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Revisiting the nonlinear Gaussian noise model for hybrid fiber spans

Ioannis Roudas*, Jaroslaw Kwapisz, and Xin Jiang

Abstract: We rederive from first principles and generalize the theoretical framework of the nonlinear Gaussian noise
model to the case of coherent optical systems with multiple fiber types per span and ideal Nyquist spectra. We
focus on the accurate numerical evaluation of the integral for the nonlinear noise variance for hybrid fiber spans.
This task consists in addressing four computational aspects: (1) Adopting a novel transformation of variables (other
than using hyperbolic coordinates) that changes the integrand to a more appropriate form for numerical quadrature;
(2) Evaluating analytically the integral at its lower limit, where the integrand presents a singularity; (3) Dividing the
interval of integration into subintervals of size = and approximating the integral over each subinterval by using various
algorithms; and (4) Deriving an upper bound for the relative error when the interval of integration is truncated in order
to accelerate computation.

We apply the proposed analytical model to the performance evaluation of coherent optical communications systems
with hybrid fiber spans composed of quasi-single-mode and single-mode fiber segments. More specifically, the
model is used to optimize the lengths of the optical fiber segments that compose each span in order to maximize the
system performance. We check the validity of the optimal fiber segment lengths per span provided by the analytical
model by using Monte Carlo simulation, where the Manakov equation is solved numerically using the split-step
Fourier method. We show that the analytical model predicts the lengths of the optical fiber segments per span with
satisfactory accuracy so that the system performance, in terms of the Q-factor, is within 0.1 dB from the maximum

given by Monte Carlo simulation.
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. approximate solution of the nonlinear Schrodinger
1 Introduction - ,
equation!'’ and its vector counterpart, the Manakov

One of the most important theoretical achievements equation”, More specifically, many alternative

of recent years in optical telecommunications was the
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analytical formalisms, e.g., Refs. [3-14], have been
proposed for the estimation of the impact of distortion
due to Kerr nonlinearity on the performance of
coherent optical communications systems with no inline
dispersion compensation. Among those, the nonlinear
Gaussian noise model (see Refs. [7,9]), was established
in the consciousness of the scientific community as an
industry standard, due to its relative simplicity compared
to other, more sophisticated but more accurate models
in Refs. [10, 11], for example.

The nonlinear Gaussian noise model was originally
developed for a single fiber type per span, lumped optical
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amplifiers, and ideal Nyquist spectral®. Over the years,
it has been constantly revised and has been applied to a
variety of system and link configurations, e.g., see Refs.
[6,7,9,12,15-21].

The nonlinear Gaussian Noise-model Reference
Formula (GNRF) that provides the power spectral
density (psd) of nonlinear noise at the end of the link
is general enough to encompass the case of hybrid
fiber spans, i.e., fiber spans composed of multiple
segments of different fiber types (Fig. 1). However,
to the best of our knowledge, the application of the
nonlinear Gaussian noise-model to coherent optical
communications systems with hybrid fiber spans has
hardly received any attention to date. Notable exceptions
are the following papers: First, Shieh and Chen™ studied
coherent optical systems with fiber spans consisting of
a transmission fiber and a Dispersion Compensation
Fiber (DCF). Later on, the papers by Downie et al.l??!
and Miranda et al.”3! were dedicated to hybrid spans
comprised of quasi-single-mode and single-mode fiber
segments. More recent publications by Al-Khateeb et
al.2* and Krzczanowicz et al.®! focused on hybrid spans
for optical phase conjugation? and discrete Raman
amplification'®), respectively.

The aforementioned publications gave diverse
expressions for the nonlinear noise coefficient y used
to calculate the nonlinear noise variance (II%]L = )7P3,
where P denotes the total average launch power
per channel (in both polarizations). Obviously, these
formulas for y are interrelated and their apparent
dissimilarities are due to the fact that each individual

research group studied a different system topology.

Their dissimilarities can be also attributed to the use
of two slightly different formalisms by different authors,
i.e., Refs. [3,4] and Refs. [7, 9], separately. On most
occasions, only final equations for y were provided
without any detailed analytical proof, their direct
comparison is difficult.

Another issue is that numerical quadrature algorithms
for the accurate evaluation of the highly oscillatory
integral for the nonlinear noise coefficient y were not
discussed in any of the above papers. One reason that no
special attention has been devoted to the intricacies of
this calculation must be attributed to the fact that a 1 dB
crror in the nonlinear noise coefficient y results in only
1/3 dB error on optimum effective OSNR. To the best
of our knowledge, only Bononi et al.? considered in
detail the numerical evaluation of the GNRF formula for
the case of a single fiber type per span and ideal Nyquist
Wavelength Division Multiplexing (WDM) signals.

On a related subject, Poggiolini!”! recommended to
truncate the integration region to reduce the computation
time of the foregoing numerical quadrature. Since
Four-Wave Mixing (FWM) efficiency quickly drops
for increasing values of the mixing frequencies f;
and f,, it was suggested that one could neglect the
integration region beyond where the FWM efficiency
dropped below a specified level. However, this issue was
not investigated thoroughly in Ref. [7] or in subsequent
publications.

This paper is intended to fill the aforementioned gaps
in the prior literature. First, to reconcile dissimilar
formulas derived before for the nonlinear noise variance
of coherent optical communications systems with hybrid
fiber spans*?>-25! we review and rederive from first
principles the theoretical framework of the nonlinear
Gaussian noise model for hybrid fiber spans. We find a
general expression for the nonlinear noise variance for
the case of an arbitrary number of fiber types per span.
Then, we elaborate on the accurate numerical evaluation
of the integral for the nonlinear noise coefficient y. The
latter task consists in addressing four computational
aspects: (1) Adopting a novel transformation of variables
(other than using hyperbolic coordinates!”) that changes
the integrand to a more appropriate form for numerical
quadrature; (2) Evaluating analytically the integral at its
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Fig. 1 Long-haul coherent optical communications system with hybrid fiber spans.
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lower limit, where the integrand presents a singularity;
(3) Dividing the interval of integration into panels of size
1 and approximating the integral in each panel by using
various algorithms; and (4) Deriving an upper bound for
the relative error due to the truncation of the range of
integration to accelerate computation.

We apply the proposed model to coherent optical
communications systems with fiber spans composed of
quasi-single-mode fiber and single-mode fiber segments.
The accuracy of the final analytical relationship for
the nonlinear noise coefficient in long-haul coherent
optical communications systems with hybrid fiber spans
is checked using the split-step Fourier method and Monte
Carlo simulation. It is shown to be adequate to within
0.1 dB for the determination of the optimal fiber segment
lengths per span that maximize system performance.

2 Synopsis of the nonlinear Gaussian Noise
(GN) model for hybrid fiber spans

2.1 System topology

Figure 1 depicts the block diagram of a representative
long-haul coherent optical communication system with
hybrid fiber spans. The transmission link of total length
L is composed of a concatenation of N; identical spans.
Each span has length £; and comprises Ny fiber types.
Each fiber type is characterized by its nonlinear fiber
coefficient y, which is a function of the effective mode
area A.¢ and the nonlinear index coefficient n,; its
Group Velocity Dispersion (GVD) parameter 8, (or,
equivalently, its chromatic dispersion parameter D);
and its attenuation coefficient a. In what follows, the
index k stands for the k-th fiber segment per span. For
instance, the optical fiber lengths of the Ny segments
are £, by, ..., s N, and their effective mode areas are
Aetty > Aettys - - o Aeffo, respectively. The optical fiber
is followed by an optical amplifier of gain equal to the
span loss G = exp (Zlszl aiﬁsi) and noise figure Fjy.
We consider WDM and Polarization Division
Multiplexing (PDM) based on ideal Nyquist channel
spectra. The latter are created using square-root raised
cosine filters with zero roll-off factor at the transmitter
and the receiver. Furthermore, we assume that the
WDM signal is a superposition of an odd number N
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wavelength channels with spacing Av = R;. We denote
by P the total average launch power per channel (in both
polarizations) and by R the symbol rate. We want to
evaluate the performance of the center WDM channel at
wavelength A.

