
Use of Auxiliary Classifier Generative Adversarial Network in Touchstroke
Authentication

Debzani Deb
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC, USA

debd@wssu.edu

Mina M. Guirguis
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC, USA
guirguismm@wssu.edu

Abstract— With the growing popularity of smartphones,
continuous and implicit authentication of such devices via
behavioral biometrics such as touch dynamics becomes an
attractive option, especially when the physical biometrics are
challenging to utilize, or their frequent and continuous usage
annoys the user. However, touch dynamics is vulnerable to
potential security attacks such as shoulder surfing, camera
attack, and smudge attack. As a result, it is challenging to rule
out genuine imposters while only relying on models that learn
from real touchstrokes. In this paper, a touchstroke
authentication model based on Auxiliary Classifier Generative
Adversarial Network (AC-GAN) is presented. Given a small
subset of a legitimate user's touchstrokes data during training,
the presented AC-GAN model learns to generate a vast amount
of synthetic touchstrokes that closely approximate the real
touchstrokes, simulating imposter behavior, and then uses both
generated and real touchstrokes in discriminating real user
from the imposters. The presented network is trained on the
Touchanalytics dataset and the discriminability is evaluated
with popular performance metrics and loss functions. The
evaluation results suggest that it is possible to achieve
comparable authentication accuracies with Equal Error Rate
ranging from 2% to 11% even when the generative model is
challenged with a vast number of synthetic data that effectively
simulates an imposter behavior. The use of AC-GAN also
diversifies generated samples and stabilizes training.

Keywords—Touch dynamics, Behavioral Biometrics, Continuous
authentication, GAN, AC-GAN

I. INTRODUCTION
Over the last few years, the world has witnessed the

explosive growth of consumers who are increasingly using
their smartphones for anytime-anywhere computing and the
enhancements of their daily lives. During the Covid-19 era,
smartphones are being regarded as lifelines and became an
absolute crucial for distance learning and working. Since these
devices store a mounting quantity of user's private and
sensitive information, securing these devices from adversary
attacks continues to be a significant concern for both
manufacturers and users. Physical biometrics (face,
fingerprints, iris, etc.) has often been promoted as the most
secure means for log-in authentication for smartphones.
However, there is a need for additional security measures after
the initial log-in, known as continuous and implicit user
authentication [1]. In such authentication, the system keeps
monitoring the user in a continuous manner throughout their
interactions with the device, and the process is implicit such

as all authentication is carried out in the background without
interrupting the user or requiring any active user cooperation.
Strong physical biometrics are not appropriate for such
implicit authentication as they require either full or partial
cooperation from the users at regular intervals, which results
in annoying the user.
Recent research has shown promising results in using

behavioral biometrics [2] to verify users implicitly and
continuously on smartphones. Today's smartphones are
equipped with a plethora of sensors and accessories and could
be used to extract user behavioral attributes such as touch
dynamics, keystroke dynamics, and gait recognition. This
paper focuses on touch dynamics [3,4], which captures the
way a user touches a touchscreen device and its usage on
continuous and implicit user authentication.
In touch dynamics continuous authentication, the system

continuously monitors the raw touch data and extracts
touchstroke features. These include the area of the screen
covered by the touch stroke, touch pressure, speed, velocity,
and acceleration of the x, y-positions on the screen [3]. After
observing the user behavior for a while, the system learns her
touch dynamics by performing statistical analysis or using
machine learning. Then, at a later time, after the initial log-in
by using a password/pin or physical biometric, the system
continuously compares current user behavior with the learned
user model to make an authentication decision. The training
phase in such authentication is different from typical
classification as the only training data available is merely the
smartphone owner's data. It is highly unlikely that many users
will share a smartphone, and therefore the classifier can only
assume the availability of the owner's data that belongs to a
single class instance. The challenge is to train a classifier with
two different predictions, such as owner and attacker, where
the attacker instance does not belong to prior-learned class [5].
Most of the prior works [3,6,7] on smartphone touchstroke
authentication addressed this challenge by simulating one or
more random users as attackers and the authentication
problem is naturally fitted as a binary-class classification
problem, where the model is trained using a particular user's
touchstone data as the owner's and the others' as attacker's.
While the abovementioned strategy performs well in

preventing random attackers (someone who does not know the
owner and can be simulated by a random user), however, it is
most likely not to prevent attacks from a genuine imposter
(someone who knows the owner and deliberately trying to
imitate her behavior). Therefore, authentication becomes
vulnerable to smudge attacks and shoulder surfing. Recent

