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Abstract— With the growing popularity of smartphones, 
continuous and implicit authentication of such devices via 
behavioral biometrics such as touch dynamics becomes an 
attractive option, especially when the physical biometrics are 
challenging to utilize, or their frequent and continuous usage 
annoys the user. However, touch dynamics is vulnerable to 
potential security attacks such as shoulder surfing, camera 
attack, and smudge attack. As a result, it is challenging to rule 
out genuine imposters while only relying on models that learn 
from real touchstrokes. In this paper, a touchstroke 
authentication model based on Auxiliary Classifier Generative 
Adversarial Network (AC-GAN) is presented.  Given a small 
subset of a legitimate user's touchstrokes data during training, 
the presented AC-GAN model learns to generate a vast amount 
of synthetic touchstrokes that closely approximate the real 
touchstrokes, simulating imposter behavior, and then uses both 
generated and real touchstrokes in discriminating real user 
from the imposters. The presented network is trained on the 
Touchanalytics dataset and the discriminability is evaluated 
with popular performance metrics and loss functions. The 
evaluation results suggest that it is possible to achieve 
comparable authentication accuracies with Equal Error Rate 
ranging from 2% to 11% even when the generative model is 
challenged with a vast number of synthetic data that effectively 
simulates an imposter behavior. The use of AC-GAN also 
diversifies generated samples and stabilizes training.   

Keywords—Touch dynamics, Behavioral Biometrics, Continuous 
authentication, GAN, AC-GAN  

I. INTRODUCTION 
Over the last few years, the world has witnessed the 

explosive growth of consumers who are increasingly using 
their smartphones for anytime-anywhere computing and the 
enhancements of their daily lives. During the Covid-19 era, 
smartphones are being regarded as lifelines and became an 
absolute crucial for distance learning and working. Since these 
devices store a mounting quantity of user's private and 
sensitive information, securing these devices from adversary 
attacks continues to be a significant concern for both 
manufacturers and users. Physical biometrics (face, 
fingerprints, iris, etc.) has often been promoted as the most 
secure means for log-in authentication for smartphones.  
However, there is a need for additional security measures after 
the initial log-in, known as continuous and implicit user 
authentication [1]. In such authentication, the system keeps 
monitoring the user in a continuous manner throughout their 
interactions with the device, and the process is implicit such 

as all authentication is carried out in the background without 
interrupting the user or requiring any active user cooperation. 
Strong physical biometrics are not appropriate for such 
implicit authentication as they require either full or partial 
cooperation from the users at regular intervals, which results 
in annoying the user.  
Recent research has shown promising results in using 

behavioral biometrics [2] to verify users implicitly and 
continuously on smartphones. Today's smartphones are 
equipped with a plethora of sensors and accessories and could 
be used to extract user behavioral attributes such as touch 
dynamics, keystroke dynamics, and gait recognition. This 
paper focuses on touch dynamics [3,4], which captures the 
way a user touches a touchscreen device and its usage on 
continuous and implicit user authentication. 
In touch dynamics continuous authentication, the system 

continuously monitors the raw touch data and extracts 
touchstroke features. These include the area of the screen 
covered by the touch stroke, touch pressure, speed, velocity, 
and acceleration of the x, y-positions on the screen [3]. After 
observing the user behavior for a while, the system learns her 
touch dynamics by performing statistical analysis or using 
machine learning. Then, at a later time, after the initial log-in 
by using a password/pin or physical biometric, the system 
continuously compares current user behavior with the learned 
user model to make an authentication decision. The training 
phase in such authentication is different from typical 
classification as the only training data available is merely the 
smartphone owner's data. It is highly unlikely that many users 
will share a smartphone, and therefore the classifier can only 
assume the availability of the owner's data that belongs to a 
single class instance. The challenge is to train a classifier with 
two different predictions, such as owner and attacker, where 
the attacker instance does not belong to prior-learned class [5].  
Most of the prior works [3,6,7] on smartphone touchstroke 
authentication addressed this challenge by simulating one or 
more random users as attackers and the authentication 
problem is naturally fitted as a binary-class classification 
problem, where the model is trained using a particular user's 
touchstone data as the owner's and the others' as attacker's. 
While the abovementioned strategy performs well in 

