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Abstract— Unmanned aerial vehicles (UAVs) suffer from
sensor drifts in GPS denied environments, which can lead to
potentially dangerous situations. To avoid intolerable sensor
drifts in the presence of GPS spoofing attacks, we propose a
safety constrained control framework that adapts the UAV at
a path re-planning level to support resilient state estimation
against GPS spoofing attacks. The attack detector is used to
detect GPS spoofing attacks and provides a switching criterion
between the robust control mode and emergency control mode.
An attacker location tracker (ALT) is developed to track the
attacker’s location and estimate the spoofing device’s output
power by the unscented Kalman filter (UKF) with sliding
window outputs. Using the estimates from ALT, we design
an escape controller (ESC) based on the model predictive
controller (MPC) such that the UAV escapes from the effective
range of the spoofing device within the escape time.

I. INTRODUCTION

UAVs have been used across the world for commercial,
civilian, as well as educational applications over the decades.
The mechanical simplicity and agile maneuverability appeal
to many applications, such as cargo transportation, aerial
photography, and agricultural farming. The most widely used
sensor for UAVs is the global positioning system (GPS),
which offers accurate and reliable state measurements. How-
ever, GPS receivers are vulnerable to various types of attacks,
such as blocking, jamming, and spoofing [1]. The Vulnera-
bility Assessment Team at Los Alamos National Laboratory
has demonstrated that the civilian GPS spoofing attacks can
be easily implemented by using GPS simulator [2]. Further-
more, GPS is more vulnerable when its signal strength is
weak. Due to various applications of UAVs, the operating
environment becomes diverse as well, where GPS signals
are weak or even denied due to other structures such as
skyscrapers, elevated highways, bridges, and mountains.

Literature review. One of the GPS spoofing attack detec-
tion techniques is to analyze raw antenna signals or utilize
multi-antenna receiver systems. The GPS spoofing attack can
be detected by checking whether the default radiation pattern
is changed in [3]. A multi-antenna receiver system was used
to detect GPS spoofing attacks by monitoring the angle-
of-arrival of the spoofing attempts in [4]. As an extension
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Fig. 1: A safety constrained control framework.

of this work, the GPS spoofing mitigation has also been
investigated where an array of antennas is utilized to obtain
genuine GPS signals by spatial filtering [5]. However, those
solutions require modifications of the hardware or the low-
level computing modules and assume that an attacker can
only use single-antenna spoofing systems. Furthermore, the
attacker can spoof the GPS receivers without being detected
if multi-antenna spoofing devices are available [6].

In the cyber-physical systems (CPS) security literature,
GPS spoofing attacks have been described as a malicious sig-
nal injection to the genuine sensor output [7]. Attack detec-
tion against malicious signal injection has been widely stud-
ied over the last few years. The attack detection problem has
been formulated as an `0/`∞ optimization problem, which
is NP-hard in [8]. The fundamental limitations of structural
detectability, as well as graph-theoretical detectability for
linear time-invariant systems, have been studied in [9], where
distributed attack detection has also been studied. The attack
detection problem has been formulated as an attack-resilient
estimation problem of constrained state and unknown input
in [10]. A switching mode resilient detection and estimation
framework for GPS spoofing attacks has been studied in [11].
We notice that existing emergency control architectures focus
on switching control from a high-performance controller
to a robust high-assurance controller in the presence of
attacks [12]. These architectures can efficiently handle a class
of attacks, but cannot address the fundamental problem due
to limited sensor availability in the presence of cyber-attacks.

Contribution. The current paper addresses safety problems
induced by limited sensor availability due to GPS spoofing
attacks. We formulate the sensor drift problem as an increas-
ing variance of state estimation to quantify the sensor drift
and introduce escape time under which the state estimation
error remains within a tolerable error with high confidence.
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We develop a novel safety constrained control framework
that adapts the UAV at a path re-planning level to support
resilient state estimation against GPS spoofing attacks. In
the presence of the GPS spoofing attack, the attacker location
tracker (ALT) tracks the attacker’s location and estimates the
output power of the spoofing device by the unscented Kalman
filter (UKF) with sliding window outputs. The estimates are
then used in the escape controller (ESC) that drives the UAV
away from the effective range of the spoofing device within
the escape time to avoid intolerable sensor drift.

