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Abstract—Recovering variables and data structure information
from stripped binary is a prominent challenge in binary program
analysis. While various state-of-the-art techniques are effective
in specific settings, such effectiveness may not generalize. This
is mainly because the problem is inherently uncertain due to
the information loss in compilation. Most existing techniques
are deterministic and lack a systematic way of handling such
uncertainty. We propose a novel probabilistic technique for vari-
able and structure recovery. Random variables are introduced
to denote the likelihood of an abstract memory location having
various types and structural properties such as being a field
of some data structure. These random variables are connected
through probabilistic constraints derived through program anal-
ysis. Solving these constraints produces the posterior probabilities
of the random variables, which essentially denote the recovery
results. Our experiments show that our technique substantially
outperforms a number of state-of-the-art systems, including
IDA, Ghidra, Angr, and Howard. Our case studies demonstrate
the recovered information improves binary code hardening and
binary decompilation.

I. INTRODUCTION

A prominent challenge in binary program analysis is to
recognize variables, derive their types, and identify complex
array and data structure definitions. Such information is lost
during compilation, that is, variables and data structure fields
are translated to plain registers and memory locations without
any structural or type information. Variable accesses, including
those for both simple global scalar variables and complex
stack/heap data structure fields with a long reference path (e.g.,
a.b.c.d), are often uniformly compiled to dereferences of
some registers that hold a computed address. Recovering the
missing variable and structure information is of importance
for software security. Such information can be used to guide
vulnerability detection [1], legacy code hardening (e.g., adding
bound checks) [2], [3], [4], [5], executable code patching (i.e.,
applying an existing security patch to an executable) [6], and
decompilation (to understand hidden program behaviors) [7],
[8], [9]. It is also a key step in any non-trivial binary rewriting,
such as binary debloating to reduce attack surface [10].

Most binary analysis platforms have the functionalities of
variable recovery and some support of structure recovery, i.e.,
array, struct, and class recovery. Many of them, including
the most widely used IDA platform [7], hard-code a set of
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reverse engineering rules that are effective in certain scenarios
(e.g., for binaries generated by some compilers). However,
they are usually not general enough because modern compilers
are diverse and feature aggressive optimizations, which may
violate many instruction patterns that these rules rely on. A
number of systems, including Ghidra [8], Angr [11], and
TIE [12], make use of static program analysis, such as data-
flow analysis and abstract interpretation, to identify variables
and infer types. However, their underlying static analysis is
often not sufficiently accurate. For example, many rely on
Value Set Analysis (VSA) [13] to derive the points-to relations
at the binary level. However, VSA is known to produce a
lot of bogus information, reporting many memory accesses
potentially aliased with almost the entire address space. Some
techniques such as REWARDS [1] and Howard [14] rely on
dynamic analysis to achieve better accuracy. They need high
quality inputs to reach good coverage. Such inputs may not be
feasible in security applications. In addition, as compilation
is lossy, variable and structure recovery is inevitably uncer-
tain. Such uncertainty often yields contradicting results. For
instance, many techniques rely on specific instruction patterns
of loading base address to recognize a data structure. However,
such patterns may appear in code snippets that do not access
data structure at all (just by chance). Existing techniques lack
a systematic way of dealing with such uncertainty.

We observe that there are a large number of hints of various
kinds that can be collected to guide variable and structure
recovery, many of them have not been fully leveraged by
existing techniques, due to both the difficulty of precluding
bogus hints and the lack of a systematic way of integrating
them in the presence of uncertainty. For example, some of
such hints include: two objects of the same class often go
through similar data-flow; two objects of the same class may
have direct data-flow between their corresponding fields (due
to object copying). However, leveraging such hints requires
identifying precise data-flow, which is difficult, and aggregat-
ing them when there is uncertainty.

In this paper, we propose a probabilistic variable and data
structure recovery technique. It extends a recent binary abstract
interpretation infrastructure BDA [15] that has better scalabil-
ity and accuracy, to collect a large set of basic behavioral
properties of the subject binary, such as its memory access
patterns, data-flow, and points-to relations. For each (abstract)



memory location, i.e., a potential variable/data-structure-field,
a set of random variables are introduced to denote its possible
primitive types (e.g., int, long, and pointer) and its structural
properties (e.g., being a field of some data structure or an
element of some array). These random variables are corre-
lated through the hints collected by program analysis. For
example, two memory locations may be two elements of a
same array if they are accessed by the same instruction. This
hint can be encoded as a probabilistic constraint involving
the random variables for the two memory locations. Note that
although such hints are uncertain, the introduction of random
variables and probabilistic constraints naturally models the
uncertainty. Intuitively, a random variable may be involved
in multiple hints and hence its probability is constrained by
all those hints. All these probabilistic constraints are resolved
together to derive the posterior distribution. We develop a
customized iterative probabilistic constraint solving algorithm.
It features the capabilities of handling a large number of
random variables, constraints, and the need of updating the
constraints on-the-fly (e.g., when disclosing a new array). It
also features optimizations that leverage the domain specific
modular characteristics of programs.
Our contributions are summarized as follows.

o We propose a novel probabilistic variable and data struc-
ture recovery technique that is capable of handling the
inherent uncertainty of the problem.

o« We develop a set of probabilistic inference rules that
are capable of aggregating in-depth program behavioral
properties to achieve precision and good coverage in
recovery results.

« We develop an iterative and optimized probabilistic con-
straint solving technique that handles the challenges for
probabilistic inference in program analysis context.

o We develop a prototype OSPREY (recOvery of variable
and data Structure by PRobabilistic analysis for strippEd
binarY). We compare its performance with a number of
state-of-the-art techniques, including Ghidra, IDA, Angr,
and Howard, on two sets of benchmarks collected from
the literature [14], [12]. Our results show that OSPREY
outperforms them by 20.41%-56.78% in terms of preci-
sion and 11.89%-50.62% in terms of recall. For complex
variables (arrays and data structures), our improvement is
6.96%-89.05% (precision) and 46.45%-74.02% (recall).
We also conduct two case studies: using our recovered
information to (1) improve decompilation of IDA and (2)
harden stripped binaries.

II. MOTIVATION

In this section, we use an example to illustrate the limita-
tions of existing techniques and motivate our technique. Fig-
ure la presents the source code of a function huft_build
in gzip (lines 8-15). It is substantially simplified for the illus-
tration purpose. We also introduce a crafted main () function
(lines 5-7) which uses a predicate over a random number to
represent that the likelihood of reaching the function through
random test input generation is low (line 6). Figure 1b presents

01. typedef struct { <huft_build>:

02.  long X3 [01] mov [rsp+0x8], ©
03. long yi [02] mov [rsp+0x10], 1
S Lot e [e3] ...

05. int main() {

06. if (1rand(1000)) huft_build(..); Egg ;zj E'::;][rig;exs]
O Y ’

08. void huft build(.) [gg] T
I Ees} call matloc

~line 09
~line 11

%. line 13

10 if (.)

11. p = &v; [09] mov [rsp], rax 3

12.  else { [10] movdqa xmmO, [rsp+0x8] 3"'Line 14
13. p = malloc(sizeof(elem_t)); [11] movups [rax], xmmO !

14. *p = v; [12] ...

15.  } [13] mov rcx, [rsp] :

16.  output(p->x, p->y); [14] mov rdi, [rcx] - line 16
17. } [15] mov rsi, [rcx+0x8]

(a) Source code of huft_build. (b) Assembly of huft_build.
® ® Data-flow hint

[15] [15]
> v.y \ [10] f p->y |f——
[14]  +ox1 T ﬁ( T11] \ - ‘__[14]
OX08 p _l _______ A (® Unified access
rsp ® Point-to hint Point hint
Stack of huft_build Heap

(c) Memory layout of huft_build’s variables.
Fig. 1: Motivation example.

the corresponding assemble code, and Figure 1c shows part of
the memory layout of the variables. In the source code, lines 1-
4 define a structure elem_t consisting of two fields x and y;
inside the function, line 9 declares p as a pointer to elem_t,
and v as a stack-inlined elem_t; the conditional at line 10
has two branches, with the true branch setting p to the address
of v and the false branch allocating a piece of heap memory
to p (line 13), and storing v to the allocated space (line 14);
and finally, line 16 outputs p—>x and p—>y.

After compilation, global variables are denoted by constant
addresses and local variables are translated to offsets on stack
frames. For example, the definitions of v.x and v.y at line
9 are translated to memory writes to stack offsets rsp+0x8
and rsp+0x10 (instructions [01]-[02] in Figure 1b, re-
spectively. The assignment to p at line 11 is translated to a
write to offset rsp+0x0 at instruction [5] in Figure 1b.
This is due to the stack memory layout shown on the left of
Figure 1c. Observe that from the assembly code the types of
these stack offsets are unknown. It is also unclear rsp+0x8
and rsp+0x10 belong to a data structure while rsp denotes
an 8-byte scalar variable. It is almost impossible to know that
the heap variable stored in register rax at instruction [09]
is of the same type as the data structure denoted by rsp+0x8
and rsp+0x10. This example only represents some simple
situations. In practice, there are much more difficult challenges
such as nesting structures, array of structures, and arrays inside
structures. In the following, we discuss how the-state-of-the-
art techniques and our technique perform on this example.
Note that the ideal recovery result is to identify p as a pointer
to elem_t while v is an instance of the same structure on
stack, as shown in the “ground truth” column in Figure 2.

IDA [7] is one of the most widely-used commercial decompi-
lation toolkits. It has the functionality of recovering variables
and their types. Its recovery algorithm, which is called semi-
naive algorithm in [16], is based on a local (intra-procedural)
static analysis. It identifies absolute addresses, rsp-based



;

i| typedef struct {
il intea s_1;
int64 s_2;

3 } struct_0;

;

i typedef struct {
int32 s_0[4];

1 } struct_o;

i

;

i typedef union {
I int64 u_6[2];
int128 u_1;

3 } union_0;

typedef struct {
long x;
long y;

} elem_t;

\
1 int128 *local _0;

i |
; 1 struct_0 *Llocal_0; ? typedef struct {
1 union_0 local 8;
i

3 int64 local_8; int64 s_1;
! int64 local_10; int64 s_2;
Ground Truth IDA Pro Ghidra 1|} struct 1;
TmTmmmTmmmmsmmsmosmmogessssossoossossoooogsso-o--------------9) typedef union {
typedef union { | typedef struct { struct_1 u_0;
struct { int64 s_1; int128 u_1;
int64 s_1; int64 s_2; | } union_0;
int64 s_2; i } struct_o; |
} ue; 1
int128 u_1;
} union_0;

elem_t *p;
elem_t v;

i struct_0 *local_0; 0.
i Union_0 *local_0; 0.

g int64 local_8;
{[int64 local 10; 0.3

:
i struct_0 local _8; 0.7
OSPREY

9
1

1 1

\ \

) struct_0 *local_0; ; void *local_0;

int64 local_8; i int64 local_8; i int64 local_8;

int64 local_10; ! int64 local_10; ! int64 local_10;
:

TIE* and REWARDS" |

union_0 *local_0;

Howard* i angr

[+ Such result requires full Vs supported. * Such results require function <huft_build> executed. |

Fig. 2: Results of different techniques for huft_build.

offsets, and rbp-based offsets as variables or data structure
fields. For example, it recognizes rsp+0x8 (at instruction
[01]) as a variable/field. In order to distinguish data structure
fields from scalar variables, IDA developers hard-coded a
number of code pattern matching rules. For example, they
consider field accesses are performed by first loading the base
address of the data structure to a register, and then adding
the field offset to the register. As such, they consider all the
accessed addresses that share the same base belong to a data
structure. Another sample rule is that an instruction pair like
the movdga instruction at [10] and the movups instruction
at [11] denotes a 128-bit packed floating-point value move-
ment. Unfortunately, modern compilers aggressively utilize
these instruction patterns to optimize code generation. In our
case, the two instructions are not related to floating-point value
copy but rather general data movement. As shown in Figure 2,
IDA misidentifies elem_t as a union (denoted as union_0)
of a 64-bit value array of size two, and a monolithic field
of 128-bit. The data structure is recognized through the lea
instruction at [04], which loads the base address rsp+0x8.
However, since rsp+0x8 and rsp+0x10 are accessed in two
manners, one accessing individual addresses as instructions
[01] and [02], and the other accessing the region as a
whole like instructions [10] and [11], IDA determines that
it is a union. Also observe that IDA fails to recognize that
variable 1ocal_0 (i.e., the local variable at stack offset O
corresponding to p in the source code) is a pointer to the data
structure. In our experiment over 101 programs (Section VI),
IDA achieves 66.88% precision and 76.29% recall.

