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1 | INTRODUCTION
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Abstract

Optimizing media for biological processes, such as those used in tissue engineering and
cultivated meat production, is difficult due to the extensive experimentation required,
number of media components, nonlinear and interactive responses, and the number of
conflicting design objectives. Here we demonstrate the capacity of a nonlinear design-
of-experiments (DOE) method to predict optimal media conditions in fewer experi-
ments than a traditional DOE. The approach is based on a hybridization of a coordi-
nate search for local optimization with dynamically adjusted search spaces and a global
search method utilizing a truncated genetic algorithm using radial basis functions to
store and model prior knowledge. Using this method, we were able to reduce the cost
of muscle cell proliferation media while maintaining cell growth 48 h after seeding
using 30 common components of typical commercial growth medium in fewer exper-
iments than a traditional DOE (70 vs. 103). While we clearly demonstrated that the
experimental optimization algorithm significantly outperforms conventional DOE, due
to the choice of a 48 h growth assay weighted by medium cost as an objective function,
these findings were limited to performance at a single passage, and did not generalize
to growth over multiple passages. This underscores the importance of choosing objec-

tive functions that align well with process goals.
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of final products. Without much in the way of first principles models for

these objectives, especially for adherent mammalian muscle cells used

Cell culture media s a critical component of bioprocesses such as phar-
maceutical manufacturing and the emerging field of cultivated meat
products. Optimizing culture media is a difficult task due to the exten-
sive experiments required, number of media components, nonlinear
and interactive responses from each component, and conflicting design
objectives. Additionally, for cultured meat products, media needs to
be less expensive than those currently deployed for other cell cul-
ture processes (e.g. biopharmaceutical production), food-grade, con-
sider safety, component stability, and effects on sensory characteristics

Abbreviations: AB, AlamarBlue; DMEM, Dulbecco’s modified eagle medium; DOE,
design-of-experiments; FBS, fetal bovine serum; GM, growth/generic media; HND, hybrid
nonlinear designer; RBF, radial basis function

for cultivated meat production (as well as fat and connective tissues),
media optimization must be done experimentally with constraints on
inputs, outputs, and number of experiments.

Optimizing one factor at a time or with random experiments is still
the most common way of exploring design space. This strategy is very
inefficient for large systems (culture media such as DMEM may have
up to 30 components [1]) and is unable to consider interactions among
media components. Design-of-Experiments (DOE) methods are better
able to manage large numbers of components in fewer experiments
using Factorial, Fractional Factorial, Plackett-Burman, and Central
Composite Designs where linear and polynomial models can correlate

first order and interactive effects of media components. In general,
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DOE methods are able to optimize < 10 variables, 2! and with the help
of screening designs can solve problems > 25 variables,[3] though at
the expense of ignoring interactions, screened variables, and easily
costing > 100 experiments (when combining typical screening and
factorial experiments, although this number can be quite lower if < 5
variables are explored). Experimental optimization of media has also
been done using stochastic methods such as genetic algorithms,!4]
and this approach is generally suited to optimizing systems of dimen-
sionality > 15 where DOE methods can become experimentally
cumbersome, but also take ~ 200 experiments.

Because the size of the design space increases exponentially with
the number of design variables, a natural advance was to use response
surface models to capture information about interactions and non-
linearity. These techniques can then be used to sequentially identify
optimal culture conditions while simultaneously improving modeling
accuracy. Oftentimes experimenters will employ polynomial models
to find optimal culture conditions!®! but only after extensive DOE to
reduce the dimensionality of the problem space to < 5. More advanced
modeling techniques are neural networks, decision trees!®l and Gaus-
sian processes,!”] which are often better at generalizing noisy, nonlin-
ear, and multi-modal data. When combined with global optimization
methods, Zhang and Block demonstrated that these response surface
methods can optimize problems with > 20 variables in less than half
the number of experiments as traditional DOE.[8] Recently Cosenza
and Block!?] further improved the robustness of this algorithm by
using a hybrid optimization scheme validated on simulated design
problems.