The performance of coherent optical systems without
in-line chromatic dispersion compensation is related to
the effective Optical Signal-to-Noise Ratio (OSNR)
at the receiver input. This quantity takes into account
the Amplified Spontaneous Emission (ASE) noise, the
MultiPath Interference (MPI) crosstalk (in the case of
quasi-single-mode fibers), and the nonlinear distortion.
All the above effects can be modeled as independent,
zero-mean, and complex Gaussian noises with a good
degree of accuracy. More specifically, the OSNR. at a
resolution bandwidth Av,.s can be well described by the

analytical relationship®”!

OSNRgs =

P
i+ pP+7jP3

where a is the ASE noise variance, BP is the crosstalk

M

variance, and )7P3 is the nonlinear noise variance. The
coefficients a, 8, and y depend on the fiber and system
parameters(?”),

2.2 Model overview

The purpose of this section is to derive an analytical
formula for the nonlinear noise coefficient y in long-haul
coherent optical communications systems with hybrid
(iber spans.

To this end, we will extend the conventional nonlinear
Gaussian noise model!®7-%16—initially formulated for a
single fiber type per span—then to multiple fiber types
per span.

There are four steps used to calculate the variance
of nonlinear noise in long-haul coherent optical
communications systems with hybrid fiber spans:

(1) Solve the Manakov Eq. (2) by using regular
perturbation theory in the frequency domain!?$2),
assuming that the fiber attributes, i.e., the attenuation
coefficient a, the GVD parameter 85, and the nonlinear
fiber coefficient y, are piecewise constant functions of
distance.

(2) Find an analytical expression for the first-order
perturbation correction (Eq. (20)) to the unperturbed
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wavefunction.

(3) Derive analytical expressions for the four-wave
mixing efficiency for a single hybrid fiber span (Egs.
(27)—~(29)) and multiple identical hybrid fiber spans (Egs.
(31)—(33)).

(4) Substitute the above expressions into the GNRF
(see Ref. [6, Eq. (18)] or Ref. [9, Eq. (1)]) to obtain
a double integral (Eq. (45)) for the nonlinear noise
coefficient y.

The final analytical expressions for calculating the
nonlinear noise power spectral density in long-haul
coherent optical communications systems with hybrid
fiber spans are summarized in Table 1. We can make the
following observations:

(1) As in the case of homogeneous fiber spans”?,
the nonlinear noise coefficient y for hybrid fiber spans
(Eq. (45)) depends on two factors: representing the four-
wave mixing efficiency per span and the accumulation
of four-wave mixing contributions from successive fiber
spans (i.e., phased-array term).

(2) The four-wave mixing efficiency per span factor
depends on the characteristics of the different fibers
per span. It is expressed as a simple formula (Eq. (42))
that depends on two general parameters for each fiber:
the complex nonlinear coefficient (Eq. (28)) and the
normalized complex effective length (Eq. (29)).

(3) The coherent addition of the contributions of

successive fiber spans to the total nonlinear noise is given
by a phased-array factor (Eq. (41)). A major difference
compared to the case of homogeneous fiber spans’-*! is
that, in the hybrid fiber span case, this factor depends
on the average phase mismatch (Eq. (32)) of all optical
fibers per spani.

For computational convenience, the double integral
can be converted into a single integral by using a
transformation of integration variables. The final integral
(see Eq. (59) in the main text) is an improper integral
of the second kind (i.e., the integrand becomes infinite
at the lower end of the integration interval). In addition,
the integrand oscillates in the integration interval. The
pseudocode for the numerical quadrature algorithm is
shown below (see Algorithm 1). To accurately compute
the integral (Eq. (59)) using numerical quadrature, it is
necessary to analytically calculate the contribution in
the vicinity of the singularity, then divide the remaining
integration interval into w-subintervals, use a numerical
quadrature method for each subinterval, and add up the

results.

3 Manakov equation: Perturbation theory

Before presenting our analytical calculations, in this
subsection, we review some terminology and notation
used throughout this paper. A full list of symbols is given
in the Appendix.

Table 1 Compendium of mathematical formulas summarizing the nonlinear Gaussian noise model for coherent optical
communications systems with hybrid fiber spans. The numbers refer to the corresponding equations in the main text.

Main result (double integral form)

Nonlinear noise coefficient

7= Sl 3 e (1, ) ahidr 3)
Integrand
E(f1, 12) =n(f1. )¢ (f1, f2) (40)

Auxiliary function

FWM efficiency per span

D o) =[S0 5 i e i )| D)
Complex nonlinear fiber coefficient
Tk, o) = ye™ Xm= @1 S o 28)
Complex effective length

N ) 1—e~ %k (172 sy
L (f1, fo) = Lo 22 @9

Phased-array factor

oy 1 s [NSAB(S1L f2) /2]
¢ (f1. f2) T NZ T sinllAB(f1. /2) s /2] @D

Average phase mismatch

AB(fi, f2) =65 0 ABk(fi, f2)lsy (32)
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Algorithm 1 Pseudocode for the nonlinear noise coefficient.

Function y

>  calculation

Input variables

Fiber parameters

ax > Attenuation coefficient
Bax > GVD parameter
Vi > nonlinear coefficient
Ly > Segment length

System parameters

L > Span length
Liot > Link length
Ry > Symbol rate
Nen > Number of WDM channels
Ny > Number of fiber segments per span
F4 > EDFA noise figure

Main code

> Lower end of the integral

sum < [m (%1) 18 e@ae + 55(0)]

Nint < [(Go —8)/m] > Number of m-intervals

while 1 < n < Nj, do

sum < sum + K (/'(';Til)n In (%) £(0)de
end while
return sum > Nonlinear coefficient y

end function

Abbreviation: EDFA = Erbium-Doped Fiber Amplifier.

We represent the optical signal by a two-dimensional
complex vector y(z,t), whose components are the
complex envelopes®® of the signals along the x, y States
Of Polarization (SOPs). The vector components are
functions of the position z inside the fiber and the time ¢.

We adopt the shorthand notation of Refs. [10,
14], for partial derivatives, where d, denotes partial
differentiation with respect to the independent variable
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x, 82 denotes double partial differentiation with respect
to x, and so forth. Similarly, using Euler’s notation, the
symbol D, indicates a regular derivative with respect
to x.

In the remainder of this section, we discuss the formal
derivation of a general expression for the nonlinear
noise coefficient y in Eq. (1). Our goal is to establish
the connection among disparate formalisms in previous
publications!??-?*!, Portions of this formalism are taken
from Refs. [7-9], with changes in notation.

Based on Agrawal’s derivation!!! but using the
engineering convention for the Fourier transform!3°™,

the Manakov equation can be written as follows?®':

v+ C 2y~ P2 iy )
— T C DIy, )

where we neglected the third-order chromatic dispersion
and the optical amplifier noise. Notice that y (z) =
8y (2)/9121,

The difference between the above form of the
Manakov equation and the one used in the conventional
nonlinear Gaussian noise model”-*! is that we considered
variable coefficients a (z), B2 (z), and y (z) . Further
down, we assume that a (z), 82 (z), and y (z), are
piecewise constant functions of distance to express the
fact that each optical fiber segment of a hybrid span has
different characteristics.