Ghidra [8] is a state-of-the-art decompiler developed by NSA.
Its algorithm is similar to IDA’s. The improvement is that
Ghidra leverages a register-based data-flow analysis [17] to
analyze potential base addresses that are beyond rsp and rbp
registers. In our example, it identifies rax at instruction [09]
denotes the base address of the allocated heap structure at
[08] as the return value of malloc at [08] is implicitly
stored in rax. This allows Ghidra to identify local_0 (i.e.,
rsp) as a pointer to the heap data structure as shown in the
“Ghidra” column in Figure 2. However, the data-flow analysis
is limited. It does not reason about data flow through memory.

Observe that the base address in rax is stored to [rsp] at
instruction [09] and then loaded to rcx at [13]. Ghidra
cannot recognize rcx at [13] denotes the same base address
as rax at [09]. As a result, it cannot recognize local_0
is pointing to the same data structure of the two stack offsets
rsp+0x8 and rsp+0x10. Instead, it identifies local_0 a
32-bit value heap array of size 4 and the two stack offsets as
separate scalar variables. Inspection of Ghidra’s source code
indicates that Ghidra developers do not consider stack offsets
as reliable base addresses (potentially due to that compiler
optimizations may lead to arbitrary stack addressing) such that
it does not even group the two stack offsets to a structure. This
demonstrates that the intrinsic uncertainty in variable recovery
leads to inevitably ad-hoc solutions. In our experiment, Ghidra
achieves 69.77% precision and 76.73% recall.

TIE [12] is a static type inference technique for binary
programs. It leverages a heavy-weight abstract interpretation
technique called Value Set Analysis (VSA) [13] to reason
about data-flow through memory. VSA over-approximates the
set of values that may be held in registers and memory
locations such that a memory read may read the value(s)
written by a memory write as long as their address registers’
value sets have overlap, meaning that the read and the write
may reference the same address. Facilitated by VSA, TIE is
able to determine that the access of [rsp] at instruction
[13] may receive its value from the write at instruction [09]
that represents the allocated heap region. As such, the accesses
in instructions [14] and [15] allow TIE to determine that
the heap structure consists of two int 64 fields, as shown in
Figure 2. However, VSA is conservative and hence leads to a
large amount of bogus data-flow. As such, existing public VSA
implementations do not scale to large programs [15], including
gzip. Besides, the inherent uncertainty in variable recovery and
type inference often leads to contradicting results. TIE cannot
rule out the bogus results and resorts to a conservative solution
of retaining all of them. Assume the underlying VSA scaled
to gzip and hence TIE could produce results for our sample
function huft_build. TIE would observe that instructions
[14] and [15] access two int64 fields inside the heap
structure. Meanwhile, it would observe that instruction [10]
directly accesses a 128 bits value in the same structure. It
would consider the structure may contain just a monolithic
field. To cope with the contradiction, TIE simply declares a
union to aggregate the results, as shown in Figure 2. Note
that since TIE is not available, in order to produce the pre-
sented results, we strictly followed their algorithm in the paper.
Finally, as commented by some of the TIE authors in [9], TIE
does not support recursive types, although they are widely used
(e.g., in linked lists and binary trees). For example, “struct
s {int a; struct s =xnext}” would be recovered as
“struct s {int a; void =*next}” at best.

REWARDS [1] is a binary variable recovery and type infer-
ence technique based on dynamic analysis. Through dynamic
tainting, it precisely tracks data-flow through registers and
memory such that base-addresses and field accesses can be rec-



ognized with high accuracy. However, its effectiveness hinges
on the availability of high quality inputs, which may not be
true in many security applications. Theoretical, one could use
fuzzing [18], [19], [20], [21], [22] or symbolic execution [23],
[24], [25], [26], [27] to generate such inputs. However, most
these techniques are driven by a more-or-less random path
exploration algorithm whose goal is to achieve new code
coverage. In our example, we use a random function (line 6)
to denote the small likelihood of function huft_build ()
being covered by path exploration. If functions, code blocks,
and program paths are not covered, the related data-flow
and hence the corresponding variable/field accesses cannot be
recovered by REWARDS. Similar to TIE, REWARDS cannot
deal with uncertainty. In Figure 2, if we assume the function
has all its paths covered, REWARDS would generate the same
undesirable result as TIE.

Howard [14] improves REWARDS using heuristics to resolve
conflicts. As shown in the “Howard” column in Figure 2. It
prioritizes complex structures over monolithic fields. However,
it cannot recognize structures on stack. More detailed discus-
sion can be found in Appendix A. Howard can achieve 81.5%
accuracy, with 59% function coverage.

Angr [11] is a state-of-the-art open source binary analysis
infrastructure. Its variable recovery leverages an advanced
concolic execution engine. Despite the more precise data-flow
analysis, Angr’s variable recovery is not as aggressive as the
others. Hence, in Figure 2, the current implementation of Angr
cannot recognize the structures. More discussion can be found
in Appendix A. In our experiment, Angr achieves 33.40%
precision and 59.27% recall.

A. Our Technique

Observations. From the above discussion, we observe that
compilation and code generation is a lossy procedure, whose
reverse function is inherently uncertain. It is hence very diffi-
cult to define generally applicable rules to recover variables.
In addition, the underlying analysis plays a critical role. These
analysis have different trade-offs in accuracy, scalability, and
the demand of high quality inputs.

Insights. The first insight is that while existing techniques
mostly focus on memory access patterns (i.e., base addresses
and offset values) to identify structures, there are many other
program behaviors that can serve as hints to recover data
structures. For example, they include the following. The first
is called data-flow hint. In Figure lc, there is direct data-flow
from v to xp, denoted by the brown arrow (I), due to the
copy at instructions [10] and [11]. It implies that the two
memory regions may be of the same complex type. The second
kind of hints originates from points-to relations, called points-
to hint. As blue arrows (2) in Figure 1c indicate, variable p may
point to both v and *p, suggesting that they are of the same
type. The third kind of hint is called unified access point. The
green arrows (3) mean that instruction [14] accesses both
v.x and p->x, while instruction [15] accesses both v.y

and p->y. Instructions [14] and [15] are likely unified
access points to fields of the same data structure.

The second insight is that the various kinds of hints in
variable/structure recovery can be integrated in a more
organic manner using probabilistic inference [28] . Instead
of making a deterministic call of the type of a memory region,
depending on the number of hints collected, we compute the
probabilities for the memory region having various possible
types. This requires developing a set of probabilistic inference
rules specific to variable recovery. In our example, the float-
point instructions at instructions [10] and [11] cause a
conflict, which is suppressed by the large number of other hints
(e.g., M, @, and Q) in Figure 1c) in probabilistic analysis.

To realize the above two insights, a critical challenge is to
precisely identify data-flow and points-to relations. The recent
advance made by BDA [15] makes this feasible.

Our Technique. For each memory location, we introduce
multiple random variables to denote the probabilities of pos-
sible types of the memory location. We construct the set
of possible types and compute the probabilities for these
random variables as follows. Specifically, OSPREY extends
BDA [15] to compute valuable program properties (introduc-
tion to BDA and our extension can be found in Sections III
and IV), including memory access patterns, data-flow through
register and memory, points-to, heap usage, and so on. These
program properties are regarded as basic facts, each of which
has a prior probability representing its implication of typing
and structural properties. For example in Figure lc, the points-
to hint (2) that p may point to both v and *p indicates a
large prior probability that v and *p are of the same type.
After collecting all the hints with their probabilities, OSPREY
performs probabilistic inference to propagate and aggregate
these hints, and derive the posterior marginal probabilities
that indicate the probable variables, types, and data structure
declarations. For instance, in Figure 2, the likelihood of v (or
local_8) being a stack based structure is much higher than
that of two separated int64s (0.7 v/s 0.3). The likelihood
of p (or local_0) being a pointer to a structure is much
higher than being a pointer to a union (0.9 v/s 0.1). This aligns
perfectly with the ideal result. Our experiments show that if we
only report the most probable ones, our technique can achieve
90.18% precision and 88.62% recall, and 89.05% precision
and 74.02% recall for complex variables (e.g., struct),
substantially outperforming other existing techniques.

III. DESIGN OVERVIEW

Figure 3 shows the workflow of OSPREY. Given a stripped
binary, BDA is first used to collect basic analysis facts of
the binary (e.g., data-flow and points-to). These basic facts
are then first processed by a deterministic reasoning step (.
For example, access/data-flow patterns can be extracted and
compared to form hints. The resulted abstract relations/hints
then go through the probabilistic constraint construction step
), where predicates describing structural and type properties
of individual memory chunks are introduced (e.g., whether
a memory chunk denotes a field starting at some memory
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address), each denoted by a random variable. Here a memory
chunk is a smallest memory unit accessed by some instruc-
tion. A set of inference rules are introduced to describe
the correlations across these random variables. As such, a
random variable is constrained in multiple ways (by various
hints). In step @), these constraints/rules are transformed to a
probabilistic graph model. A customized inference algorithm
(developed from scratch) is then used to resolve these proba-
bilistic constraints to produce the posterior probabilities. Dif-
ferent from most existing probabilistic inference algorithms,
our algorithm is iterative to deal with on-the-fly changes of
the constraints, which are inevitable due to the nature of
our problem. For example, finding a new likely array leads
to introduction of new predicates denoting its properties and
requires re-inference. Our algorithm is also optimized as most
existing inference engines cannot deal with the large number
of random variables in our context. Our optimization leverages
the modular characteristics commonly seen in programs and
program analysis. Finally, the most probable type and struc-
tural predicates are reported and further processed to generate
the final variable, type, and structure declarations.
Background: BDA - Path Sampling Driven Per-path Ab-
stract Interpretation. The first step of our technique is to
collect basic facts of the subject binary’s behaviors. Traditional
static analysis such as VSA [13] is not accurate (for larger
programs) [15]. Although dynamic analysis are accurate, they
need to have good quality input to achieve good coverage.
BDA is an advanced static analysis technique that aims to
achieve the benefits of both. It uses a sophisticated path
sampling algorithm so that the different paths of a program
can be sampled uniformly. Note that simply tossing a fair coin
at each predicate leads to a distribution that is substantially
biased towards short paths. Uniform sampling allows exploring
a lot more long paths. For each sampled path, it performs
accurate abstract interpretation. As shown in [15], it produces
binary points-to results that are substantially better than VSA,
leading to much higher accuracy in downstream analysis.

IV. DETERMINISTIC REASONING

Before probabilistic inference, our technique performs de-
terministic reasoning, through which analysis facts are col-
lected and processed to derive a set of relations and hints. Such
information provides the needed abstraction so that the later
probabilistic inference, which is sensitive to problem scale,
does not have to be performed on the low-level facts.

f € (Function) := Intg4 o € (Offset) = Intga

i € (Instruction) == Intgs k € (Constant) := Intga

s € (Size) ::= Uintgy r € (MemRegion: MR) ::= G|H;|Sy
a € (MemAddress: MA) == (r,0) v € (MemChunk: MC) ::= (a, s)

Fig. 4: Definitions.
Definitions. As shown in Figure 4, we use f to denote a
function, which is essentially a 64-bit integer denoting the
function’s entry point, o to denote an offset, 7 to denote an
instruction, which is essentially a 64-bit integer representing
the starting address of the instruction, and s to denote a Size.

The memory space is partitioned to three distinct regions:
global, stack, and heap. The global region, denoted as G,
stands for the space holding all the initialized and uninitialized
global data. A stack frame or a heap-allocated block consti-
tutes a region as well.

Here, we assume that a binary is correctly disassembled
and function entries are properly identified such that the
correctness of memory partition can be guaranteed. Although
these are very challenging tasks, addressing them is beyond
the scope of this paper. As discussed in Section VIII, there
are existing techniques [29], [6], [30], [31], [32], [33] that
particularly focus on these problems. A stack region for a
function f, denoted as Sy, models the stack frame that holds
local variables/structures for f. A heap region allocated at an
instruction ¢ is denoted as H;. A memory region r could be
any of the three kinds. A memory address a is represented
as (r,0), in which r stands for the region a belongs to and
o for a’s offset relative to the base of the region. A memory
chunk, which is a term we inherit from VSA [13], denotes
a variable-like smallest memory unit that is ever visited by
some instruction. It is represented as (a, s) where a models
the starting address of the unit and s its size. It may correspond
to a scalar variable, a data structure field, or an array element
of some primitive type.