II. PRELIMINARIES

A. Notation

We use the subscript k of xk to denote the time index.
Rn+ denotes the set of positive elements in the n-dimensional
Euclidean space. Rn×m denotes the set of all n×m real ma-
trices. A> A−1 and tr(A) denote the transpose, inverse and
trace of matrix A, respectively. I denotes the identity matrix
with an appropriate dimension. ‖ · ‖ denotes the standard
Euclidean norm. × is used to denote matrix multiplication
when the multiplied terms are in different lines. E[ · ] and
P[ · ] denote the expectation operator and the probability
operator. For a matrix S, S > 0 and S ≥ 0 indicate that
S is positive definite and positive semi-definite, respectively.

B. System Model

Consider the discrete-time dynamic system model:

xk = Axk−1 +Buk−1 + wk−1 (1a)

yGk = CGxk + dk + vGk (1b)

yIk = CI(xk − xk−1) + vIk (1c)

ySk =

{
CS ηk

d(xa
k,xk)2

+ vSk , under the attack

ηS + vSk , otherwise ,
(1d)

where xk ∈ Rn is the state, and A, B, CG, CI and
CS are given matrices with appropriate dimensions. Output
yGk ∈ RmG is the GPS measurement which may be corrupted
by unknown GPS spoofing signal dk ∈ RmG . The signal
dk is injected by the attacker when the UAV is in the
effective range of the spoofing device. Output yIk ∈ RmI is
the IMU measurement, which returns a noisy measurement
of the state difference. Output ySk ∈ RmS represents the
GPS signal strength. The defender is unaware of xak and ηk,
where xak ∈ Rn is the attacker location, and ηk ∈ RmS

is the nominal power of the spoofing device. If GPS is
under the attack, ySk is a function of the distance between
the attacker and UAV. The function d(a, b) measures the
distance between a and b. If the UAV receives genuine
GPS signals, this output represents the genuine GPS signal
strength ηS . We assume that the attacker can inject any signal
dk into yGk . The noise wk, vGk , vIk, and vSk are assumed to
be i.i.d. Gaussian random variables with zero means and
covariances E[wkw

>
k ] = Σw ≥ 0, E[vGk (vGk )>] = ΣG >

0, E[vIk(vIk)>] = ΣI > 0, and E[vSk (vSk )>] = ΣS > 0,
respectively.

Remark 2.1: yIk can represent any relative sensor mea-
surement. In this paper, we use IMU for the illustration.

Remark 2.2: The signal strength output ySk in (1d) is
derived by the GPS signal attenuation due to free-space
path loss. Friis transmission equation is given by: Pr =
PtGtGr

λ2

(4πr)2 , where Pt and Pr are the transmit power and
the receive power; Gt and Gr are the transmit and receive
antenna gains; r is the distance between two antennas; λ is
the wavelength [13]. We write Gr( λ4π )2 as the output matrix
CS ; GtPt as the nominal power of the spoofing device ηk;
and r as the distance d(xak, xk).
C. Problem Statement

Given the system (1) with sensor measurements (1b)-(1d),
the defender aims to detect the GPS spoofing attack, achieve
resilient state estimation when considering the limited sensor
availability, and complete the global mission securely.