preventing random attackers (someone who does not know the 
owner and can be simulated by a random user), however, it is 
most likely not to prevent attacks from a genuine imposter 
(someone who knows the owner and deliberately trying to 
imitate her behavior). Therefore, authentication becomes 
vulnerable to smudge attacks and shoulder surfing. Recent 
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studies reveal that the maleficent actors were trained to 
deceive the biometric authentication system by mimicking 
their targets through media recordings or other means in 
which they are allowed to observe and practice their target's 
behavior [8]. This poses a challenge, such as how to 
differentiate the owner from imposters to defend the attack 
knowing that an imposter already knew the target behavior.  
To address this challenge, a more robust behavioral 

biometric authentication based on generative adversarial 
network (GAN) [9] is presented, which learns how to mimic 
any data distribution while requiring fewer input data. GANs 
are a particular type of deep neural network model where two 
networks such as Generator and Discriminator are trained 
simultaneously in zero-sum game theory, with the former 
focused on data generation and the later centered on 
discrimination. While GANs and other generative models 
have been applied to an array of computer vision [9, 10, 11, 
12, 13] and natural language processing [14,15,16] problems, 
biometric authentication has yet to receive thorough 
exploration. Given a small subset of a legitimate user's 
touchstroke data during training, the GAN model can learn to 
generate a vast amount of synthetic touchstroke data that 
closely approximates the real data and then uses both 
generated and real data in discriminating real user from the 
imposter. However, GANs are typically challenging to train 
and suffer from model collapse [17,18] problem in which the 
Generator starts generating samples that have little variety.  
This paper proposes a touchstroke authentication model 

based on an extension of generic GANs, Auxiliary Classifier 
Generative Adversarial Network (AC-GAN) [19], an 
additional task-specific auxiliary classifier that optimizes by 
back-propagating classification loss through the 
Discriminator and the Generator. The auxiliary classifier has 
the effect of stabilizing the training process, and prior 
researches [20,21] on image and text data has shown excellent 
performances while alleviating the mode collapse problem. In 
the proposed AC-GAN authentication model, the Generator 
synthesizes touchstroke data conditioned on a class label. The 
Discriminator classifies between real and generated 
touchstrokes and assigns them a class label such as owner vs. 
imposter. Our goal is to develop a more robust biometric 
authentication system with higher accuracy and security.  
The rest of this paper is organized as follows. Section 2 

reviews some core concepts of GAN and AC-GAN. Then in 
Section 3, the architecture of the proposed authentication 
system is detailed. Section 4 focuses on the steps that are 
followed to train and test the AC-GAN network. Section 5 
discusses the experimental setup, data set, and evaluation 
results. Section 6 concludes the paper.  

II. BACKGROUND 
 This section reviews some core concepts of GANs and the 
additional improvements that AC-GAN offers. GAN models 
assume the availability of real data x drawn from a distribution 
pr, and exploit a generative model to generate synthetic data 
that closely resembles x. A generative model G takes as input 
a random noise z and generates a sample G(z), such as the 
output can be regarded as a sample drawn from a distribution: 
G(z) ~ pg. The objective for G is to approximate pr using pg. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
              (a)                                        (b)    
 

Fig. 1. The general structure of (a) GAN and (b) AC-GAN, where x denotes 
the real touchstroke, c the class label, z the noise, G the Generator, and D the 
Discriminator. 
 
GAN consists of two separate neural networks: a 

Generator G that takes a random noise vector z, and outputs 
synthetic data G(z); a Discriminator D that takes an input x or 
G(z) and output a probability D(x) or D(G(z)) to indicate 
whether the input is generated (fake) or from the real data 
distribution (Fig. 1(a)). Both of the Generator and 
Discriminator in GAN models can be arbitrary neural 
networks. The Generator G and Discriminator D in GAN 
models are trained by forming a two-player min-max game 
where G tries to generate realistic data to fool the 
Discriminator while D tries to distinguish between real and 
synthetic data [9]. The Discriminator is trained to maximize 
the log-likelihood it assigns the input to its correct source 
(real/fake) as in (1) [9]. 

