q(0, 1) ≥ 0 and m(0, 1) ≥ 0, which, in conjunction with
Theorem 2 as well as the the conditions of (29)–(31), indicate
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Fig. 1. Under fixed ξ = 0.14. (a) Feasible areas of m(0, 1) < 0 under (ŝ, λ) = (0.75, 0.3) and (ŝ, λ) = (0.75, 0.1). (b) Feasible areas of q(0, 1) < 0

under (ŝ, λ) = (0.65, 0.05) and (ŝ, λ) = (0.65, 0.1).

Fig. 2. (s) Krackhardt’s advice network [42] in the presence of competitive information sources Hank and Georgia. Surface plots of cost functions
under different conditions. (a) No CB (m(0, 1)≥0 and q(0, 1)≥0). (b) m(0, 1)≥0 and q(0, s) ≤ 0. (c) m(0, 1) ≥ 0 and q(0, 1) < 0 and q(0, s) > 0.
(d) m(s, 1) ≤ 0. (e) m(0, 1) < 0 and m(s, 1) > 0.

that the CB can influence the pure Nash equilibrium only when
its parameters cause m(0, 1) < 0, or q(0, 1) < 0. The feasi-
ble areas of m(0, 1) < 0 and q(0, 1) < 0 in each subfigure of
Fig. 1 show that under fixed innate opinions and social network
structure, there exists a range of β and γ in influencing the
pure Nash equilibrium. The characterization of the conditions
for which CB influences the Nash equilibrium is stated for-
mally in the following theorem, whose proof is presented in
Appendix G.

Theorem 4: CB changes the equilibrium-achieving strategy
of Georgia, i.e., g∗ �= 0, if and only if

0 <
1− λ − 2γ + 2ŝγ

2ŝ− λŝ− γ − χ
<

γ

β
≤ 1 (32)

and CB alters Hank’s strategy, i.e., h∗ �= 1, if and only if

0 <
1− λ

2− 2λ − 2ŝ+ ŝλ + 2βŝ+ χ− γ
<

γ

β
≤ 1. (33)
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V. NUMERICAL RESULTS

In this section, we numerically demonstrate our results in the
well-known Krackhardt’s advice network [42] with 21 individ-
uals. The network topology is shown in Fig. 2(s), where Hank
and Georgia represent two competitive information sources. For
the weight matrix W , if individual vi asks for advice from
her neighbor vj , then wij =

1
25+Γin

i
for all the individuals vj

that influence individual vi, where Γin
i denotes in-degree of

individual vi. The largest eigenvalue of the adjacency matrix
W that describes the structure of Krackhardt’s advice network
is computed as λ = 0.2369. We demonstrate the five different
Nash equilibriums.

a) No CB: We let the innate opinions of individuals v1 and
v2 be the same as 0.2, while others are uniformly set as 0.75.
For CB, we set β = 0.06 and γ = 0, which indicates that no
individual holds CB toward the opinions of Hank and Georgia.
We verify that q(0, 1)≥0 and m(0, 1)≥0. By Corollary 2 or
Theorem 3, we theoretically expect the Nash equilibrium to be
(g∗, h∗) = (0, 1), which is demonstrated by Fig. 2(a).

b) m(0, 1)≥0 and q(0, s) ≤ 0: We set individual v21’s innate
opinion as 0.2, while others are uniformly set as 0.75. For CB,
we let β = γ = 0.06. Under this setting, we have

s = 0.2, s = 0.75, ŝ = 0.2283, χ = 0.0580

by which, we verify from (19)–(24) that m(0, 1)≥0 and
q(0, s) ≤ 0. Hence, from Theorem 3 we expect the Nash equilib-
rium to be (g∗, h∗) = (0, s) = (0, 0.75), which is demonstrated
by Fig. 2(b).

c) m(0, 1) ≥ 0 and q(0, 1) < 0 and q(0, s) > 0: We let the
innate opinions of individuals v18 − v21 be the same as 0.75,
while others are uniformly set as 0.2. For CB, we choose
β = γ = 0.06. Under this setting, we have

s = 0.2, s = 0.75, ŝ = 0.3637, χ = 0.0945

by which, we verify from (19)–(24) that m(0, 1) ≥ 0 and
q(0, 1) < 0 and q(0, s) > 0. Moreover, we obtain from (27) that
r(0) = 0.8586. Therefore, from Theorem 3 we expect the Nash
equilibrium to be (g∗, h∗) = (0, r(0)) = (0, 0.8586), which is
demonstrated by Fig. 2(c).