Here we employ this novel nonlinear experimental design algo-
rithm called HND to optimize the proliferation of C2C12 cells while
simultaneously reducing media cost by modeling the response sur-
face of culture conditions using an RBF with a hybridized global/local
optimization scheme. We then compare this approach to a more
traditional DOE method. The organization of this article is as fol-
lows: Section 2 includes an outline of the experimental and compu-
tational methods use in media optimization, Section 3 goes over the
results and Section 4 details a discussion of the results and current
challenges.

2 | MATERIALS AND METHODS

2.1 | Media components and cell line

Table 1 lists the 30 components of the media system, concentration
ranges, and the concentration of the control growth media (GM) used
in this work. GM is based on a formulation of DMEM + 10% FBS from
HiMedia Cell Culture with 4.5 g Glucose L1 and L-Glutamine where
FBS is fetal bovine serum (Biowest). All components were stored as
aqueous stock solutions in 2-6°C sterilized using 0.2 um pore size
micro-filtration (Pall Corporation Acrodisc). The pH was adjusted to
7.2 using 1 M HCl or NaOH solution, and Sodium Bicarbonate (Sigma)
buffer at 1850 mg L~ was added.

C2C12 muscle cells were used for all experiments (ATC). The cells
were stored in liquid N, in 10% DMSO (Sigma), 20% FBS, 70% GM at
passage 15. To generate enough cells for these experiments, cells were
taken out of storage, thawed, centrifuged at 1500 g for 5 min and re-
suspended in DMEM (Glibco) + 10% FBS in 15 cm cell culture plates
(Cellstar, Greiner Bio-One). Cells were then trypsinized (Gen-Clone)
in their log phase of growth (~ 50% confluence, or about two days of
growth) and plated on 96 well plates (Cellstar, Greiner Bio-One). To
plate the cells, trypsinized cells are suspended in phosphate buffered
solution (PBS Glibco) and counted using a hemocytometer. The PBS
volume was then adjusted so that 5000 cells per well (~ 15,625 cells
cm2) could be seeded using 50 uL of PBS into 150 uL of the media
being tested (total well volume of 200 uL). The cells were incubated
at 37°C and 5% CO, for 48 h post-seeding before measurements of
proliferation were made with replicates. For six well plate experiments
(Cellstar, Greiner Bio-One) a total volume of 3 mL was used with the
same ratios of PBS to media and seeding density (150,000 cells per

well), with all other steps being the same.

2.2 | Assays and objective function

After 48 h of incubation, the performance of the media was measured
using AlamarBluel 10! metabolic colorimetric assay (AB). After pipetting
in 10% volume of AB assay (20 uL) for each well, all wells were left to
incubate for 3 h at 25°C and 5% CO,. The %AB reduction was mea-
sured using a microplate reader at 600 and 570 um using Equation (1)
with six replicates of each experimental and control well.

117216 * 2570 media — 80586 * A400,media

= (1)
155677 * léoo,control — 14625 * /1570,control

%

To quantify the relative proliferation of cells after 48 h of growth,
the ratio of %AB for a given medium to %AB for basic GM was used as a
metric of the success. The economic cost of a medium was considered
by normalizing the %AB ratio by the volume of FBS, which constitutes
the vast majority of the media cost.[1] Therefore, the objective func-
tion a and the optimization problem used in this work (finding the best
media components X*) are as follows, where Xggs is the normalized vol-

ume of FBS ranging from [0, 1].