III. SAFETY CONSTRAINED CONTROL FRAMEWORK

To address the problem described in Section II-C, we pro-
pose a safety constrained control framework, which consists
of an attack detector, a resilient state estimator, a robust
controller, an attacker location tracker (ALT), and an escape
controller (ESC). The proposed safety constrained control
framework drives the UAV outside the effective range of the
spoofing device. The following explains each module in the
proposed framework as shown in Fig. 1.
Robust Control Mode. The robust controller is a complex
controller that operates the UAV to the destination in the
presence of noise, but without the presence of attacks. Any
robust control technique can be implemented in this module.
Emergency Control Mode. ALT is designed to track the
location of the attacker and estimate the spoofing device’s
output power by applying UKF with sliding window outputs.
ESC is an MPC-based controller that drives the UAV out
of the effective range of the spoofing device based on the
estimation of the attacker location obtained by ALT.
Attack-resilient Monitor & Decision Logic. The resilient
state estimator is developed based on the Kalman-filter like
state estimator. The attack detector is designed by the χ2-
based anomaly detection algorithm. Based on the previous
estimation from the resilient state estimator, the Boolean
output (dotted-dashed line in Fig. 1) of the attack detector
determines (i) whether the GPS measurement should be used
for the state estimation; and (ii) the switching rule between
the robust control mode and the emergency control mode.

ALT and ESC adapt the UAV at a path re-planning level
for safe operation. In what follows, each subsection describes
the details of the corresponding component.

A. Resilient State Estimator

The defender implements an estimator and χ2 detector
to estimate the state and detect the GPS spoofing attack.
The following Kalman-filter like state estimator is used to
estimate the current state:

x̂k = Ax̂k−1 +Buk−1 +KG
k (yGk − CG(Ax̂k−1 +Buk−1))

+KI
k(yIk − CI(Ax̂k−1 +Buk−1 − x̂k−1)) (2)

Pk = (A−KkCA+KkDC)Pk−1(A−KkCA+KkDC)>

+ (I −KkC)Σw(I −KkC)> +KkΣyK
>
k , (3)
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where x̂k is the state estimate and Pk is the state estimation
error covariance at time k, and Kk :=

[
KG
k KI

k

]
, C :=[

CG

CI

]
, Σy :=

[
ΣG 0
0 ΣI

]
and D :=

[
0 0
0 I

]
. The

optimal gain Kk, given by

Kk = (APk−1(CA−DC)> + ΣwC
>) (4)

×
(
(CA−DC)Pk−1(CA−DC)> + CΣwC

> + Σy
)−1

,

is the solution of the optimization problem minKk
tr (Pk).

In [11], it has been shown that the covariance in (3)
is bounded when the GPS signal is available. If the GPS
is denied, and only the relative sensor yIk is available, the
covariance is strictly increasing and unbounded in time.
That is, the sensor drift problem can be formulated as the
instability of the covariance matrix.

B. Attack Detector
We conduct the χ2 test to detect the GPS spoofing attacks:

H0 : dk = 0; H1 : dk 6= 0, (5)

using CUSUM (CUmulative SUM) algorithm, which is
widely used in attack detection research [14].

Since dk = yGk − CGxk − vGk , given the previous state
estimate x̂k−1, we estimate the attack vector by comparing
the sensor output and the output prediction:

d̂k = yGk − CG(Ax̂k−1 +Buk−1). (6)

Due to the Gaussian noises wk and vk injected to the linear
system in (1), the states follow Gaussian distribution since
any finite linear combination of Gaussian distributions is
also Gaussian. Similarly, d̂k is Gaussian as well, and thus
the use of χ2 test (5) is justified. In particular, the χ2 test
compares the normalized attack vector estimate d̂>k (P dk )−1d̂k
with χ2

df (α):

Accept H0, if d̂>k (P dk )−1d̂k ≤ χ2
df (α)

Accept H1, if d̂>k (P dk )−1d̂k > χ2
df (α),

(7)

where P dk := E[(dk − d̂k)(dk − d̂k)>] = CG(APk−1A
> +

Σw)(CG)> + ΣG, and χ2
df (α) is the threshold found in

the Chi-square table. In χ2
df (α), df denotes the degree of

freedom, and α denotes the statistical significance level.
To reduce the effect of noise, we use the test (7) in

a cumulative form. The proposed χ2 CUSUM detector is
characterized by the detector state Sk ∈ R+:

Sk = δSk−1 + (d̂k)>(P dk )−1d̂k, S0 = 0, (8)

where 0 < δ < 1 is the pre-determined forgetting factor. At
each time k, the CUSUM detector (8) is used to update the
detector state Sk and detect the attack.