d) m(s, 1) ≤ 0: We set the innate opinions of individuals v1
and v2 as the same as 0.2, others are uniformly set as 0.75. For
CB, we choose β = γ = 0.06. Under this setting, we have

s = 0.2, s = 0.75, ŝ = 0.7265, χ = 0.1693

by which, we verify from (19)–(24) that m(s, 1) ≤ 0. From
Theorem 3 we expect Nash equilibrium to be (g∗, h∗) = (s, 1) =
(0.2, 1), which is demonstrated by Fig. 2(d).

e) m(0, 1) < 0 and m(s, 1) > 0: In this case, we choose the
same setting of innate opinions in case D, but for CB, we let
β = 0.06 and γ = 0.048. We verify from (19)–(24) that
m(0, 1) < 0 and m(s, 1) > 0. Moreover, by (28) we have
w(1) = 0.0993. Hence, from Theorem 3 we expect the Nash
equilibrium to be (g∗, h∗) = (w(1), 1) = (0.0993, 1), which is
demonstrated by Fig. 2(e).

VI. CONCLUSION

In this article, we have studied the competitive information
spread with CB over social networks, which is formulated as a
zero-sum game and have investigated the pure Nash equilibrium
point. We have analyzed the impact of CB and innate opinions

of the Nash equilibrium, particularly the following tradeoff
for information sources: A move to the extremal opinions to
maximally change public opinion, and another move, due to
the existence CB, to the center to maximize the influence. Our
analysis has uncovered a few rather surprising results: CB moves
the Nash equilibrium toward the center only when the innate
opinions are not neutral, and this move occurs for only one
of the information sources. Theoretical results are verified by
numerical examples.

APPENDIX A
AUXILIARY RESULTS

This section presents the auxiliary results for the proofs of
main results.

Lemma 2: The matrix E defined in (9) satisfies

c�E
1− λ + (g − h) γ

= c�. (34)

Proof: We note that W is an adjacency matrix and its trans-
position does not change its eigenvalues; by Lemma 1 we have
(13). It follows from (9) and (13) that

c�E = c� − c�W + (g − h)c�γ = (1− λ + (g − h)γ)c�

from which (34) is obtained. �
Lemma 3: With γ �= 0, q(g, h) and m(g, h) in (19) and (20)

satisfy m(g, h) + q(g, h) > 0.
Proof: The partial derivative of (20) w.r.t. g is

∂m(g, h)

∂g
= 2γa2 + 2γ2g. (35)

Noticing the eigenvalue λ given in (13), the condition (4), in
conjunction with Ger š gorin disk theorem [43], imply that

1− λ ≥ 1−max {‖W‖1, ‖W‖∞} > max {2β, 4γ} (36)

which together with (23) and the fact 0 < h < 1 imply that a2 >
0. Thus, we conclude from (35) that

∂m(g, h)

∂g
≥ 0, for g, h ∈ [0, 1]. (37)

The partial derivative of (20) w.r.t. h satisfies

∂m(g, h)

∂h
= −2(β − γ(h− g))γ ≤ 0, for g, h ∈ [0, 1]. (38)

Applying the same analysis to (19), we have

∂q(g, h)

∂g
= 2(β+(g−h)γ)γ≥0, for g, h∈ [0, 1] (39)

∂q(g, h)

∂h
= −2(1−λ+(g−h)γ)γ≤0, for g, h∈ [0, 1]. (40)

From (37)–(38) and (39)–(40), we have

m(g, h) ≥ m(0, h) ≥ m(0, 1) (41)

q(g, h) ≥ q(0, h) ≥ q(0, 1). (42)

Combining (41) and (42) yields

m(g, h) + q(g, h) ≥ m(0, 1) + q(0, 1). (43)
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Substituting the values of m(0, 1) and q(0, 1) into (43), we have

m(g, h) + q(g, h) ≥ 2(1− λ

2
− γ − γλ)β + 2γ2 + 2γλ

≥ 2(1− λ

2
− γ − γλ)γ + 2γ2 + 2γλ

= 2γ + λγ − 2γ2λ = 2γ(1− γλ) + λγ

> 0

where the inequalities follow from γ �= 0, (4a), and (36). �
Lemma 4: Consider f(g, h), q(g, h), and m(g, h) given by

(15), (19), and (20), respectively. If q(g, h) ≥ 0, m(g̃, h̃) ≥ 0,
1 ≥ g ≥ g̃ ≥ 0, and 1 ≥ h ≥ h̃ ≥ 0, then f(g, h) ≥ f(g̃, h̃).

