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ABSTRACT 
With the growing popularity of smartphones, continuous and implicit 
authentication of such devices via behavioral biometrics such as touch 
dynamics becomes an attractive option. Specially, when the physical 
biometrics are challenging to utilize, and their frequent and continuous 
usage annoys the user. This paper presents a touchstroke 
authentication model based on several classification algorithms and 
compare their performances in authenticating legitimate smartphone 
users. The evaluation results suggest that it is possible to achieve 
comparable authentication accuracies with an average accuracy of 
91% considering the best performing model. This research is 
supervised by Dr. Debzani Deb (debd@wssu.edu), Department of 
Computer Science at Winston-Salem State University, NC. 
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1. INTRODUCTION  
Over the last few years, the world has witnessed the explosive 

growth of consumers who are increasingly using their smartphones for 
anytime-anywhere computing and the enhancements of their daily 
lives. During the Covid-19 era, smartphones are regarded as lifelines 
and became absolutely crucial for distance learning and working. Since 
these devices store a mounting quantity of user's private and sensitive 
information, securing these devices from adversary attacks continues to 
be a significant concern for both manufacturers and users. Physical 
biometrics (face, fingerprints, iris, etc.) has often been promoted as the 
most secure means for log-in authentication for smartphones.  
However, there is a need for additional security measures after the 
initial log-in, known as continuous and implicit user authentication [1]. 
In such authentication, the system keeps continuously monitoring the 
user throughout their interactions with the device. The process is 
implicit such as all authentication is carried out in the background 
without interrupting the user or requiring any active user cooperation. 

Vital physical biometrics are not appropriate for such implicit 
authentication as they need either full or partial collaboration from the 
users at regular intervals, which results in annoying the user.  

Recent research has shown promising results in using behavioral 
biometrics [2] to verify users implicitly and continuously on 
smartphones. Today's smartphones are equipped with many sensors and 
accessories and could be used to extract user behavioral attributes such 
as touch dynamics, keystroke dynamics, and gait recognition. This 
paper focuses on touch dynamics [3,4], which captures how a user 
touches a touchscreen device and its usage on continuous and implicit 
user authentication. 

In touch dynamics continuous authentication, the system 
continuously monitors the raw touch data and extracts touchstroke 
features. These include the screen area covered by the touch stroke, 
touch pressure, speed, velocity, and acceleration of the x, y-positions 
on the screen [3]. After observing the user behavior for a while, the 
system learns her touch dynamics by performing statistical analysis or 
using machine learning. Then, at a later time, after the initial log-in by 
using a password/pin or physical biometric, the system continuously 
compares current user behavior with the learned user model to make an 
authentication decision. The training phase in such authentication is 
different from typical classification as the only training data available 
is merely the smartphone owner's data. It is doubtful that many users 
will share a smartphone, and therefore the classifier can only assume 
the availability of the owner's data that belongs to a single class 
instance. The challenge is to train a classifier with two different 
predictions, such as owner and attacker, where the attacker instance 
does not belong to a prior-learned class [5].  Most of the prior works 
[3,6,7] on smartphone touchstroke authentication addressed this 
challenge by simulating one or more random users as attackers, and the 
authentication problem is naturally fitted as a binary-class classification 
problem, where the model is trained using a particular user's touchstone 
data as the owner's and the others' as attacker's. 

This study describes a more robust behavioral biometric 
authentication based on four different algorithms to address this 
challenge and compare the accuracy. K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Random forest (RF), and deep 
learning algorithms are deployed for identifying a user based on their 
touch dynamics data in a contiguous and implicit fashion. 