The attack detector will i) update the estimated state x̂k
and the error covariance Pk in (3) with KG

k = 0 and ii)
switch the control mode to emergency control mode, if

Sk >

∞∑
i=0

δiχ2
df (α) =

χ2
df (α)

1− δ
. (9)

If Sk <
χ2
df (α)

1−δ , then it returns to the robust control mode.

C. Attacker Location Estimation (ALT)

We formulate the simultaneous estimation of the attacker
location xak and unknown parameter ηk as a target tracking
problem of the attacker state xak := [(xak)>, ηk]>.

Estimating the attacker state xak encounters two significant
problems: i) the output equation ySk in (1d) is highly non-
linear, and ii) a single measurement of the signal strength
suffers from the infinite number of solutions.

To address the first issue, we use the unscented Kalman
filter (UKF) [15], which has been developed to deal with
highly nonlinear systems and provides a better estimation
than the extended Kalman filter. Motivated by the fact that
locating the epicenter of an earthquake can be done with at
least three measurements from different seismic stations, we
resolve the second issue using sliding window outputs. To be
specific, we estimate xak+1 using UKF with M -sized sliding
window outputs:

xak+1 = xak + wa
k; ySk = [ySk , y

S
k−1, · · · , ySk−M+1]>.

The signal strength measurements from (1d) can be written
as ySk = f(xak) + vSk , where f(xak) := CSηk/d(xak, xk)2.

The state estimation by using UKF with sliding window
outputs can track the moving attacker’s location, while
nonlinear regression algorithms may fail to track it. The
algorithm is summarized in Algorithm 1 in the Appendix.
Due to the page limit, the algorithm’s derivation is omitted
and can be found in this paper’s arXiv version [16].

D. Escape Controller (ESC)

In the presence of the GPS spoofing attack, the variance Pk
in (3) of the state estimation errors is strictly increasing and
unbounded in time (Thm. 4.2 [11]). The escape time is de-
fined in [11], providing a new criterion for optimal trajectory
regeneration with increasing uncertainties. In particular, ESC
is designed to drive the UAV outside of the spoofing device’s
effective range within the escape time. Given the estimates of
UAV state x̂k and attacker state x̂ak with their covariances, the
safety problem due to the increasing and unbounded errors
can be formulated as the safety-critical constraint:

d(x̂aka+kesc , x̂ka+kesc)− reffect > 0, (10)

where ka is the time of the attack, kesc is the escape time,
and reffect is the upper bound of the effective range. This
constraint implies that ESC should drive the UAV outside of
the spoofing device’s effective range within the escape time.

Remark 3.1: reffect can be assumed to be known. Due
to hardware constraints, the output power of the spoofing
device ηk is bounded, and ηk also can be estimated by ALT
in Section III-C. The output power determines the effective
range of the spoofing device, and reffect can be found by
reffect = argmaxr g(r), where g(r) := CS ηkr2 > ηS .

There are two significant challenges in considering the
safety-critical constraint in (10). First, the states and the
attacker location are unknown, and their estimates x̂i and
x̂ai are subject to stochastic noise. Moreover, we cannot
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guarantee that constraint (10) is always feasible. Addressing
the above two challenges, we introduce two programs for
ESC in Section III-D.1 and III-D.2.