Consider the assemble code at instruction [11], “movups
[rax], xmm0”, in Figure 1b. As register rax acquires
its value @ = (r = Hog,0 = 0) from instruction [08], the
movups instruction accesses a 16-byte variable-like memory
chunk v = (a = (Hos, 0) , s = 16).

Primitive Analysis Facts Collected by BDA. As the first
step, we extend BDA to collect a set of basic facts. Recall
that BDA is a per-path abstract interpretation technique driven
by path sampling. It uses precise symbolic values (i.e., without
approximation) and interprets individual paths separately. One
can consider that BDA is analogous to executing the subject
binary on an abstract domain. It does not need to merges
values across paths like other abstract interpretation techniques
(e.g., VSA), so the abstract domain is precise instead of
approximate. We collect six types of facts such as memory
access behaviors and points-to relations, as presented in the
top of Figure 5. Specifically, Access(i,v, k) [Foi] states that
instruction ¢ accessed a memory chunk v for k times during
the sample runs. By precisely tracking data-flow through both
registers and memory, BDA can determine the base address
of all offsetting operations. In particular, it looks for data-
flow paths that starts by loading an address to a register,



The value loaded from v, was stored to vq directly, or indirectly via register copying in the middle during sampling.

{sr € Size | MallocedSize(%, si)} in ascendant order

k = max({k¢|Access(i,v, kt)}) A Access(i,v, k) ANv.a = ay

(|MallocedSizes(i)| > 1) A (SizeDifferenceGCD(MallocedSizes(i)) = s)

as=vs.a A ag = vg.a A (Offset(v.a,as) = Offset(vl.a,aq) = s) A
SameRegion(as,v’.a) A SameRegion(aq,vy.a) A MemCopy(vs,va) A MemCopy(v’, v’)
as=vs.a A ag = vg.a A (Offset(v..a,as) = Offset(vy.a,aq) = s) A
SameRegion(as,v’,.a) A SameRegion(aq,vly.a) A Accessed(i1,vs) A Accessed(i1,vq) A

as=vs.a A ag = vg.a A (Offset(v].a, as) = Offset(v}.a, aq) = s) A
SameRegion(as,v’,.a) A SameRegion(aq,v!y.a) A BaseAddr(—,v’, as) A BaseAddr(—, v}y, aq)

Primitive Analysis Facts
Fo1 Access(i,v, k) Memory chunk v was accessed by instruction ¢ for £ > O times during sampling.
Foa BaseAddr(i, v, a) Instruction ¢ has accessed memory chunk v with base address a during sampling.
Fo3 MemCopy(vs, va)
Foa PointsTo(v, a) Memory chunk v stored an address a during sampling.
Fos MallocedSize(i, s) The malloc function call at instruction ¢ requested s bytes.
Foe MayArrray(a, k, s) There may be an array with k elements, each s bytes, starting from address a.
Helper Functions
Hg1 | SameRegion(a1, az2) : Bool i= a1.r = as.r
Hoo | Offset(ay,az) : Size U {oo} = SameRegion(a1,a2) ? a1.0 — az.0: 00
Hogs | AdjacentChunk(vy, v2)™ : Bool u= Offset(ve.a,vy1.a) = v1.8
Hoa | OverlappingChunk(v1, v2)™ : Bool u= Offset(va.a,vi.a) < v1.8
Hos | AddrDiffereceGCD (a1, az, ...,an)" : Size == ged({Offset(arr1,ar) | 0<k<n})
SizeDifferenceGCD(s1, 52, ..., sn) " : Size u= ged({sp+1 — sk | 0<k<n})
Hoe | MallocedSizes(i) : P(Size) =
Ho7 | AccessedAddrsInRegion(i,r) : P(MC) 2= {v.a € MA| (v.a.r =) A Access(i,v)}
Deterministic Inference Rules
Ro1 Accessed (i, v) = Access(i, v, k)
Ros Accessed(v) - Accessed(i, v)
Ro3 AccessSingleChunk (i, ) - |AccessedAddrsinRegion(i, r)| = 1
Roa AccessMultiChunks (i, 1) - |AccessAddrsInRegion(i, )| > 1
Ros HiAddrAccessed (i, T, ap) - ap = max(AccessAddrsInRegion(i, r))
Ros LoAddrAccessed(i, r, a;) - a; = min(AccessedAddrsInRegion(i, r))
Ro7 MostFreqAddrAccessed (i, r, ay, k) -
Ros ConstantAllocSize(i, s) - (|MallocedSizes(i)| = 1) A (s € MallocedSizes(i))
Rog AllocUnit (i, s) -
Rio DataFlowHint(as, aq, s) -
Ri1 UnifiedAccessPntHint(as, a4, S) :-
Accessed(iz, v!) A Accessed(iz, vly)
Rio PointsToHint(as, aq, s) -
PointsTo(vg, as) A PointsTo(vy, aq)

e.g., SameRegion((S,0) , (S, 8)) : true

e.g., Offset({S,8),(S,0)) =8

e.g., AdjacentChunk({(S,0) ,8), ({(S,8),1)) = true
e.g., OverlappingChunk({(S,0) , 8) , ((S,4),1)) = true
e.g., AddrDifferenceGCD((S,0) , (S,8),(S,32)) = 8
e.g., SizeDifferenceGCD(12, 20, 36,72) = 8

T Assuming Vk € [0,n), Offser(ast1,ar) > 0 and sk41 — s > 0 without losing generality.

* Assuming Offset(v2.a, v1.a) > 0 without losing generality

Fig. 5: Deterministic Reasoning Rules.

which is further copied to other registers or memory chunks,
incremented by constant offsets, and eventually dereferenced.
BaseAddr(i,v,a) [Fpa] denotes that i accessed a memory
chunk v whose base address is a. MemCopy(vs,vq) [Fos]
states that chunk vs was copied to vg. It is abstracted from a
data-flow path from a memory read to a memory write, with
possible register copies in the middle. PointsTo(v,a) [Fo4l
states that an address value a was ever stored to v. Intuitively,
one can consider v a pointer pointing to a. MallocedSize(i, s)
[Fps] records that a memory allocation function invocation ¢
ever requested size s. MayArray(a, k, s)[Fog] denotes that a
may start an array of k elements, each with size s. Similar
to Ghidra and IDA, these array-related hints are collected
via heuristics, e.g., by looking at the arguments of calloc
library call. We will show later that we have more advanced
inference rules for arrays. MayArray only denotes the direct
hints. Examples can be found in Appendix B.

Helper Functions. In the middle of Figure 5, we define a
number of helper functions that are derived from the six
kinds of basic analysis facts. These helper functions essentially
derive aggregated information across a set of primitive analysis

facts. They will be used in the inference rules discussed later.
Specifically, SameRegion(a1,a2) [Ho1] determines whether
two memory addresses belong to the same memory region.
Note that in Figure 5, the explanation and example for each
helper function are to its right. Offset(a1, a2)[Hoz] returns the
offset between two memory addresses, which equals to the
difference between their offset values if the two addresses be-
long to the same region, oo otherwise. AdjacentChunk(vy,vs)
[Ho3] determines if two memory chunks are next to each other.
AddrDifferenceGCD (a1, ..., an) [Hos] returns the greatest
common divisor (GCD) of the differences of a list of sorted
addresses. SizeDifferenceGCD (si, ..., sn) [Hos] returns the
GCD of the differences between a list of sorted sizes. Mal-
locedSizes(i) [Hog] returns the list of requested sizes from a
malloc-site i. AccessedAddrsInRegion(i,r) [Hoyz] returns all
the addresses accessed by ¢ in region 7.

Deterministic Inference Rules. The goal of deterministic
inference is to derive additional relations that were not explicit.
In the lower half of Figure 5, we present the inference rules
in the following format.

T .— Pl/\Pg/\"'/\Pn



T 1is the target relation and FP; is a predicate. It means
that the satisfaction of predicates Py, P, ..., P, leads to the
introduction of T'. Observe that no probabilities are involved.

Specifically, Accessed(i,v) [Ro1] denotes if instruction ¢ has
accessed memory chunk v and Accessed(v) [Roz] denotes if v
has been accessed. They are derived from the primitive fact Ac-
cess(...) [Fp1]. The next two relations model the access pattern
of instruction ¢ in memory region r. AccessSingleChunk(i, )
[Ro3] denotes that instruction 7 is always accessing only
one memory chunk in region r. A typical example is an
instruction writing to a constant address, e.g., instruction
“mov [Oxdeadbeef], 0”. AccessMultiChunks(i,r) [Roal,
in contrast, denotes i accessed multiple chunks in 7, such
as an instruction in some for-loop that accesses individual
elements in a memory buffer. HiAddrAccessed(i,r, an)[Ros)
dictates that aj is the highest address in 7 accessed by
i. LoAddrAccessed(i,r,a;)[Rog] is the inverse. MostFreqAd-
drAccessed(i,r,ay, k) [Ror] denotes ay is the most frequently
accessed address in r by q.

The next two rules describe the allocation patterns. Con-
stantAllocSize(i, s) [ Ros] denotes that 4 has only requested one
size s. AllocUnit(i, s) [Rog] determines if ¢ allocated memory
of different sizes and the differences are all multiples of s.

The next three rules describe the three kinds of hints (Sec-
tion II). DataFlowHint(as,aq,s) [Rio] suggests the presence
of structure if there are copies from two addresses separated
by an offset (e.g., two fields from a structure) to two other
respective addresses separated by the same offset. Formally,
it renders true if given two addresses a; and a4, there are
two other addresses (denoted by v.a and v/;.a) that have the
same offset from as and ag4, respectively, such that there are
memory copies from a, to a4 and v),.a to v/;.a. Here a, and aq4
denote two instances of the same structure. UnifiedAccessPn-
tHint(as, aq, s) [R11] suggests the presence of structure if two
addresses (i.e., denoting the same field from two instances of
the same structure) are accessed by a same instruction 4; and
their offsets are also accessed by another same instruction 7.
Formally, it renders true given two addresses as and a4, there
are two other addresses (denoted by v,.a and v);.a) that have
the same offset from ay and a4, respectively, such that ag
and aq are accessed by an instruction 7; and v..a and v/.a
accessed by another instruction iy. PointsToHint(as,aq, S)
[R12] determines as and ay may denote two instances of the
same structure if as and a, are two base addresses for two
other addresses that have the same s offset from the base,
and both as and a4 are stored to the same pointer variable.
Appendix C presents an example for deterministic inference.

V. PROBABILISTIC REASONING

As discussed in Section II, variable and structure recovery
is a process with inherent uncertainty such that the collected
hints may have contradictions due to: (1) the behavior patterns
defining hints may happen by chance, instead of reflecting
the internal structure; (2) BDA’s per-path interpretation may
not respect path feasibility such that infeasible behaviors may
be included in the deterministic reasoning step. For example,

violations of path feasibility may lead to out-of-bound buffer
accesses and then bogus data-flow hints. We resort to proba-
bilistic inference to resolve such contradictions. Intuitively, the
effects of incorrect hints will be suppressed by the correct ones
which are dominant. In particular, for each memory chunk
v, we introduce a number of random variables to describe
the type and structural properties of v. The random variables
of multiple memory chunks are hence connected through the
relations derived from the previous deterministic reasoning
step and represented as a set of probabilistic inference rules.
Each rule can be considered a probability function. They
are transformed to a probabilistic graph model [34] and an
inference algorithm is used to compute the posterior marginal
probabilities. The most probable results are reported. Different
from many existing probabilistic inference applications, where
the set of inference rules are static, we have dynamic inference
rules, meaning that rules will be updated, removed, and added
on the fly based on the inference results. We hence develop
an iterative and optimized inference algorithm (Section V-B).

A. Probabilistic Inference Rules

Predicates and Random Variables. Figure 6 presents the
set of predicates we introduce. They denote the typing
and structural properties. Random variables are introduced
to denote their instantiations on individual instructions and
memory chunks, each describing the likelihood of the pred-
icate being true. For instance, The random variable for
Scalar({{G,0x8043abf0) ,8)) denotes the likelihood that the
8-byte global memory chunk starting at 028043abf0 is a
scalar variable. In the remainder of the paper, we will use
the two terms predicate and random variable interchangeably.
Specifically, PrimitiveVar(v)[Py1] asserts that memory chunk
v denotes a primitive variable, which is a variable without
further inner structure. It could be a scalar variable, a structure
field, or a primitive array element. Similarly, PrimitiveAc-
cess(i,v)[Py2] asserts that instruction ¢ exclusively accesses
a primitive variable v. The meanings of UnfoldableHeap and
FoldableHeap will be explained in the later discussion of heap
structure recovery. HomoSegment(ay, as, s) [Pos] asserts that
the memory region a; ~ (a1 + s) and az ~ (as + s) are ho-
momorphic, hence likely two instances of the same structure.
They are likely homomorphic when their access patterns and
data-flow are similar. ArrayStart(a) [Pos] represents a is the
starting address of an array.

