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Abstract— Road condition is an important environmental
factor for autonomous vehicle control. A dramatic change in
the road condition from the nominal status is a source of
uncertainty that can lead to a system failure. Once the vehicle
encounters an uncertain environment, such as hitting an ice
patch, it is too late to reduce the speed, and the vehicle can
lose control. To cope with unforeseen uncertainties in advance,
we study a proactive robust adaptive control architecture
for autonomous vehicles’ lane-keeping control problems. The
data center generates a prior environmental uncertainty esti-
mate by combining weather forecasts and measurements from
anonymous vehicles through a spatio-temporal filter. The prior
estimate contributes to designing a robust heading controller
and nominal longitudinal velocity for proactive adaptation to
each new condition. The control parameters are updated based
on posterior information fusion with on-board measurements.

I. INTRODUCTION

Self-driving cars have been one of the most active research
areas in the lat few decades [1]. The autonomous vehicles are
safety-critical systems operating in dynamic environments.
Their controllers should cope with environmental changes
robustly. The current paper is motivated by safely controlling
the car when hitting an ice patch unexpectedly. Low speed
can reduce the risk of skidding, but it may be too late to
reduce the speed when hitting an ice patch. The vehicle
should slow down in advance and update the controller for
the new operating condition.

Model predictive control (MPC) approach has recently
proven its effectiveness for robust and optimal control of
vehicle dynamics [2], [3]. However, the risk of skidding
under dramatic changes of road conditions is not eliminated,
because MPC’s prediction quality is determined by limited
prior knowledge. It starts to adapt to or learn an uncertain
environment after encountering it and taking this information
into account. Communication network-enabled controllers
can address a part of the problem by incorporating envi-
ronmental information shared from preceding vehicles [4],
[5]. Motivated by those papers, the current paper leverages
vehicle-to-cloud (V2C) communication for a proactive ro-
bust adaptive control architecture for lateral dynamics, by
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systematically combining environmental measurements from
anonymous vehicles and weather forecast.

A. Our Contribution

Fig. 1: (Overall architecture) The data center provides a prior
estimate. Controller and velocity are proactively designed
based on it for each area of the road.

The current paper proposes a novel proactive robust adap-
tive control architecture for autonomous vehicles to operate
with guaranteed performance in various environmental con-
ditions. Figure 1 illustrates the overall system architecture.
The prior of the cornering stiffness for different areas is
estimated by a newly developed fixed rank resilient filter
(FRRF) that fuses information from the weather forecast and
vehicle network data. The L1 adaptive heading controller
and nominal longitudinal velocity are designed proactively
for each area based on the prior distribution of the cornering
stiffness. The proactive adaptation will reduce long-term and
large scale uncertainty, while the L1 adaptive controller deals
with fine-scale uncertainty. Then, based on the posterior
distribution of the cornering stiffness obtained from the on-
board measurements, the control parameters are updated. The
full version of the current paper can be found in [6], which
contains details of the derivation and the properties of FRRF.

B. Related work

The majority of existing communication network-enabled
controllers rely on short-range vehicle-to-vehicle communi-
cation between limited connected vehicles for longitudinal
control (platooning). In particular, [4] designs a disturbance
observer-based controller for platooning. The observer es-
timates the road slope and shares this information with the
following platoons to help them reduce the fuel consumption.
Reference [5] studies the optimal trade-off between air drag
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reduction and powertrain energy losses, exploiting a preview
from the preceding vehicle. Other network-enabled applica-
tions include collision avoidance between vehicles [7], [8].

Our control strategy relies on the L1 adaptive control [9],
[10], which can promptly compensate for unmodeled un-
certainties within the filter bandwidth while guaranteeing
transient and steady-state performance. Due to such merit,
the L1 adaptive controller has been used as an ancillary
controller to ensure that the real system performs as the
nominal system. The L1 adaptive controller has been in-
tegrated with model predictive path integral control [11]
and with contraction control [12], [13]. The L1 adaptive
controller has been applied to the vehicle lateral dynamics
that demonstrates successful compensation for unmodeled
uncertainty, such as parametric uncertainty, wind gust, and
disturbances of various natures [14].