252

2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-8470-8/20/$31.00 ©2020 IEEE
DOI 10.1109/ICMLA51294.2020.00049

20
20

 1
9t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ac

hi
ne

 L
ea

rn
in

g
an

d
A

pp
lic

at
io

ns
 (I

C
M

LA
) |

 9
78

-1
-7

28
1-

84
70

-8
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

M
LA

51
29

4.
20

20
.0

00
49

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

studies reveal that the maleficent actors were trained to
deceive the biometric authentication system by mimicking
their targets through media recordings or other means in
which they are allowed to observe and practice their target's
behavior [8]. This poses a challenge, such as how to
differentiate the owner from imposters to defend the attack
knowing that an imposter already knew the target behavior.
To address this challenge, a more robust behavioral

biometric authentication based on generative adversarial
network (GAN) [9] is presented, which learns how to mimic
any data distribution while requiring fewer input data. GANs
are a particular type of deep neural network model where two
networks such as Generator and Discriminator are trained
simultaneously in zero-sum game theory, with the former
focused on data generation and the later centered on
discrimination. While GANs and other generative models
have been applied to an array of computer vision [9, 10, 11,
12, 13] and natural language processing [14,15,16] problems,
biometric authentication has yet to receive thorough
exploration. Given a small subset of a legitimate user's
touchstroke data during training, the GAN model can learn to
generate a vast amount of synthetic touchstroke data that
closely approximates the real data and then uses both
generated and real data in discriminating real user from the
imposter. However, GANs are typically challenging to train
and suffer from model collapse [17,18] problem in which the
Generator starts generating samples that have little variety.
This paper proposes a touchstroke authentication model

based on an extension of generic GANs, Auxiliary Classifier
Generative Adversarial Network (AC-GAN) [19], an
additional task-specific auxiliary classifier that optimizes by
back-propagating classification loss through the
Discriminator and the Generator. The auxiliary classifier has
the effect of stabilizing the training process, and prior
researches [20,21] on image and text data has shown excellent
performances while alleviating the mode collapse problem. In
the proposed AC-GAN authentication model, the Generator
synthesizes touchstroke data conditioned on a class label. The
Discriminator classifies between real and generated
touchstrokes and assigns them a class label such as owner vs.
imposter. Our goal is to develop a more robust biometric
authentication system with higher accuracy and security.
The rest of this paper is organized as follows. Section 2

reviews some core concepts of GAN and AC-GAN. Then in
Section 3, the architecture of the proposed authentication
system is detailed. Section 4 focuses on the steps that are
followed to train and test the AC-GAN network. Section 5
discusses the experimental setup, data set, and evaluation
results. Section 6 concludes the paper.

II. BACKGROUND
 This section reviews some core concepts of GANs and the
additional improvements that AC-GAN offers. GAN models
assume the availability of real data x drawn from a distribution
pr, and exploit a generative model to generate synthetic data
that closely resembles x. A generative model G takes as input
a random noise z and generates a sample G(z), such as the
output can be regarded as a sample drawn from a distribution:
G(z) ~ pg. The objective for G is to approximate pr using pg.

 (a) (b)

Fig. 1. The general structure of (a) GAN and (b) AC-GAN, where x denotes
the real touchstroke, c the class label, z the noise, G the Generator, and D the
Discriminator.

GAN consists of two separate neural networks: a

Generator G that takes a random noise vector z, and outputs
synthetic data G(z); a Discriminator D that takes an input x or
G(z) and output a probability D(x) or D(G(z)) to indicate
whether the input is generated (fake) or from the real data
distribution (Fig. 1(a)). Both of the Generator and
Discriminator in GAN models can be arbitrary neural
networks. The Generator G and Discriminator D in GAN
models are trained by forming a two-player min-max game
where G tries to generate realistic data to fool the
Discriminator while D tries to distinguish between real and
synthetic data [9]. The Discriminator is trained to maximize
the log-likelihood it assigns the input to its correct source
(real/fake) as in (1) [9].