 

𝐿 = 𝐸[log𝑃(𝑆 = 𝑟𝑒𝑎𝑙	|𝑋!"#$)]
+ 	𝐸[log𝑃(𝑆 = 𝑓𝑎𝑘𝑒	|𝑋%#&")] 

            (1) 
While GANs are able to generate synthetic data with 

higher accuracies, they suffer from problems like training 
instability, nonconvergence, and mode collapse. Multiple 
improvements have been suggested to fix these problems, 
including using deep convolutional layers for the networks, 
varying architectures, and modified objective functions for D 
and G. 
Conditional GAN (CGAN) [22] is one such improvement 

where the GAN network is augmented using side information 
to add more structure to the network and stabilize training. 
The original setup of a GAN has no control dependent on 
random noise. However, if auxiliary information is provided 
during the generation, the GAN can be driven to output data 
with desired properties. In CGAN, both Generator and 
Discriminator are supplied with class labels c in order to 
produce class conditional samples. The input/noise and c are 
combined in a joint hidden representation and fed as an 
additional input layer in both networks. The training of the 
GAN model is changed so that the Generator is provided both 
with random noise and a conditional input c, and attempts to 
generate synthetic data based on that condition. The 
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Discriminator is provided with both real and generated data as 
input and must classify whether the input is real or fake as 
before.

Extending these ideas, Odena et al. [19] proposed the
Auxiliary Classifier Generative Adversarial Network (AC-
GAN). In that model, the Generator synthesizes data
conditioned on a class label, and the Discriminator not only 
classifies between real and generated input data, but also 
assigns them a class label. In addition to Generator and 
Discriminator models, AC-GAN is equipped with an 
additional task-specific auxiliary classifier with the purpose of 
reconstructing the class labels (Fig. 1(b)). In the AC-GAN, 
every generated sample has a corresponding class label c in 
addition to the noise z. G uses both inputs to generate synthetic 
touchstrokes G(z,c). The Discriminator facilitated by the 
auxiliary classifier can be provided with either generated or 
real touchstrokes as input and outputs both a probability 
distribution over sources (real/fake) and a probability 
distribution over the class labels. The objective function has 
two parts: the log-likelihood of the correct source, LS (2), and 

the log-likelihood of the correct class, LC (3) . D is trained to 

maximize LS + LC while G is trained to maximize LC − LS . 

The resulting Generator learns a latent space representation 
independent of the class label, unlike the conditional GAN.

𝐿' = 𝐸[log𝑃(𝑆 = 𝑟𝑒𝑎𝑙 |𝑋!"#$)
+ 𝐸[log𝑃(𝑆 = 𝑓𝑎𝑘𝑒|𝑋%#&")]

      (2)
𝐿( = 𝐸[log𝑃(𝐶 = 𝑐 |𝑋!"#$)] + 𝐸[log𝑃(𝐶 = 𝑐 |𝑋%#&")]

                    (3)

III. ARCHITECTURAL FRAMEWORK

The presented touch biometric authentication architecture 
contains two process modules, one executes in the target 
(smartphone) device, and the other executes in the server-side 
(Fig. 2). As the proposed authentication system needs to act 
instantly with higher accuracies, the mobile side component is 

designed to be a lightweight process running without being 
computation or resource-heavy. Training a GAN model is 
computationally demanding, and therefore the proposed 
server-side component deals with this heavyweight process. 
First, the smartphone owner interacts with the touchscreen 
device and the smartphone sensors and accessories capture 
raw touch biometrics such as x- and y-coordinates of the 
finger, its pressure on the screen, the area of the screen 
covered by the finger, the finger orientation with respect to the 
screen and the screen orientation. During the training period, 
these raw data are continuously communicated with the server 
where touch stroke features are extracted. The features 
extracted are then used as the input of the AC-GAN model, 
where the model is trained based on the owner's touch 
biometrics and generated synthetic data using TensorFlow and 
python libraries. Once trained, a compact version of the 
Discriminator model is created using TensorFlow Lite [23], 
which is designed to execute models efficiently on mobile and 
other embedded devices with limited compute and memory 
resources. The compact model is then deployed in the target 
device and becomes ready to make predictions. While 
deployed, user's interactions are continuously monitored, 
touch biometrics features are extracted, and the deployed 
model relentlessly looks out for imposters.

IV. TRAINING AND TESTING OF AC-GAN NETWORK

This section details the steps that are followed in order to 
train and test the AC-GAN model. Firstly, a single raw touch 
stroke is analyzed, and a feature vector with 31 dimensions is 
formed according to the procedure depicted in [3]. As part of 
the proposed AC-GAN authentication system, three models,
such as the Generator, the Discriminator, and the composite 
models, are developed. The input noise for the Generator
model is created by randomly generating a point z (100
dimensions) in the latent space and then using an embedding 
layer with  glorot_normal as kernel initializer in order to 
assign a random class label c (randomly selected integers in 