1) ESC with Tube: Since the constraint (10) is the safety-
critical constraint, we can reformulate it as a conservative
constraint such that ESC should drive the UAV outside of
the effective range of the spoofing device with probability γ
by the single individual chance constraint (ICC):

P[d(xaka+kesc), xka+kesc ]− reffect > 0) > γ. (11)

Now we formally introduce the stochastic MPC problem as:
Program 3.1:

min
u

ka+N∑
i=ka

ˆ̃x>i+1Qi ˆ̃xi+1 + u>i Riui

s.t. x̂i+1 = Ax̂i +Bui

d(x̂aka+kesc , x̂ka+kesc)− reffect > s(Pka+kesc , P
a
k , γ)

(12)
h(x̂i, ui) ≤ 0 (13)
for i = ka, ka + 1, · · · , ka +N,

where N ≥ kesc is the prediction horizon, ˆ̃xi is defined as the
difference between the state estimation and the goal state at
time index i, i.e., ˆ̃xi := x̂i−xgoali , Qi and Ri are symmetric
positive definite weight matrices, and x̂ai is the estimate of
the attacker location. Value reffect is the upper bound of the
effective range of the spoofing device. Pka+kesc is the UAV
state covariance at escape time, and P ak is the attacker state
covariance. Function s(·) is the probabilistic tube size that
can be seen as a margin to fulfill the safety-critical ICC
in (11). Inequality (13) is any nonlinear constraint on the
state estimation x̂i and the control input ui.

To provide the theoretical guarantees on the capability of
Program 3.1 and the equivalence between the stochastic MPC
problem with ICC in (11) and Program 3.1, we use the
results from [17], [18]. Since the MPC problem with ICC
in (11) is the standard nonlinear stochastic MPC problem,
Assumptions in [18] can be verified.

Theorem 3.1: Under the Assumptions 1-4, 6 and 9
in [18], if Program 3.1 is feasible at t = ka, then it
is recursively feasible; the constraints (13) and (11) are
satisfied and the origin is practically asymptotically stable
for the resulting closed loop system. The impact of the hard
constraint (12) is equivalent to the nonlinear ICC (11).
Proof: See proofs of Thm. 1 in [17] and Thm. 8 & 10 in [18].
�

From Theorem 3.1, we can conclude that as long as
Program 3.1 is feasible at the time of attack ka, we can
guarantee that the UAV can escape within the escape time
in probability. However, Program 3.1 may not be feasible in
some cases. To address this issue, we introduce a program
with a soft constraint in the subsequent section.

2) ESC with Potential Function: The hard constraint (12)
can be replaced by the repulsive potential function as a
high penalty in the cost function, which is active only after
the escape time ka + kesc. The repulsive potential function

Urep(D) is defined as the following:

Urep(D) :=

{
1
2β
(

1
D −

1
reffect

)2
if D ≤ reffect

0 if D > reffect

,

which can be constructed based on the distance between
the location of the attacker and the location of UAV, D :=
d(x̂aka+kesc , x̂ka+kesc). The scaling parameter β is a large
constant, representing a penalty when the constraint has not
been fulfilled. Utilizing the soft constraint, we reformulate
the MPC problem as follows:

Program 3.2:

min
u

ka+N∑
i=ka

ˆ̃x>i+1Qi ˆ̃xi+1 + u>i Riui +

ka+N∑
i=ka+kesc

Urep(Di)

s.t. x̂i+1 = Ax̂i +Bui

h(x̂i, ui) ≤ 0 for i = ka, ka + 1, · · · , ka +N.
Remark 3.2: Comparing to the use of the repulsive

potential function Urep in the collision avoidance litera-
ture [19], the proposed application of the repulsive potential
function in Program 3.2 has two differences. First of all,
the repulsive potential function is known before the collision
happens in collision avoidance literature, while we can only
get the repulsive potential function Urep after the collision
occurs, i.e., only after the UAV has entered the effective
range of the spoofing device. Second, the repulsive poten-
tial function Urep is only counted in the cost function in
Program 3.2 after the escape time.