𝐿 = 𝐸[log𝑃(𝑆 = 𝑟𝑒𝑎𝑙	|𝑋!"#$)]
+ 	𝐸[log𝑃(𝑆 = 𝑓𝑎𝑘𝑒	|𝑋%#&")]

 (1)
While GANs are able to generate synthetic data with

higher accuracies, they suffer from problems like training
instability, nonconvergence, and mode collapse. Multiple
improvements have been suggested to fix these problems,
including using deep convolutional layers for the networks,
varying architectures, and modified objective functions for D
and G.
Conditional GAN (CGAN) [22] is one such improvement

where the GAN network is augmented using side information
to add more structure to the network and stabilize training.
The original setup of a GAN has no control dependent on
random noise. However, if auxiliary information is provided
during the generation, the GAN can be driven to output data
with desired properties. In CGAN, both Generator and
Discriminator are supplied with class labels c in order to
produce class conditional samples. The input/noise and c are
combined in a joint hidden representation and fed as an
additional input layer in both networks. The training of the
GAN model is changed so that the Generator is provided both
with random noise and a conditional input c, and attempts to
generate synthetic data based on that condition. The

x z

G

G(z)

D

Real/Fake

x z

G

G(z,c)

D

Real/Fake

c

Class

253

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

Discriminator is provided with both real and generated data as
input and must classify whether the input is real or fake as
before.

Extending these ideas, Odena et al. [19] proposed the
Auxiliary Classifier Generative Adversarial Network (AC-
GAN). In that model, the Generator synthesizes data
conditioned on a class label, and the Discriminator not only
classifies between real and generated input data, but also
assigns them a class label. In addition to Generator and
Discriminator models, AC-GAN is equipped with an
additional task-specific auxiliary classifier with the purpose of
reconstructing the class labels (Fig. 1(b)). In the AC-GAN,
every generated sample has a corresponding class label c in
addition to the noise z. G uses both inputs to generate synthetic
touchstrokes G(z,c). The Discriminator facilitated by the
auxiliary classifier can be provided with either generated or
real touchstrokes as input and outputs both a probability
distribution over sources (real/fake) and a probability
distribution over the class labels. The objective function has
two parts: the log-likelihood of the correct source, LS (2), and

the log-likelihood of the correct class, LC (3) . D is trained to

maximize LS + LC while G is trained to maximize LC − LS .

The resulting Generator learns a latent space representation
independent of the class label, unlike the conditional GAN.

𝐿' = 𝐸[log𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |𝑋!"#$)
+ 𝐸[log𝑃(𝑆 = 𝑓𝑎𝑘𝑒|𝑋%#&")]

 (2)
𝐿(= 𝐸[log𝑃(𝐶 = 𝑐 |𝑋!"#$)] + 𝐸[log𝑃(𝐶 = 𝑐 |𝑋%#&")]

 (3)

III. ARCHITECTURAL FRAMEWORK

The presented touch biometric authentication architecture
contains two process modules, one executes in the target
(smartphone) device, and the other executes in the server-side
(Fig. 2). As the proposed authentication system needs to act
instantly with higher accuracies, the mobile side component is

designed to be a lightweight process running without being
computation or resource-heavy. Training a GAN model is
computationally demanding, and therefore the proposed
server-side component deals with this heavyweight process.
First, the smartphone owner interacts with the touchscreen
device and the smartphone sensors and accessories capture
raw touch biometrics such as x- and y-coordinates of the
finger, its pressure on the screen, the area of the screen
covered by the finger, the finger orientation with respect to the
screen and the screen orientation. During the training period,
these raw data are continuously communicated with the server
where touch stroke features are extracted. The features
extracted are then used as the input of the AC-GAN model,
where the model is trained based on the owner's touch
biometrics and generated synthetic data using TensorFlow and
python libraries. Once trained, a compact version of the
Discriminator model is created using TensorFlow Lite [23],
which is designed to execute models efficiently on mobile and
other embedded devices with limited compute and memory
resources. The compact model is then deployed in the target
device and becomes ready to make predictions. While
deployed, user's interactions are continuously monitored,
touch biometrics features are extracted, and the deployed
model relentlessly looks out for imposters.

IV. TRAINING AND TESTING OF AC-GAN NETWORK

This section details the steps that are followed in order to
train and test the AC-GAN model. Firstly, a single raw touch
stroke is analyzed, and a feature vector with 31 dimensions is
formed according to the procedure depicted in [3]. As part of
the proposed AC-GAN authentication system, three models,
such as the Generator, the Discriminator, and the composite
models, are developed. The input noise for the Generator
model is created by randomly generating a point z (100
dimensions) in the latent space and then using an embedding
layer with glorot_normal as kernel initializer in order to
assign a random class label c (randomly selected integers in

Fig 2. Architectural Framework for the touch biometrics authentication system

Owner
Using

smartphone

Smartphone
collects raw
touch data

from sensors
and

accessories

Transfer
raw touch

data to
Server

Extract
touch stroke

features
from raw

data

Train
AC-GAN
model

Convert
model to be
deployed to

mobile
platform and

transfer it.