Fig 2. Architectural Framework for the touch biometrics authentication system 
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[0,1] inclusively) to z. The Hadamard product between latent 
point z and class conditional embedding c is then provided as 
input to the Generator.  The Generator is designed as a deep 
neural network (DNN) containing four dense layers with 
LeakyReLU activation and BatchNormalization as specified in 
Table I and generates a class conditional synthetic feature vector 
of size 31 with tanh activation and glorot_normal as kernel 
initializer.  
The Discriminator model is provided with either a real 

feature vector or a synthetic one (generated by the Generator) as 
input and then predict whether the input touchstroke is real or 
synthetic, and the auxiliary classifier predicts the class label of 
the touchstroke vector. In this study, both the Discriminator and 
the auxiliary classifier are implemented as a single DNN with 
two outputs. Table I shows the DNN structure and parameters. 
The first output of the Discriminator is a single probability via 
the sigmoid activation function that indicates the “realness” of 
the input touchstroke and is optimized using binary cross 
entropy like a normal GAN Discriminator model. The second 
output is a probability of the touchstroke belonging to either the 
owner (indicated by label “1”)  or imposter (indicated by label 
“0”)  class via the softmax activation function and is optimized 
using categorical cross entropy. The model is fitted with Adam 
version of stochastic gradient descent with learning rate being 
0.0002 and momentum being 0.5. 
The AC-GAN composite model is created by packing the 

Generator model on top of the Discriminator model. The 
Discriminator model within the composite model takes the 
synthetic touchstrokes generated by the Generator model as 
input and predicts both the realness of the generated output and 
the class label. As the purpose of the composite model is to 
enhance the quality of the generated touchstrokes by tricking the 
Discriminator, during training, the Discriminator’s weights are 
not updated, only the Generator’s weights are updated. This has 
the effect of updating the Generator toward getting better at 
generating real samples on the next phase of training. In the 
composite model, the Discriminator model is therefore set as 
non-trainable to prevent it from being updated when the 
composite model is updated.  
Once all three models are built, the AC-GAN network is 

ready for training. Fig. 3 contains the pseudo-codes of AC-GAN 
authentication that illustrates how the network works in the 
training stage. Once trained, the compact Discriminator model 
is deployed in the mobile platform and make authentication 
decisions as outlined in Fig. 4. 

TABLE I.  STRUCTURES AND PARAMETERS USED IN GENERATOR AND 
DISCRIMINATOR NETWORKS 

Generator Discriminator 
Layer output_shape Layer output_shape 
Input (None, 100)  Input (None, 31) 
Dense  (None, 256)  Dense (None, 1024) 
LeakyReLU (None, 256) LeakyReLU (None, 1024) 
BatchNormalization (None, 256) Dense (None, 512) 
Dense  (None, 512)  LeakyReLU (None, 512) 
LeakyReLU (None, 512) Dropout (None, 512) 
BatchNormalization (None, 512) Dense (None, 256) 
Dense  (None, 1024)  LeakyReLU (None, 256) 
LeakyReLU (None, 1024) Dropout (None, 256) 
BatchNormalization (None, 1024) Dense (None, 1) 
Dense  (None, 31)  Dense (None, 2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Training stages of AC-GAN 

 

Fig. 4. Testing stages of AC-GAN 

V. EXPERIMENTS AND EVALUATAION 

A. Dataset  
This study adopted Touchanalytics [3] dataset for 

experiments. There are 21,158 touch strokes in total, belongs to 
41 subjects, which are collected from four different Android 
phones. For each stroke, 31 functional features can be derived 

AC-GAN Training 
Inputs: Training instances X (31 dimensions feature vector) 
with class labels Y 
Inputs: Batch Size (Bs = 32) 
Output: Trained AC-GAN model along with training losses 
1. Initialize Discriminator D and Generator G 
2. For each training step 

a. Get a sample batch XB and YB of size Bs from X and Y.  
b. Create a new batch of noise z and random sample labels 

c and use them as input to the Generator to generate a 
batch of class conditioned synthetic touchstrokes XB¢   

XB¢  = Generator.predict (z, c)   
c. x = XB + XB¢  the training dataset x therefore contains 2 * 

Bs elements. 
d. Populate array y (real/fake label) with Bs 1s and Bs 0s to 

indicate that the first half of the training set is real 
touchstrokes, and the second half is synthetic. 

e. Populate array aux_y (class labels) with YB (class labels 
of real touchstrokes) plus c (generated class labels for 
synthetic touchstrokes). 

f. Train the Discriminator with (x, [y, aux_y]) as input. 
During training, the Discriminator gradients are updated 
to maximize LS + LC as in (2) and (3).  