3.1 Solution for harmonic waves

Based on the Manakov Eq. (2), we will study the non-
linear propagation of each spectral component of the
launched optical signal through the optical fiber. Initially,
we will assume that the signal generated by the optical
transmitter is pseudorandom!”-% 121, i.e., periodic in time
with period T. Due to the periodicity of the optical
signal, its spectrum is composed of discrete spectral
lines. Later in the paper, in Section 6, we will increase
the signal period to infinity to deal with continuous signal
spectra.

Since the launched optical signal is periodic, it can be
expanded into exponential Fourier series

*For a time-domain signal x (¢) with spectrum X (f), the direct
Fourier transform is defined as X(f) = [fooo x()e 2/ dy
and the inverse Fourier transform is defined as x(¢) =
jfooo X(f)eLZTEftdf
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y(z,0) =) up(2)e 3)

nez
where fo =1/Tp is the fundamental frequency,
fn = nfy are the Fourier harmonics, w, = 2n f, are
the corresponding angular frequencies, and u,(z) are
complex Fourier coefficients which are vector functions
of position. Later on, we omit the limits of the infinite
summation in the Fourier series in Eq. (3) to avoid
clutter.

Substituting Eq. (3) for y(z,t) into the Manakov
Eq. (2) gives

D [Dzun(2) + @ (2) un(2)]

n

= —7(2) Y [uf(2) - ui (2)]u; (2)e @O (4)

i,k
where a dagger 1 denotes the adjoint matrix and we set
_ 1
an(2) =3 [a(z) + B2 (2) w7]. (5)

The Fourier coefficients of two equal functions are
equal®?!, By equating the angular frequencies in the two
sides of Eq. (4)

wp = w0 +w; — wg, (6)
as well as the corresponding Fourier coefficients, we
obtain the following system of coupled, first-order,
Ordinary Differential Equations (ODEs)

Dzun(z) + an (z) un(2)
=—7(@) Y W@ w@wkE. O
(i,),k)es2,
for n € Z, where §2,, denotes the set of all index triplets
for combinations of w;, ®;, and wy that create nonlinear
interference at angular frequency w, through four-wave

mixing due to Kerr effect
2 =0, ). k) €L’ 0y = 0 +0j —an}. (8)
3.2 Perturbation theory

To formally apply perturbation theory to the problem at
hand, we artificially insert a small parameter ¢ into the
Right Hand Side (RHS) of Eq. (7)*!
Dyuy(z) + @y (2) up(z)
= —18Y(2) Z [u}; @) ui(2)]u;(z), )
(.7, k)€
where we assumed that ¢ is small enough that the
impact of nonlinear effects on the solution is a small

perturbation. At the end of the calculation, we will again

set ¢ = 1 to obtain an approximate analytical solution of
Eq. (7). The accuracy of this solution will be determined
by comparing the agreement among numerical and
analytical results for the performance of various long-
haul coherent optical communications systems.

We assume that the solution of Eq. (9) can be

expressed in terms of power series of the small parameter
£[28.29]

u,(z) = Z Unm(2)e™, (10)
m=0

where the term uy,(z)¢™ denotes the m-th order
correction to the unperturbed solution u,((z).

By substituting Eq. (10) into the modified Manakov
Eq. (9) and equating coefficients of like powers of €,
we obtain the following system of uncoupled, first-order,
ODEs:

(1) Unperturbed ODE:

Dupo(z) + apn (2) uno(z) = 0. (11)

(2) ODE for the m-th order perturbation (m > 1):

Dzunm(z) + @n (2) upm(z) = =1y (2)

Z Z [ultk/(Z)'uii/(z)]"jj/(z)’ (12)
(i,),k)eRn G, k' )E¥m
where ¥,,, denotes the set of non-negative integers i/, j’,

and k’
U =G j k) eNg i’ + j + k' +1=m},
(13)
where Ny is the set of natural numbers including zero.
In the following, we will retain only the first-order
perturbation term
Un(z) = uno(z) + cun1(2). (14)
The ODE for the first-order perturbation is given by Eq.
(12) by settingm =1
D;uy(z) + a, (z) up1(2)
=—7@) Y (@) -wio@ujo). (15)

(i,),k)ew,
The unperturbed ODE (Eq. (11)) can be solved by

separation of variable
Uno(2) = epoe™ 0 T, (16)
where ¢, is the Fourier coefficient of the n-th spectral
component at the fiber input.
Assume that the solution of Eq. (15) can be written in
a form similar to Eq. (16)

Un1 (2) = e (2)eJo @0’ a7
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where the complex coefficient ¢,;(z) is a function of
distance z to allow for nonlinear coupling introduced by
the Kerr effect.

By substituting Egs. (16) and (17) into Eq. (15), we
obtain the simplified ODE

Drem(z) == (2) Y. lefy-ciolejo

(,j,k)es2n
c e~ Jo @@z’ (18)
where we defined the complex attenuation coefficient
ap(z) =a; (z) +a; (z) +ay(z) —an(z), (19)
where star denotes the complex conjugate.

By integrating both sides of the above ODE over a

single span length, we obtain

8t
Cnl(fs)=—3 Z [C]toin]CjOXijk(zs), (20)
(@i,),k)es2y,

where we defined the complex FWM efficiency X (£5)

ts zZ = ’ /
X (65) = / (e Baeq | o
0

To derive Eq. (20), we assumed, as initial condition, that
the complex amplitude of the nonlinear noise at the fiber

input is zero, ¢, = 0.
4 FWM efficiency for a single fiber span

Let’s focus our attention on the complex constant
X;jk (€s) given by Eq. (21). By substituting Eqs. (5)
and (6) into Eq. (19), the complex attenuation coefficient
a;j can be rewritten as
aj(z) = a(z) + 1ABu(z), (22)
where ABjjx(z) is the phase mismatch
ABi(z) == =P () (@i —wi)(w; —wk).  (23)
As a worst case scenario, we will calculate the
nonlinear noise generated at the center of the WDM
spectrum. Setting n = 0 in Eq. (6), we have
W = w; + ;. (24)
We can then drop the subscript k£ from the notation
and simplify the relationships of the complex attenuation

coefficient and the phase mismatch
aij(z) = a(z) + 1ABi; (2), (25a)
ABij(z) = — P2(2D)wjw;. (25b)
For hybrid fiber spans, the fiber attributes are constant
within each segment. For the m-th fiber segment of the
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span, the above expressions are rewritten using slightly
different notation for mathematical convenience

am(i, j) =am+ tABm(, j),

ABm(i, J) = — B2, wiwj. (26)
where a,, is the (real) attenuation coefficient and 85, is
the GVD parameter of the m-th fiber segment.

For the case of Ny fiber segments per span, we will
show that the complex FWM efficiency for a single span

is written as a sum

Ny
Xij (bs) = Y Pacli j) L (i )
k=1
where the complex nonlinear fiber coefficients are
defined as

27)

A . . —_ k—1 i
Dili J) = ye” Zm=ram@Dbm | (28)

and the complex effective lengths are defined as

| — o=k )k

Lew (i, j) = i | (29)

Notice that Eq. (29) deviates from the traditional
definition of the effective length!**!. The rationale behind

our choice is that it allows us to write an easy-to-
remember Eq. (27) for X;; ({s).