The prior estimation of the cornering stiffness is a spatio-
temporal data fusion problem because the road information
contains its attribute as well as spatial and temporal infor-
mation. Spatio-temporal modeling and filtering have been
widely used in environmental process estimation [15], [16].
In particular, the spatio-temporal fixed rank filter in [16]
improves the computational efficiency using spatio-temporal
models defined on a fixed dimensional space. The current
paper extends the spatio-temporal fixed rank filter to capture
model uncertainty and (unmodeled) biased noises.

II. VEHICLE LATERAL DYNAMICS AND PROBLEM
STATEMENT

The bicycle model is a simplified vehicle model that
has been widely used and has been proven as a good
approximation [2], [3], [17]. The variables py , pψ , V , and δ
denote the lateral position, yaw angle, (longitudinal) velocity,
and front steering angle, respectively. Parameters Cf , Cr, m,
Iz , `f , and `r are the front/rear cornering stiffness, mass, yaw
moment of inertia, and distance of front/rear tire from the
center of gravity, respectively. Given a constant velocity V ,
the desired lateral position py,des (center of the lane) and the
desired yaw angle pψ,des, the error dynamics of the bicycle
model take the form ((2.45) in [17]):

ẋ = A(V,Cf , Cr)x+ b(Cf )u+ g(V,Cf , Cr)ṗ
ψ,des, (1)

where x = [x1, ẋ1, x2, ẋ2]>, x1 , py−py,des and x2 , pψ−
pψ,des are the error states, and input u = δ is the heading.
The rate of the desired yaw angle is found by ṗψ,des = V

R ,
where R is the radius of the road. The system matrices are

A(V,Cf , Cr) =
0 1 0 0

0 −2
Cf+Cr
mV 2

Cf+Cr
m 2

−Cf `f+Cr`r
mV

0 0 0 1
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Cf `f−Cr`r

IzV
2
Cf `f−Cr`r

Iz
−2

Cf `
2
f+Cr`

2
r

IzV


b(Cf ) = bo, g(V,Cf , Cr) = [0,−2

Cf `f−Cr`r
mV −

V, 0,−2
Cf `

2
f+Cr`

2
r

IzV
]>. It is worth emphasizing that matrices

A and g depend on velocity V , and that the matrices A, b, and

g depend on cornering stiffnesses Cf and Cr. For notational
simplicity, we express them as A(V ), b, and g(V ), when
their dependency on cornering stiffnesses does not need to
be emphasized.

The cornering stiffness Cf (and Cr) is the coefficient
related to the lateral force Ff and sliding angle β, where it
has a linear relation Ff = Cfβ for small β. This parameter
is closely related to the road friction. In this paper, the
cornering stiffnesses Cf and Cr are assumed to be unknown,
and we can estimate them using the following information.

Information 2.1: i) weather forecast, ii) vehicle network
data (anonymous vehicles’ cornering stiffness estimates), iii)
on board measurement (GPS, IMU).

We formulate the problem of interest as follows.
Problem 2.1: Given Information 2.1, the problem is to

develop a robust control architecture that stabilizes the error
dynamics (1) of the vehicle operating under different envi-
ronmental conditions through controlling the heading u = δ
and longitudinal velocity V .

III. PROACTIVE ROBUST ADAPTIVE CONTROL

A. Overall architecture

Consider the architecture in Figure 1 to address Prob-
lem 2.1. The data center acquires the first two pieces in
Information 2.1 about Cf and Cr, which are fused to esti-
mate the prior of cornering stiffness for each area by FRRF
algorithm in Section III-B. This will provide a heatmap of
the cornering stiffness for multiple areas. Given the cornering
stiffness’s prior distribution, we pre-design a robust controller
and a constant longitudinal velocity for each area of interest.
The design procedure for the L1 adaptive control and the
velocity design for a single area is outlined in Sections III-
D.2 and III-D.3, and this procedure can be repeated for
other areas. The on-board measurement and prior estimate
are fused to produce a posterior cornering stiffness estimate
of the current area in Section III-C. The posterior information
is then used to update the control parameters presented in
Section III-D.4.