Deploy model in
smartphone

User interacts,
features are

extracted, and
the model
provides

owner/imposte
r decision

Mobile-
side

processes

Server-side
processes

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

[0,1] inclusively) to z. The Hadamard product between latent
point z and class conditional embedding c is then provided as
input to the Generator. The Generator is designed as a deep
neural network (DNN) containing four dense layers with
LeakyReLU activation and BatchNormalization as specified in
Table I and generates a class conditional synthetic feature vector
of size 31 with tanh activation and glorot_normal as kernel
initializer.
The Discriminator model is provided with either a real

feature vector or a synthetic one (generated by the Generator) as
input and then predict whether the input touchstroke is real or
synthetic, and the auxiliary classifier predicts the class label of
the touchstroke vector. In this study, both the Discriminator and
the auxiliary classifier are implemented as a single DNN with
two outputs. Table I shows the DNN structure and parameters.
The first output of the Discriminator is a single probability via
the sigmoid activation function that indicates the “realness” of
the input touchstroke and is optimized using binary cross
entropy like a normal GAN Discriminator model. The second
output is a probability of the touchstroke belonging to either the
owner (indicated by label “1”) or imposter (indicated by label
“0”) class via the softmax activation function and is optimized
using categorical cross entropy. The model is fitted with Adam
version of stochastic gradient descent with learning rate being
0.0002 and momentum being 0.5.
The AC-GAN composite model is created by packing the

Generator model on top of the Discriminator model. The
Discriminator model within the composite model takes the
synthetic touchstrokes generated by the Generator model as
input and predicts both the realness of the generated output and
the class label. As the purpose of the composite model is to
enhance the quality of the generated touchstrokes by tricking the
Discriminator, during training, the Discriminator’s weights are
not updated, only the Generator’s weights are updated. This has
the effect of updating the Generator toward getting better at
generating real samples on the next phase of training. In the
composite model, the Discriminator model is therefore set as
non-trainable to prevent it from being updated when the
composite model is updated.
Once all three models are built, the AC-GAN network is

ready for training. Fig. 3 contains the pseudo-codes of AC-GAN
authentication that illustrates how the network works in the
training stage. Once trained, the compact Discriminator model
is deployed in the mobile platform and make authentication
decisions as outlined in Fig. 4.

TABLE I. STRUCTURES AND PARAMETERS USED IN GENERATOR AND
DISCRIMINATOR NETWORKS

Generator Discriminator
Layer output_shape Layer output_shape
Input (None, 100) Input (None, 31)
Dense (None, 256) Dense (None, 1024)
LeakyReLU (None, 256) LeakyReLU (None, 1024)
BatchNormalization (None, 256) Dense (None, 512)
Dense (None, 512) LeakyReLU (None, 512)
LeakyReLU (None, 512) Dropout (None, 512)
BatchNormalization (None, 512) Dense (None, 256)
Dense (None, 1024) LeakyReLU (None, 256)
LeakyReLU (None, 1024) Dropout (None, 256)
BatchNormalization (None, 1024) Dense (None, 1)
Dense (None, 31) Dense (None, 2)

Fig. 3. Training stages of AC-GAN

Fig. 4. Testing stages of AC-GAN

V. EXPERIMENTS AND EVALUATAION

A. Dataset
This study adopted Touchanalytics [3] dataset for

experiments. There are 21,158 touch strokes in total, belongs to
41 subjects, which are collected from four different Android
phones. For each stroke, 31 functional features can be derived

AC-GAN Training
Inputs: Training instances X (31 dimensions feature vector)
with class labels Y
Inputs: Batch Size (Bs = 32)
Output: Trained AC-GAN model along with training losses
1. Initialize Discriminator D and Generator G
2. For each training step

a. Get a sample batch XB and YB of size Bs from X and Y.
b. Create a new batch of noise z and random sample labels

c and use them as input to the Generator to generate a
batch of class conditioned synthetic touchstrokes XB¢

XB¢ = Generator.predict (z, c)
c. x = XB + XB¢ the training dataset x therefore contains 2 *

Bs elements.
d. Populate array y (real/fake label) with Bs 1s and Bs 0s to

indicate that the first half of the training set is real
touchstrokes, and the second half is synthetic.

e. Populate array aux_y (class labels) with YB (class labels
of real touchstrokes) plus c (generated class labels for
synthetic touchstrokes).

f. Train the Discriminator with (x, [y, aux_y]) as input.
During training, the Discriminator gradients are updated
to maximize LS + LC as in (2) and (3).