Discriminator.train_on_batch(x, [y, aux_y]) 
g. Create 2 * Bs noise z¢ and random labels c¢ and train the 

Generator with them via the combined model. The 
Discriminator is set as non-trainable in order to prevent 
weights updating. The goal here is to train the Generator 
to trick the Discriminator, therefore all labels in y¢ are set 
to 1, or to real, although they are synthetic samples.  

combined.train_on_batch([z¢, c¢], [y¢, c¢] 
h. Continue steps a to g for all remaining batches in the 

training data set. 
i. Calculate the average Discriminator training loss over all 

batches for both the y (real/fake label) and aux_y (class 
label) outputs. 

j. Calculate the average Generator training loss over all 
batches through the combined model. 

 

AC-GAN Testing 
Inputs: Testing instances Xt (31 dimensions feature vector) 
with class labels Yt 
Output: Testing Losses, Prediction scores: ROC, EER 
1. Follow steps a – e of the training algorithm in Fig. 3 to create 

xt, yt, and aux_yt from the testing data set (Xt, Yt) and generated 
synthetic touchstrokes.   

2. Evaluate the Discriminator on (xt, [yt, aux_yt]).  
3. Calculate the Discriminator testing loss for both the yt 

(real/fake) and aux_yt (class label) outputs. 
4. Calculate the Generator testing loss. 
5. Calculate ROC and EER. 
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[3]. Since each feature does not fall in the same range, they are 
standardized to be in the range [-1,1]. The authentication 
scenario considers two classes only, such as owner and 
imposter; however, the Touchanalytics dataset is a collection of 
touchstrokes data that belongs to 41 users. For a legitimate user, 
a user-specific dataset is created by extracting all of her touch 
data from the main dataset. In order to keep classes balanced, as 
many samples from the negative class (other users) are obtained 
as there are samples of the legitimate user and these samples are 
added to make a complete user-specific dataset for such user. 
This user-specific dataset is divided into training (80%) and 
testing (20%) sets, and is utilized during training and testing, as 
outlined in Fig 3 and Fig. 4. Note that these are not the sole data 
used during training and testing, an equal amount of synthetic 
data generated by the AC-GAN model are also merged along 
with the real train and test datasets and the merged ones are 
utilized in learning and making predictions. The model is fit for 
25 training epochs and a mini-batch size of 32 samples is used. 

B. Evaluation Metrics 
To evaluate the performance of the trained Discriminator as 

a classifier, various standard evaluation metrics such as 
Precision, Recall, F1, ROC, and Equal Error Rate (EER) score 
were utilized. In this study, Precision is the ratio of correctly 
predicted ‘owner’ observations to the total predicted ‘owner’ 
observations. Recall is the ratio of correctly predicted ‘owner’ 
observations to all observations in the actual ‘owner’ class. In 
other words, Precision and Recall are all interested in predicting 
the true answer of the positive label. The EER is the error rate 
where the False Acceptance Rate (FAR) and False Rejection 
Rate (FRR) coincide. Lower EER values signify better 
accuracies. F1 score takes both Recall and Precision into 
account, and therefore it provides a useful indicator. 
However, there are some desired properties that an efficient 

GAN network should fulfill such as the ability to distinguish 
generated samples from real ones, the ability to generate diverse 
samples (sensitivity to overfitting, mode collapse, etc.), the 
ability to generate samples that closely approximate the real 
data, model having a low sample and computational complexity, 
etc. Quantitively evaluating these properties is challenging, and 
most of the currently available measures are specifically suitable 
for computer vision or text analysis tasks. Inception score (IS) 
and Fr´echet Inception distance (FID) [24] are two such 
measures correlated with the visual quality of generated images 
and are not suitable for non-image datasets. This study 
investigated generation loss (ability to discriminate between 
real/fake samples) and classification loss (ability to classify 
owner/imposter correctly) to measure some of the desired GAN 
properties quantitively.  