Remark 3.1: We must design the velocity before encoun-
tering an uncertain environment. Since the system matrices
depend on the velocity, the velocity and controller are
simultaneously designed based on the prior distribution of
the cornering stiffness rather than the posterior distribution.

B. Prior estimation: Spatio-temporal fixed rank resilient
filtering

The information about the cornering stiffness from
weather forecast and anonymous vehicles contains its at-
tribute as well as spatial and temporal information. The
estimation of the cornering stiffness can be formulated as a
spatio-temporal data fusion problem. We propose to extend
the spatio-temporal fixed rank filter [16] to a fixed rank
resilient filter (FRRF) such that the filter captures model
uncertainty and (unmodeled) biased noises. Assume the
cornering stiffness Cf (or Cr) follows a spatio-temporal
process {qs,k : s ∈ D, k ∈ {1, 2, · · · , nD}}, where qs,k ∈ R,
and D is the index set of spatial domains (or area), and
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k is the discrete-time index. Domain D could be finite, or
countably infinite. Now consider the spatio-temporal mixed
effect model [16], [18]:

qs,k = µs,k + Ss,kηk + ξs,k

zk = [zs1k ,k, zs2k ,k, · · · , zsnk ,k]>

zs,k = qs,k + εs,k, (2)

where zs,k ∈ R is the output of area s at time k and is
subject to measurement noise εs,k. At time k, we observe nk
sensor outputs, and the collection of outputs is denoted by
zk ∈ Rnk . The collection of measured area indices is denoted
by Ok = {s1k , s2k , · · · , snk} ⊆ D. Anonymous vehicles
estimate the cornering stiffness of the presence area and send
the estimates to the center through V2C communication. This
vehicle network data represents the output zk.

Consider the first equation in (2). The first term µs,k ∈
R is a known time-varying value that models large scale
variation. For the cornering stiffness estimation problem, we
assume µs,k is a function of weather forecastWs,k (including
temperature, precipitation, humidity, wind, and more), i.e.,
µs,k = F(Ws,k). The mapping function F(·) can be found
by standard learning/regression algorithms (e.g., Gaussian
process regression, neural network, basis function regression)
by using historical input-output data 〈Ws,k, Cf,k〉. In the
current paper, we assume the function F is given.

The second term Ss,kηk captures a smooth small scale
variation that correlates the spatial relation between different
areas by the finite nη-dimensional spatial basis Ss,k. Matrix
Ss,k is known, but the state variable ηk ∈ Rnη is unknown.
The third term ξs,k ∈ R presents time-dependent fine-
scale variation that captures the nugget effect. The state
variable ηk is supposed to evolve according to the following
dynamic equation: ηk+1 = Hkηk + Gkdk + ζk, where Hk

and Gk are known matrices. The first term Hkηk captures
temporal correlation, and the row of Hk can be chosen to be
zeros, if the corresponding component ηk+1 does not change
dynamically. The second term Gkdk denotes a biased noise
and model uncertainty, where dk ∈ Rnd is unknown, and
it can be seen as an unknown input. This term is absent
in [16], [18]. The last term ζk ∈ Rnη represents a fine-
scale variation of hidden state ηk. All noises εs,k, ξs,k, ζk
are independent zero-mean Gaussian with covariance P εs,k,
P ξs,k, and P ζk , respectively.

Our interest is to recursively estimate the hidden state
qs∗,k for the query area s∗ ∈ D. Denote µk, Sk, εk, ξk the
collection of the corresponding values for all s ∈ Ok and
define P εk = diag(P εs,k) and P ξk = diag(P ξs,k) for all s ∈ Ok
for simplicity. The matrix Ek ∈ {0, 1}nk×nD denotes the
output matrix having 1 for (1, s1k), · · · , (nk, snk) elements,
and 0 for the others. Let v̂k, ṽk , vk − v̂k, and P vk ,
E[(vk− v̂k)(vk− v̂k)>] denote the estimate, estimation error,
and estimation covariance of a variable v at time k.

The estimate q̂s∗,k represents an estimate of cornering
stiffness Cf (or Cr). Appendices VI-A, and VI-B in [6]
present detailed derivation and properties of FRRF. The
derivation of the algorithm is motivated by fixed rank fil-

tering [16] and unknown input and state estimation algo-
rithms [19], and, thus, they also share similar properties.