Proof: It follows from (40) that q(g, h) ≥ 0 implies q(g, h̆) ≥
0 for h̆ ∈ [h̃, h] ⊆ [0, 1], which, in conjunction with (25), results
in

f(g, h) ≥ f(g, h̃). (44)

Meanwhile, following (39), m(g̃, h̃) ≥ 0 implies m(ğ, h̃) ≥ 0
for ğ ∈ [g̃, g] ⊆ [0, 1], which, in conjunction with (26), re-
sults in f(g, h̃) ≥ f(g̃, h̃), which along with (44) leads to
f(g, h) ≥ f(g, h̃) ≥ f(g̃, h̃). �

APPENDIX B
PROOF OF THEOREM 1

Noting that si, xi(0) ∈ [0, 1] ∀i ∈ V , in conjunction with (5),
we obtain xi(k) ∈ [0, 1]. Thus, the nonnegativeness of state-
dependent influence weights (3) directly follows from (4a). We
denote the mapping executed by the dynamics in (1) from time
k to k + 1 as Ψ, i.e., xi(k + 1) � Ψi(xi(k)). For two vectors x
and y, we have

Ψi(xi)−Ψi(yi)

= (αi(xi)− αi(yi))si +
∑
j∈V

wij(xj − yj)

+ (w(xi)− w(yi))h+ (w(xi)− w(yi))g, i ∈ V . (45)

Also noting that

|αi(xi)−αi(yi)| = γ (|xi−h| − |yi−h|+ |xi−g| − |yi−g|)
≤ 2γ |xi − yi| . (46)

Moreover, from (3) we have

|w(xi)−w(yi)|=γ ||yi−h| − |xi−h||≤γ |xi−yi| (47a)

|w(xi)−w(yi)|=γ ||yi−g| − |xi−g||≤γ |xi−yi| . (47b)

Combining (45) with (46) and (47) yields

‖Ψ(x)−Ψ(y)‖ =
∑
i∈V

|Ψi(xi)−Ψi(yi)|

≤ 4γ
∑
i∈V

|xi − yi|+
∑
i∈V

∑
j∈V

wij |xj − yj |

= 4γ
∑
i∈V

|xi − yi|+
∑
i∈V

|xi − yi|
∑
j∈V

wji

≤4γ
∑
i∈V

|xi−yi|+
∑
i∈V

|xi−yi|max
i∈V

⎧⎨⎩∑
j∈V

wji

⎫⎬⎭
= (4γ + ‖W‖1) ‖x− y‖ . (48)

Here we note that if 1− ‖W‖1 > 4γ, due to Banach fixed-point
theorem (following the steps in the proof of [21, Th. 1], the
dynamics in (1) converge to a unique point, regardless of the
initial state. This condition, in conjunction with (6) yields (4b).

To solve for x∗(g, h), we set h1 ≥ x(0) ≥ g1 (since x∗(g, h)
is independent of the initial state, we can set arbitrary ini-
tial condition). Using (2) and (5), we have h1 ≥ x(k) ≥ g1
for ∀k ∈ N0, and hence h1 ≥ x∗(g, h) ≥ g1. This implies, by
reexpressing (3) for x∗(g, h), that

w(x∗
i (g, h)) = β − hγ + γx∗

i (g, h) (49a)

w(x∗
i (g, h)) = β + gγ − γx∗

i (g, h) (49b)

and also from (5)

αi(x
∗
i (g, h)) = 1−

∑
j∈V

wij − 2β + (h− g) γ, i ∈ V . (50)

Plugging (49) and (50) in (7), we obtain (11).

APPENDIX C
PROOF OF COROLLARY 1

Plugging (11) and (34) into (12) yields, after some algebra

f(g, h)=

∑
i∈V

ci

1−λ+(g−h)γ

⎛⎝∑
i∈V

((h+g)β+(g2−h2)γ)
ci∑

i∈V
ci

+
∑
i∈V

⎛⎝1−
∑
j∈V

wij−2β+(h−g)γ

⎞⎠ cisi∑
i∈V

ci

⎞⎠
which is equivalent to (15), considering (14).