Discriminator.train_on_batch(x, [y, aux_y])
g. Create 2 * Bs noise z¢ and random labels c¢ and train the

Generator with them via the combined model. The
Discriminator is set as non-trainable in order to prevent
weights updating. The goal here is to train the Generator
to trick the Discriminator, therefore all labels in y¢ are set
to 1, or to real, although they are synthetic samples.

combined.train_on_batch([z¢, c¢], [y¢, c¢]
h. Continue steps a to g for all remaining batches in the

training data set.
i. Calculate the average Discriminator training loss over all

batches for both the y (real/fake label) and aux_y (class
label) outputs.

j. Calculate the average Generator training loss over all
batches through the combined model.

AC-GAN Testing
Inputs: Testing instances Xt (31 dimensions feature vector)
with class labels Yt
Output: Testing Losses, Prediction scores: ROC, EER
1. Follow steps a – e of the training algorithm in Fig. 3 to create

xt, yt, and aux_yt from the testing data set (Xt, Yt) and generated
synthetic touchstrokes.

2. Evaluate the Discriminator on (xt, [yt, aux_yt]).
3. Calculate the Discriminator testing loss for both the yt

(real/fake) and aux_yt (class label) outputs.
4. Calculate the Generator testing loss.
5. Calculate ROC and EER.

255

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

[3]. Since each feature does not fall in the same range, they are
standardized to be in the range [-1,1]. The authentication
scenario considers two classes only, such as owner and
imposter; however, the Touchanalytics dataset is a collection of
touchstrokes data that belongs to 41 users. For a legitimate user,
a user-specific dataset is created by extracting all of her touch
data from the main dataset. In order to keep classes balanced, as
many samples from the negative class (other users) are obtained
as there are samples of the legitimate user and these samples are
added to make a complete user-specific dataset for such user.
This user-specific dataset is divided into training (80%) and
testing (20%) sets, and is utilized during training and testing, as
outlined in Fig 3 and Fig. 4. Note that these are not the sole data
used during training and testing, an equal amount of synthetic
data generated by the AC-GAN model are also merged along
with the real train and test datasets and the merged ones are
utilized in learning and making predictions. The model is fit for
25 training epochs and a mini-batch size of 32 samples is used.

B. Evaluation Metrics
To evaluate the performance of the trained Discriminator as

a classifier, various standard evaluation metrics such as
Precision, Recall, F1, ROC, and Equal Error Rate (EER) score
were utilized. In this study, Precision is the ratio of correctly
predicted ‘owner’ observations to the total predicted ‘owner’
observations. Recall is the ratio of correctly predicted ‘owner’
observations to all observations in the actual ‘owner’ class. In
other words, Precision and Recall are all interested in predicting
the true answer of the positive label. The EER is the error rate
where the False Acceptance Rate (FAR) and False Rejection
Rate (FRR) coincide. Lower EER values signify better
accuracies. F1 score takes both Recall and Precision into
account, and therefore it provides a useful indicator.
However, there are some desired properties that an efficient

GAN network should fulfill such as the ability to distinguish
generated samples from real ones, the ability to generate diverse
samples (sensitivity to overfitting, mode collapse, etc.), the
ability to generate samples that closely approximate the real
data, model having a low sample and computational complexity,
etc. Quantitively evaluating these properties is challenging, and
most of the currently available measures are specifically suitable
for computer vision or text analysis tasks. Inception score (IS)
and Fr´echet Inception distance (FID) [24] are two such
measures correlated with the visual quality of generated images
and are not suitable for non-image datasets. This study
investigated generation loss (ability to discriminate between
real/fake samples) and classification loss (ability to classify
owner/imposter correctly) to measure some of the desired GAN
properties quantitively.

