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Abstract

Robotic lower limb prostheses aim to replicate the power-
generating capability of biological joints during locomotion to
empower individuals with lower limb loss. However, recent
clinical trials have not demonstrated clear advantages of these
devices over traditional passive devices. We believe this is
partly because the current designs of robotic prothesis con-
trollers and clinical methods for fitting and training individuals
to use them do not ensure good coordination between the
prosthesis and user. Accordingly, we advocate for new holistic
approaches in which human motor control and intelligent
prosthesis control function as one system (defined as
human-—prosthesis symbiosis). We hope engineers and clini-
cians will work closely to achieve this symbiosis, thereby
improving the functionality and acceptance of robotic pros-
theses and users’ quality of life.
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Introduction

New technologies for robotic lower limb prostheses are
becoming more accessible to individuals with lower limb
loss (LLL) [1,2]. These prostheses can mimic the

torque-generating capabilities of biological joints to
empower those with LLL; yet, even during the most
common locomotor task — walking — these advanced
prostheses fail to show clear advantages over energeti-
cally passive devices for the users [3—7]. For example, it
is well known that an appropriate level of ankle push-off
power is responsible for energetically efficient walking
in humans [8]. For individuals with transtibial LLL
wearing passive ankle—foot prostheses, the metabolic
cost of transport is considerably high. Theoretically,
powered prosthetic ankles can restore the push-off
function of the missing ankle and therefore improve
the user’s energetics and preferred speed during
walking. In reality, this benefit has not been consistently
shown [5—7,9].

What causes this discrepancy? One plausible explana-
tion is poor human—prosthesis coordination [6]. Human
locomotion is a complex, dynamic process that involves
the coordination of many joints controlled by one uni-
fied controller (the human nervous system). In addition,
innate musculoskeletal structures, such as bi-articular
muscles, contribute to the coordination of adjacent
joints. When individuals with LLL wear a robotic pros-
thesis (i.e. a human—prosthesis system), the innate
mechanism for between-joint coordination is altered,
leading to two different controllers: (1) the human
nervous system, which operates the intact joints and
body segments, and (2) the computerized controller of
the robotic prosthetic joints. The restoration of normal
gait requires good coordination between these two
controllers to merge the mechanics of the biological and
prosthetic joints. Unfortunately, with current prosthesis
designs and clinical methods, these controllers are
largely disconnected functionally. On the one hand,
computerized controllers in robotic prostheses do not
consider factors such as motor impairment or compen-
satory motor strategies used by users, and they are not
designed to optimize the overall gait performance of
human—prosthesis systems. On the other hand, in-
dividuals with LLL do not always adapt or learn to use
the active power provided by the prosthesis effectively
or efficiently.

Hence, to maximize the walking function of individuals
who wear advanced robotic lower limb prostheses, we
believe the prosthesis controller and the user’s motor
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control system must demonstrate good coordination and
coadaptation to function seamlessly as one entity
(defined as human—prosthesis symbiosis here).
Although human—robot interaction or collaboration has
been studied extensively [10,11], the symbiotic rela-
tionship between robotic prosthesis legs and their users
has not, partly because robotic prosthetic legs have only
become available within the last 10 years. Hence, in this
article, we reviewed the results and limitations of recent
research on the structures of robotic prosthesis con-
trollers, approaches to optimizing the performance of
these controllers, and user behaviors when interacting
with these controllers during walking; we then proposed
the concept of human—prosthesis symbiosis be consid-
ered in engineering, biomechanical, and clinical ap-
proaches to improve mobility and quality of life among
individuals with LLL. Although most of the relevant
research that has been conducted has included only
individuals with unilateral LLL due to difficulty
obtaining sufficient sample sizes, we believe the same
symbiosis concept can be applied to those with bilateral
LLL, as well as other individuals with neurological
deficits (via exoskeletons).