X* = argmaxya (X)

%AB | %AB,
a(X) = m
1+ Xeps
)_(i _ Xi - Xi,low
Xinigh = Xijow

This objective function strikes a balance between a proportionality
to cell proliferation and cost, and ease of use. A more elaborate objec-
tive function that describes multi-passage dynamics or further eco-
nomic costs could be employed, but at the expense of significantly more

time and labor.
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TABLE 1
optimization method (DOE), and commercial (GM) indicated

Details of media design space | components and bounds used in media optimization for proposed method (HND), control

Concentration [mg L™1]

Component GM
Calcium chloride EMD 265
Ferric nitrate Fischer 0.1
Magnesium sulphate RPI 97.7
Potassium chloride Fischer 400
Sodium chloride Fischer 6400
Glycine Fischer 30
L-Arginine Spectrum 84
L-Cystine RPI 62.6
L-Glutamine Spectrum 584
L-Histidine Spectrum 42
L-Isoleucine Acros 105
L-Leucine Acros 105
L-Lysine RPI 146
L-Methionine Spectrum 30
L-Phenylalanine AMRESCO 66
L-Serine AMRESCO 42
L-Threonine Spectrum 95
L-Tryptophan Biosynth 16
L-Tyrosine Disodium Salt RPI 103.8
L-Valine Spectrum 94
Choline chloride Sigma 4
D-Ca-Pantothenate Acros 4
Folic acid TCI 4
Nicotinamide Sigma 4
Pyridoxal hydrochloride Acros 4
Riboflavin Sigma 04
Thiamine hydrochloride Sigma 4
I-Inositol Fischer 7.2
D-Glucose Sigma 4500
FBS Biowest 10%
2.3 | Experimental design algorithm

A novel hybrid nonlinear experimental design algorithm (HND) was
developed [?! to optimize high dimensional experimental design sys-
tems such as the one outlined above. It is based on a truncated genetic
algorithm (TGA) method [8] hybridized with a dynamic coordinate
search framework (DYCORS).I12] This method starts by constructing
an RBF approximation y of the system from an initial set of exper-
iments with inputs and outputs {Xg,ag} respectively. The RBF takes
the form of a sum of n. cluster 1;-weighted radial functions ¢(x, x) in

Equation (2).

Low High HND DOE
1325 530 287.3 265
0.05 0.2 0.1 0.1
48.85 195.4 176.8 97.7
200 800 555.8 200
3200 12800 8182.8 6400
15 60 231 30
42 168 76.1 84
313 125.2 94.7 62.6
292 1168 977.8 584
21 84 75.6 42
525 210 125.8 105
52.5 210 92.1 105
73 292 207.5 146
15 60 45.5 30
33 132 87.6 66
21 84 52.6 42
475 190 146.4 95

8 32 24.9 16
51.9 207.6 152.3 104
47 188 117 94
2 8 4.5 4

2 8 57 4

2 8 52 4

2 8 6.8 4

2 8 3.7 4
0.2 0.8 0.5 0.4
2 8 4 4
3.6 14.4 6.4 7.2
2250 9000 6145.7 9000
5% 20% 6.8% 5%

The radial functions project a set of [0, 1] normalized inputs x and
x’ (in this case two media concentrations) into a single output space
using the Euclidean distance r = ||x — x’||§ . This quantifies the dif-
ference between two media combinations for arbitrary media compo-
nents. Two media that are more similar have smaller r values, so are
going to have similar predictions of y. The radial function used in this
work was the cubic function ¢ (x, x’) = 3 . The weights are determined
by solving the linear equation for ®(X, X) for a training set of data that
has been collected {X, a}.

1= (007) '0Ta (3)

To find the optimal location of RBF nodes n. we used the K-

Means Clustering Algorithm. This algorithm was repeated for K = 4
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Data: ;

Initial Data {Xo,Ys};

Max Batches B;

Objective a(x)

Result: Optimal Design X*

for b=1: B do

Get RBF Approximation;
a(z) = j(x) = Tz \io(ri);
Run HND Algorithm;
Xrga = argmazrca y(z);
Xpycors = argmazpycors y(x);
Xy = XrcaU Xpycors;
Conduct New Experiments;
Y, = a(Xy);

end

X* = argmaz a(X)

FIGURE 1 Hybrid nonlinear design (HND) algorithm

cross-validated data splits for each batch of experiments, where the n.
with the lowest cross-validated error for the given training set was cho-
sen as the optimal number of clusters. Cross-validation is critical for
making sure models generalize well for small amounts of noisy data. In
general, higher n. makes the model more complex (wiggly), so here we
balance accuracy with model simplicity/generalizability.