APPENDIX D
PROOF OF THEOREM 2

Let us consider the transformed strategic form game〈
I, (Ai)i∈I, (ui)i∈I

〉
with elements given in (18). We obtain

from (26) with (20), (23), (24), and (18) that

∂2uGeorgia(aGeorgia, aHank)

∂a2Georgia
= −2γc�1m̄(g, h)

(a2 + gγ)3
(51)

where

m̄(g, h) = (1− λ − hγ) (1− λ − hγ − β + γŝ)

+
(
(1− 2β + hγ) ŝ+ hβ − h2γ − χ

)
γ. (52)

Noticing (14), we haveχ ≤ ŝ (since 0 ≤ ∑
j∈V wij ≤ 1), more-

over, considering (2) we have h ≥ ŝ. We then obtain from (52)
that

m̄(g, h) ≥ (1− λ − hγ) (1− λ − hγ − β + γŝ)

+
(
(1− 2β + ŝγ) ŝ+ ŝβ − ŝ2γ − ŝ

)
γ

= (1− λ − hγ) (1− λ − hγ − β + γŝ)− βγŝ
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which, in conjunction with (4), further implies

m̄(g, h) ≥ (1−λ−hγ) (1−λ−hγ−β+γŝ)−(1−λ−hγ) γŝ

= (1− λ − hγ) (1− λ − hγ − β) ≥ 0. (53)

Substituting (53) into (51) yields ∂2uGeorgia(aGeorgia,aHank)

∂a2
Georgia

≤ 0.

Following the same method, we also obtain ∂2uHank(aGeorgia,aHank)

∂a2
Hank

≤
0. Thus,

〈
I, (Ai)i∈I, (ui)i∈I

〉
is a concave game.

Following the proof of Lemma 4 in Appendix A,
we obtain uGeorgia(aGeorgia, aHank) ≥ uGeorgia(āGeorgia, aHank) and
uHank(aGeorgia, aHank) ≥ uHank(āGeorgia, āHank), for any aGeorgia <
āGeorgia ∈ AGeorgia and aHank > āHank ∈ AHank. Here, we con-
clude that the concave game

〈
I, (Ai)i∈I, (ui)i∈I

〉
satisfies the

dominance solvability condition in [44]. Hence, it satisfies
Rosen’s well-known conditions for existence and uniqueness
of a pure strategy Nash equilibrium [45].

APPENDIX E
PROOF OF COROLLARY 2

Substituting γ = 0, h = 1, and g = 0 into (20) with (23) and
(24) yields q(0, 1) ≥ 0 and m(0, 1) ≥ 0. It follows from (41)
that m(g, h) ≥ 0 for g, h ∈ [0, 1]. Then, from (26) we obtain the
optimal solution of (16a) as g∗(h) = 0. By (42), we obtain from
q(0, 1) ≥ 0 that q(0, h) ≥ 0, and from (25) we have ∂f(0,h)

∂h ≥ 0.
Thus, the optimal solution of (16b) is h∗ = 1. Consequently, the
max-min strategy of (16) is (g∗, h∗) = (0, 1), which is also the
pure Nash equilibrium via considering Theorem 2.

APPENDIX F
PROOF OF THEOREM 3

As Theorem 2 states, the pure Nash equilibrium exists for the
games (16) and (17). Therefore, to derive it, we only need to
study min-max or max-min strategy. In this proof, we study the
max-min problem (16).

Based on (37) and (38), the rest of the proof considers five
different cases with the following auxiliary function (assuming
γ �= 0):

δ(g)�−
√
(β + 2gγ)(β + λ − 1)− (λ + 2β − 2)ŝγ − χγ

γ

− 1−λ

γ
+ h. (54)

Case A. m(0, 1) ≥ 0: Due to (41), m(0, 1) ≥ 0, in conjunc-
tion with (26), indicate that given any h ∈ [s, 1], we have

∂f(g, h)

∂g
≥ 0, for any g ∈ [0, s] (55)

which implies that f(g, h) is nondecreasing with respect to g.
Thus, from (16a) we have

g∗(h) = 0. (56)

We next insert (56) into (15) and take its derivative w.r.t. h

df(g∗(h), h)
dh

=
q(0, h)c�1

(1− λ − γh)2
(57)

where q(0, h) is given in (19). We note that (40) indicates
that q(0, h) is nonincreasing w.r.t. h. Thus, if q(0, 1) ≥ 0,
q(0, h) ≥ 0 for any h ∈ [s, 1]. We conclude from (57) that
f(g∗(h), h) is nondecreasing w.r.t. h. Hence via (16b), h∗ = 1.
If q(0, s) ≤ 0, we have q(0, h) ≤ 0 for any h ∈ [s, 1]. Thus,
f(g∗(h), h) is nonincreasing w.r.t. h, and hence h∗ = s. If
q(0, s) > 0 and q(0, 1) < 0, it can be verified from (27) and (19)
that q(0, r(0)) = 0. Then, from (57) we have df(g∗(h),h)

dh ≥0 for

h ∈ [s, r(0)] and df(g∗(h),h)
dh < 0 forh ∈ [r(0), 1], which implies

that h∗ = r(0). The equilibrium point in this case is summarized
in (29).