Proof.
B2, , and yi are different for different fiber segments

Since the values of the fiber attributes ay,

but constant within each segment, we break up the
integration interval in Eq. (21) into Ny subintervals of
width £, . More specifically, we partition the z axis with
a sequence of Ny + 1 points zo, ..., ZNys where zg = 0
and zy, = {;. The k-th fiber segment has endpoints
Zg—1 and zg, and length 5, = zx — zx—1.

We shall integrate over different fiber segments
separately and add the results

¢ L
Xij (bs) = / y (z)e o @ij @iz g
0

Nroorz -
) / y(z)e™ /o ais 4 g,
k=1"%k=1

Since y(z) and exp[—[y* ' a; (z)dZ'] are

constant within the subinterval [z;_1, zx], they can be

factored out of the integral

Ny
Xij s) = Z )/ke_f()k_l ajj(z')dz’
k=1

Zk —_[F ..(7 ’
/ e ey GGy
z

k—1
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Performing the integration in the exponents of the last
expression yields
Ny k=1 . B
‘ - X o aij(z)dz
Xij(Ls) = ) yee ="
k=1

zx
. / e~ 4ij (D (z=2k-1) 4,
zZ

k—1
Since a;; (') is constant within each subinterval
[zx—1, zx] and using a change of integration variables
for the latter integral, we obtain
N k—1
4 - > (i) s,

yke m=1
k=1

esk .
. / e~ .))z 4,
0

Using the definitions for the complex nonlinear fiber

X (ls) =

coefficients (Eq. (28)) and the complex effective lengths
(Eq. (29)), it is straightforward to show that

L =Y am i)y 1 —e— k@) s

Xij (by)= e m=l P
NOEDRT i)

k=1
Ny

=D Pkl )L G, ) (30)
k=1

|

5 FWM efficiency for multiple identical
hybrid fiber spans

For Ny identical spans of length {; with Ny fiber
types per span and lumped optical amplifiers between
successive spans to compensate for fiber attenuation, we
will show that the complex FWM efficiency is given by
sin[N; AB(i. j)Ls/2]

Xii(d
)" GnlAB G )t/ 2]
et Ny =D 4B, e 2

Xij (Nses) =

(€20
where AP is the average propagation constant mismatch

Ny
ABG,J) =€) AB(, j)ts |, (32)

k=1

or, equivalently, 5 is the average GVD parameter

Ny

Br=t1) " Bolsy |- (33)

k=1

Proof.
spans of length £,. The fiber attributes a(z), B2(z), and

Consider a link composed of Ny identical

y(z) are periodic functions with fundamental period £.

Therefore, we can write

a(z) = a(z —mdy), (34a)
B2(z) = Pa(z —mds), (34b)
y(2) = y(z —miy), (34c)

form € Z, z € [0, Ny&s], and z — ml; € [0, £s].

It follows that the complex attenuation coefficients
a;j(z) are also periodic functions with period £. Thus,
we can write

aij(z) = aij (z —miy), (35)
form € Z and z as above.

To calculate X;; (Ns€s), we start from Eq. (21), break
up the integration interval into subintervals of width £,
and use the periodicity of Eqgs. (34a)—(34c) and (35) to
obtain

NSZS - , ,
Xij (Ngls) = / y(2) e_.fo aj;(z')dz dz
0

Ns—1( (m+1)Ls L
=2 / Wz—mily)e Imes @ij @=mbs)dz g,
m=0 Y Mts

e J a2

By changing the integration variables for the integrals
in the curly brackets in Eq. (35), we obtain

Xij(sts) =

L Ng—1 ]
{/ )/(Z)e_-[é L_Iij(Z/)dZ/dZ} Z e__[omeA dij(Z/)dZ/
0 m=0
m—1
Xij (€s) NSZ_I = Z Jats " a1y @ ati)a
= AjjLs e “

m=0
By performing a change of integration variables for
the integral in the exponent, we obtain
Ny—1
Ly ~ ’ ’

Xij (Nsbs) = Xij(bs) Y e7™ho" @& 36)
m=0

Due to periodic amplification at the end of each span,

Ls
we discard the real part of / a;j(z')dz’ and replace
0
Ls
the latter integral with ¢ ABij(zhdz'.

0
Using the definition of Eq. (32) yields
Ns—1
Xij(Nsts) = Xij(bs) Y e maP0DE - (37)
m=0
Finally, by summing the geometric series in Eq. (37),

we get
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1— —lN?Aﬂ(l J)s
— e tABGL s
sin[NgAB(Gi, j)s/2
i _[ LABG /)
sin[AB(i, j)¥s/2]
e Ns—=DABG, /s /2. (38)

Xij (Nsts) = Xij (Ls)

6 General formula for the nonlinear noise
variance for hybrid fiber spans

In this subsection, a passage is made from discrete
to continuous signal spectra when the period of the
transmitted signal Ty — oo. In the following integrals,
we substitute the dummy variables f; and f> for the
frequency components f; and f;, and abandon the
indices i and j, used so far to keep track of the
frequencies in the discrete setting.

We consider an aperiodic WDM PDM signal that
results from the superposition of N, wavelength

channels modulated at symbol rate Rs. Substituting

[6, Eq. (18)

our main result Eq. (31) into the nonlinear GN RF'
the nonlinear noise psd Gnr; (f) can be written as

Gria (/)= 3o N2 / [ G()G(f)

cG(fit = NEfi—f = )dfidf,
where G(f) is the psd of the transmitted PDM WDM
signal and the integrand equals as follows:

[E(fi ) =0 (. n(f. )] (40)
The first factor in Eq. (40) is the normalized phased-

(39)

array term, defined as

1 sin? [NsAﬁ (f1. f2) £s/2)]
, (41
¢ (fi, fo) = 228t ey | @Y

where AP is the average phase mismatch in Eq. (32).

The second factor in Eq. (40) is the four-wave mixing
efficiency, defined as

Ny 2

n(fi. o) =D % (fi. f2) Lem, (f1. fo)| |- (42)

k=1

which is the continuous counterpart of | X;; (€5) |* (see
Eq. (27)).

7 Special case: Ideal Nyquist WDM spectra
with zero roll-off factor

In the remainder of the paper, we focus on ideal Nyquist
WDM spectra with zero roll-off factor. Furthermore,
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we assume that the WDM signal is a superposition of
an odd number N, wavelength channels with spacing
Av = Ry. The optical bandwidth of the WDM signal is
By = NenR; . (43)
Approximating the hexagonal integration region-",
resulting from Eq. (39) by a square, the nonlinear noise
coefficient for the central WDM wavelength channel,
measured in a resolution bandwidth Avg, is given by
the double integral

16N2A e Bo/2 (Bo/2
= i f / E(ffo) dfidfs. (44)

By/2J—Bg/2
7.1 Single-integral formulation
We shall use a transformation of variables and iterated
integration to convert Eq. (44) into a single integral.
To begin, since £(f1, f») is an even function of f;

and f,, we can reduce the region of integration to the
upper right quadrant of the coordinate plane

~ 64N2Avres Bo/2 pBo/2
=2 / / ECh ) dfidfs .

27
(45
The integrand & (f1, f2) depends only on the product

of the integration variables fi f2, so it is beneficial
to define a new integration variable ¢ that is directly

proportional to fi f>
Aﬂﬁs _ fl f2

{ = = ;
2 2/
where f, is the average phased-array bandwidth®!

defined as
fot=2n1Bal s . 47)

Then, we change the integration variables from f;
and f> to f1.¢. By holding f; fixed and differentiating
with respect to f,, we obtain d¢ = fldfz/(2f¢2), or,
equivalently, d f, = (2 fd)2 / f1)d¢. Since the upper limit
of the integral in f; is f, = Bg/2, the upper limit of the
integral in ¢ becomes { = fi Bo/(4f¢,2).