The summary of the proposed algorithm is shown below.
Given the output zs,k and the previous estimate η̂k−1, the
unknown variable ηk is estimated by rejecting the unmodeled
uncertainty dk. The variable qs,k in (2) is estimated from η̂k
compensating for fine-scale variation ξs,k by its estimate ξ̂s,k.
Recursive prediction:

η̂k|k−1 = Hk−1η̂k−1 +Gk−1Mk(zk − µk − SkHk−1η̂k−1)

P ηk|k−1 = (I−Gk−1MkSk)Hk−1P
η
k−1H

>
k−1(I

−Gk−1MkSk)> +Gk−1Mk(P εk + EkP
ξ
kE
>
k )M>k G

>
k−1

+ (I−Gk−1MkSk)P ζk−1(I−Gk−1MkSk)>,

where Mk = (G>k−1S
>
k R
−1
k SkGk−1)†G>k−1S

>
k R
−1
k , and

Rk = Sk(Hk−1P
η
k−1H

>
k−1 + P ζk−1)S>k + P εk + EkP

ξ
kE
>
k .

Recursive estimation:

η̂k = η̂k|k−1 +Kk(zk − µk − Skη̂k|k−1)

P ηk = (I−KkSk)P ηk|k−1(I−KkSk)> +Kk(P εk

+ EkP
ξ
kE
>
k )K>k + (I−KkSk)Mk(P εk + EkP

ξ
kE
>
k )K>k

+Kk(P εk + EkP
ξ
kE
>
k )M>k (I−KkSk)>,

where Kk = (P ηk|k−1S
>
k −Mk(P εk + EkP

ξ
kE
>
k ))R̃−1

k , and
R̃k = SkP

η
k|k−1S

>
k + (P εk + EkP

ξ
kE
>
k ) − SkMk(P εk +

EkP
ξ
kE
>
k )− (P εk + EkP

ξ
kE
>
k )M>k S

>
k .

Estimation of qs∗,k:

q̂s∗,k = µs∗,k + Ss∗,kη̂k + ξ̂s∗,k

ξ̂s∗,k = Ls∗,k(zs∗k − 1µs∗,k − 1Ss∗,kη̂k|k−1)

P qs∗,k = Ss∗,kKkSkP
η
k|k−1(Ss∗,kKkSk)> + P εs∗,kLs∗,kL

>
s∗,k

+ Ss∗,kKk(P εk + EkP
ξ
kE
>
k )(Ss∗,kKk)>

+ Ss∗,kKkP
s,s∗,ε
k L>s∗,k + L>s∗,kP

s∗,s,ε
k K>k S

>
s∗,k

+ Ss∗,kKkSkGk−1Mk((P εk + EkP
ξ
kE
>
k )K>k S

>
s∗,k

+ P s,s∗,εk L>s∗,k) + (Ss∗,kKk(P εk + EkP
ξ
kE
>
k )

+ Ls∗,kP
s∗,s,ε
k )(Ss∗,kKkSkGk−1Mk)>, if s∗ ∈ Ok

P qs∗,k = Ss∗,kP
η
k S
>
s∗,k + P ξs∗,k, otherwise,

where zs∗k is the collection of outputs zs,k for s = s∗,

Ls∗,k =

{
(1>R̄−1

s∗,k
1)−11>R̄−1

s∗,k
if s∗ ∈ Ok

0 otherwise,

and R̄s∗,k = P εs∗,kI + 1Ss∗,kP
η
k|k−1S

>
s∗,k

1> −
1Ss∗,kGk−1MkP

s,s∗,ε
k − P s∗,s,εk (1Ss∗,kGk−1Mk)>,

P s,s∗,εk , E[εk(εs∗k )>].