Case B. m(s, s) ≤ 0 : Due to (37) and (38), m(s, s) ≤ 0

implies that given anyh ∈ [s, 1], ∂f(g,h)
∂g ≤ 0 for g ∈ (0, s], from

which and (16a), we have g∗(h) = s. We now plug g∗(h) into
(15) and take its derivative w.r.t. h

df(g∗(h), h)
dh

=
q(s, h)c�1

(1− λ − γh+ γ)2
. (58)

Due to (40), if q(s, 1) ≥ 0, q(s, h) ≥ 0 for any h ∈ [s, 1].
We conclude from (58) that f(s, h) is nondecreasing w.r.t h;
thus, h∗ = 1. If q(s, s) ≤ 0, then q(s, h) ≤ 0 for any h ∈ [s, 1].
Thus, f(g∗(h), h) is nonincreasing w.r.t h, and hence h∗ = s.
If q(s, s) > 0 and q(s, 1) < 0, it can be verified from (27) and
(19) that q(s, r(s)) = 0. Then, via (58), we have df(s,h)

dh ≥0 for

h ∈ [s, r(s)] and df(s,h)
dh < 0 for h ∈ [r(s), 1], which implies

that h∗ = r(s). The equilibrium is summarized as

If m(s, s) ≤ 0, (g∗, h∗)=

⎧⎪⎨⎪⎩
(s, 1), if q(s, 1)≥0

(s, s), if q(s, s)≤0

(s, r(s)), otherwise.

(59)

By Lemma 3, the condition m(s, s) ≤ 0 & q(s, s) ≤ 0 in
(59) contradicts with m(s, s) + q(s, s) > 0. The “otherwise”
in (59) represents q(s, 1) < 0 & q(s, s) > 0 & m(s, s) ≤ 0,
which with (38) imply q(s, 1) +m(s, 1) ≤ q(s, 1) +m(s, s) <
0. Note that this contradicts with q(s, 1) +m(s, 1) ≥ 0, which
is a consequence of Lemma 3. Thus, the “otherwise” condition
in (59) does not hold as well. Therefore, we have

If m(s, s) ≤ 0, (g∗, h∗) = (s, 1). (60)

Case C. m(0, s) ≤ 0 & m(s, 1) ≥ 0 : It follows from (38) that
m(0, s) ≤ 0 andm(s, 1) ≥ 0 implym(0, h) ≤ 0 andm(s, h) ≥
0 for h ∈ [s, 1], which indicate that ∂f(g,h)

∂g ≥ 0 for any g ∈
(w(h), s], and ∂f(g,h)

∂g ≤ 0 for any g ∈ [0, w(h)], where w(h) is
given by (28). The relation g∗(h) = w(h) follows from (16a),
whose derivate w.r.t. h is:

dg∗(h)
dh

=
dw(h)

dh
=1− 1−λ−β

Ξ
(61)

where

Ξ=
√
(1−λ)(1−λ−2hγ−β)+(2−λ−2β)γŝ+2hβγ−χγ.
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Replacing g in (15) by g∗(h) and taking its derivative w.r.t. h,
we get

df(g∗(h), h)
dh

=
(r1r3+r2+(r1r4−r2)

dg∗(h)
dh )c�1

(a2+gγ)2
(62)

where we define

r1 � 1− λ − hγ + γg∗(h) (63a)

r2 � (1− 2β + hγ)ŝγ + hβγ − h2γ2 − χγ

+ (β−γŝ+γg∗(h))γg∗(h) (63b)

r3 � β + ŝγ − 2hγ (63c)

r4 � β − ŝγ + 2γg∗(h). (63d)

Since g∗(h) = w(h) ≥ 0 due to (28), we have

Ξ ≥ 1− λ − hγ ≥ 0. (64)

Moreover, 1− λ − hγ − (1− λ − β) = β − hγ ≥ 0, which
implies that 1− λ − hγ ≥ 1− λ − β. Then, noting (64) and
(36), we obtain Ξ ≥ 1− λ − hγ ≥ 1− λ − β ≥ 0, which, in
conjunction with (61), yields