While the above predicates are auxiliary, the remaining ones
(underlined in Figure 6) denote our final outcomes. Variables,
structures and types can be directly derived from the inferred
values of these predicates. In particular, Scalar(v)[Po7] in-
dicates v is a scalar variable (not an array or a structure).
Array(a1, az, s)[Pos] represents that the memory region from
a1 to ap form an array of size s. FieldOf(v,a) [Pog] asserts
that v is a field of a structure starting at a. Pointer(v, a) [Pio]
asserts v is a pointer to a structure starting at a. The last few
predicates assert the primitive types of variables. Note that
they allow us to express the most commonly seen structural
properties, including nesting structures, array of structures,



Poy PrimitiveVar(v)

Pyo PrimitiveAccess(i, v)
Pos UnfoldableHeap (i, s)
Poa FoldableHeap(i, s)

Poys HomoSegment (a1, az, s)

Pos ArrayStart(a)
Py Scalar(v)

Variable v is a scalar

Pos Array(ay, a2, s)

Pog FieldOf (v, a)

Pio Pointer(v, a)

Py IntVar(v) | LongVar(v) / ...

v is of primitive type, e.g., char, int, and void =

Instruction ¢ accessed a primitive variable v

The size of the unfoldable part of heap structure allocated at ¢ is s

The unit size of the foldable part of heap structure allocated at 7 is s

The two s-byte segments starting at a1 and az, respectively, are homomorphic

Address a is the starting address of an array

Memory from a; to as belongs to an array whose element size is s-byte
Variable v is a field of a structure with starting address a
Variable v is a pointer pointing to a structure denoted by a

Variable v is of the int / long /... type

Fig. 6: Predicate definitions.

01. typedef struct { long x; long y; } A;

02. typedef struct { long x; long z[]; } B;

03.

04. void heap_example(size_t n, size_t m) {

05. A *pl = malloc(sizeof(A));

06. A *p2 = malloc(sizeof(A) * n);

07. B *p3 = malloc(sizeof(B) + sizeof(long [m]));

N

08.
(a) Source code.
Unfoldable
7{05 | pl->x | pl->y |
Foldable Foldable
H@6| p2[0].x | p2[0].x | p2[1].x | p2[1].y |
Unfoldable Foldable Foldable Foldable
—
Hor [ p3->x | p3->z[0] | p3->z[1] | p3->z[2] |- - -

(b) Memory layout of code in Figure 7a.
Fig. 7: Example to demonstrate our heap model.

and structure with array field(s). We have other predicates for
unions. They are elided for discussion simplicity.

Example. Consider an example in Figure 7, with the source
code in Figure 7a. Three types of structures are allocated on
the heap. Line 5 allocates a singleton structure («pl); line
6 allocates an array of the same structure (xp2); and line 7
allocates a structure (xp3) with an array. Note that the size of
*xp3 is not fixed. These structures can be easily represented
by our predicates. Particularly, the structure of *pl is rep-
resented as FieldOf(s& (pl->x), pl), FieldOf(& (pl->vy),
pl), Long(s (pl->x)), and Long(& (pl->y)) (note that
the syntax of these predicates is simplified for illustra-
tion); xp2 is represented as Array(p2, p2+16*n, 16),
FieldOf(& (p2->x), p2) and so on (similar to *pl);
xp3 is represented as FieldOf(s (p3->x), p3), Ar-
ray(& (p3->z), & (p3->z) +16xm, 16), Long(& (p3->x)),
and Long(s (p3->z)). U

Figure 8 presents the probabilistic inference rules. These
rules read as follows: the first column is the rule id for easy
reference; the second column is the condition that needs to
be satisfied in order to introduce the inference rule in the
third column. Each inference rule is a first-order logic formula
annotated with prior probability. Each predicate instantiation is
associated with a random variable whose posterior probability

will be computed by inference. For example, rule C'491 means
that v has p(k) probability of being a primitive variable if an
instruction ¢ has accessed it k times (over all the sample runs).
Note that the probability is a function of k. The up-arrow
denotes that if Access(i,v,k) is likely, then PrimitiveVar(v) is
likely. A down-arrow denotes the opposite.

Primitive Variable and Scalar Variable Recovery. Rules
Ca01-Caps are to identify primitive variables. Rule C4q2
means that a variable is likely primitive if its adjacent one
is likely primitive; C403 means that if two variables have
overlapping address, one likely being primitive renders the
other one unlikely (note the down-arrow); C 494 and C 495 state
that if a variable v is primitive, the instruction that accesses
it is a primitive access such that another variable v’ accessed
by it is primitive too. Rules C406-C a0s are for scalar variable
recovery. A primitive variable may not be a scalar variable as
it could be a field or an array element. C' 40 says v is scalar
if it is primitive and there is an instruction ¢ that exclusively
accesses it. Intuitively, if ¢ accesses (non-scalar) array elements
or structure fields, it likely accesses multiple memory chunks.
C 407 says a scalar’s neighbor may be a scalar too, depending
on their access frequencies (e.g., when the frequencies are
similar). C40g says a scalar variable cannot be a field.

Array Recovery. Rules Cpg1-Cpgg are for array recovery.

A common observation is that, the vast majority of arrays are
visited in loops. If multiple elements on a continuous region
are accessed by an instruction, intuitively, it’s likely that this
is access to an array. In particular, rules Cgo1-Cpoe receive
the basic array hints from the previous analysis steps; C'pos-
Cpos aggregate hints to enhance confidence and/or derive
new arrays; and C'po7-Cpgg derive array heads. Intuitively,
Cpo1 states that there is likely an array if our deterministic
reasoning says so (e.g., by observing calloc). Cpgga says if
addresses are accessed by the same instruction, there is likely
an array and the lowest and highest addresses accessed by
the instruction form the lower and upper bounds of an array,
respectively. Cpos says that when two arrays overlap, have
the same element size s and the distance of the two arrays
is divisible by s, the two arrays can enhance each other’s
confidence (the first formula) and they can be merged to a
larger array (the second formula). Cpgs says that when two
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Condition

AdjacentChunk(vy, v2) A Accessed(v1) A Accessed(v2),
OverlappingChunk(v1, v2) A Accessed(v1) N Accessed(vz),
Accessed(i,v),

Accessed (i, v'),

AccessSingleChunk(i, v.a.r) A Access(i, v, k)
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Access(i,v, k) 2B, PrimitiveVar(v)
PrimitiveVar(v1) AN PrimitiveVar(v2)
PrimitiveVar(vy) &4 PrimitiveVar(v2)
PrimitiveVar(v) 2, PrimitiveAccess(i, v)
PrimitiveAccess(i, v) 2, PrimitiveVar(v")
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AccessMultiChunks(%, r) ALoAddrAccessed(i, T, v1.a) A
HiAddrAccessed(i, T, va.a)

(a11 < ag < arp < asp) A(s1 =52 =5)A(s]axy —an)

(an < ag < aip <agp) A

((s1 # s2) V ((51 = 82 = s) A(staz —aur)))

MayArray(a, k, s) 1, Array(a,a 4+ s X k, s) A ArrayStart(a)
PrimitiveAccess(i, v1 ) APrimitiveAccess(i, vy) £

Array(vi.a, v2.a+v2.8, v1.8)
Array(a1y, ain, 1) & Array(aszy, azp, S2)
Array(a1y, ain, 81) A Array(asy, azp, S2) LN Array(a1y, azp, 8)
Array(a1r, avn, s1) 2% Array(azi, asn, s2)
Array(ai1y, aih, $1) 2, Array(aiy, azi, $1)

pT
Array(azy, azp, s2) — Array(ain, azn, $2)

Cpo1

Cpo2

Cpos

Cpoa

Cpos

Cpos

Cpor

Cpos

Cpio

Cp11

CpBos a1 <wv.a<as Scalar(v) PN Array(ay, a2, s)
Array(a1, az, s) A Scalar(v) LN Array(ay,v.a,s)
Array(a1, a2, s) A Scalar(v) LN Array(v.a+v.s, az, s)
CBos az —a1 < s Array(ay, az, s) = false
CBoz BaseAddr(i,v, a) A AccessMultiChunks(i, v.a.r) PrimitiveAccess(i, v) 2, ArrayStart(a)
CBos MostFreqAddrAccessed(i, r,v, k) N\ AccessMultiChunks (i, ) PrimitiveAccess(i, v) M ArrayStart(v.a)
CBog Accessed(i,v1) NAccessed(i,v2) ASameRegion(vi.a,va.a) A (vi.a<va.a)  ArrayStart(vy.a) RN ArrayStart(va.a)
Cco1 ConstantAllocSize(%, s) 21, UnfoldableHeap(i, s) A FoldableHeap(i, 0)
Cco2 AllocUnit(i, s) RN FoldableHeap(i, s)
Ccos v.a.r =H; PrimitiveVar(v) LN UnfoldableHeap(i,v.a.o + v.s)
Ccoa 81 # S2 UnfoldableHeap (i, s1) &) UnfoldableHeap (i, s2)
Ccos s1 < sa UnfoldableHeap (i, s1) LN UnfoldableHeap (i, s2)
Ccos (a1.r = as.r = H;) A (s1 = s2) Array(a1, az, s1) 21, FoldableHeap(i, s2)
Ccor Accessed(v) A\ (v.a.r = H;) A (v.a.o > sp + st) PrimitiveVar(v) A UnfoldableHeap(i, sy, ) A FoldableHeap (i, s ) i>

PrimitiveVar({{v.a.r, (v.a.o — sp)%st + sp) ,v.8))
UnfoldableHeap(i, sy, ) A FoldableHeap(i, s ) LN PrimitiveVar(v)

(0<az —a1 < s1)

(0 <wi.a—a; =va.a—az < 8)A (v1.8 # v2.8)
BaseAddr(v1, 4, va.a) A Accessed(v1) A Accessed(v2)
v.a.r = H;

(n < s8)A (vi.a=a1 +n)A(va.a=az+n)

ay # az

PointsTo(vy, v2.a) A Accessed(v1) N Accessed(v2)

DataFlowHint(a1, az, s) 2T, HomoSegment(a1, az, s)
PointsToHint(a1, a2, s) 2T, HomoSegment(a1, as, s)

UnifiedAccessPntHint(a1, a2, s) M) HomoSegment(a1, az, s)

HomoSegment(a1,ays, s1) JLAN HomoSegment(asz, ayr, S2)

HomoSegment(a1, aqs, s1) A HomoSegment(az, ayr, s2) »,
HomoSegment(a1,aqs, a2 — a; + s2)

PrimitiveVar(vy) A PrimitiveVar(vz) LN HomoSegment(a1, az, s)
PrimitiveVar(vy) A PrimitiveVar(va) i) FieldOf(v1, v2.a)
PrimitiveVar(v) 21, FieldOf(v, (H:,0))

FieldOf(v1, a1) A HomoSegment(a1, a2, s) RN FieldOf(v2, a2)
FieldOf(v, a1) <% FieldOf(v, az)

PrimitiveVar(vi) A PrimitiveVar(va) 2, Pointer(v1, v2.a)

Fig. 8: Probabilistic Inference

arrays overlap, but they are not homomorphic (e.g. having
different element sizes or misalign), one likely being true array
renders the other unlikely (the first formula) and the non-
overlapping parts can still be considered possible arrays (the
second and third formulas). C'gg5 says that a scalar appearing

within the range of an array breaks it to two smaller arrays.

Heap Folding. Rules C¢o1-Coor are auxiliary rules for
analysing heap structures. While BDA can achieve alias anal-
ysis accuracy similar to dynamic analysis (with better cover-
age), it leads to sparse heap behaviors. For example, assume a



large heap array of structures is allocated. Different paths may
access different heap array elements (at distinct addresses),
each disclosing part of the behavior of the structure. Since
our goal is to recover the complete structural properties, we
need to aggregate these sparse behaviors.