IV. SIMULATION

In the simulations, the UAV is moving from the start
position with the coordinates at (0, 0) to the target position
(300, 300) by using feedback control1, based on the estimate
from (2). The UAV will switch the control mode from the
robust control mode to the emergency control mode when the
attack is detected. We solve the problem with Program 3.2.
The online computation is done using Julia, and ESC is
implemented using JuMP [20] with Ipopt solver.

A. UAV Model
We use a double integrator UAV dynamics under the

GPS spoofing attack as in [21]. The discrete time state
vector xk considers planar position and velocity at time
step k, i.e. xk = [rxk , r

y
k , v

x
k , v

y
k ]>, where rxk , r

y
k denote x, y

position coordinates, and vxk , v
y
k denote velocity coordinates.

We consider the acceleration of UAV as the control input
uk = [uxk, u

y
k]>. We assume that the state constraint and

control input constraint are given as
√

(vxk)2 + (vyk)2 ≤
5 and

√
(uxk)2 + (uyk)2 ≤ 2. With sampling time at 0.1

seconds, the double integrator model is discretized into the
following matrices:

A =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

 , B =


0 0
0 0

0.1 0
0 0.1

 ,
1We implemented a proportional-derivative (PD) like tracking controller,

which is widely used for double integrator systems.

217

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 04:10:38 UTC from IEEE Xplore.  Restrictions apply. 



(a) Attack signal estimation. (b) Attack detection. (c) Attacker state estimation.

Fig. 2: Attack estimation, attack detection and attacker state estimation.

and the outputs yGk , yIk and ySk are the position measurements
from GPS, the velocity measurements from IMU, and GPS
signal strength measurements respectively, with the output

matrices: CG =

[
1 0 0 0
0 1 0 0

]
, CI =

[
0 0 1 0
0 0 0 1

]
and

CS =
[
1
]
. The covariance matrices are Σw = 0.1I , ΣG = I ,

ΣI = 0.01I and ΣS = I .

B. GPS Spoofing Attack and Attack Signal Estimation

The GPS attack happens when the UAV is in the effective
range of the spoofing device. In this attack scenario, the
attack signal is d = [10, 10]>. The attacker’s location and the
nominal power of the spoofing device are xak = [100, 100]>

and ηk = 200, which are both unknown to the UAV. The
estimation obtained by (6) is shown in Fig. 2a.

C. Attack Detection

Using the estimated attack signal to calculate the detector
state Sk by (8), the attack detector is able to detect the
attack using the normalized attack vector as shown in Fig. 2b
in log−scale. Statistic significance of the attack is tested
using the CUSUM detector described in (9). The threshold
is calculated by

χ2
df (α)

1−δ with the significance α = 0.01 and
the forgetting factor δ = 0.15.

D. Attacker State Estimation

When the GPS attack is detected, the UAV first estimates
the attacker state xak by using Algorithm 1 with window
size M = 5. The estimation result is shown in Fig. 2c.
The estimated location and the estimated nominal power
quickly converge to the true values. The estimates are drifting
when the UAV remains in GPS denied environment. After
obtaining an estimate of the attacker state, ESC is used to
escape away from the effective range of the spoofing device.

E. Trajectory Generation

Program 3.2 with the prediction horizon N = kesc + 40
and the scaling parameter β = 50000 is used to generate
the estimated and true trajectories of the simulated scenario
shown in Fig. 3. As shown in Fig. 4, the state estimation
error ‖xk−x̂k‖ is increasing when the UAV is in the effective
range of the spoofing device, and the error is bounded by the
tolerable error distance ζ = 3 corresponding to kesc = 125.

Fig. 5 presents how the proposed control framework
performs in different cases where reffect ∈ {10, 30, 50, 70}.
Regardless of the size of reffect, the UAV will escape away

Fig. 3: Estimated and true trajectories of the simulated
scenario. The attacker is located at (100, 100) with reffect =
30, which is displayed as the light blue circle.