With these substitutions, we obtain

Bo

18 N2Ave , (2] [ df
R s / / Z{ L

(46)

27

Finally, we change the order of integration to
transform the double integral into a single integral. By
changing the integration order, the range of f; becomes
[(4 f¢2§ )/ Bo, Bo/2]. Now ¢ is the integration variable of
the outer integral. Its limits correspond to the total range
of ¢ over the integration region [0, B3/(8,)]. Hence,
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<1

B2
Z%Mﬁ/w‘% [0 e
27 R o [aszume i

(49)

The inner integral is elementary and can be calculated

in closed-form. Therefore, the double integral can be
transformed into a single-integral

2 2
128 AVies 5 o /Bo/<8f¢>> B?
= — N l d .
(50)

The latter integral must be computed using numerical

quadrature.
7.2 Useful auxiliary quantities

In this subsection, we shall define some useful auxiliary
quantities that will enable us to rewrite the integrand of
Eq. (50) in a more appropriate form for computation.

Notice that p; and I:effk are given by Eqgs. (28)
and (29), respectively, which depends on the products
ails, . We can substitute these products by new complex
coefficients xi = oLy, .

We can rewrite 7, as

k—1
A - xm®
Vi &= Y€ =1 ) (51)
and I:effk as
Ot | — =% ®
Leg, =y, ———, (52)
eI )

where, as mentioned above, we defined the normalized
power complex attenuation coefficients xg (¢) as

X (§) = o (§) Ly, = 2[vi + 8 (§)], (53)
where v; stands for the normalized electric field

attenuation coefficient,

¢
v o= (54)

and {x (¢) for the normalized electric field phase shift,
G o) ABrbs _ N2 o
2 2y
Similar to Eq. (47), fg, in Eq. (55) denotes the phased-
array bandwidth for each fiber segment

f¢;1 = 21/ | Bak| Ly - (56)

To further simplify the notation in Eq. (55), we can

(55)

define the multiplicative coefficients
— 13
A = —,
1, Pk

so that the arguments i (¢) can be rewritten in compact

(57)

form as a function of Az and e

& () = AiS. (58)
7.3 Final expressions

After these definitions, the formalism for calculating the
nonlinear noise coefficient  can be rewritten in compact
form.

From Eq. (50), the nonlinear noise coefficient,
measured in a resolution bandwidth Av,, = Ry, is
expressed as a single definite integral

~ ) Zo
= [ (20w oo
0 ¢
where we defined
128 5 5
=—-"N/, 60
CT R (©0)
B2
b= —2. ©61)
8f ¢2
The efficiency function £ (¢) is written as a product
EQ =9 O] (62)
of the normalized phased-array term
1 sin?(Ns&)
= ——, 63
¢ (©) N2 s (@) (63)
and the four-wave mixing efficiency
Ny 2
N =Y 7% @) Lem, (O] |- (64)
k=1

8 Numerical method

8.1 Improper integral

We want to numerically evaluate the integral of Eq. (59),
which we rewrite below without the coefficient «

B o ¢o
1= /O In (?) £z (65)

This is an improper integral of the second kind since
the integrand has a singularity at zero, glim (/) = oo.
—0

In order to evaluate I, we split the integration interval
into two sub-intervals

- "In (i—") i+ | “n (%") E(E)C. (6)

where § is in the vicinity of { = 0.

Some insight into the behavior of the integrand of
Eq. (65) can be obtained from Fig. 2. As indicated by
the red line, g(¢) = In(go/¢) £(C) is oscillatory. The
oscillation is mainly due to the phased-array factor
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0 0.5 1.0 1.5 2.0 2.5 3.0
{n

Fig. 2 Sketches of In(¢y/¢) (in green), ¢({) (in blue),
the normalized 7({) < 7n(¢)/n(0) (in brown), and their

product g(¢) = In(Go/$)$(&)n()/n(0) (in red). Conditions
(for illustration purposes only): Ny = 4,v = 1, {y = 10w, one
fiber type per span.

¢ (¢) (in blue), which is a periodic function with period
1. Principal maxima of unit height occur at integer
multiples of 7. Between consecutive principal maxima
(i.e., over a range of m) there are Ny — 1 minima at
multiples of w/Ns; and Ny — 2 subsidiary maxima

approximately midway between successive minima.

Thus, for a large number of spans N, the multiple-slit
interference term ¢ (¢) rapidly varies over the integration
region.

For the first integral in Eq. (66), we can write

8 ;0
/ 1n(—)5<¢)dc
o\
() [ "a(®
_m(g)/o g(g)du/o ln(z)é(é)dé. (67)

For the second integral in Eq. (67), taking the Taylor
expansion of £({) and integrating by parts, we obtain the
following expression:

8 | s dr — o0 §k+1 Dk 0

JREIGEGTS 3 s DO o
An alternative expression is given by Eq. (77) in
Section 8.2.

Since 7 (¢) (in brown in Fig. 2) is a slowly varying
function of £, in a small interval [0, §], we can use the
approximation £ ({) = n(0) ¢ (¢) in Eq. (68). From
L’Hopital’s rule, ¢(0) = 1. The odd derivatives of ¢ (&)
are zero. The first few even derivatives 8?]‘ ¢(0), for
k € N, can be evaluated analytically,

2
70) = -3 (N -1), (69)

0p(0) = %(2NS4—5NS2+3). (70)

For sufficiently small §, keeping only the zeroth-order
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term of the sum in the RHS of Eq. (68) is appropriate

/Osln (%0) §(0)d = 1n (%")/Oﬁg(g)dgwg(o)_ 71)

We can evaluate § in Eq. (71) by imposing the
condition that the zeroth-order term of the Taylor series
in Eq. (68) should be much larger than the subsequent
terms so that we can truncate the Taylor series to the
zeroth-order term. Consequently, § should satisfy the

following inequality:

53
7132 026 (O] < 8€(0), (72)
which yields
132 3
5 < 22.3 Eq.(69) 23 ~ 3«/3’ 73)
192 0)] Nz-1) N,
for Ny > 1.
Then, the two remaining integrals
) %o
[ (%) e, 74)
5 ¢
and
)
| s as)

in Egs. (66) and (67), respectively, can be calculated
numerically.

There are several numerical quadrature methods for
highly oscillatory integrals’®*!. A rudimentary technique
to uniformly sample the oscillatory integrand is
Simpson’s quadrature®. The integration interval can be
subdivided into subintervals of width 1t/ Ns. We sample
each subinterval N, times. Therefore, the distance
between adjacent nodes is A = 7/ (NyNy) .

We have approximately N,, = [{o/m] periods of
¢ (¢) in the interval [0, {o] . Then, we have N, NgN,

nodes in the interval [0, N, w]. Summing slices along

nt
the ¢ axis can become cumbersome, since Egs. (43) and

(61) give
N2 R%|B,| L5
N, = {%W ) (76)

so the number of periods of the multiple-slit interference
term ¢(¢) in the integration interval increases
proportionally to the span length £; and quadratically
with the number of WDM channels N, and the symbol
rate R,.

Alternatively, the integral can be numerically
evaluated using a commercial software tool like

Mathematica®®. For instance, the highly-oscillatory
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integral Eq. (65) can be accurately computed by

partitioning the integration interval into 1 subintervals,

using the function NIntegrate in Mathematica, and

adding up the results.