C. Posterior estimation: Real-time local information fusion
The posterior estimation of cornering stiffness utilizes

the standard Kalman filtering on the bicycle model [20],
[21], taking three outputs: 1) GPS measurement, 2) IMU
measurement, and 3) prior estimate obtained in Section III-
B. This method will use the prior estimate as one of the (less
frequently measured) outputs. GPS and IMU sensors that are
already implemented or easy to be installed are enough to
estimate the cornering stiffness [21].
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D. L1 adaptive control with proactive velocity design
We implement the L1 adaptive controller [10] for the lane-

keeping control, which provides rapid disturbance compensa-
tion within the filter bandwidth while guaranteeing transient
and steady-state performance. Different controllers should be
designed for different areas, because the prior distribution of
the cornering stiffness varies by location. The current section
provides a controller design for one area, and the same design
procedure can be repeated for all other areas of interest.

Section III-D.1 introduces the L1 adaptive controller on
its nominal system [10]. Section III-D.2 discusses how to
transform the error dynamics (1) to the nominal system
for the L1 adaptive controller using the prior distribution
of the cornering stiffness. In particular, the nominal system
model for the L1 adaptive controller is determined by the
mean of the prior distribution obtained in Section III-B.
Section III-D.3 provides the design procedure for the L1

adaptive controller and the velocity for the error dynamics.
1) L1 adaptive controller: Consider the following system:

ẋ(t) = Amx(t) + bm(wuad(t) + θ>x(t) + σ(t))

y(t) = c>x(t) x(0) = x0, (3)

where Am, bm, and c are known system matrices/vectors,
and Am is Hurwitz. Parameter w ∈ R is the unknown input
gain, and the state-dependent uncertainty is represented by
bmθ

>x(t), where θ is an unknown vector. The uncertain pa-
rameters satisfy Assumption 3.1. The signal σ(t) is the time-
varying external disturbance that satisfies Assumption 3.2.

Assumption 3.1: We have w ∈ Ω = [wl, wu], and θ ∈ Θ,
where the bound [wl, wu] and convex set Θ are known.

Assumption 3.2: The disturbance signal σ(t) is contin-
uously differentiable, and the signal and its derivative are
uniformly bounded, i.e., |σ(t)| ≤ ∆, and |σ̇(t)| ≤ dσ < ∞
for ∀t ≥ 0, where the bounds ∆ and dσ are known.
The control input uad(t) is an adaptive controller that con-
sists of state predictor, adaptation law, and low-pass filter. In
what follows, we describe the L1 adaptive controller.

State predictor: The state predictor is given by
˙̂x(t) = Amx̂(t) + bm(ŵ(t)uad(t) + θ̂>x(t) + σ̂(t))

ŷ(t) = c>x̂(t) x̂(0) = x̂0.

Adaptation laws: The adaptation laws are given by:
˙̂w(t) = ΓProj(ŵ(t),−x̃>(t)Pbmuad(t)) ŵ(0) = ŵ0

˙̂
θ(t) = ΓProj(θ̂(t),−x̃>(t)Pbmx(t)) θ̂(0) = θ̂0

˙̂σ(t) = ΓProj(σ̂(t),−x̃>(t)Pbm) σ̂(0) = σ̂0,

where x̃(t) = x̂(t)− x(t) is the prediction error, and Γ > 0
is an adaptation gain, Proj(·, ·) is the projection operator
defined in Definition B.3 in [10]. The projection operator
guarantees that each estimate remains in its desired domain.
Matrix P is a symmetric positive definite matrix, solving
the algebraic Lyapunov equation AmP +PA>m = −Q for a
given symmetric positive definite matrix Q.

Control law: The adaptive control input is designed by

uad(s) = −kD(s)(η̂(s)− kgr(s)),

where η̂(t) = ŵ(t)uad(t) + θ̂>(t)x(t) + σ̂(t) and kg =
−1/(c>A−1

m bm), and k > 0 is a constant. The signal
r(s) is the Laplace transform of the reference signal, and
D(s) is a strictly proper transfer function that leads to a
strictly proper stable low-pass filter C(s) = wkD(s)

1+wkD(s) with
C(0) = 1. Low-pass filter C(s) trades off the performance
against robustness, i.e., increasing bandwidth of the filter
results in low time-delay margin, with improved tracking
performance. We choose D(s) = 1/s in this paper. We need
to choose the controller such that the L1-norm condition is
satisfied: ‖G(s)‖L1

L < 1, where G(s) = H(s)(1 − C(s)),
H(s) = (sI−Am)−1bm, and L = maxθ∈Θ ‖θ‖1. Since θ is
constant and D(s) = 1/s, the L1-norm condition reduces to