C. Results 
For experimental evaluation, ten subjects (first Column in 

Table. II)  are randomly selected from Touchanalytics dataset. 
As explained in section V.A, each subject’s touch strokes 
(second column in Table II) are extracted as legitimate data, and 
a same number of other users’ touchstrokes are added as fraud 
data to make the class balanced. During training and testing, an 
equal number of synthetic data of random classes are generated 
to make the total data set size as depicted in the third column of 
Table II. The training and testing are performed for each 
authentic user individually, and the performances for each user  

TABLE II.  AUTHENTICATION PERFORMANCES FOR TEN RANDOMLY 
SELECTED SUBJECTS FROM TOUCHANALYTICS DATASET 

Subject 
ID 

Subject 
instances 

Dataset 
size 

Pre. Rec. F1 ROC EER 

2 1230 4920 0.98 0.98 0.98 0.976 0.024 
35 1063 4252 0.94 0.96 0.95 0.949 0.063 
23 969 3876 0.96 0.98 0.97 0.969 0.039 
3 759 3036 0.93 0.91 0.92 0.913 0.092 
27 609 2436 0.95 0.88 0.91 0.917 0.110 
11 445 1780 0.95 0.95 0.95 0.952 0.049 
16 382 1528 0.90 0.89 0.89 0.888 0.111 
12 342 1368 0.92 0.96 0.94 0.938 0.076 
4 241 964 0.96 0.95 0.95 0.953 0.053 
30 225 900 0.93 0.91 0.92 0.922 0.087 
Mean 

  
0.94 0.94 0.94 0.94 0.07 

Median 
  

0.95 0.95 0.95 0.94 0.07 
 

in terms of Precision, Recall, F1, ROC, and EER are shown in 
Table II. The maximum and minimum performances achieved 
for each metric across all subjects are highlighted in the table, 
along with the mean and median of all metrics. The Precision 
scores are relatively high, with mean: 0.94 and median: 0.95. 
The Recall and F1 values are similarly high, with the exception 
of subject # 27. These results indicate that it is possible to 
achieve acceptable authentication accuracies even when the 
machine learning model is challenged with a large number of 
synthetic data that effectively simulates an imposter behavior.  
The EER performance ranges from 2% to 11% with a median of 
7%, which is comparable with performances achieved by other 
touchstroke authentication systems [3,4] that are not challenged 
by generated data. The results in Table II further reveal that the 
proposed system comparatively performs better when there are 
more data available to learn and to generate from. 
 As outlined in section V.B, we also studied generation loss 
LS in (2) and classification loss LC in (3) to understand the 
network’s ultimate efficacy.  Fig. 5 shows the Discriminator’s 
generation (real/fake) loss during training and testing with 
respect to subject # 2’s touchstroke data. It is evident that after 
the ~15th or so epoch, the Discriminator becomes quite capable 
of distinguishing real data from synthetic data. Some shaky 
behavior is noticed from the test loss, but it is quite expected. 
From this result, it can be concluded that the generated samples 
are a realistic approximation of the distribution of natural 
touchstrokes; otherwise, Discriminator would not be able to 
classify them as real/fake so effectively.  Fig. 6, on the other 
hand, shows the Discriminator’s classification (owner/imposter) 
loss during training and testing with respect to subject # 2’s 
touchstroke data. The plot in Fig. 6 shows that at about 20th 
epoch, the test loss reaches its minimum with some expected 
wobble afterward. This result suggests that the generated 
touchstrokes are similar to real ones as the classification 
network, which learns features for discriminating touchstrokes 
generated for different classes, can correctly classify them. 
These plots do not show any symptom for mode collapse, which 
may indicate that the generated samples are diverse.  

VI. CONCLUSION  
 This paper presents a touchstroke authentication model 
based on AC-GAN.  Given a small subset of a legitimate user’s 
touchstroke data during training, the presented AC-GAN model 
learns to generate a vast amount of synthetic touchstrokes that 
closely approximate the real touchstrokes, simulating imposter 
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Fig. 5. Train and Test Generation loss (LS) for the Discriminator (Subject #2) 

 

 
Fig. 6. Train and Test Classification loss (LC) for the Discriminator (Sub. #2) 
 

behavior, and then uses both generated and real touchstrokes in 
discriminating real user from the imposters. The presented 
authentication relies on an architecture where the 
computationally demanding AC-GAN training takes place on 
the server-side, and the lightweight mobile side performs the 
authentication. The presented network is trained on 
Touchanalytics dataset, and the discriminability is evaluated 
with popular performance metrics and loss functions. The 
evaluation results suggest that it is possible to achieve 
comparable authentication accuracies (EER ranging from 2% to 
11%) even when the generative model is challenged with a vast 
number of synthetic data that effectively simulates an imposter 
behavior. Use of AC-GAN also diversify generated samples and 
stabilizes training. The future works will focus on fine tuning 
the model in order to achieve better accuracies and investigating 
the impact of posture variation on the presented authentication.  
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