Intelligent prosthesis control and its effects
on the human-prosthesis system

Prosthesis control to enable walking

Most of the existing control methods for robotic lower-
limb prostheses aim to enable people with LLL to
walk with “normative” prosthesis ankle/knee kinematics
or kinetics [12—15], which are defined for specific gait
phases based on the biomechanics of individuals
without LLL. Therefore, the controller must monitor
each gait phase. Typically, discrete gait phases (e.g. the
double/single stance and swing phases), often used in
the field of biomechanics, are defined and estimated via
onboard sensors [12,13,16]. This type of controller is
called a finite-state machine. The concept of virtual
constraints has recently been used to characterize the
continuous coordination of kinematics among lower-
limb joints within a gait cycle in persons without LLL
[14,15]. By monitoring the residual thigh motion
(approximate hip angle) in people with transfemoral
LLL, for example, the controller can continuously
adjust the prosthetic knee and ankle angles during
walking based on predefined joint coordination con-
straints. These controllers directly coordinate with the
action of the user’s residual limb and vyields better
adaptability to varied walking speeds and inclination
angles than do discrete finite-state machines. They
even enable users to walk backwards and kick their leg.

One major challenge is how to predefine the prosthesis
control parameters based on the gait biomechanics of
persons without LLL. Individuals with LLL demon-
strate very different gait patterns from each other and
from those without LLL, partly due to weakness in the

intact joints [17], decreased proprioception [18], poor
socket fit [19], etc. Since it is difficult to directly model
these factors in prosthesis control, the control parame-
ters need to be modified for individual users, even when
the goal is to merely reproduce “normative” joint kine-
matics or kKinetics to enable walking [1—5,13]. In clinics,
the parameters are tuned manually and heuristically by
prosthetists when each individual walks with a robotic
prosthesis. Recently, our research group developed new
machine learning approaches, such as an expert system
[20] and model-free reinforcement learning (RL.)-based
optimal adaptive control [21—23], to reduce this burden
on prosthetists. Rl.-based methods are especially
powerful because they are based on well-known theories
in adaptive optimal control and can develop prosthesis
tuning policies through trial-and-error learning in real
time while the user walks with the prosthesis. RL is
model-free because it does not require an explicit
mathematical model to describe the human motor def-
icits and human—prosthesis system or prior tuning
knowledge from prosthetists. RLL has excellent scal-
ability and can tune high-dimensional control spaces.
More importantly, RL results in a tuning policy that can
adaptively adjust prosthesis control parameters across
different timeframes and walking environments (e.g.
ramp ascent) [23].

Prosthesis control to optimize walking function

Now that many control methods can enable walking,
researchers and engineers are currently focused on
modifying the prosthesis control parameters to improve
users’ gait performance (indicated by gait symmetry
[21], balance [24], and energetic expenditure [25]) and
perceived preference [25] during walking. These factors
are important for improving the walking function of in-
dividuals with LLL, that is, their capability to walk at
normal speeds with improved endurance, walk with
appropriate loading patterns to prevent the develop-
ment of secondary health issues, and walk safely and
confidently in real-world environments.

Unfortunately, robotic prosthesis controllers have not
been optimized to maximize users’ gait performance or
preferences yet. One critical knowledge gap is whether
— and if yes, how — robotic prosthesis or exoskeleton
controllers influence the user’s gait performance, pref-
erences, and even tissue health [26]. Without such
knowledge, the use of gait performance measures as
prosthesis control optimization goal(s) can be chal-
lenging. Only a few related studies have been conducted
[24,25,27—30]. One research group developed a novel
ankle prosthesis emulator that can precisely simulate
various prosthesis joint mechanics with a powerful off-
board motor [31]. This emulator enabled the system-
atic study of the influence of a control parameter (such as
push-off work [24,25] or timing [27]) on gait perfor-
mance measures, including the metabolic cost, balance,
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preference, and perceived balance of prosthesis users.
Our group examined the influence of 12 impedance
control parameters of a robotic prosthesis knee during an
entire stride on gait temporal and spatial symmetry [28].
Among these studies, only two were conducted in in-
dividuals with LLL, with small sample sizes [25,28]. In
general, the results of these studies showed that the
effects of prosthesis control vary largely across in-
dividuals with LLL. Prosthesis control cannot directly
explain the changes in gait performance measures; near-
normal gait performance cannot be completely achieved
by adjusting the prosthesis control alone because gait
performance also depends on the movement of the user,
with large interindividual variability.