0 ≤ dg∗(h)
dh

≤ 1. (65)

If r1r4 − r2 ≤ 0, it follows from (63) and (65) that:

r1r3 + r2 + (r1r4 − r2)
dg∗(h)
dh

≥ r1r3 + r2 + r1r4 − r2 (66)

= 2 (1− λ − hγ + γg∗(h)) (β − hγ + γg∗(h)) ≥ 0 (67)

where (66) follows from (36) and (4a).
From (14), we have

χ ≤ 1∑
i∈V

ci

∑
i∈V

cisiwmax = wmaxŝ. (68)

where we use wmax � maxi∈V
∑

j∈V wij . We obtain from (63)
that

(r1r3 + r2)− (r1r4 − r2)

= 2γ(g∗(h))2 − 2γh2 + 2hγŝ− 2 g∗(h)γŝ+ hβ + g∗(h)β

− χ− 2βŝ+ h+ g∗(h) + λŝ− λh− λg∗(h) (69)

≥ −2γh2 + 2hγŝ+ hβ − χ− 2βŝ+ h+ λŝ− λh (70)

≥ −ŝβ − χ+ ŝ (71)

≥ (1− wmax − β) ŝ > 0 (72)

where (70) follows from (69) considering

(1 + β − λ − 2γŝ+ 2γg∗(h))g∗(h) ≥ 0

[due to (36)], and (71) follows from (70) due to −2 h2γ +
(2γŝ+ 1 + β − λ)h ≥ (1 + β − λ)ŝ, since 1+β−λ+2γŝ

4γ ≥ 1

and h ∈ [ŝ, 1]. We note also that (72) follows from (71) due
to (68).

If r1r4 − r2 > 0, from (72) we have

r1r3 + r2 ≥ r1r4 − r2 > 0.

From (65), we have

r1r3 + r2 + (r1r4 − r2)
dg∗(h)
dh

≥ r1r3 + r2 > 0,

which, in conjunction with (67) and (62), result in df(g∗(h),h)
dh ≥

0. We obtain here h∗ = 1, and consequently, g∗ = w(1). The
equilibrium in this case is expressed as

If m(0, s) ≤ 0 & m(s, 1) ≥ 0, (g∗, h∗) = (w(1), 1). (73)

Case D. m(s, s) > 0 & m(0, 1) < 0 & m(0, s) > 0) : Due to
(38), we obtain from m(0, 1) < 0 & m(0, s) > 0

m(0, h) ≤ 0, h ∈ [δ(0), 1] (74a)

m(0, h) > 0, h ∈ [s, δ(0)). (74b)

It follows from (37) and (74b) thatm(g, h) > 0 for h ∈ [s, δ(0))
and g ∈ [0, s]. Thus, we have g∗ = 0. Then, following the same
analysis in Case A, we arrive at

For h∈ [s, δ(0)), (g∗, h∗)=

⎧⎪⎨⎪⎩
(0, δ(0)), if q(0, δ(0))≥0

(0, s), if q(0, s)≤0

(0, r(0)), otherwise.

(75)

We note that the “otherwise” in (75) is q(0, δ(0)) < 0 &
q(0, s) > 0. Following (40), we have q(0, 1) ≤ q(0, s) ≤ 0
or q(0, 1) ≤ q(0, δ(0)) ≤ 0. Noticing m(0, 1) < 0, we obtain
q(0, 1) +m(0, 1) < 0 that contradicts with q(0, 1) +m(0, 1) >
0 implied by Lemma 3. Thus, the conditions of the second and
third items in (75) do not hold. Therefore, equation (75) in this
case can be expressed as

For h ∈ [s, δ(0)), (g∗, h∗) = (0, δ(0)). (76)

If m(s, 1) ≥ 0, we have m(s, h) ≥ 0 for h ∈ [s, 1], which
follows from (38). With the consideration of (74a), following
the same analysis in Case C, we obtain

For h∈ [δ(0), 1) & m(s, 1)≥0, (g∗, h∗)=(w(1), 1). (77)

Since (76) and (77) are, respectively, based onm(0, δ(0)) = 0
and q(w(1), 1) = 0, due to Lemma 4 we have f(w(1), 1) ≥
f(0, δ(0)). From (76) and (77), we obtain

If m(s, s)>0 & m(0, 1)<0 & m(0, s)>0 & m(s, 1)≥0

(g∗, h∗) = (w(1), 1). (78)