We observe any heap region allocated can be partitioned into
two consecutive parts: unfoldable and foldable, while such a
region may be a singleton structure with fixed size, an array
of structures of a fixed size, or a singleton structure with
varying size. The three allocations at lines 5-7 in Figure 7a
denote such different cases. The unfoldable part includes all
the fields whose accesses always occur at the same addresses,
whereas the foldable part includes the fields whose accesses
may occur at different (sparse) addresses. We propose to
fold the behaviors of all the instances in the foldable part to
the first instance, which will hence possess all the structural
properties of all the instances. For example, as shown in
Figure 7b, the heap region of Hy5 has only unfoldable fields as
pl->x and pl->y always have the addresses of (o5, 0) and
(Hos, 16), respectively. In contrast, all fields in the region Hog
are foldable as the p2[«|.x’s have various addresses. We hence
want to fold the behaviors of p2[1], p2[2], and so on to p2[0].
The region H7 has an unfoldable field followed by a foldable
field which is an array of varying size. Observe that foldable
fields can only occur after unfoldable fields in a region. In
Figure 6, we introduce UnfoldableHeap(i, s) to denote the first
s bytes of the heap region allocated at ¢ are unfoldable and
FoldableHeap(i, s) to denote the region allocated at ¢ has a
foldable part with an element size of s. For example, we have
FoldableHeap(7,16) for region M7 in Figure 7b.

Cco1 states that if ¢ only allocates a constant size region,
the entire region is unfoldable. Cco2 says that if through
deterministic analysis, we know that the allocation size of
1 is a multiple of s, the foldable part has an element size
of s. Ccpz says that if a primitive field v is found inside a
heap region, all the part up to v is unfoldable. This is because
unfoldable fields must precede foldable fields. C'co4 states that
a heap region cannot have different unfoldable parts. However,
the presence of a smaller unfoldable part can enhance the
confidence of a larger unfoldable part (Ccgs). Coos says that
an array found inside a heap region must belong to the foldable
part. Rule C¢gy is the folding rule. The first formula says that
a primitive field v found inside a later structure instance inside
the foldable region indicates the presence of a primitive field at
the corresponding offset inside the first instance. For example
in Hpg, the identification of y field in p2[1] indicates the
presence of y field in p2 [0], although p2 [0]->y is never
seen during sample runs. The second formula eliminates the
primitive field v after it is folded.

Structure Recovery. Like existing work, we leverage the
instruction patterns of loading base address to recognize
a data structure. However, we model its uncertainty using
probabilities. In addition, we consider the data flow among
different variables of the same type. Specifically, rules C'pg1-
Cpio are for structure recovery, including global/stack/heap
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structures. Intuitively, we first identify memory segments (i.e.,
part of a structure) that are homomorphic, meaning that they
have highly similar access patterns, data flow, and points-
to relations. These segments are then intersected, unioned,
or separated to form the final structures. Individual fields
can be then identified from their access pattern within the
structure. Specifically, rules Cpo1-Cpos receive deterministic
hints. C'pgy states that if a pair of homomorphic segments
overlap with another pair of homomorphic segments, they
enhance each other’s confidence (the first formula) and may
form a pair of new homomohpic segments that are the union
of the original two pairs (the second formula). Intuitively, it
corresponds to that the sub-parts of a same complex structure
are being exposed differently (e.g., through different data
flow), and we leverage the overlap of these parts to join them.
Cpos says that if the corresponding primitive fields in a pair
of homomorhpic segments have different access patterns (4-
byte access versus 8-byte access), either the primitive field
predicates are likely false or the homomorphic predicate.
Rules Cpgs and Cpor identify fields of structure from the
deterministic reasoning results (e.g., BaseAddr) and if the
accesses are primitive. C'pog transfers field information across
a pair of homomorphic segments. Rule Cpgg asserts a field
cannot have two different base addresses. Cpgg determines a
pointer variable v; if a valid address vs.a is stored to v; and
v9 has been accessed as a primitive variable.

OSPREY also has a set of typing rules that associate
primitive types (e.g., int, long, and string) to variables, based
on their data-flow to program points that disclose types such as
invocations to string library functions. These rules are similar
to existing works [1], [12], [14] and hence elided.

B. Probabilistic Constraint Solving

Each of the probabilistic constraints in Figure 8 (the for-
mulas in the last column) essentially denotes a probability
function over the random variables involved. The functions
can be further transformed to a probabilistic graph model
called factor graph [34], which is a bi-partite graph with two
kinds of nodes, function node denoting a probability function,
and variable node denoting a random variable. Edges are
introduced between a function node and all the variable nodes
related to the function. The whole factor graph denotes the
joint distribution of all the random variables. An example can
be found in Appendix E.

Given a set of observations (e.g., z; = 1) from the deter-
ministic reasoning step, and the prior probabilities (p values),
posterior marginal probabilities are computed by propagating
and updating probabilities along the edges. Some of the rules,
such as C'ggo, generate new predicate nodes during inference.
After each round of inference (i.e., probabilities converge after
continuous updates), it checks all the (new) predicate nodes
to coalesce those denoting the same meaning to one node.
The node inherits all the edges of all the other nodes that are
coalesced. Then another round of inference starts. Note that
while some probabilistic inference applications are stochas-
tic, our application (variable recovery and typing) has the
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uncertainty originating from loss of debugging information.
In other words, there is deterministic ground truth (or, the
ground-truth variables and their types are deterministic). In
this context, the number of hints that we can aggregate plays a
more important role than the prior probabilities. Graph models
provide a systematic way of aggregating these hints, while
respecting the inherent structural properties (e.g., control-flow
and data-flow constraints). We hence adopt simple prior
probabilities, p = 0.8, p = 0.2, and p(k) is computed from
the ratio between k and the total number of sampled paths
in BDA. In fact, there are a number of existing work [28],
[35], [36], [37] leveraging probabilistic inference for similar
applications with (mostly) deterministic ground truth (e.g.,
specification inference for explicit information flow). They use
preset prior probabilities and their results are not sensitive to
prior probability configurations. We follow a similar setting.

Posterior Probability Computation On Factor Graph.
There are standard off-the-shelf algorithms that can compute
posterior probabilities for factor graphs. Most of them are
message passing based [38], [39], [40], i.e., a function node ag-
gregates probabilities (or beliefs) from its neighboring variable
nodes, deriving an outgoing belief based on the probability
function. Such algorithms become very expensive and have
low precision when the graph is large and loopy (as messages
are being passed in a circle and computation can hardly
converge). There are optimized algorithms such as junction
tree algorithm [41] that removes cycles by coalescing them
to single nodes. However, they do not work well in our
context due to the particularly large number of nodes and the
extensive presence of loops in our factor graphs. We hence
develop an optimized algorithm from scratch, leveraging the
modular characteristics of program behaviors. Specifically, we
observe that PrimitiveVar is the most common kind of node
and involved in most constraints. These nodes have very few
loops with the other kinds of nodes, although there are loops
within themselves. Thus, we first construct a base graph only
considering PrimitiveVar-related rules (i.e., C' 491 —Caos)- The
base graph is still very large (typically around 3000 nodes for
even a small program) and cannot be directly solved. We also
observe that the memory chunks of the PrimitiveVar nodes
are distributed in various memory regions that are relatively
autonomous (e.g., different stack frames). We hence partition
the base graph to many sub-graphs based on memory regions.
Empirically, a sub-graph contains 40 nodes on average. Each
sub-graph is solved by a junction tree algorithm. With the
solved values of all sub-graphs as the initial values, we dynam-
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ically construct a secondary graph considering the remaining
random variables. Specifically, for any rule, if its pre-condition
is satisfied, we include it in the graph. It naturally handles
dynamic rule updates. We then resolve the secondary graph
using loopy belief propagation [40] which, in general, starts
with arbitrary initial values and iteratively updates messages
till convergence. Note that we adapt loopy belief propagation
by pre-calculating suitable initial values, which does not
compromise the original algorithm’s correctness. Figure 19 in
Appendix presents the statistics of the subgraphs in evaluation.

VI. EVALUATION

To assess the effectiveness of OSPREY, we perform two
sets of experiments, using the benchmarks from TIE [12]
and Howard [14]. The first set is performed on Core-
utils [42], a standard benchmark widely used in binary anal-
ysis projects [14], [12], [43], [11], [29], consisting of 101
programs. We compare OSPREY with other state-of-the-art
binary analysis tools, including Ghidra (version 9.2), Angr
(version 8.20) and IDA Pro (version 7.2). We cannot compare
with TIE as the system is not available. And we confirmed
with the BAP [43] team that BAP does not have TIE as part
of it. Another set is performed on the benchmark provided
by the Howard project [14], consisting of 5 programs. All
experiments were conducted on a server equipped with 48-
cores CPU (Intel® Xeon™ Silver 4214 CPU @ 2.20GHz)
and 256G main memory. To follow a similar setup in TIE and
Howard, we use GCC 4.4 to compile the programs into two
versions: a version with debugging information used as the
ground truth and a stripped version used for evaluation. Our
assumption of proper disassembly is guaranteed because GCC
does not interleave code and data on Linux [44].

A. Evaluation on Coreutils

Similar to the standard in the literature [12], [14], we
inspect individual variables on the stacks and heaps (including
structure types). If it is a pointer type, we inspect the structure
that is being pointed to. For example, if a (Socket =)
variable is recovered as (voidx), we consider it incorrect.
We say it is correct only if the variable is recovered as a pointer
pointing to a structure homomorphic to Socket. We only
consider the functions covered by BDA . The overall recall and
precision are shown in Figure 9 and Figure 10, respectively. As
we can see, OSPREY achieves more than 88% recall, and more
than 90% precision, outperforming the best of other tools (i.e.,
Ghidra with around 77% recall and 70% precision). Figures
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11 and 12 present the recall and precision of complex types
recovery. Complex types include structures, unions, arrays and
pointers to structures and unions. Note that Angr could not
recover complex data types, hence we do not list its results
on the figures. Observe that the recall of OSPREY is around
74%, more than 2 times higher than Ghidra and IDA Pro. The
precision of OSPREY also outperforms Ghidra and IDA Pro.
One may mention that IDA Pro has a comparable precision
rate with OSPREY. The reason is that IDA Pro performs a very
conservative type analysis to ensure high precision, leading to
a low recall. In Appendix D, we provide insights about why
in some cases the deterministic approaches perform better.

To better quantify our results on complex variables, we
construct a syntax tree for each complex type (with fields
being the child nodes). Nesting structures and unions are
precisely modeled, and any inner nesting structure or union
type without outer references are ignored. Cycles are removed
using a leaf node with a special type tag. We then compare
the edit distance of the recovered trees and the ground-truth
trees. We compute tree difference that is defined as the ratio of
the tree edit distance (i.e., the minimum number of tree edits
that transform a tree into another) and the whole tree size.
The smaller the tree difference, the better the recovery result.
Figure 20 in Appendix shows the results. Overall, OSPREY
has the minimal tree difference, which is 2.50 and 2.18 times
smaller than Ghidra and IDA Pro. Details can be found in our
supplementary material [45].

B. Evaluation on Howard Benchmark

Table II in Appendix shows the results for the Howard
benchmark. Overall, OSPREY substantially outperforms
Ghidra, IDA Pro and Angr, especially for complex variables,
in all metrics (recall, precision and tree difference) For all
variables, the precision improvement over Ghidra, IDA Pro,
and Angr is 28.38%, 38.85%, and 65.51%, respectively, and
the recall improvement is 22.98%, 34.78%, and 48.49%,
respectively. For complex variables, the precision improvement
over Ghidra and IDA Pro is 40.73% and 25.18%, respectively,
and the recall improvement is 50.64% and 62.22%, respec-
tively. Our tree differences are 5.21 and 2.64 times smaller than
Ghidra and IDA Pro. Compared to Coreutil programs, these
programs are more complex, providing more hints to OSPREY.
Especially in the complex variable recovery for lighttpd,
OSPREY has 84% recall and 86% precision, while Ghidra
has 5.5% recall and 27% precision, IDA Pro 6.8% and 50%.
Manual inspection discloses that lighthttp has a large number
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of structures on heap, providing ample hints for OSPREY. We
also perform side-by-side comparison with Howard. Details
can be found in our supplementary material [45].

C. Sensitivity Analysis

We analyze the sensitivity of OSPREY’s accuracy on the
prior probabilities p T and p |. Table I shows the average F}
scores [46] for the programs in the Howard benchmark set,
with p 1 varying from 0.7 to 0.9 and p | from 0.1 to 0.3. We
elide other metrics as they reveal similar trendings. Note that
the F scores vary within a limited range, less than 2%, with
different prior probabilities. It supports that OSPREY is robust
against the prior probability changes.