8.2 A more rigorous treatment of the integral value
in the vicinity of singularity

We will show that the part of the integral /(0,§)
contributed by a small interval (0, §) in the neighborhood

of zero is given by

¢
10.5) = /0 (g)smdc

~ 1(0) In (C—O) 5+ st_l (l - L) sin(26)
Nj ] = N;
Ns—1
+ ";2) 5+ Z (
where Si(x) denotes the sine integral
Six) = /Ox sin[(t) d

The estimate of Eq. (77) is derived by assuming that
8 is sufficiently small, so that n(¢) ~ n(0).

) Si(2j6) |, (77)

Proof. We notice that the phased-array term, when

multiplied by Ny, coincides with the Fejér kernel®”!
Ny—1

Ns¢(§)— 1 sin (st)_ Z (I_M) 20t

n2
@ j=—Ns+1 §
(78)
which arises in the Cesaro summation of the Fourier
series of 7 periodic functions. In particular, it is

mt-periodic, non-negative, and with period average

1 T
. /O Ny (©)dE = 1. (79)

First, we rewrite the sum of Eq. (78) in real form
Ng—1
MO =142 % (1-
Then, it is stralghtforward to show that
Ns—1 oy |
/ Ny (0)de = x + Z (— - —) sin(2jx). (81)

Next, we compute the followmg auxiliary integral:

b
Ky, (5) = /0 G/ONPOAL.  (82)

Notice that Ky, (5) can be rewritten as a double

)cos@,;) (80)

integral
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) b
Kn,(6) = /0 [/{ gds} No(©)dz.

By switching the order of integration, we obtain

§ s
Ky () = /0 %[ /0 N@(:)dé] ds

5 N
= - -—— 2 d
/ P s+§:(j N)sm(]s) s

Ng—1 § . .

1 1 sin(2js)
() [ e,
Z J NsJ)Jo S

j=1
Ns—1 278 .

1 1 7% sin(t)
=6 -—— dt
2wl

J_
N

=6+ (—, - —) Si(2j6) . (83)
; J N;

‘We can write

10.8) = /0 (i")s(z)dz

3
= [0 (%) mpomon:
_10) IAWE
= Ts |:1f1 (g) /0 Ns¢(§)d§
§ 78
+ /0 In (E) qus(z)dz} . (84)

Substituting Eqs. (81) and (83) into Eq. (84), we
arrive at Eq. (77). |

8.3 Truncation error

In this section, we estimate the tail contribution to the

integral / in Eq. (65), as given by
@0)
I(p, =
(1. t0) fM n(2)ewu. @)

To simplify formulas, we take the ¢ cutoff value
i € (0, &) of the form u = (M + 1)wt, where M is
a natural number. When considering large &g, little
is lost in assuming that o is also a multiple of m,
o = (N + D). Our goal is to prove the following

rigorous upper bound:

NyI(p, §0)<F2—arccot(1‘i ) (Z—") (86a)

P (ar)
Mrc M

where I', defined in Eq. (93) in the following, captures

(86b)

the non-linearity and o, defined in Eq. (91), is the
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minimal adjusted attenuation. The second inequality
1/x for x > 0) reflects the 1/ M
asymptotics for large M. The upshot is that, when g

(based on arccot(x) <

is large and the oscillatory integrand in I becomes
problematic, I can be typically approximated to be

within a few percent by its truncated version

10.) = /O (i") §0dE. 87

with a rigorous relative error €, bound

F—Zl (fo) 38
S N0 0 M\ w ) (88)

Proof. We derive Eq. (86a) now. Substituting
in Eq. (64) the definitions of the complex nonlinear
coefficients P, (¢) and complex effective lengths
ieffk (¢) in Eq. (64), given by Egs. (51) and (52), yields
a more detailed formula for the FWM efficiency

Ny B

- { . Z 2Am(om+i8) 1 —e ZAk(gk'Ht)
()= E Vike m=1 Sl

Pt 2(0x +18)

(89)
to best capture the dependence on ¢, we introduced
normalized, chromatic dispersion-adjusted, and real

attenuation coefficients for each fiber type

op = 1 |B2]
’ Ak 2 |ﬁ2k|

Recall that vi and Ay are given from Egs. (54) and

aply . 90)

(57), respectively.

When the o3 do not vary dramatically between the
fiber types, which is typically the case, a simple upper
estimate of 7({) can be made in terms of the minimum
value

o:=min{og : k=1,...,Nr}. (C2Y)

Specifically, combining the triangle inequality with
1+e" 24k %%k

the monotonicity of ~*——— as a function of o} gives
y 2,/0,%+§2 g

k—1 2
- Z 2Amom 1+e_2kk“k

Ny ),
n@Q) <D w=2e m=t —_—
P 2,/02+¢2

2
< %Vk&e i !
= et lk 2 62+§2
=r? ! 92)
- 02+§‘2’

where we introduced the worst-case (real) effective
nonlinear coefficient
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k—1
-3 21m01+e_2'1k0

i
L

I = E e m=1 — (93

k=1)/k P 5 93)

One can think of I" as arising from a hypothetical
situation when the nonlinearities of individual fiber
types only face the amount of attenuation of the
lowest attenuation fiber and happen to all superpose
constructively.

As a consequence, for any non-negative decreasing
function f(¢) and any {;, we have

1 [étm
1 / Ny (@) FOE < f(C). (94
T

&
We are ready to estimate /(u, {o), or rather its N

rescaled version

J (1. Go):= NsI (i, So) = / NM(CHH(?)U(C)@-

95)
(M + 17 and ¢y =
(N + 1)7 for natural N > M, combining inequalities

Keepig in mind that p =

Egs. (92) and (94) and using the monotonicity of
2
1@ = n () 7 eives

J (1. 60) = :0 N O (Do)
v N0 (2)
y
)

Upon setting u’ := M1 = u —  for brevity, the last
integral can be integrated by parts

bt 1 B to w
I o e 1 e O]
%o
+ /M/ % [% arctan(;):| d¢. o7

By using the crude estimate arctan(x) < /2, the

above expression cannot exceed

—In (Z—O) [l arctan ( )] “ l
) Lo w 4“
= l [E — arctan ( )i| (f_o)
o2 w
éarccot (l: ) In (M/) . 98)
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Looking back at Eq. (96), we have shown that
1 /
J(1, &) < I'*>—arccot (&) In (E—O/), which is the
o o 7’
promised by Eq. (86a).
8.4 Upper bound for 1(0, §)

As a corollary of the above calculations, an upper bound
can be found for 7(0, §). Using that sin(2jx) < 2jx (for

x > 0) in Eq. (81), we have
Ns—1

§ .
/ Ny (£)de <6426 > (1 - ﬁ) = Ni§. (99)
0 j=1 s

From Eq. (83), since Si(¢) < min{¢, 2}, we have the
following inequality:

Ny—1

< 1 1

Kn,(8) <8+ Z (—. — —) min{2j§,2}. (100)
j=1 J NS

In particular, choosing 2§ under the minimum, we

get
Ny—1

N s A J ,
Kn,(§) <6426 E 1—— )= N. 101
NS( ) + = ( NS) N ( )

Then, substituting Egs. (99) and (101) into Eq. (84)
and using Eq. (92), we obtain the following bound:

re ¢
10.8) < — [m (3") + 1] 5.