Ifm(s, 1) < 0, we havem(g, 1) < 0 for g ∈ [0, s], which fol-
lows from (37). We note thatm(0, s) > 0 implies thatm(g, s) >
0 for g ∈ [0, s]. Noting (38), we conclude

m(g, h) > 0 for any h ∈ [s, δ(g)] (79a)

m(g, h) ≤ 0 for any h ∈ (δ(g), 1] (79b)

where δ(g) is given in (54). Taking its derivative w.r.t. g, we
have

dδ(g)

dg
=

1−λ−β√
(β+2gγ)(β+λ−1)−(λ+2β−2)ŝγ−w̄γ

+ 1 > 0 (80)
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where the inequality is obtained via considering (36). Since (80)
implies that δ(g) is an increasing function, we have δ(s) ≥
δ(0). It follows from (20) with (54) that m(0, δ(0)) = 0 and
m(s, δ(s)) = 0, which, respectively, imply m(0, h) ≤ 0 and
m(s, h) ≥ 0 for h ∈ [δ(0), δ(s)] [that is due to (38)]. Following
the analysis in Case C, we obtain

For h∈ [δ(0), δ(s)] & m(s, 1) < 0

(g∗, h∗)=(w(δ(s)), δ(s)). (81)

Noting (26), we obtain from (79b) that g∗ = s for h ∈
[δ(s), 1]. Following the analysis in Case B, we arrive at

For h∈ [δ(s), 1] & m(s, 1) < 0

(g∗, h∗)=

⎧⎪⎨⎪⎩
(s, 1), if q(s, 1) ≥ 0

(s, δ(s)), if q(s, δ(s)) ≤ 0

(s, r(s)), otherwise.

(82)

We note that “otherwise” condition in (82) is q(s, 1) < 0 &
q(s, δ(s)) > 0. Due to (39), we have q(s, 1) ≤ q(s, δ(s)) ≤ 0,
which, in conjunction with m(s, 1) < 0, results in q(s, 1) +
m(s, 1) < 0 that contradicts with q(s, 1) +m(s, 1) > 0 implied
by Lemma 3. Thus, the conditions of the second and the third
items in (82) do not hold. Thus, equation (82) is simplified as

For h ∈ [δ(s), 1] & m(s, 1) < 0 & q(s, 1) ≥ 0

(g∗, h∗) = (s, 1). (83)

Noting w(δ(s)) ≤ s, w(1) ≤ s, the condition q(s, 1) ≥ 0 in
(83), the result in (81) is based onm(w(δ(s)), δ(s)) = 0, and the
result in (76) is based onm(0, δ(0)) ≥ 0. By Lemma 4 we obtain
f(s, 1) ≥ f(w(δ(s)), δ(s)) and f(s, 1) ≥ f(0, δ(0)), which, in
conjunction with (76), (81), and (83), yields the equilibrium

If m(s, s)>0 & m(0, 1)<0 & m(0, s)>0 & m(s, 1)<0

(g∗, h∗) = (s, 1). (84)

Case E. m(s, s) > 0 & m(0, 1) < 0 & m(s, 1) < 0) : Not-
ing (37), we obtain from m(s, s) > 0 & m(s, 1) < 0 that
m(s, δ(s)) = 0, where δ(s) is given by (54). Consequently

m(s, h) ≤ 0, h ∈ [δ(s), 1] (85a)

m(s, h) > 0, h ∈ [s, δ(s)). (85b)

It follows from (37) and (85a) that m(g, h) ≤ 0 for h ∈
[δ(s), 1] and g ∈ [0, s]. Thus, we have g∗ = s. Then, following
the analysis in Case B, we arrive at

Forh∈ [δ(s), 1], (g∗, h∗)=

⎧⎪⎨⎪⎩
(s, 1), if q(s, 1)≥0

(s, δ(s)), if q(s, δ(s))≤0

(s, r(s)), otherwise.