Using the trained RBF model, the two arms of our algorithm, TGA,
and DYCORS, each suggest five experimental conditions for a total of
x 2] of
the GM (see Table 1) that optimize a. The TGA arm runs a genetic algo-

10 experiments per batch within the design space [ x 1/2,

rithm (a stochastic global optimization method) over the RBF model to
predict the best designs. Because the model is based on a small amount
of noisy data, the genetic algorithm is stopped before it can converge to
implicitly consider model and experimental uncertainty. The DYCORS
arm of the algorithm searches in the region around the best design and
picks the best predicted set of designs in that region, which expands
and contracts based on the quality of previous experiments. The new
experiments are conducted and the resulting data is used to correct
and retrain the RBF model. To allow the RBF model to generalize better
during early periods of optimization, 30 randomly selected experimen-
tal conditions were taken initially. The optimization loop was stopped
when the a quality of the media showed a lack of improvement. The
general framework for the HND is shown in Figure 1.

As a control method, a traditional DOE was used to optimize the
same media design problem in three steps. (i) A’Leave-One-Out’ (LOO)
experiment was conducted where a media composed of all components
at their GM concentrations, excluding each individual component, were
tested for their proliferation capacity using the %AB metric (@ was
not used because all media had the same amount of FBS), similar to
what was done in previous work.[13] The lowest performing compo-
nents had their concentrations fixed at their respective GM concentra-
tions. Next (ii) a Folded/Un-Folded Plackett-Burman design was imple-
mented with the remaining components at the upper and lower bounds
of the design problem. This was done to determine the first order linear
effects of each component on the objective function a. A linear model
to predict a was used in conjunction with a LASSO algorithm (Hastie,
2017, p. 68) to rank the most important first order effects, and all but

the highest impact components were kept at their GM concentrations.
Finally, (iii) the remaining components were used to design a Central
Composite Design (CCD) where experiments are spread out across the
design space to more thoroughly explore potential optimal designs. The
best a design from this DOE method was considered the optimal DOE
design.

2.4 | Computing environment

Hardware used: Dell Precision 5820 Tower, Intel Xeon W-2145 DDR4-
2666 Processor (3.7 GHz), 32 GB Memory. Software used: MATLAB
R2019a with Bioinformatics Package.

3 | RESULTS

3.1 | Performance of traditional DOE for media
optimization

The DOE-LOO step identified Ferric Nitrate, MgSOy, Glycine, L-
Isoleucine, Choline Chloride, Riboflavin, and Thiamine HCI as compo-
nents that, when left out of GM, had no (or positive) statistical effect on
%AB after 48 h post-seeding (30 experiments needed). These compo-
nents were set to their respective GM concentration for all subsequent
DOE experiments. Next, the DOE-PB with LASSO identified the six
most a-important components of the remaining 23 components (KCI,
L-Glutamine, Glucose, FBS, L-Cystine, L-Serine). To reduce the number
of experiments for the DOE-CCD design, L-Cystine and L-Serine were
kept constant at x 1/2 normalized units above and below their GM
midpoint concentrations respectively (10.4 and 28 mg mL™1) based on
the sign of their coefficients (48 experiments required). The remaining
four components in the CCD had their upper/lower bounds changed
to x 1/2 normalized units above (KCI, L-Glutamine, FBS) and below
(Glucose) their GM midpoints. The remaining components were var-
ied in a CCD design, with the best medium being 200 mg L™ KCI,
388 mg L~! L-Glutamine, 9000 mg L™! Glucose, 5% FBS (25 experi-
ments) shown in detail in Table 1. An 80% increase in « at 48 h post-
seeding over GM was measured (Figure 2 left) using 50% less FBS
than GM.