D. Performance Evaluation and Ablation Study

We evaluate the execution time (Appendix G) and scala-
bility (Appendix H). We also study the impact of aggressive
optimization (Appendix I) and compilers (Appendix J), as well
as the contribution breakdown of different components, by re-
placing BDA with a dynamic execution based behavior profiler
and replacing probabilistic inference with deterministic infer-
ence (Appendix K). The results show that OSPREY substantial
outperforms other techniques in terms of precision and recall
with various compilers and optimization settings, and with
complex programs such as Nginx and Apache, although it is
the most heavy-weight. The contribution breakdown of BDA
and probabilistic inference shows that both are critical.

VII. APPLICATIONS
A. Improving IDA Decompilation

Decompilation transforms low level binary code to human-
readable high-level program. The readability of decompiled
code hinges on the recovery of variables and data structures.
To investigate how OSPREY improves decompilation in IDA,
we implement an IDA plugin to feed the decompiler of
IDA with the recovered information provided by OSPREY. In
Figure 13 and 14, we show a case study on the decompilation
of lighttpd’s function network_register_fdevents.
The ground truth, the decompilation results of the vanilla IDA,
and of the enhanced IDA are presented in the three columns,
respectively. IDA can precisely recover some primitive vari-
ables (e.g., result at line 4 and v3 at line 5), but fails
to recover the complex data structures (e.g., v4 at line 6,
which is a pointer to a server_socket structure). OSPREY
can successfully recover the server_socket structure. In
fact as shown in Figure 13d and 13d, OSPREY can precisely



struct_C264 *vi; // rbx
__int32 result; // rax
unsigned __int64 v3; // rbp
struct_CF4A *v4; // ri2
struct_12A42 *v5; // ra
struct_12A0E *v6; // rdi

1 | int network_rxxx(server *srv) 1| __int32 _ fastcall sub_D840(__int64 al) 1
2 2| { 2
3 server *v1; // rbx 3| _QWORD *v1; // rbx 3
4| int result; // rax 4| int32 result; // rax 4
5 size_t v3; // rbp 5 unsigned __int64 v3; // rbp 5
6 server_socket *v4; // ri2 6| _int64 va; // ri2 6
7| fdnode *v5; // rax 7| _int64 v5; // rax 7
8 fdevents *v6; // rdi 8 __int64 v6; // rdi 8
9 9 9]
10 Vi = srv; 10| v = (_QWORD *)al; 10| vi = at;
11 result = fdevent_sxxx(srv->ev); | 11 result = sub_12B7A(*(_QWORD *)(al + 24)); | 11
12 if ( result != -1) 12 if ( (_DWORD)result != -1) 12

{
14 V3 = oLL;

if ( result != -1)

V3 = oLL;
if ( tal->dat_field_74 )

while ( vi->dat_field_10 > v3 )

v5 = sub_21860(
vi->ptr_field_28,

14 v3 = OLL; 14
15 if ( !srv->sockets_disabled ) 15 if ( !*(_DWORD *)(al + 160) ) 15!
16 { 16 16,
17 while ( vi->srv_sockets. 17 while ( vi[2] > v3 ) 17
used > v3 )
18 { 18 { 18 {
19 v4 = vi->srv_sockets. 19 v4 = *(_QWORD *)(*v1 + 8 * v3++); 19
ptrlv3++];
20 v5 = fdevent_gxxx( 20 V5 = sub_21860( 20
vi->ev, vi[3],
va->fd, *(unsigned int *)(v4 + 112),

network_sxxx, vé

sub_18F30, v4

v4->dat_field_10,
sub_18F30, v4

)

v6 = vi->ptr_field_28;
v4->ptr_field_18 = v5;
sub_219C0(v6, V5, 1);

result = 0;

return result;

) )s
21 V6 = vi->ev; 21 v6 = vi[3]; 21,
22 v4->fdn = v5; 22 *(_QWORD *)(v4 + 120) = v5; 22!
23 fdevent_fxxx(vé, v5, 1); | 23 sub_219C0(v6, V5, 1); 23
24 } 24 } 24 }
25 } 25 25
26 result = OLL; 26 result = 0; 26
27 27 271}
28 return result; 28 return result; 28
29|} 29|} 29| }

(a) Ground truth

(b) Vanilla IDA Pro 7.2

__int32 __ fastcall sub_D840(struct_C264 *a1)

result = sub_12B7A(al->ptr_field_28);

V4 = vi->ptr_ptr_field_6[v3++];

TABLE I: Average F} scores for OSPREY
with different prior probabilities

pTt=07 p1t=08 p1T=09

pl=0.1] 0894
pl=02] 0909
pl=03] 0898

0.907 0.901
0912 0.902
0.908 0.903

struct server {
struct server_socket_array {
struct server_socket {
sockaddr addr;
int fd;
unsigned short is_ssl;
unsigned short sidx;
fdnode *fdn;
buffer *srv_token;
} *ptr;
size_t size;
size_t used;
} srv_sockets;

fdevents *ev;

int sockets_disabled;

),“

struct struct_C264 {

struct struct_CF4A {
sockaddr dat_field_0;
__int32 dat_field_10;
unsigned __int16 field_14;
unsigned __int16 field_16;
struct_12A42 *ptr_field_18;
struct_1B1A9 *ptr_field_20;

} **ptr_ptr_field_0;

unsigned __int64 dat_field_8;

unsigned __int64 dat_field_16;

struct_12A6E *ptr_filed_28;

__int32 dat_field_74;

}..4

(c) IDA Pro 7.2 w/ OSPREY

(d) Ground truth

(e) By OSPREY

Fig. 13: Decompiled results for lighttpd’s function network_register_fdevents

recover the multiple layers of structure nesting and all the
pointer fields. Note that server_socket_array is an
inner structure type without any outer reference. The recovery
of the structure can substantially improve the readability of the
decompiled code. See lines 19-20 in Figure 13a. Without the
recovered information, we can only learn there are a memory
access with complex addressing. With the recovered field and
array accesses, we have much more semantic information.

B. Harden Stripped Binary

In the second application, we enhance a recent binary
address sanitizer (ASAN) [47] tool RetroWrite [48]) that can-
not detect out-of-bound accesses within stack frames or data
structures (e.g., overflow of an array field inside a structure).
The extended tool can take our recovered structure information
to provide protection within data structures. It successfully
detects CVE-2019-12802 [49] which cannot be detected by
the vanilla RetroWrite. Details can be found in Appendix F.

VIII. RELATED WORK

Binary Analysis. Binary analysis could be static [50], [51],
[52], dynamic [1], [53], [54] or hybrid [55], [56]. It has a wide
range of applications, such as IoT firmware security [57], [58],
[59], [60], [61], [62], memory forensics [63], [64], malware
analysis [65], and auto-exploit [66], [67]. A large body of
works focus on function entry identification [68], which is the
fundamental but challenging tasks of binary analysis. Most
related to OSPREY are the studies that focus on binary variable
recovery and type inference [12], [1], [53], [11]. Specifically,
TIE [12] and REWARD [1] perform static and dynamic
analysis to recover type information, respectively. Howard [53]
improves REWARDS using heuristics to resolve conflicts.
Angr [11] leverages symbolic execution to recover variables.
Our work is also related to decompilation [9]. Since it focuses
on control-flow recovery, OSPREY is complementary.
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Fig. 14: Reconstructed Symbols

Probabilistic Program Analysis. In recent years, probabilistic
techniques have been increasingly used in program analysis
applications, including symbolic execution [69], [70], model
checking [71], [72], [73], binary disassembling [74], and
Python type inference [75]. To the best of our knowledge, OS-
PREY is the first approach that enforces probabilistic variable
recovery on stripped binaries.

IX. CONCLUSION

We develop a novel probabilistic variable and data structure
recovery technique for stripped binaries. It features using
random variables to denote the likelihood of recovery results
such that a large number of various kinds of hints can be
organically integrated with the inherent uncertainty considered.
A customized and optimized probabilistic constraint solving
technique is developed to resolve these constraints. Our ex-
periments show that our technique substantially outperforms
the state-of-the-art and improves two downstream analysis.
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APPENDIX

A. Limitations of Existing Techniques

Howard [14] is also dynamic analysis based. It improves
REWARDS using heuristics to resolve conflicting results. For
example, it favors data structures with fields over monolithic
scalar variables. Thus, the 128-bit floating-point value copy
at instruction [10] is ignored by Howard in light of the
field accesses at instructions [14] and [15], leading to
the correctly recovered type for the heap structure. However,
Howard employs a number of heuristics to tolerate the var-
ious code patterns induced by compiler optimizations. For
example, it does not consider rsp+0x8 as a valid base
address. As such, Howard mis-classifies offsets rsp+0x8
and rsp+0x10 as two separate variables local_8 and
local_10 as in Figure 2. This illustrates the difficulty of
devising generally applicable deterministic heuristics due to
the complex behaviors of modern compilers. A heuristic rule
being general in one case may become too strict in another
case.

Angr [11] is a state-of-the-art open-sourced binary analysis
infrastructure, which is widely used in academia and indus-
try. Its variable recovery does not rely on either static or
dynamic analysis. Instead, it leverages its built-in concolic
execution engine which combines symbolic execution [76]
and forced execution [77], [78] to recover variables and their
data-flow. Despite the more precise basic information (e.g.,
data-flow), Angr’s variable recovery and type inference are
not as aggressive as a few other techniques, especially in the
presence of conflicting results. Hence, in Figure 2, the current
implementation of Angr cannot recognize the structure on the
heap or on the stack. In our experiment (Section VI), Angr
achieves 33.04% precision and 59.27% recall.

B. Example for Primitive Analysis Facts Collected by BDA

Consider the motivation example in Figure 1b and as-
sume the function huft_build was sampled 10 times.
Thus, instruction [01] was executed 10 times. As rsp
stores the base address of region Shurc puiig, We have
Access(01, ({Snust_puira, 8),8),10) for the first instruc-
tion. At instruction [08], malloc 1is called to re-
quest 16 bytes of memory, represented by Malloced-
Size(08,16). After that, malloc returns the base ad-
dress of heap region 7os and stores it to rax. Instruc-
tion [09] further stores this address to [rsp]. Hence
we get PointsTo({{Snutt_puira;0),8), (Hos, 0)). Instructions
[10] and [11] copy value from rsp+0x8 to rax,
generating MemCopy({{Snurt_puiida,8),16), ({Hos,0), 16)).
Instruction [15] accesses rcx+0x8 where rcx is the
base register holding the value of (Hog,0), we have
BaseAddr(lS, <<H087 8> ,8> 5 <Hog, O>)

C. Example for Deterministic Inference

In Figure 15, we use a customized string copy function
to demonstrate the deterministic reasoning procedure, with
the source code in Figure 15a. Lines 1-4 define a struct
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01. typedef struct { E 11. str_t *my_strcpy(str_t *src) {
02. int n; 112,  str_t *dst = malloc(sizeof(str_t));
03. char *buf; 113,  int n = dst->n = src->n;
04. } str_t; 114, dst->buf = malloc(sizeof(char) * n);
05. 115, for (int 1 = 0; 1 < n, 1++)
06. void my_print(str_t *s) { E 16. dst->buf[i] = src->buf[i];
07. size_t n = s->n; 117, my_print(src);
08. char *buf = s->buf; i 18. my_print(dst);
09. write(1, buf, n); 119, return dst;
10. } 120, }
(a) Source code
FL4, (dst->buf) F€,, (src->buf) ) | Access_
MemCo, =1
) TR o [TV T ) sz
MemC k=2 ;
buf[1]| <<Hy,, 8>, 8> PR A | <My, 8>, 8> =72 PointsTo
=31
buf[0]| <<H,, 0>, 8> 1__/_\4_6_!!1_(5_0!7_}1 ----- <<H,, 0>, 8> <—k—3|
(. 1=16 Access
Hy, (dst, H (src
12 (dst) 1=08 Access s (src)
buf | <<H, 8>, 8> [ ————n > <<H,, 8>, 8>
i= k=3
n <<H,,, 0>, 8> ,_1.‘_[9.7_’4?255-1.._. <«<H,, 0>, 8> |e——
---— 1=13 Access

(b) Memory regions (boxes), chunks (entries in box), and relations (arrows)

Fig. 15: Example for deterministic reasoning

str_t that consists of an int field n and a char =
field buf, indicating the string’s length and memory loca-
tion, respectively. Lines 6-10 define a my_print () func-
tion that prints a str_t structure to stdout. Function
my_strcpy () copies src to a heap-allocated dst (lines
12-16), and then prints the two strings (lines 17-18). Note
that we use source code to illustrate for easy understanding,
while OSPREY works on stripped binaries.