(86)

We note that “otherwise” in (86) includes the condition
q(s, 1) < 0. By (40), we have q(s, 1) ≤ q(s, δ(s)) ≤ 0. Noticing
m(s, 1) < 0 in this case, we have q(s, 1) +m(s, 1) < 0, which
contradicts with q(s, 1) +m(s, 1) > 0 implied by Lemma 3.
Thus, the conditions of the second and third items in (86) do not
hold. Therefore, equation (86) reduces to

Forh∈ [δ(s), 1] & q(s, 1) ≥ 0, (g∗, h∗) = (s, 1). (87)

If m(0, s) ≤ 0, from (38) we have m(0, h) ≤ 0 for h ∈ [s, 1].
With the consideration of (85b), following the analysis in Case
C, we obtain

For h ∈ [s, δ(s)) & m(0, s) ≤ 0

(g∗, h∗) = (w(δ(s)), δ(s)). (88)

Noting 1 ≥ δ(s), s ≥ w(δ(s)), the result in (88) is based on
m(w(δ(s)), δ(s)) = 0 and the condition q(s, 1) ≥ 0 in (87).
From Lemma 4 we have f(s, 1) ≥ f(w(δ(s)), δ(s)). Conse-
quently, we get

If m(s, s) >0 & m(0, 1)<0 & m(s, 1)<0 & m(0, s)≤0

(g∗, h∗) = (s, 1). (89)

If m(0, s) > 0, we have m(g, s) > 0 for g ∈ [0, s], which is
due to (37). We note that m(s, 1) < 0 implies that m(g, 1) < 0
for g ∈ [0, s]. Here, we conclude (79). Considering (26), we
obtain from (79a) that g∗ = 0 for h ∈ [s, δ(0)]. Following the
analysis in Case A, we have

For h∈ [s, δ(0)] & m(0, s) > 0

(g∗, h∗) =

⎧⎪⎨⎪⎩
(0, δ(0)), if q(0, δ(0)) ≥ 0

(0, s), if q(0, s) ≤ 0

(0, r(0)), otherwise.

(90)

The “otherwise” in (90) includes the condition q(0, δ(0)) <
0. Due to (40), we have q(0, 1) ≤ q(0, s) ≤ 0 and q(0, 1) ≤
q(0, δ(0)) < 0. Noting m(0, 1) < 0 in this case, we have
m(0, 1) + q(0, 1) < 0, which contradicts with q(0, 1) +
m(0, 1) > 0 implied by Lemma 3. Thus, the conditions of the
second the third items in (90) do not hold. Therefore, equation
(90) reduces to

For h∈ [s, δ(0)] & m(0, s) > 0 & q(0, δ(0)) ≥ 0

(g∗, h∗) = (0, δ(0)). (91)

Following the steps used in the derivation of (81), we obtain

For h∈ [δ(0), δ(s)] & m(0, s) > 0

(g∗, h∗)=(w(δ(s)), δ(s)). (92)

We note that (90) [which leads to (91)] is based on
the condition m(g, h) > 0 for h ∈ [s, δ(0)) and g ∈ [0, s],
which implies m(0, δ(0)) > 0. Moreover, for (92), we
have m(w(δ(s)), δ(s)) = 0. Then, by Lemma 4, from (87),
(91), and (92) we have f(s, 1) ≥ f(0, δ(0)) and f(s, 1) ≥
f(w(δ(s)), δ(s)), and combining the conditions in (87), (91),
and (92), we arrive at

If m(s, s)>0 & m(0, 1)<0 & m(s, 1)<0 & m(0, s)>0

(g∗, h∗) = (s, 1). (93)

Summary for Cases B–E: We note that (29) is obtained in
Case A. Combining (78) and (73) yields (31), while combining
(60), (84), (89), and (93) results in (30).
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APPENDIX G
PROOF OF THEOREM 4

It follows from (20) with (23) and (24) that

m(0, 1) = (1−λ−2γ+2ŝγ)β − (2ŝ−λŝ−γ−χ)γ. (94)

We note that (4) implies 1− λ − 2γ + 2ŝγ > 0, which
implies that if we require m(0, 1) < 0, we must have
2ŝ− λŝ− γ − χ > 0, which means the left hand of (32). Then
noticing 0 ≤ γ

β ≤ 1, but γ
β = 0 implies γ = 0, we straightfor-

wardly verify from (94) that (32) is equivalent to m(0, 1) < 0.
Following the same analysis, we conclude that (33) is equivalent
to q(0, 1) < 0.

From (29)–(31) we conclude that the CB influences Georgia’s
strategy (i.e., g∗�=0) if and only if m(0, 1) < 0. Thus, the proof
of (32) is established.

From (29) we conclude that the CB influences Hank’s strategy
(i.e., h∗�=1) if and only if m(0, 1) ≥ 0 and q(0, 1) < 0. We note
that q(0, 1) < 0 and m(0, 1) < 0 simultaneously do not hold,
since the condition q(0, 1) +m(0, 1) > 0 implied by Lemma 3
is violated. Therefore, the sufficient and necessary condition is
q(0, 1) < 0.
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