"To optimize robotic prosthesis controllers to maximize
users’ walking function, many technical challenges must
be solved. This requires the prosthesis controller to (1)
treat the human and robotic prosthesis as one entity,
which is difficult to model; (2) monitor the human—
prosthesis system state (e.g. gait performance
measures) beyond the gait phases and residual limb
motion only; and (3) adapt to the physical conditions of
individual users (e.g. height, weight, hip strength),
which also vary within users over time. One idea is to
develop a personalized musculoskeletal model and use
computer simulations to optimize the wearable robot
control parameters [32]. Another novel and promising
solution is to optimize the wearable device control he-
retically with human-in-the-loop based on (1) search-
based methods [33—36] or (2) model-free, reinforce-
ment learning-based optimal adaptive control [21,22].
With this method, the responses of the human—robot
system (e.g. the gait performance measures) to control
settings can be directly assessed during walking. The
search-based optimization methods iteratively search
for an extremum on the system response surface to
determine the optimal control parameters, while RL-
based optimal adaptive controllers learn and approxi-
mate robot control policies by determining minimized/
maximized cumulative costs/rewards, which can directly
reflect gait measurements. Search-based optimization
has been successfully applied to robotic exoskeletons to
minimize the metabolic cost of transport; however, it has
been only successfully demonstrated in able-bodied,
healthy individuals [34,35], not in people who have
motor deficits. RL-based optimal adaptive control has
been used to personalize robotic prosthesis/exoskeleton
control; however, the optimization goal is mainly to
produce desired device joint kinematics [21,37,38]
rather than desired walking function parameters in
human users. Given the novelty and promising yet
preliminary results, we believe more research and
development on such human-in-the-loop methods are
needed to make them clinically viable for robotic pros-
thesis personalization and intrauser adaptation and
maximize walking function in individuals with LLL.
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Influence of human control and adaptation
on the human-prosthesis system

There is increasing evidence that individuals’ motor
control significantly influences the function of robotic
prostheses during gait. When tuning a robotic knee
controller to achieve desired knee kinematics (in terms
of both magnitude and timing), we found that the
prosthesis controller cannot precisely regulate the
timing of the knee profile due to the significant influ-
ence of human actions on gait event timing [21]. We also
found that users do not always make effective use of the
active torque provided by the robotic prostheses [6]. We
observed that when walking with a manually tuned
ankle—foot prosthesis, some people did not move their
residual shank and amputated limb to the appropriate
position when the active propulsive torque was pro-
vided, thereby directing the prosthesis-side limb more
vertically (upward) rather than anteriorly (forward) [6].
Such human motor behaviors reduce the efficiency of
energy transfer from the robotic prosthesis in walking,
even at the local joint level. Interestingly, a very similar
phenomenon has been also observed with wearable
ankle exoskeletons [39].