Ag =

[
Am + bmθ

> bmw
−kθ> −kw

]
(4)

being Hurwitz for all θ ∈ Θ and w ∈ Ω0.
2) System transformation and bounds of uncertainties:

The system (1) is uncertain, where the system matrices
A(V,Cf , Cr) and b(Cf ) depend on unknown cornering
stiffness Cf and Cr, while Am and bm in (3) are known. We
will use the mean values Ĉf = q̂s∗,k (and Ĉr = q̂′s∗,k) of the
prior distribution to construct nominal system matrices, i.e.,
with u = um+uad and um = −Kx, Am = A(V, Ĉf , Ĉr)−
b(Ĉf )K and bm = b(Ĉf ). The bound of uncertainties can be
found by a 95% confidence interval of the cornering stiffness.

3) L1 adaptive controller and nominal velocity design:
The L1 adaptive controller guarantees transient and steady-
state performance with respect to the reference system and
design system. The reference system is the non-adaptive
version of the L1 adaptive controller. The design system is
an ideal system that does not depend on the uncertainties.
According to Theorem 2.2.2 in [10], the performance of
the system can be arbitrary close to the reference system
(xref (t) and uref (t)) by increasing the adaptation gain Γ
without sacrificing robustness. Lemma 2.1.4 in [10] analyzes
the error between the reference system and the design system
(‖xref − xdes‖L∞ and ‖uref − udes‖L∞ ), where its upper
bound is proportional to ‖G(s)‖L1 . The term ‖G(s)‖L1 can
be close to zero by arbitrarily increasing the filter bandwidth
k. However, this performance improvement trades off with
the robustness. The time-delay margin decreases to zero, as k
increases to infinity. Therefore, we need to design km, C(s),
and V balancing the performance and robustness optimally.

The matrix Am(V ) must be Hurwitz, but it depends both
on gain km and velocity V . To relax this complexity, we
propose to use the common Lyapunov function approach.
We first design control gains km and P such that Am(V )
is Hurwitz for any velocity V ∈ [Vmin, Vmax], where Vmin

and Vmax are the minimum and maximum velocity of the
area. Upon that, we choose the velocity V and filter C(s)
simultaneously through an optimization problem.

Given Ĉf and Ĉr, we should choose constant vector
km and symmetric positive definite matrix P such that
Am(V )P + PA>m(V ) < 0 holds for all Vmin ≤ V ≤ Vmax.

We can choose the filter gain k and the velocity V
balancing the performance and robustness. The performance
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is characterized by ‖G(s)‖L1
as in [22]. The robustness is

characterized by a lower bound of k, which prevents the
time-delay margin from converging to zero. The optimization
problem can be formulated by

max
k,V ∈[Vmin,Vmax]

V

s.t. k ≤ k̄, ‖G(s)‖L1
≤ λgp, for ∀w ∈ Ω,

where k̄ > 0 and λgp <
1
L . Recall that G(s) = H(s)(1 −

C(s)). Given λgp, one could find the performance bounds of
‖xref − xdes‖L∞ and ‖uref − udes‖L∞ in Lemma 7 in [9].

4) Real-time controller update: It is critically important
to ensure that the matrices Am and Ag are Hurwitz for
all possible uncertainties. Given the posterior distribution
N (Ĉposf , PC

pos
f ) (orN (Ĉposr , PC

pos
r ) for rear cornering stiff-

ness) from Kalman filter in Section III-C, we can construct
the 95% confidence interval of the posterior distribution
of Cf and Cr. We check online whether Ag(V ) in (4)
is Hurwitz for the new set of uncertainties. If it does not
hold, we update k in real-time such that Ag(V ) is Hurwitz:
k = arg mink |k − k∗|, s.t. k ≤ k̄, Ag(V ) being Hurwitz,
where k∗ is the current gain. It is worth noting that Am does
not need to be re-tuned, because it depends only on Ĉf and
Ĉr, and not on the bounds of uncertainties. Furthermore, we
design it to be Hurwitz for the entire possible velocity range.