The rest of this paper is organized as follows. Section 2 provides 
methodology including the description of our dataset, classification 
algorithms, and evaluation metrics. Section 3 presents results and 
Section 4 concludes the paper.  
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2. METHODOLOGY 

2.1. Dataset  
This study adopted Touchanalytics [3] dataset for experiments. 

There are 21,158 touch strokes in total, belongs to 41 subjects, which 
are collected from four different Android phones. For each stroke, 31 
functional features can be derived [3]. Since each feature does not fall 
in the same range, they are standardized to the range [-1,1]. The 
authentication scenario considers two classes only, such as owner and 
imposter; however, the Touchanalytics dataset collects touchstrokes 
data that belongs to 41 users. A user-specific dataset is created for a 
legitimate user by extracting all of her touch data from the primary 
dataset, in order to keep classes balanced, as many samples from the 
negative study (other users) are obtained as there are samples of the 
legitimate user and these samples are added to make a complete user-
specific dataset for such user. This user-specific dataset is divided into 
training (80%), and testing (20%) sets and is utilized during training 
and testing.  

2.2. Classification Algorithms 
This study utilized four different classifiers such as k-Nearest 

Neighbor (kNN), Support Vector Machine (SVM), Random Forest 
(RF), and Deep Neural Network (DNN). The choice for these classifiers 
was driven by various reasons as discussed below.  

kNN is robust to work with and provides a fast classification. The 
kNN classifier takes every single observations and locates it in feature 
space with respect to all training observations. The classifier identifies 
the k training observations that are closest (based on Euclidian distance) 
to the new observation. Then, it selects the label that the majority of the 
k closest training observations have. This procedure requires no explicit 
training phase and the classifier merely stores all training observations 
and their labels in order to make predictions.  

Support vector machines are popular and powerful binary 
classifiers. SVMs divide the feature space by a hyperplane such that the 
margin between the two classes is maximized, i.e., SVMs squeeze a 
maximally thick layer between the boundary observations of both 
classes, known as support vectors. In contrast to kNN, SVM generalizes 
from the observed data, i.e., it does not store the individual observations 
once the training is performed and only saves the decision hyperplane. 
For more robustness against outliers, a small number of boundary 
observations are tolerated within the margin. A parameter C controls 
the trade-off between maximizing the margin and minimizing the 
number of such exceptions. For classes that are not linearly separable 
in feature space, the standard scalar products involved in the 
computation of the hyperplane can be replaced with ‘kernels’. Kernels 
implicitly relocate the problem in another high-dimensional space 
where the classes are separable. In the same step, the kernel maps the 
found hyperplane back to feature space. The presented research used a 
Gaussian radial-basis function (rbf) as the kernel, parameterized by the 
width parameter gamma.  

Random Forest is an ensemble tree-based learning algorithm. The 
RF Classifier consists a set of decision trees, each of them built over a 
random extraction of the observations from the dataset and a random 
extraction of the features. Not every decision tree in the set utilizes all 
the features or all the observations in the training dataset, and this 
guarantees that the trees are less correlated and more independent, and 
therefore less prone to over-fitting. Each tree uses a sequence of yes-no 
questions based on a single or combination of features in order to divide 
the training observations. At each node, the tree divides the dataset into 
2 buckets, each of them hosting observations that are more similar 
among themselves and different from the ones in the other bucket. 

Therefore, the importance of each feature is derived from how “pure” 
each of the buckets is. The most widely used impurity measure is 
the Gini impurity, which is also utilized in this study. The 
classifier aggregates the votes from different decision trees to decide 
the final class of the test object. Random forests are one of the most 
popular machine learning algorithms because of the good predictive 
performance and their resistance to outliers.  

2.3. Evaluation Metrics 
The classifiers performances are evaluated using various standard 

evaluation metrics such as Precision, Recall, F1 and ROC score. In this 
study, Precision is the ratio of correctly authenticated users 
observations to the total predicted user observations. Recall is the ratio 
of correctly predicted users observations to all actual observations with 
users labels. In other words, Precision and Recall are all interested in 
predicting the true answer of the positive label. F1 score takes both 
Recall and Precision into account, hence can be considered as a 
weighted average of them, and therefore it provides a useful accuracy 
indicator. The ROC curve is another common tool used with binary 
classifiers. The ROC curve plots the true positive rate (another name 
for Recall) against the false positive rate (FPR). The FPR is the ratio of 
negative instances that are incorrectly classified as positive. To 
visualize the performance of the classifier, Receiver Operating 
Characteristics (ROC) curve and Precision-Recall (PR) curves are 
introduced. 