C. Results
For experimental evaluation, ten subjects (first Column in

Table. II) are randomly selected from Touchanalytics dataset.
As explained in section V.A, each subject’s touch strokes
(second column in Table II) are extracted as legitimate data, and
a same number of other users’ touchstrokes are added as fraud
data to make the class balanced. During training and testing, an
equal number of synthetic data of random classes are generated
to make the total data set size as depicted in the third column of
Table II. The training and testing are performed for each
authentic user individually, and the performances for each user

TABLE II. AUTHENTICATION PERFORMANCES FOR TEN RANDOMLY
SELECTED SUBJECTS FROM TOUCHANALYTICS DATASET

Subject
ID

Subject
instances

Dataset
size

Pre. Rec. F1 ROC EER

2 1230 4920 0.98 0.98 0.98 0.976 0.024
35 1063 4252 0.94 0.96 0.95 0.949 0.063
23 969 3876 0.96 0.98 0.97 0.969 0.039
3 759 3036 0.93 0.91 0.92 0.913 0.092
27 609 2436 0.95 0.88 0.91 0.917 0.110
11 445 1780 0.95 0.95 0.95 0.952 0.049
16 382 1528 0.90 0.89 0.89 0.888 0.111
12 342 1368 0.92 0.96 0.94 0.938 0.076
4 241 964 0.96 0.95 0.95 0.953 0.053
30 225 900 0.93 0.91 0.92 0.922 0.087
Mean

0.94 0.94 0.94 0.94 0.07

Median

0.95 0.95 0.95 0.94 0.07

in terms of Precision, Recall, F1, ROC, and EER are shown in
Table II. The maximum and minimum performances achieved
for each metric across all subjects are highlighted in the table,
along with the mean and median of all metrics. The Precision
scores are relatively high, with mean: 0.94 and median: 0.95.
The Recall and F1 values are similarly high, with the exception
of subject # 27. These results indicate that it is possible to
achieve acceptable authentication accuracies even when the
machine learning model is challenged with a large number of
synthetic data that effectively simulates an imposter behavior.
The EER performance ranges from 2% to 11% with a median of
7%, which is comparable with performances achieved by other
touchstroke authentication systems [3,4] that are not challenged
by generated data. The results in Table II further reveal that the
proposed system comparatively performs better when there are
more data available to learn and to generate from.
 As outlined in section V.B, we also studied generation loss
LS in (2) and classification loss LC in (3) to understand the
network’s ultimate efficacy. Fig. 5 shows the Discriminator’s
generation (real/fake) loss during training and testing with
respect to subject # 2’s touchstroke data. It is evident that after
the ~15th or so epoch, the Discriminator becomes quite capable
of distinguishing real data from synthetic data. Some shaky
behavior is noticed from the test loss, but it is quite expected.
From this result, it can be concluded that the generated samples
are a realistic approximation of the distribution of natural
touchstrokes; otherwise, Discriminator would not be able to
classify them as real/fake so effectively. Fig. 6, on the other
hand, shows the Discriminator’s classification (owner/imposter)
loss during training and testing with respect to subject # 2’s
touchstroke data. The plot in Fig. 6 shows that at about 20th
epoch, the test loss reaches its minimum with some expected
wobble afterward. This result suggests that the generated
touchstrokes are similar to real ones as the classification
network, which learns features for discriminating touchstrokes
generated for different classes, can correctly classify them.
These plots do not show any symptom for mode collapse, which
may indicate that the generated samples are diverse.

VI. CONCLUSION
 This paper presents a touchstroke authentication model
based on AC-GAN. Given a small subset of a legitimate user’s
touchstroke data during training, the presented AC-GAN model
learns to generate a vast amount of synthetic touchstrokes that
closely approximate the real touchstrokes, simulating imposter

256

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Train and Test Generation loss (LS) for the Discriminator (Subject #2)

Fig. 6. Train and Test Classification loss (LC) for the Discriminator (Sub. #2)

behavior, and then uses both generated and real touchstrokes in
discriminating real user from the imposters. The presented
authentication relies on an architecture where the
computationally demanding AC-GAN training takes place on
the server-side, and the lightweight mobile side performs the
authentication. The presented network is trained on
Touchanalytics dataset, and the discriminability is evaluated
with popular performance metrics and loss functions. The
evaluation results suggest that it is possible to achieve
comparable authentication accuracies (EER ranging from 2% to
11%) even when the generative model is challenged with a vast
number of synthetic data that effectively simulates an imposter
behavior. Use of AC-GAN also diversify generated samples and
stabilizes training. The future works will focus on fine tuning
the model in order to achieve better accuracies and investigating
the impact of posture variation on the presented authentication.