IV. SIMULATION

The current section demonstrates the performance of the
proposed control architecture. System and control parameters
can be found in [6]. Section IV-A presents the resilient
estimation performance of FRRF in the presence of (biased)
unmodeled uncertainty. Based on the prior estimate, we
design the L1 adaptive controller for the areas of interest
and illustrate the lane keeping performance in Section IV-B.
All values are in standard SI units; m (meter) for `f , `r, R,
and x1; rad for δ and x2; m/s for V ; N/rad for Cf and
Cr; kg for m; kg ·m2 for Iz .

A. Prior estimation by FRRF

We consider the square area that is divided into 25
identical small squares, i.e., nD = 25. The ground truth
cornering stiffness holds Cf = Cr for all the areas, although
this information is unknown to the control authority. Given
the initial condition η̂0 = 0 with covariance P η0 = 1000I,
we conduct FRRF algorithm in Section III-B, and present
the simulation results in Figs 2 and 3. For each time k,
FRRF generates a heat map for the cornering stiffness.
Figure 2 presents a series of heat maps produced by the
FRRF algorithm, where the color represents the mean value
q̂s,k of the corresponding area s.

Figure 3 compares the tracking errors when the outputs are
sparsely measured (as a Poisson with λ = 20) and are fully
measured at areas 1 and 2. Areas 1 and 2 are the left bottom
corner and its right cell, respectively. The estimation errors
for all areas remain in their noise level. FRRF algorithm es-
timates the ground truth cornering stiffness resiliently, where
the errors do not depend on the presence of dk, as shown in

Fig. 2: Prior estimation heatmap. The color represents the
mean value of the estimate in the corresponding area.

Fig. 3: Prior estimation performance; (top) total estimation
error; (middle, bottom) ground truth cornering stiffness and
estimates with the full measurement and spares measurement
at areas 1 and 2.

the first subfigure. FRRF with the full measurement exhibits
an improved tracking performance of fine-scale variation a
lot than that with the spares measurement, as presented in
the second and third subfigures. This is because FRRF with
the full measurement successfully reduces the estimation
error by compensating for unmodeled uncertainty at each
iteration. The average trace norm of variance in the whole
area is tr(P q,fullk ) = 1983.7 with the full measurement and
tr(P q,λ=20

k ) = 3190.4 with the spares measurement.
B. Proactive L1 adaptive control

The current section compares the tracking performance of
the proactive L1 adaptive control and a non-proactive version
of it. We refer to [14] to compare the L1 adaptive controller’s
performance with that of other types of controllers.

Figure 4 presents the performance of the proactively
designed L1 adaptive controller under the raining condition
(C1,f = C1,r = 51867). The controller can successfully
stabilize the error dynamics under the changing road radius.
With a large adaptation gain, the system performance is
arbitrarily close to that of the reference system. Figure 5
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Fig. 4: Raining condition. Error states and control inputs in
area 1 (C1,f = C1,r = 51867).

Fig. 5: Snowing condition. Error states and control inputs in
area 2 (C2,f = C2,r = 23214).

compares the proactive L1 adaptive controller’s tracking per-
formance and the non-proactive version under the snowing
condition and changing road radius. The system with the
proactive controller does not have performance degradation
compared to operating in the raining condition. The non-
proactive controller designed for dry road conditions (around
Cf = Cr = 80000) failed to stabilize the system. As
discussed, one could increase k to guarantee stability, but
this will harm the robustness. To illustrate the performance
difference between the proactive controller and non-proactive
controller without increasing k, we consider the controller
designed for Cf = Cr = 60000. The non-proactive con-
troller could stabilize the error dynamics through compen-
sation of uncertainties, but presents a relatively large error,
when the vehicle operates outside of its nominal status.

V. CONCLUSION

We study a proactive robust adaptive control architecture
for autonomous vehicles operating in various environmental
conditions. The weather forecast and vehicle network data
are used to estimate the unknown cornering stiffness by
newly developed FRRF. Given the prior estimate for multiple
areas, the L1 adaptive controller and velocity are designed for
each road area, balancing the performance and robustness.
The posterior estimate is obtained by combining the prior
estimate and the on-board measurement. The controller is
updated based on the posterior distribution, if it violates the
L1-norm condition.
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