9 Result and discussion

(102)

In this section, we present an application of the proposed
analytical model to the optimal design of a transatlantic
coherent optical communications system with hybrid
fiber spans composed of two fiber types, a Quasi-
Single-Mode Fiber (QSMF)[3:3! and a typical submarine
Single-Mode Fiber (SMF). The effective mode area of
the fundamental mode for the QSMF is much larger than
the one of commercially-available, ultra-low-loss, large-
effective-area SMFs. Therefore, launching light in the
fundamental mode of the QSMF results in a reduction of
the nonlinear distortion during propagation. In practice,
however, there is always some random coupling from the
fundamental mode to higher-order modes and vice versa
because of fiber irregularities. This leads to MPT?7-401, A
trade-off between nonlinear distortion and MPI can be
achieved by using hybrid fiber spans composed of QSMF
and SMF segments, where the QSMF is placed at the
beginning of each span, to reduce most of the nonlinear
distortion, followed by the SMF segment, to limit MPI
to acceptable levels.

The proposed GN model is used to compute
the optimum QSMF/SMF splitting ratio per fiber
span. The value of the analytic approach is that it
allows us to obtain a fast approximate solution to a
problem that would be otherwise too time-consuming
to solve numerically. In the following, we check the
agreement between the analytical model and Monte
Carlo simulation, and we show that the proposed GN
model is sufficiently accurate for the determination of
the optimum fiber splitting ratio.

9.1 System parameters

We consider a point-to-point link of total length
equal to 6000km, composed of 100 km hybrid
fiber spans. The attenuation coefficient of the QSMF
(including the excess loss®”!) is 0.16 dB/km and of
the SMF is 0.158 dB/km. The effective mode area
of the fundamental mode for the QSMF is 250 wm?
and of the SMF is 112pm?. The GVD parameter
B2 is —26.6 ps/km for both fiber types. We assume
tapered splices between dissimilar optical fibers so that
splicing loss is neglected. The EDFA noise figure is 5 dB.
We study the propagation of a Nyquist WDM signal
composed of 9 wavelength channels, each carrying
32GBd PDM 16-QAM (QAM means Quadrature
Amplitude Modulation).

For modeling the impact of MPI-induced crosstalk,
we assume that the QSMF under consideration exhibits
weak coupling between the fundamental mode group
LPy; and the higher-order mode group LP;;. For
engineering purposes, we assume that MPI can be
modeled as a zero-mean, complex Gaussian noise. Then,
the MPI coefficient B in Eq. (1) can be calculated using
power coupled-mode theory®”!, To take into account the
impact of MPI compensation in a phenomenological
way without actually simulating MPI equalizers, we
introduce the MPI compensation level r that varies
between zero and one. Then, the MPI coefficient ﬁ~
in Eq. (1) is substituted by S(1 — r).

9.2 Monte Carlo simulation results
Figure 3 shows the variation of Q-factor as a function
of the launch power per channel for different fiber

configurations, where the QSMF length per span is
varied in the range 0—100 km in steps of 5 km. Lines
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Fig. 3 (Q-factor as a function of the total launch power per
channel for different QSMF lengths per span (Conditions:
System length: 6000 km, 100 km spans; QSMF effective
mode area: 250 um?; SMF effective mode area: 112 um?;
No MPI compensation; Lines: Fitting using Eq. (1)).

represent least-squares fit of Monte Carlo simulation
data with Eq. (1), since 0% ~ OSNR.g. Since it is
cumbersome to display both the analytical model and
the numerical data on the same graph, Monte Carlo
simulation points are omitted. To distinguish various
simulation cases, we identify individual traces with
different colors: fiber configurations with QSMF in the
range 0—45 km are shown in pink and the remaining
configurations for QSMF in the range 45-100 km per
span are shown in cyan. We highlight the extreme cases
for 0 km, 45 km, and 100 km of QSMF using thick red,
black, and blue lines, respectively.

We observe that the optimum Q-factor increases
as the QSMF length per span is increased up
to 45km. For QSMF segments longer than 45km,
the optimum Q-factor gradually declines, eventually
reaching approximately a 0.3 dB decrease at 100 km
from the peak performance achieved at 45 km.

9.3 Analytical model validation

We shall hereafter focus only on the extreme cases for
0km, 45 km, and 100 km of QSMF (Fig. 4). We examine
two different MPI compensation scenarios:

(1) No MPI compensation at the coherent receiver
(Fig. 4a): The optimum Q-factor increases from 5.9 dB
for SMF, to 7 dB for 45/55 mix of QSMF/SMF, and then
drops to 6.7dB for QSMF only. In this specific case,
the optimum Q-factor is maximized with the use of
45 km QSM fiber per span. The Q-factor improvement
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Fig. 4 (Q-factor as a function of the total launch power
per channel. (a) No MPI compensation and (b) 100% MPI
compensation (Points: Monte Carlo simulations; Lines:
Fitting using Eq. (1)).

for using hybrid fiber spans compared to using SMF
exclusively is 1.2 dB.

(2) 100% MPI compensation (Fig. 4b): The optimum
Q-factor increases from 5.9 dB for SMF, to 7.5 dB for
45/55 mix of QSMF/SMEF, to 7.8 dB for QSMF only. In
this specific case, the optimum Q-factor is maximized
with the exclusive use of QSMF per span. The Q-factor
improvement for using only QSMF, compared to using
SMF exclusively, is 1.9 dB.

The lines in Fig. 4 are obtained by least squares
fitting of the numerical results using Eq. (1), since
0? ~ OSNR.. Notice that the Monte Carlo simulation
points and the fitted lines agree extremely well and this
is a strong indication that Eq. (1) is indeed an accurate
model. However, we will see in the following that, when
y in Eq. (1) is not adjusted by fitting but is analytically
calculated instead using the proposed nonlinear GN
model, there is a slight mismatch between Eq. (1) and

the numerical results.
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9.3.1 Q vs. P curves

In the remainder of the paper, we check the accuracy of
the proposed nonlinear GN model against Monte Carlo
simulation. In the first place, we will show that the
proposed nonlinear GN model describes qualitatively
the general shape of the simulated Q vs. P curves,
but it does not provide pointwise accuracy, especially
for higher power levels, where the nonlinear term in
the Manakov equation cannot be really considered
small and the validity of first-order perturbation theory
is questionable. Nevertheless, as we are going to
see subsequently, despite its quantitative errors, the
proposed nonlinear GN model is sufficient for a quick
determination of the optimum fiber splitting ratio.

As an illustration of the disagreement between the
proposed nonlinear GN model and the simulation results,
we replot from Fig. 4(a) the Monte Carlo simulation
points (circles) describing the variation of the Q-factor
as a function of the average launch power for the
case of 45/55 QSMF/SMF mix in the absence of MPI
compensation (Fig. 5). We can vary the agreement
between the proposed nonlinear GN model and the
simulation results by omitting the phased array term
(Eq. (63)) from Eq. (59) and writing instead y ~ N!€,
where € is an adjustable parameter!”-).