ACKNOWLEDGMENT
We would like to acknowledge the support provided by NSF
award # 1900087.

REFERENCES
[1] V. M. Patel, R. Chellappa, D. Chandra, B. Barbello, “Continuous user

authentication on mobile devices: Recent progress and remaining
challenges”. IEEE Signal Processing Magazine, vol. 33, issue. 4, pp. 49–
61, 2016.

[2] A. Mahfouz, T. M. Mahmoud, and A. S. Eldin, “A survey on behavioral
biometric authentication on smartphones,” Journal of Information
Security and Applications, vol. 37, pp. 28–37, 2017.

[3] M. Frank, R. Biedert, E. Ma, I. Martinovic, and D. Song, "Touchalytics:
On the Applicability of Touchscreen Input as a Behavioral Biometric for
Continuous Authentication", IEEE Transactions on Information
Forensics and Security, vol. 8, no. 1, pp. 136-148, 2013.

[4] Z. Sitova, J. Sedenka, Q. Yang et al., “HMOG: new behavioral biometric
features for continuous authentication of smartphone users,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 5, pp.
877–892, 2016.

[5] R. Domingues, M. Filippone, P. Michiardi and J. Zouaoui, "A
comparative evaluation of outlier detection algorithms: Experiments and
analyses", Pattern Recognition, vol. 74, pp. 406-421, 2017.

[6] A. Roy, T. Halevi, and N. Memon. “An hmm-based behavior modeling
approach for continuous mobile authentication”, In 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3789–3793. IEEE, 2014.

[7] A. Serwadda, V. Phoha, and Z. Wang, “Which verifiers work?: A
benchmark evaluation of touch-based authentication algorithms,” in
Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth
International Conference on, pp. 1–8, 2013.

[8] G. Ye, Z. Tang, X. Chen, K. Kim, B. Taylor, and Z. Wang, “Cracking
android pattern lock in five attempts”, The Network and Distributed
System Security Symposium, 2017.

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, pp. 2672– 2680,
2014.

[10] Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu, and Z. Fang, “Towards the
automatic anime characters creation with generative adversarial
networks,” https://arxiv.org/abs/1708.05509

[11] R. A. Yeh, C. Chen, T. Lim, M. Hasegawa-Johnson, and M. N. Do,
“Semantic image inpainting with perceptual and contextual losses,”
CoRR, vol. abs/1607.07539, 2016. [Online]. Available:
http://arxiv.org/abs/1607.07539

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. “Image-to-image translation
with conditional adversarial networks”. arXiv:1611.07004, 2016.

[13] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas.
“Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks”. arXiv:1612.03242, 2016.

[14] S. Rajeswar, S. Subramanian, F. Dutil, C. J. Pal, and A. C. Courville,
“Adversarial generation of natural language,” CoRR, vol.
abs/1705.10929, 2017. Available: http: //arxiv.org/abs/1705.10929

[15] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” CoRR, vol.
abs/1709.08624, 2017. Available: http://arxiv.org/abs/1709.08624

[16] J. Li, W. Monroe, T. Shi, A. Ritter, and D. Jurafsky, “Adversaria learning
for neural dialogue generation,” arXiv:1701.06547, 2017

[17] N. Kodali, J. Abernethy, J. Hays, and Z. Kira, “On convergence and
stability of GANs,” https://arxiv.org/abs/1705.07215

[18] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training GANs,” in Advances in
Neural Information Processing Systems, pp. 2234–2242, 2016.

[19] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier GANs,” arXiv:1610.09585, 2016.

[20] A. Mino and G. Spanakis, "Logan: Generating logos with a generative
adversarial neural network conditioned on color", 2018 17th IEEE
International Conference on Machine Learning and Applications
(ICMLA)., pp. 965-970, 2018.

[21] A. Dash, et al. "TAC-GAN-Text Conditioned Auxiliary Classifier
Generative Adversarial Network." arXiv:1703.06412 (2017).

[22] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[23] https://www.tensorflow.org/lite
[24] M. J. Chong, D. Forsyth, “Effectively unbiased fid and inception score

and where to find them”. arXiv:1911.07023 (2019)

257

Authorized licensed use limited to: Winston Salem State University. Downloaded on August 10,2021 at 23:28:02 UTC from IEEE Xplore. Restrictions apply.