Fig. 4: Bounded estimation error ‖xk − x̂k‖.

from the effective range within the escape time. Note that in
Fig 5a the UAV can pass the attacker without changing the
direction or even its speed since reffect is small enough.

V. CONCLUSION

We present a secure safety constrained control framework
that adapts the UAV at a path re-planning level to support
resilient state estimation against GPS spoofing attacks. In
the presence of the GPS spoofing attack, using the robust
controller may still keep the UAV within the effective range
of the spoofing device after the estimation errors may not be
in the tolerable region. To solve the safety problem raised
by the large estimation error, ALT is developed to track
the attacker location and estimate the effective range of the
spoofing device by using UKF with sliding window outputs.
Then, ESC is used to escape away from the effective range
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(a) reffect = 10 (b) reffect = 30 (c) reffect = 50 (d) reffect = 70

Fig. 5: Trajectories with different effective ranges.

of the spoofing device within the escape time. A numerical
simulation is given to demonstrate the results.

REFERENCES

[1] J. S. Warner and R. G. Johnston, “GPS spoofing countermeasures,”
Homeland Security Journal, vol. 25, no. 2, pp. 19–27, 2003.

[2] J. S. Warner and R. G. Johnston, “A simple demonstration that the
global positioning system (GPS) is vulnerable to spoofing,” Journal
of Security Administration, vol. 25, no. 2, pp. 19–27, 2002.

[3] E. McMilin, D. S. De Lorenzo, T. Walter, T. H. Lee, and P. Enge, “Sin-
gle antenna GPS spoof detection that is simple, static, instantaneous
and backwards compatible for aerial applications,” in Proceedings of
the 27th international technical meeting of the satellite division of the
institute of navigation, Tampa, FL, pp. 2233–2242, Citeseer, 2014.

[4] P. Y. Montgomery, T. E. Humphreys, and B. M. Ledvina, “Receiver-
autonomous spoofing detection: Experimental results of a multi-
antenna receiver defense against a portable civil GPS spoofer,” in
Proceedings of the International Technical Meeting of The Institute
of Navigation, pp. 124–130, 2009.

[5] J. Magiera and R. Katulski, “Detection and mitigation of GPS spoofing
based on antenna array processing,” Journal of applied research and
technology, vol. 13, no. 1, pp. 45–57, 2015.
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APPENDIX

We present the UKF with sliding window outputs, and
its derivation can be found in [16]. Consider the following
partially nonlinear system:

xk+1 = Akxk + wk

yk = f(xk) + vk,

where xk ∈ Rn is the state, yk ∈ Rm is the output. The
noise signals wk and vk are assumed to be i.i.d. Gaussian
with zero means and covariances E[wkw

>
k ] = Σw′ ≥ 0 and

E[vkv
>
k ] = Σv > 0.

Algorithm 1 UKF with sliding window outputs

B Prediction
1: x̂k|k−1 = Ak−1x̂k−1;
2: Pk|k−1 = Ak−1Pk−1A

>
k−1 + Σw′ ;

B Sigma points generation
3: Xk = {x̂k|k−1 ± (

√
nPk|k−1)>i }, i ∈ {1, · · · , n};

B Measurement Update
4: for i = 1 : 2n do
5: ŷik := [ŷik, ŷ

i
k−1, · · · , ŷik−M+1]>

= [f(X ik), (A−1k−1X
i
k), · · · , f(A−M+1

k−1 X ik)]>;
6: end for
7: ȳk =

∑2n
i=0W

i
kŷ

i
k;

8: P y
k =

∑2n
i=0W

i
k(ŷik − ȳk)(ŷik − ȳk)> + Σv;

9: P xy
k =

∑2n
i=0W

i
k(X ik − x̂k|k−1)(ŷik − ȳk)>;

10: Kk = P xy
k (P y

k)−1

11: x̂k = x̂k|k−1 +Kk(yk − ȳk);
12: Pk = Pk|k−1 −KkP

y
kK
>
k
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