In Fig. 5, we superimpose on the same graph the
incoherent nonlinear GN model with € = 0 (in blue), the
coherent nonlinear GN model (in red), and the partially-
coherent nonlinear GN model with € = 0.15 (in black).
The analytical models based on coherent and incoherent
addition deviate from the numerical results at relatively
small launch powers. The peak deviation of the analytical

— Incoherent GN model

— Coherent GN model

| SRS e T
! : — Partially coherent GN model

© Monte Carlo simulation

—4 2 0 2 4
Launch power per channel (dBm)

Fig. 5 (Q-factor as a function of the total launch power per

channel for the case of 45/55 QSMF/SMF mix (Condition: No

MPI compensation).
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curves in blue and red from the numerical results varies
with the fiber attributes and system parameters. In this
particular case, if we compare the values at the maxima,
there is a mismatch of 0.4 dB between the coherent
nonlinear GN model and the simulation. The discrepancy
between the analytical and numerical results can be
remedied to some extent by using the partially-coherent
nonlinear GN model with € as a fitting parameter (black
line). However, this would require to run Monte Carlo
simulation first in order to select the appropriate value
of € by fitting. Fortunately, Fig. 7 below reveals that
the coherent nonlinear GN model in itself provides
a sufficiently accurate estimate of the optimum fiber
splitting ratio, so that it is not necessary to resort to the
use of the partially-coherent nonlinear GN model.

9.3.2 Optimum Q-factor vs. QSMF length
As another illustration of the validity of the analytical
model, we examine the variation of the peak Q-factor

Qo as a function of the QSMF length per span (Fig. 6).
A major disagreement is apparent. However, we notice

Incoherent GN model

i Fitting with
q O partially-coherent GN model

o Monte Carlo simu\laticm

0 20 40 60 80 100
Length QSM fiber (km)

Fig. 6 Peak Q-factor Q, vs. QSMF length £, per span
(Condition: No MPI compensation).

1.0
B .y 08
EP
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=8
N % -
5 Z 04T
E2 . ‘
5 I . et o . 0 O O .
Z 02 Baicohersnt GN mode (¢=0. 15): 1%%()2”'1"2;;’:
il Conerent QN model—— i
0 20 40 60 80 100

MPI compensation (%)

Fig. 7 Variation of the optimal normalized QSMF length
per span £ /¢, as a function of the percentage of MPI
compensation at the coherent optical receiver.
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that the optimum QSMF length, where the peak Q-factor
Qo occurs, does not differ substantially from curve
to curve. The fact that we obtain essentially the same
predictions for the optimum QSMF length from all the
different variants of the analytical model is indicative of
its usefulness.

9.3.3 Optimum
compensation

splitting  ratio vs. MPI

Figure 7 shows a plot of the optimum length of the
QSMEF per span £, (normalized over the span length £;)
for different levels of MPI compensation. Monte Carlo
simulation data are represented by blue points. The blue
line shows a phenomenological model fit of the Monte
Carlo simulation data. The blue shaded region around
the blue line indicates +0.1 dB deviations from the
optimum Q -values. The other lines show the predictions
of different variants of the modified nonlinear GN model.
As the MPI compensation level increases, the ratio
s, /s increases to unity. The modified nonlinear GN
model predictions are within the blue region.

Besides these validity checks, there are others
presented by the authors at ECOC’ 1723 for different
fiber parameters that corroborate the current findings.
Therefore, we believe that we have established the
validity of the proposed analytical model for the practical
determination of the optimum fiber splitting ratio per
span. Henceforth, instead of numerically optimizing the
lengths of different fiber segments per span by solving
the Manakov equation, which is a time consuming
process, one can conveniently resort to the analytical
model.

10 Summary

Following the same methodology as the original
nonlinear Gaussian noise model for uncompensated
coherent optical communications systems with uniform
fiber spans!’-*!, we provided here an up-to-date and, in
some aspects, improved derivation from first principles
of an analytical relationship for the nonlinear Gaussian
noise variance for hybrid fiber spans. Initially, we
restated the full nonlinear Gaussian noise model in
just 20 equations based on a synthesis of the literature.
While the derivation presented here cannot claim to
be fundamentally new, it is somewhat distinct from
the one provided in the original publications on the
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nonlinear Gaussian noise model. Then, we derived new
expressions for the nonlinear Gaussian noise variance
for systems with multi-segment fiber spans. Even though
these formulas were latent in Refs. [7,9], and the most
generic formalism!'”!, and variants of these formulas
were published before, to the best of our knowledge,
they were never proven before in their entirety. We
hope to bring these formulas to broader attention. The
most significant contribution of the current paper is
the discussion of the accurate numerical evaluation of
the definite integral for the nonlinear Gaussian noise
variance, and the development of requisite estimates
and asymptotics. Finally, we performed extensive
Monte Carlo simulation verification for a representative
transatlantic point-to-point link of total length equal to
6000 km with 100 km hybrid fiber spans, composed of
an experimental QSMF and a commercially-available,
ultra-low-loss, large-effective-area SMF without any
splice losses. We showed that the modified nonlinear
GN model is sufficiently accurate for the determination
of the optimum fiber splitting ratio per span, yielding a
system performance within £0.1 dB from the optimum
Q-value.

Appendix

A List of Greek symbols

B2 GVD parameter

3 P Multipath crosstalk variance

y Nonlinear coefficient

b2 Averaged nonlinear coefficienty = 8y /9

% Effective nonlinear coefficient

7P3 Nonlinear noise variance

r Worst-case (real) effective nonlinear
coefficient

1 Small number in the vicinity of zero

A Step size of Simpson’s quadrature

ABijk(2) Phase mismatch

AP Average propagation constant mismatch

Av Frequency spacing of WDM channels

AVpes Resolution bandwidth

& Perturbation parameter

€ Relative error

n(f1, f2), n(¢) Four-wave mixing efficiency
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Ox

Ok

Partial derivative d/dx

Carrier wavelength of central WDM

channel

WDM channel wavelength

Auxiliary multiplicative coefficient

Span length

Normalized electric field attenuation
cocfficient

Normalized, chromatic dispersion-

adjusted, and real attenuation coefficient
for the k-th fiber segment

¢(f1, f2), ¢(¢) Normalized phased-array term

(2

£(f1. f)
&k ()

$2y

Wy

Set of index triplets for the ODE for the
m-th order perturbation

Nonlinear noise coefficient integrand
Normalized electric field phase shift

Set of FWM
combinations

index triplets for

Angular frequencies, w, = 27 fy

B List of English symbols

a
Aet
a;jk (2)
an

a

By

Cno

Cni1

D
D
Fy
Jo
/ [

Jo

G

G (f)
I

Attenuation coefficient

Mode effective area

Complex attenuation coefficient
Complex attenuation coefficient

ASE noise variance

Optical bandwidth of the WDM signal
Complex envelope of the unperturbed
Fourier coefficient of the n-th spectral
component at the fiber input

Complex amplitude of the nonlinear
noise

Chromatic dispersion parameter
Regular derivative d/dx

Amplifier noise figure

Average phased-array bandwidth
Phased-array bandwidth for the k-th fiber
segment
Pseudorandom signal fundamental
frequency

Amplifier gain

Nonlinear noise psd

Various definite integral
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J(u, &o) Auxiliary integral, J(u, &o) == flfo N (0)-

In(%)n(¢)de

Kn,(8) Auxiliary integral, K, (§) := [ In(§/¢)-
Ny (§)dg

L Link length

I:eff Normalized (i.e., dimensionless) complex
effective length

Ning Number of periods of ¢ (¢) in the interval
[0, Lol

Ny Nonlinear index coefficient

Nech Number of wavelength channels

Ny Number of integration nodes in a w
subinterval

N Number of spans

Ny Number of fiber segments per span

R Region of integration in the hyperbolic uv-
plane

To Pseudorandom signal period

X;jk. Xi; Complex FWM efficiency

xx () Normalized power complex attenuation
coefficients

u,(z) Fourier coefficients

U, (2)ek k-th order correction to the unperturbed
solution u,¢(z)

y(z,1) Complex envelope WDM PDM signal
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