Assume BDA samples my_strcpy () 3 times, and
src—->n equals to 1, 2, and 3, in the respective sample
runs. Assume sizeof(char)=8. Figure 15b illustrates the
regions (denoted by the colored boxes), the memory chunks
in regions from all three runs (denoted by the entries inside
the colored boxes), and the derived relations (denoted by
the arrows). For example, the arrow at the lower-right
corner indicates a relation Access(13,((Hs,0),8),3).
Observe that all the accessed fields of src locate in
region H,, the lower green box, and all the accessed
elements in src—>buf locate in region H;, the upper
green box. At line 12, function malloc’s parameter is
always 16, leading to relation ConstantAllocSize(12, 16).
Expression src—>n at line 13 only accesses a memory
chunk (H,,0), leading to AccessSingleChunk(13,H). In
contrast, from the accessed addresses src—>buf[i]
at line 16, we have AccessMultiChunks(16,Hy),
HiAddrAccessed(16, Hy, (Hp, 16)), and LoAddrAc-
cessed(16, Hy, (Hp,0)), and  MostFreqAddAccessed(16,
Hp, (Hsp,0), 3) denoting the most frequent accessed address
is (Hp,0), ie., stc—>buf [0] (accessed three times in the
three sample runs).

Consider the my_print () function, where line 7 ac-
cesses both (H,0) and (H10,0), with Hqo the heap re-
gion allocated at 12, and line 8 accesses both (H,8) and
(H12,8) that have the same offset, indicating UnifiedAccessP-
ntHint((Hs,0), (Hi2,0), 8). Intuitively, the corresponding



struct my_chunk {
char buf[0x80];
struct my_chunk *next;

unsigned long sha256(char *msg) {
struct SHA256 ctx; char *c = msg;

while (c) { }
ctx.S0 =
calculateO(ctx.S0, ctx.S1, c); struct my_chunk *xmalloc() {
ctx.S1 = struct my_chunk *cur = HEAD;

calculated(ctx.SO, ctx.S1, c);
c = get_next_chunk(c);
}
return fini(ctx.S0, ctx.S1);
}

while (cur->next & 1)
cur = (cur->next ~ 1);

cur->next ~= 1;

return p;

}

(a) Missing data structures (b) Misidentified data structures

Fig. 16: Examples for missing and misidentified data structures

Ty T2 fCA04
0 0 p
0 1 P
1 0 1—p
1 1 p

(b) Factor graph for C404 and
Caos

(a) Probability function for C' 404

Fig. 17: Factor graph example.

fields of two structures dst and src are accessed by the
same instructions, which implies the presence of structure.
Inside function my_strcpy (), we acquire a data-flow hint
due to the copies from src to dst. Specifically, we have
DataFlowHint((Hy,0), (H14,0), 16). From the invocation
interface between my_strcpy () and my_print (), we
have PointsToHint((Hs,0), (Hi,0), 16) because both the
base addresses of src and dst have been stored to the same
function parameter of my_print ().

=1
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xy
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D. Case Studies

Cases Where Ghidra and IDA Pro Do Better. There are few
cases where Ghidra and IDA Pro achieve better performance.
Further inspection reveals that those are very simple programs
without complex structures (e.g., struct or in-stack array),
where no conflict will occur during deterministic reasoning.
Hence, approaches like Ghidra and IDA Pro can handle them
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well. OSPREY also works well, but may misidentify very few
variables due to the infeasible paths produced by BDA.
Missing Data Structures. We find that missing data structures
are mainly due to stack-nested structs that are never used
outside their stack frames. Consider the code snippet from
sha256sum in Figure 16a, where a stack-nested structure
SHA256 ctx is allocated on stack and used exclusively
within the function. As such, OSPREY cannot gather any
valuable hints about ctx. That is also the major reason that
OSPREY has relatively large tree difference for those hashing
binaries (e.g., sha256sum) in Figure 20 in Appendix.
Misidentified Data Structures. In our benchmarks, custom
heap allocators are a major source of misidentified data struc-
tures by OSPREY. Consider a simplified xmalloc from grep
in Figure 16b. Its basic allocation unit is called my_chunk,
consisting of a buffer buf and a pointer next. Different
from common pointers, my_chuck.next uses its last bit
to indicate whether this chunk is in use (in normal case,
the last bit is always zero due to memory alignment). Thus,
at line 5, xmalloc finds the first chunk whose in-use bit
is not set, sets the bit, and returns the chunk. As a result,
my_struct.next can point to a struct my_struct
or char my_struct.buf[1] (both are common cases).
These confusing PointsTo hints misled OSPREY to falsely
recover unions. Other reasons include insufficient hints.

E. Example for Transforming A Probabilistic Constraint to A
Factor Graph

Let boolean variables x1, x2, and x5 denote PrimitiveVar(v),
PrimitiveAccess(i,v), and PrimitiveVar(v'), respectively.

Rules C4g4 is transformed to ﬁ) To, which denotes
the probability function in Figure 17a. The probability
function for C'4q5 is similar. The two form a factor graph
in Figure 17b, which could be solved by belief propagation
algorithms with passing messages on it. For example, assume
the prior probabilities of C'494 and Cyp5 are both 0.8, and
we want to compute the marginal probability p(z3 = 1), that
is, the probability of v being of primitive type. As the factor
graph is a tree, we can call x3 the root node. Then message
passing starts from the leaf node x;. After messages reach the
root finally, the marginal probability of x3 can be computed.
The definition and computation of each message is shown as
follows.

F. Harden Stripped Binary

Exposing potential memory bugs is very important for
vulnerability detection. Address sanitizer (ASAN) [47], a
tripwire-based memory checker, can be used to increase the
likelihood of triggering a crash when a memory corruption
occurs. The principle of ASAN is to insert redzones at
the border of variables. Program crashes whenever an out-
of-bound access touches the redzone. The effectiveness of
ASAN is determined by the accuracy of identifying the
variable borders, which is very challenge if source code
or debugging information is not available. The state-of-the-
art binary-level ASAN solution (RetroWrite [48]) conducts



TABLE II: Analysis results of Howard benchmark
Metric | Program Osprey Ghidra IDA Pro Angr
Reca.| Prec. | Reca. | Prec. | Reca.| Prec. | Reca.| Prec.
= wget | 85.32 | 86.14|66.83 | 62.94|62.82 | 60.02|39.94 | 26.96
§ lighttpd |87.67 | 86.35|52.65 | 52.15|46.18 | 41.37 [44.35 | 22.90
S grep [82.10 | 84.07|67.63 | 69.34 [67.09 | 63.97 |46.64 | 30.53
§ gzip 100.0 | 100.0|84.78 | 79.10|78.26 | 75.00(59.78 | 37.42
N fortune |100.0 | 100.0|68.29 | 51.16 [26.83 | 22.00 [21.95 | 11.25
© Avg.  |91.02 | 91.32|68.04 | 62.94 |56.24 | 52.47 |42.53 | 25.81
3“ wget |73.26 | 83.14|29.21 | 47.20(20.29 | 76.39| N/A | N/A
T | lighttpd |84.32 | 85.87|05.51 | 27.08(06.78 | 50.00| N/A | N/A
= grep [57.39 | 84.52110.43 | 3529 |11.30 | 41.67| N/A | N/A
\i gzip  |100.0 | 100.0|66.67 | 73.68|57.14 | 81.25| N/A | N/A
5 fortune |100.0 | 100.0|50.00 | 66.67 |00.83 | 33.33| N/A | N/A
o Avg. |82.99 | 9071|3235 | 49.98|20.77 | 65.53| N/A | N/A
v wget 28.92 70.99 62.84 N/A
S | lightpd 1237 80.18 64.87 N/A
%’, grep 30.09 78.41 60.93 N/A
q ezip 00.00 42.50 00.00 N/A
E fortune 00.00 100.0 00.00 N/A
Avg. 14.28 74.42 37.73 N/A

01. typedef struct node {

02. long data[0x20];

03.  struct node *next; [C] jg <ret_gee>

04. } node_t; [C1] lea rdi, [rax+rcx*8]

05. [c2] shr rdi, 3

06. void gee() { [C3] mov dil, [rdi+SHADOW_BASE]

07.  node_t *p = [C3a] mov rsi, rdi
malloc(sizeof(node_t)); [C3b] and sil, 0x30

08. for (int 1=0; 1<=0x20, i++) [C3c] cmp sil, 0x30

[A] xor rcx, rcx
[B] cmp ecx, 0x20

09. p->datali] = 0; [C3d] jz <asan_report_error>
10. } [C3e] and dil, Ox8F
. e [C4] test dil, dil
(@) Simplified example of [C5] jnz <asan_report_error>
CVE-2019-12802, which has [D] mov [rax+rcx*8], 0

[E] inc ecx

an out-of-boundary memory access for
[F1 jmp B

array data inside structure node_t.
msb 1sb
A 1 1 iz
Bits used by standard libasan.so.4.
D Bits used by OSPREY enhancement.

(c) Assemble code for line 8
and line 9 in Fig 18a. Lines A,
B, C, D, E, F are the original
assemble code, lines Cl1, C2,
C3, C4, C5 are instrumented by
RetroWrite, and lines C3a,
C3b, C3c, C3d, C3e are instru-
mented by our enhancement.
Only our instrumentation can
report CVE-2019-12802.

(b) Address sanitizer maps 8 bytes of
the application memory into 1 byte of
the shadow memory named shadow
byte. However, only 5 bits of each
shadow byte are used in standard
libasan.so.4.

Fig. 18: Field-level binary ASAN instrumentation for CVE-
2019-12802.

very coarse-grained border identification. Specifically, for an
allocated heap region, redzones are only inserted before and
after the region, not between the variables/fields within the
region. This may degrade the effectiveness of ASAN. Take
CVE-2019-12802 [49] as an example. It is an out-of-bound
vulnerability whose simplified code is shown in Figure 18a.
The vulnerability occurs at line 9, in which there is an out-
of-bound memory access for array data inside the node_t
structure. RetroWrite does not insert redzone code within the
node_t structure, hence cannot detect the vulnerability.

We strengthen RetroWrite to take in our reconstructed
symbol information such that corruptions internal to
a structure can be detected. Specifically, we aim to
prevent scalar variables from being accessed by any
array instruction. To avoid false warnings and offer a
strong (probabilistic) guarantee, we carefully define scalar

* Subgraph Number (79.67) * Subgraph Size (45.51)
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Fig. 19: Subgraph statistics in factor graph inference

variables and array instruction. We define v as a scalar
variable, if P(Scalar(v)) > 0.99 A =(3(ay,a2), s.t. (a1 <
vaa < ag) AN (P(Array(ai,a2)) > 0.01)) Similarly,
we define ¢ as an array instruction, if Vv
Accessed(i,v), (a1, az), s.t. AccessMultiChunks(i,v.a.r) A
(a1 <v.a < ag) A (P(Array(aq,az2))) > 0.99). We leverage
RetroWrite to instrument the target binary. For any memory
access by an array instruction, besides the basic ASAN
checks provided by RetroWrite, we additionally check it is
accessing a scalar variable.

Figures 18c and 18b present the details of our implementa-
tion. Lines [A] [B] [C] [D] [E] [F] in Figure 18c are the
original assembly code for line 8-9 in Figure 18a, where
rcx in line [B] stores the value of i and rax+rcx=8
in line [D] stores the address of p—>data[i]. Lines
[CL][C2]([C3][C4][C5] areinstrumented by RetroWrite.
They first get the target address of instruction [D] (line
[C1]), read its shadow value (dil) from the correspond-
ing shadow memory (lines [C2] [C3]), and validate the
shadow value (lines [C4] [C5]). RetroWrite’s ASAN is
based on the standard libasan.so.4. Hence it directly in-
vokes asan_report_error to report errors. An interest-
ing observation is that, even though libasan.so.4 uses one
byte to store shadow value, only 5 bits of the byte are
used, as shown by the shadow value layout in Figure 18b.
This allows us to store more meta information using the
remaining 3 bits. In our case, we use one bit to record
whether the memory stores a scalar variable. After that, we
instrument more validation instructions for array instructions.
Lines [C3a] [C3b] [C3c] [C3d] [C3e] are added by OS-
PREY, for array instruction [D]. The instrumentation validates
whether the accessed memory stored a scalar variable. As
such, the mentioned CVE can be successfully detected. The
instrumented code does not cause any false warnings when
executed on normal test cases. Note that although probabilistic
guarantees may not be strong enough for production systems,
they make perfect sense for vulnerability detection, in which
rare false warnings are acceptable.