3. RESULTS 

Five subjects are randomly selected from the Touchanalytics 
dataset for experimental evaluation. Each subject's touch strokes (first 
column in Table 1,2,3) are extracted as legitimate data, and a same 
number of other users' touchstrokes are added as fraud data to make the 
class balanced. The training and testing are performed for each 
authentic user individually, and the performances for each user in terms 
of Precision, Recall, F1 are shown in Table 1, 2 and 3. The maximum 
and minimum performances achieved for each metric across all subjects 
are highlighted in the table, along with the mean and median of all 
metrics. It is evident from the tables that the random forest algorithm is 
performing best in authenticating users closely followed by the support 
vector machines. The Precision scores are relatively high for RF 
classifier, with mean: 0.91 and median: 0.94. The Recall and F1 values 
are similar for all the three classifiers. These results indicate that it is 
possible to achieve acceptable authentication accuracies with touch 
dynamics data. The results in Table 1, 2, and 3 further reveal that the 
proposed system comparatively performs better when there are more 
data available to learn and to generate from. 

Table 1. Predictions Results for KNN  
Subject 

ID 
Subject 

instances 
Precision Recall F1 

2 1230 .92 .94 .93 

3 759 0.77 0.87 0.81 

11 445 0.90 0.92 0.91 

16 382 0.83 0.95 0.88 
4 241 0.91 0.80 0.85 

Mean 
 

0.87 0.90 0.88 

Median 
 

0.90 0.92 0.88 

 

Table 2. Predictions Results for SVM 
Subject 

ID 
Subject 

instances 
Precision Recall F1 



2 1230 .94 .94 .94 

3 759 0.80 0.89 0.84 

11 445 0.89 0.89 0.90 

16 382 0.85 0.96 0.90 
4 241 0.93 0.86 0.90 

Mean 
 

0.88 0.91 0.90 

Median 
 

0.89 0.89 0.90 

 
Table 3. Predictions Results for RF 

Subject 
ID 

Subject 
instances 

Pre. Rec. F1 

2 1230 .98 .92 .95 

3 759 0.79 0.89 0.83 

11 445 0.94 0.88 0.91 

16 382 0.87 0.81 0.84 
4 241 0.94 0.88 0.91 

Mean 
 

0.91 0.88 0.89 

Median 
 

0.94 0.88 0.91 

 

 
Figure 1: ROC accuracies for Three Models 

 ROC analysis is considered for all the classifiers. Figure 1 shows 
the ROC curves and the corresponding AUC values of all models. The 
ideal point in ROC space is the top-left corner. AUC is an important 
statistical parameter for evaluating classifier performance: the closer 
AUC is to 1, the better overall performance of established classifier. In 
the current work, as shown in Figure 1, the AUC value of RF classifiers 
is .949 for subject 2, which is higher than the other classifiers with a 
margin (2% or more), indicating that the RF classifiers achieves better 
performance than the other classifiers. Figure 2 shows the Precision-
Recall curves (PR-curves) for all classifiers. PR-curve is a very widely 
used evaluation method in machine learning. In general, the closer the 
curve is to the top-right corner, the more beneficial the tradeoff it gives 
between precision and recall. The PR-curve in Figure 2 shows the 
superiority of random forest model in minimizing the number of false 
positives while ensuring high classification accuracy. 

 
Figure 2:  Precision Recall curves for Three Models 

 

4. CONCLUSION 
 This paper presents a touchstroke authentication model. Given a 
small subset of a legitimate user's touchstroke data during training, the 
presented can accurately authenticate the user. This paper presents a 
touchstroke authentication model based on several classification 
algorithms and compare their performances in authenticating legitimate 
smartphone users. The evaluation results suggest that it is possible to 
achieve comparable authentication accuracies with an average accuracy 
of 91% considering the best performing model. The future works will 
focus on fine tuning the model in order to achieve better accuracies and 
investigating the impact of posture variation on the presented 
authentication. 
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