3.2 | Performance of novel HND for media
optimization

For the HND optimization loop, « was used as the objective function
and calculated using %AB measured at 48 h post-seeding at 96 well
plate scale (the exact same as the DOE method). The RBF was initially
trained with 30 randomly selected experiments. Figure 2 shows that
the average HND designs improved in both a and %AB metric over
time (both cost and proliferation) quickly overcoming standard GM and
achieving similar results to the best DOE design (an « difference of

13.3%) with 70 experiments. We have included the proliferation metric
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improve over GM

(%AB / %AB GM) in Figure 2 for completeness even though it was not
used as the objective function « in this work. The HND was stopped at
70 experiments because both %AB and « stopped improving. The best
medium found had an a measured to be 56% better than GM during the
optimization loop using 32.5% less FBS than GM.

3.3 | Comparison of media resulting from novel
HND and traditional DOE

Figure 3 shows the differences between the optimal media. For the
most part the HND identified optimal concentrations that were slightly
elevated compared to DOE, except for KCI, FBS, and Glucose. It is also
notable that both HND and DOE determined that Glucose and FBS
should be elevated and reduced in relative to GM. Figure 4 shows the
media efficiency metric a plotted against the component concentra-
tions for all experiments, demonstrating the nonlinear, interactive, and
ultimately non-trivial nature of this experimental design optimization
problem. These a optimal HND and DOE designs were then tested
against GM using %AB at 24, 48, and 72 h post-seeding (Figure 5),
where the designed media have high %AB relative to GM but that
advantage is reduced over time. As a further check, « was calculated
using raw cell number normalized by the volume of FBS in each exper-
iment (at six well plate scale) where it was found HND and DOE again
outperformed GM (Figure 5) in terms of the objective function a. How-
ever, both HND and DOE produced 8% and 9% fewer cells respectively,
using 70 and 103 total experiments respectively. This higher a comes

from their lower levels of FBS.
3.4 | Evaluation of optimized media in
multi-passage proliferation

Finally, the C2C12 cells were grown in optimal HND, DOE, and GM

across five passages to mimic an industrial process where multi-

passage dynamics could have large effects on media design. Figure 6
indicates GM cumulatively grew more cells than HND and DOE
optimal media by the second passage, and by the third passage had
done so at higher a (again, approximated by number of cells normalized
by volume of FBS). Both the optimal HND and DOE media performed
roughly the same in terms of cumulative number of cells and media
efficiency, but with 9x and 11x fewer cells than GM respectively and

without a proportional decrease in cost per cell.

4 | DISCUSSION
It is notable that, despite 30 components used, the HND was able to
design a similar media to DOE with a similar degree of proliferation
%AB and « in fewer experiments. Additionally, this DOE was more effi-
cient than any single DOE, suggesting that the HND is much more effi-
cient and simpler to use than the typical approach to high dimensional
optimization. This is valuable in optimizing media due to the difficulty
in collecting large amounts of data with many components. The rea-
sons for the success of this method are likely (i) the balance between
global and local optimization, and (ii) the ability of the HBD to accumu-
late information using the RBF, which can regress on nonlinear, noisy,
and interaction-heavy problems, reducing the need for cumbersome
dimensionality-reduction experiments used in the traditional DOE.

For the most part HND suggested higher concentrations of most
media components than GM or DOE, except for KCI, FBS, and Glucose.
This is likely because the DOE method utilized dimensionality reduc-
tion. That is, factors that demonstrated insignificant effects were fixed
at their GM level and no longer included in the optimization. On the
other hand, HND could vary components throughout the optimization
process, including increasing component concentrations when they
had even a small positive effect. Inclusion of a per component cost
(rather than just the cost of FBS) might dampen this effect.