These results underscore the importance of training
users to adjust their motor patterns and effectively use
the power provided by wearable robots for improved
locomotion. Human movement control is even more
critical when the goal is to improve gait performance.
Many engineers have focused on optimizing the pros-
thesis control side. However, the prosthesis is only a
subsystem and affects gait performance to a limited
extent at the system level; the behaviors of the user, the
other subsystem, influence and even dominate some
gait performance measures. Nevertheless, little atten-
tion has been paid to optimize gait biomechanics when
people walk with robotic prostheses. For example, when
a powered prosthesis is fit in clinics, individuals with
LLL practice walking on different terrains while a
prosthetist manually tunes the prosthesis control pa-
rameters. It takes only a couple of hours, and this pro-
cess is insufficient to guarantee human—prosthesis
symbiosis regarding gait performance [6]. In research
settings, users are given time (ranging from 20 min to
three weeks) to practice walking with a new device in a
laboratory or at home. However, there are currently no
standards for how to properly instruct them to use the
new device or determine when acclimation is complete
[40]. The assumption that users can automatically adapt
to and coordinate with robotic prostheses by only prac-
ticing walking (without instructions) may be question-
able. This is because the abnormal gait patterns of
individuals with LLL may be partly derived from a lack
of knowledge on how robotic prostheses function and
the transfer of a maladaptive motor pattern that they
learned when using their passive devices [41]. Instead,
device-specific training is necessary for users to learn

www.sciencedirect.com

Current Opinion in Biomedical Engineering 2021, 20:100314


www.sciencedirect.com/science/journal/24684511

4 Novel Biomedical Technologies; Rehabilitation Robotics

the appropriate gait patterns to best use the power
produced by modern prostheses and achieve optimal
gait performance.

There are several engineering methods that can be used
to facilitate training and movement learning to help
people with LLL coordinate with the action of robotic
prostheses. One approach is to use augmented
biofeedback [17,41—43] to cue the user to make certain
modifications (e.g. residual limb position, gait timing,
loading) based on the action of prosthesis to achieve
human—prosthesis coordination. This type of training
can be even carried out in the real world due to recent
advancements in wearable sensors and augmented re-
ality [44]. In addition, providing feedback of the pros-
thesis’ action (proprioception) via surgical techniques
and neural interfaces [18] or haptic devices [45] may
enhance the user’s awareness of the machine’s states
and lead to coordinated body movements.

Future directions for human—prosthesis
symbiosis

In our opinion, to maximize the benefits of modern ro-
botic prostheses for individuals with LLL, it is necessary
for both the user and robotic controller to function
together (Figure 1). For prosthesis intelligent control,
the controllers need to adapt to individual user impair-
ments and motor behaviors, sense the overall system
states, and optimize human—prosthesis gait perfor-
mance measures. For human movement control, it is
essential to communicate the prosthesis system states
to the user and for him or her to learn to move appro-
priately to maximize the energy transferred from the

Figure 1

robotic device. This requires (1) research and in-
novations on the optimal adaptive control of robotic
prostheses and user training strategies for effective co-
ordination with robotic devices and (2) collaborations
among researchers in biomedical engineering, biome-
chanics, and rehabilitation clinics so that the behaviors
of both systems are appropriately considered.

One challenge in implementing this concept is identi-
fying a paradigm that can promote human—prosthesis
coadaptation. Specifically, should the intelligent ma-
chine and human motor control systems adapt concur-
rently or alternately? We must first understand the
learning rates of and interactions between the two sys-
tems. Another challenge is determining which common
objective(s) for human—prosthesis systems yield the
highest level of symbiosis. Many challenges in formu-
lating and resolving this multiobjective optimization
problem for human—prosthesis systems remain.
Furthermore, merging human motor control with
computerized prosthesis control, as discussed in this
article, is one way to enable symbiosis; however, it cannot
fully address situations in which immediate adaptation is
required, such as obstacle avoidance [46], and tasks that
are not preprogrammable, such as playing tennis. For
these situations, the users should dominate the pros-
thesis operations. This requires direct efferent neural
control of the robotic prosthesis joint [18,47,48], which is
a future research direction related to human—prosthesis
symbiosis. Finally, our proposed framework can be
extended to other assistive devices including exo-
skeletons for people with neuromotor deficits. These
topics related to physical human—robot interactions
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should be explored in parallel to achieve human—robot
symbiosis for everyone who may benefit.
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