G. Execution Time

In Table III, we measure the execution time of different
tools on the two benchmark sets. Due to the space limit,
we aggregate CoreUtils” results and show the averaged data.
Detailed results [45] are available for interested readers. In
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TABLE III: Execution time of different tools. The numbers in
the brackets denote how many times OSPREY is slower than
the corresponding tool.

Program | Osprey Ghidra IDA Angr
wget |3604.80s| 94.74s (37.05x)|18.98s (188.88%)|41.47s (85.92x)
§ lighttpd [2013.12s| 63.89s (30.51x)[16.80s (118.83x)|31.60s (62.70x)
§ grep | 832.52s | 66.75s (11.47x)[32.62s (24.52x) |33.88s (23.57%)
T gzip | 483.65s | 52.84s (8.15%) [11.84s (39.84x) |18.57s (25.04x)
fortune | 422.92s | 37.48s (10.28x)| 6.30s (66.13%x) | 7.11s (58.45x%)
CoreUtils | 528.24s | 35.35s (13.94x)| 5.80s (90.08x) |10.55s (49.07 %)
Avg. 1314.21s|58.51s (18.57x)[15.39s (88.04x) (23.87s (50.79x)
5 |
Y 8 n /
;:; 873.310/0 ik ] ‘ ‘ ‘ I
Eioseed 11 ] A0
z g 29,320 [l |
% ove MM TR AR
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Fig. 20: Tree difference for CoreUtils

general, OSPREY is 18.57, 88.04, and 50.79 times slower than
Ghidra, IDA Pro, and Angr, respectively. We argue that reverse
engineering is often a one-time effort and OSPREY provides a
different trade-off between cost and accuracy. It is also worth
noting that Ghidra is the second slowest one due to its register-
based data-flow analysis, and IDA Pro is the fastest one as its
variable recovery mainly relies on hard-coded code pattern
matching rules.

H. Scalability

To assess the scalability of OSPREY, we evaluate OSPREY
on Apache and Nginx, two well-known applications with
significantly larger code base than the benchmarks we used.
On both programs, OSPREY produces the highest £} Score
for overall and complex variable recovery, and the lowest
tree difference. Details can be found in our supplementary
material [45].

1. Impact of Aggressive Optimization

To understand the impact of aggressive optimizations, we
evaluate OSPREY on the two benchmark sets compiled with
-0O3, the most aggressive builtin optimization flag of GCC.

The results are shown in Table IV. We calculate the F}
score [46] for each tool, and summarize CoreUtils’ results.
Table IVa presents the overall I} scores including both scalar
and complex variables. The average Fj scores (with -O3)
for OSPREY, Ghidra, IDA Pro, and Angr are 0.70, 0.48,
0.27, and 0.16, respectively; and the degradation from the
default optimization (-O0) are 22.48%, 27.18%, 45.47%, and
42.64%, respectively. Although recovering accurate types from
aggressively optimized code is very challenging, OSPREY
substantially outperforms other state-of-the-art techniques. Be-
sides, OSPREY is the most robust tool among all the evaluated
ones. Manual inspection discloses that some aggressive opti-
mizations disrupt OSPREY’s hints (e.g., loop unrolling [79]

TABLE IV: Impact of aggressive optimizations with -O3.
Def., O3, Degra., and # CVars denote the analysis results
for binaries compiled under the default optimization (-O0),
under -O3, degradation from -O0, and the number of complex

variables in memory, respectively.

(a) Fy scores for overall variable recovery

P

rogram Osprey

Ghidra

IDA

Angr

Def. O3 Degra.

Def. O3 Degra.

Def. O3 Degra.

Def. O3 Degra.

©
T
S
=
)
=

wget [0.86 0.66 23.11%
lighttpd |0.87 0.65 25.26%
grep |0.83 0.74 11.21%
gzip [1.00 0.74 26.44%
fortune |1.00 0.82 17.86%

0.65 0.51 20.89%
0.52 0.29 44.59%
0.68 0.60 11.74%
0.82 0.37 55.20%
0.58 0.63 -7.16%

0.48 0.20 58.65%
0.43 0.15 64.07%
0.54 0.20 63.03%
0.67 0.24 64.30%
0.24 0.33 -38.36%

0.32 0.21 34.52%
0.30 0.09 71.72%
0.37 0.16 55.72%
0.46 0.16 64.46%
0.15 0.20 -34.44%

CoreUtils

0.89 0.62 31.01%

0.74 0.49 37.78%

0.71 0.27 61.12%

0.43 0.16 63.84%

Avg. |0.91 0.70 22.48%

0.67 0.48 27.18%

0.51 0.23 45.47 %

0.34 0.16 42.64%

(b) F1 scores for complex variable recovery

Program

Osprey

Ghidra IDA

# CVars

Def. O3

Def.

O3 | Def.

03

Def. O3

wget
lighttpd

grep

gzip
fortune

Howards

0.78 0.55
085 0.44
0.68 0.50
1.00 0.55
1.00 0.76

0.36
0.09
0.16
0.70
0.57

0.45
0.38
0.35
0.35
0.71

0.32
0.12
0.18
0.67
0.13

0.14
0.33
0.20
0.33
0.52

239 127
318 43
120 38
45 41
16 13

CoreUtils

0.80 0.62

0.38

0.43 | 0.39

0.35

23 11

Avg.

0.85 0.57

0.38

0.45 | 0.30

0.31

127 45

(c) Tree difference

Program

Osprey

Ghidra

IDA

Def. O3 Degra.

Def. O3 Degra.

Def. O3 Degra.

wget

grep
gzip

Howards

fortune

lighttpd

28.92 57.24 49.47%
12.37 21.42 42.25%
30.09 26.96 -11.63%
00.00 41.67 100.0%
00.00 08.00 100.0%

70.99 72.88 02.48%
80.18 55.10 -45.53%
78.41 72.62 -07.97%
42.50 62.50 32.00%
100.0 50.00 -100.0%

62.84 75.14 16.37%
64.87 62.81 -03.28%
60.93 89.68 32.06%
00.00 50.00 100.0%
00.00 50.00 100.0%

CoreUtils

29.32 63.26 53.65%

73.31 78.69 06.83%

64.04 78.61 18.54%

Avg.

16.78 36.42 55.63%

74.23 65.28 -18.70%

42.11 67.71 43.95%

and partial function inlining [80]), resulting in the degraded
accuracy. For example, loop unrolling can generate multiple
copies of a single memory access instruction such that we
lose the hint that detects an array by observing consecutive
memory locations being accessed by the same instruction.

Table IVb shows the F} scores for complex variable recov-
ery. Observe that OSPREY still achieves substantially better F
of 0.57 (compared to 0.45 for Ghidra and 0.31 for IDA Pro).
One may notice that Ghidra and IDA Pro get better results
with the -O3 flag. Although it seems counter-intuitive, further
inspection shows that it is not because they are having better
performance but rather the number of complex variables in
memory becomes smaller. Recall that we consider a structure
being pointed to by a pointer in memory a complex variable.
With -O3, these pointers are largely allocated to registers. We
do not collect results for these cases as Howard does not
consider variables in registers. While Ghidra and IDA Pro tend
to have trouble with complex variables in memory, the number
of such cases are reduced.

We additionally count the number of complex variables,
shown in Table IVb. The results show that the number of
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Fig. 21: OSPREY’s F} scores for overall variable recovery on
the two benchmark sets compiled by GCC and Clang. The
results of CoreUtils are averaged over all programs.

complex variables decreases a lot from the default setting (127
v/s 45), supporting our hypothesis.

Table IVc presents the tree difference. Although OSPREY
has the smallest tree difference of 36.42 (compared to 65.28
for Ghidra and 67.71 for IDA Pro), the aggressive optimiza-
tions have larger impact on OSPREY. This is however reason-
able because OSPREY'’s structure recovery mainly depends on
hints from program behaviors which can be greatly changed
by optimizations, while Ghidra and IDA Pro mainly depend on
predefined function prototypes of external library calls which
are rarely influenced by optimizations. Ghidra’s register-based
data-flow analysis also benefits from optimizations. We foresee
that a set of rules particularly designed for optimized programs
can be developed for OSPREY. We will leave that to our future
work.

Finally, we want to point out that fortune is an outlier which
always achieves better results under aggressive optimizations.
This is because fortune is a very simple program (randomly
outputting predefined sentences [81]) and O3 optimizations put
most of its variables in registers, reducing aliasing and greatly
benefiting the register-based data-flow analysis.

J. Impact of Different Compilers

To study the robustness over different compilers, we ad-
ditionally examine OSPREY on benchmarks compiled by
Clang [82], another mainstream compiler. We use Clang 6.0
to compile the two benchmark sets with the default and -O3
optimization flags, and summarize the results in Figure 21. The
results show that OSPREY has good robustness with different
compilers under the default compilation setting (less than
6% difference for each program). Although there is a larger
difference between GCC and Clang under the -O3 setting, we
speculate that it is because the -O3 optimizations of GCC and
Clang behave differently (e.g., they have different thresholds
for loop unrolling). The results of complex variable recovery
and tree difference reveal similar trends and are hence elided.

K. Contribution Breakdown of Different Components

To better understand the effect of different components,
including BDA and probabilistic inference, we further eval-
vate OSPREY with two variations. Specifically, to study the
contributions of BDA, in the first variation, we replace the
BDA component with a dynamic-execution component built
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TABLE V: Effects of BDA and probabilistic inference. Origi-
nal, w/o BDA, and w/o Prob. stand for the original OSPREY,
OSPREY with a dynamic-execution component instead of
BDA, and OSPREY with deterministic inference instead of
probabilistic inference, respectively. Cov. denotes the fraction
of functions that the dynamic approach exercised.

p Original w/o BDA w/o Prob.
rogram
Reca.| Prec. | Reca. | Prec. | Cov. | Reca.| Prec.
wget 85.32 | 86.14 | 29.46 | 86.31 | 51% | 4543 | 47.21
lighttpd 87.67 | 86.35 | 73.75]97.16 | 55% | 40.24 | 40.74
grep 82.10 | 84.07 | 44.48 | 89.78 | 50% | 44.76 | 46.04
gzip 100.0 | 100.0 | 43.48 | 100.0 | 74% | 64.37 | 64.37
fortune 100.0 | 100.0 | 75.61 | 100.0 | 76% | 78.57 | 78.57
Avg. 91.02 | 91.32 | 53.36 | 94.65 | 61% | 54.67 | 55.39

upon Pintools [83]. Following the same setup as Howard,
we use the provided test suite and also KLEE to increase
code coverage. To study the effect of probabilistic inference,
in the second variation, we turn the probabilistic inference
to deterministic inference. The deterministic inference rules
are largely derived from the probabilistic rules but have the
probabilities removed. As such, when multiple contradictory
inference results are encountered (e.g., conflicting types for a
variable), which are inevitable due to the inherent uncertainty,
the algorithm randomly picks one to proceed.

The results are shown in Table V. We report the precision
and recall of the first variation for overall variables in the
fourth and fifth columns. We also report the dynamic code
coverage in the sixth column. Due to page limits, we elide
other metrics as they are less interesting. Compared with the
original OSPREY, the dynamic-execution-based OSPREY has
slightly higher precision but lower recall. As dynamic execu-
tion strictly follows feasible paths, there are fewer conflicts,
benefiting the precision. However, the conflicts introduced
by BDA'’s incapabilities of determining infeasible paths are
decentralized and cumulatively resolved by the large number
of hints, making the improvement limited. On the other hand,
the dynamic-execution-based OSPREY cannot get hints from
the non-executed functions, leading to the low recall. Hence,
we argue that BDA is essential to OSPREY.

The results of the second variation are shown in the last
two columns of Table V. Note that the deterministic version
of OSPREY has nearly 40% decrease in terms of both recall
and precision. Such results indicate the probabilistic parts of
OSPREY are critical. We also study the reason behind the
degradation. On one hand, due to the infeasible paths, BDA
may generate many invalid accesses. When these accesses
conflict with the valid ones, the deterministic algorithm may
choose the wrong one. On the other hand, many inference rules
/ hints have inherent uncertainty. For example, rule Cg2 says
when an instruction accesses multiple addresses in the same
region, likely, there is an array in that region. Note that it
is likely but not certain, as the situation could also be that
a pointer points to multiple individual objects. Deterministic
approaches are by their nature not suitable for handling such
inherent uncertainty.
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