While the RBF can model nonlinear and interactive processes, the

effect of each component on « is unclear without further experiments
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|
|
|
Arginine Cystine Glutamine
| 1
| |
1
Histidine Isoleucine Leucine
| 1 1
| 1 |
1
Lysine Methionine Phenylalanine
| 1

Serine

Threonine

Tryptophan

Tyrosine

Valine

Choline CI

D-Ca-Pantothenate

Folic Acid

Nicotinamide

|

| |

1
Pyridoxal HCI Riboflavin Thiamine
1 I . = Optimal HND
| . 1 : = = Optimal DOE

| === GM
i-Inositol Glucose FBS

FIGURE 3 Distribution of components generated by HND | histogram of HND chosen component concentrations from low to high bound, best
DOE and HND results also compared to GM (as horizontal lines and in Table 1)

or model validation, a disadvantage of the HND approach. Nonethe-
less, sensitivity analysis using VARS!?4] was conducted and indicates
FBS, Glucose, and MgSQy, likely have a significant effect on «, while
other effects are more difficult to determine with the limited data
available. Sobal sensitivity analysis utilizing polynomial regression like-
wise determined FBS, MgSOy, and L-Phenylalanine were the most
explanatory components when taking component-component inter-
actions into account. Focusing on optimizing only those components
might bring further improvements, which is now feasible because

fewer experiments were needed to arrive at this conclusion. Another

issue was that the HND algorithm often did not change experimen-
tal conditions enough, leading to heavy clustering around early high
performing local optima (as seen in Figure 3 and 4). Myopia (short-
termism) should be encoded into the DYCORS arm of the HND to allow
for more exploration of the design space, while balancing the need for
exploitation of regions of the design space that show promise. It is
also possible that initializing the optimization with a more dispersed
design would yield a more successful optimization. However, results
from Zhang and Block!?>] indicate that the initialization strategy used

may not have a large effect. In reality, the impact of initialization is likely
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FIGURE 4 Inputand output of media generated by HND | each dot represents an experiment designed by HND at a chosen component

concentrations (normalized to be O to 1) and the respective media efficiency metric a

to be a strong function of the design surface and how close initial points picked, but not the HND or DOE itself. Future work in media design

are to the true optimum, neither of which are known a priori.

should incorporate more relevant metrics for optimization, such as a

Using a as a metric, HND performs similar to DOE, and both better multi-passage objective function. Additionally, the %AB metric was not
than GM (Figure 2). This is true over multiple days after cell seeding and aperfect measure of cell number. Figure 5 (left) and Figure 2 appears to
is true when using cell number to calculate a (Figure 5), seemingly vali- indicate HND and DOE media outperform GM, but when cell number is
dating the use of %AB at 48 h post-seeding in approximating prolifera- measured both optimal media have 8-9% fewer cells. Because Alamar-
tion more generally. However, when measuring cell number at multiple Blue is a metabolic indicator, using it in the objective function for both
passages (Figure 6) both designed media perform worse than GM. This methods may have biased the process towards higher metabolic activ-
is because the objective function a relied on measurements without ity rather than more proliferation.
multiple passages, so does not account for the dynamics of long-term Despite these shortcomings, the HND has been demonstrated to

cellular growth. This was a major shortcoming of the objective function be able to optimize high dimensional experimental systems. In our
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FIGURE 6 Optimal media over multiple passages | these media were the best found in optimization experiments. All cell numbers were taken
at 48 h post-seeding using a hemocytometer in six-well plates, error bars are standard deviations of three replicates, seeded at 150,000 cells per
well (left) (right) natural log of approximate efficiency of media. The media efficiency metric was approximated here by dividing number of cells by

concentration of FBS

previous work in media optimization, fewer variables (21 components)
required more experiments (73-94 data points) to complete. In this
work, we demonstrate optimization of 30 components with 70 exper-
iments with no dimensionality reduction or screening designs, to our
knowledge, a unique accomplishment in experimental optimization
efficiency. Therefore, this represents a valuable proof of concept in
the field of experimental optimization. While not able to fully replace
first principles understanding of systems often based on the DOE
approach (which is ill-advisable in any case), we show that the HND
could aid in the optimization of the hardest design problems, including
those found in the bioprocessing and larger cultivated meat industry,
reducing the cost of experimentation and time-to-market for a new

product.
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