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Abstract

Optimizingmedia for biological processes, such as those used in tissue engineering and

cultivated meat production, is difficult due to the extensive experimentation required,

number of media components, nonlinear and interactive responses, and the number of

conflicting design objectives. Here we demonstrate the capacity of a nonlinear design-

of-experiments (DOE) method to predict optimal media conditions in fewer experi-

ments than a traditional DOE. The approach is based on a hybridization of a coordi-

nate search for local optimizationwith dynamically adjusted search spaces and a global

search method utilizing a truncated genetic algorithm using radial basis functions to

store and model prior knowledge. Using this method, we were able to reduce the cost

of muscle cell proliferation media while maintaining cell growth 48 h after seeding

using 30 common components of typical commercial growth medium in fewer exper-

iments than a traditional DOE (70 vs. 103). While we clearly demonstrated that the

experimental optimization algorithm significantly outperforms conventional DOE, due

to the choice of a 48 h growth assayweighted bymedium cost as an objective function,

these findings were limited to performance at a single passage, and did not generalize

to growth over multiple passages. This underscores the importance of choosing objec-

tive functions that align well with process goals.
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1 INTRODUCTION

Cell culturemedia is a critical component of bioprocesses such as phar-

maceutical manufacturing and the emerging field of cultivated meat

products. Optimizing culture media is a difficult task due to the exten-

sive experiments required, number of media components, nonlinear

and interactive responses fromeach component, and conflicting design

objectives. Additionally, for cultured meat products, media needs to

be less expensive than those currently deployed for other cell cul-

ture processes (e.g. biopharmaceutical production), food-grade, con-

sider safety, component stability, and effects on sensory characteristics

Abbreviations: AB, AlamarBlue; DMEM, Dulbecco’s modified eagle medium; DOE,

design-of-experiments; FBS, fetal bovine serum; GM, growth/generic media; HND, hybrid

nonlinear designer; RBF, radial basis function

of final products.Withoutmuch in theway of first principlesmodels for

these objectives, especially for adherent mammalian muscle cells used

for cultivated meat production (as well as fat and connective tissues),

media optimization must be done experimentally with constraints on

inputs, outputs, and number of experiments.

Optimizing one factor at a time or with random experiments is still

the most common way of exploring design space. This strategy is very

inefficient for large systems (culture media such as DMEM may have

up to 30 components [1]) and is unable to consider interactions among

media components. Design-of-Experiments (DOE) methods are better

able to manage large numbers of components in fewer experiments

using Factorial, Fractional Factorial, Plackett-Burman, and Central

Composite Designs where linear and polynomial models can correlate

first order and interactive effects of media components. In general,
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DOEmethods are able to optimize< 10 variables,[2] and with the help

of screening designs can solve problems > 25 variables,[3] though at

the expense of ignoring interactions, screened variables, and easily

costing > 100 experiments (when combining typical screening and

factorial experiments, although this number can be quite lower if < 5

variables are explored). Experimental optimization of media has also

been done using stochastic methods such as genetic algorithms,[4]

and this approach is generally suited to optimizing systems of dimen-

sionality > 15 where DOE methods can become experimentally

cumbersome, but also take ∼ 200 experiments.

Because the size of the design space increases exponentially with

the number of design variables, a natural advance was to use response

surface models to capture information about interactions and non-

linearity. These techniques can then be used to sequentially identify

optimal culture conditions while simultaneously improving modeling

accuracy. Oftentimes experimenters will employ polynomial models

to find optimal culture conditions[5] but only after extensive DOE to

reduce the dimensionality of the problem space to< 5.More advanced

modeling techniques are neural networks, decision trees[6] and Gaus-

sian processes,[7] which are often better at generalizing noisy, nonlin-

ear, and multi-modal data. When combined with global optimization

methods, Zhang and Block demonstrated that these response surface

methods can optimize problems with > 20 variables in less than half

the number of experiments as traditional DOE.[8] Recently Cosenza

and Block[9] further improved the robustness of this algorithm by

using a hybrid optimization scheme validated on simulated design

problems.

Here we employ this novel nonlinear experimental design algo-

rithm called HND to optimize the proliferation of C2C12 cells while

simultaneously reducing media cost by modeling the response sur-

face of culture conditions using an RBF with a hybridized global/local

optimization scheme. We then compare this approach to a more

traditional DOE method. The organization of this article is as fol-

lows: Section 2 includes an outline of the experimental and compu-

tational methods use in media optimization, Section 3 goes over the

results and Section 4 details a discussion of the results and current

challenges.

2 MATERIALS AND METHODS

2.1 Media components and cell line

Table 1 lists the 30 components of the media system, concentration

ranges, and the concentration of the control growth media (GM) used

in this work. GM is based on a formulation of DMEM + 10% FBS from

HiMedia Cell Culture with 4.5 g Glucose L–1 and L-Glutamine where

FBS is fetal bovine serum (Biowest). All components were stored as

aqueous stock solutions in 2–6◦C sterilized using 0.2 μm pore size

micro-filtration (Pall Corporation Acrodisc). The pH was adjusted to

7.2 using 1 M HCl or NaOH solution, and Sodium Bicarbonate (Sigma)

buffer at 1850mg L–1 was added.

C2C12 muscle cells were used for all experiments (ATC). The cells

were stored in liquid N2 in 10% DMSO (Sigma), 20% FBS, 70% GM at

passage 15. To generate enough cells for these experiments, cells were

taken out of storage, thawed, centrifuged at 1500 g for 5 min and re-

suspended in DMEM (Glibco) + 10% FBS in 15 cm cell culture plates

(Cellstar, Greiner Bio-One). Cells were then trypsinized (Gen-Clone)

in their log phase of growth (∼ 50% confluence, or about two days of

growth) and plated on 96 well plates (Cellstar, Greiner Bio-One). To

plate the cells, trypsinized cells are suspended in phosphate buffered

solution (PBS Glibco) and counted using a hemocytometer. The PBS

volume was then adjusted so that 5000 cells per well (∼ 15,625 cells

cm–2) could be seeded using 50 μL of PBS into 150 μL of the media

being tested (total well volume of 200 μL). The cells were incubated

at 37◦C and 5% CO2 for 48 h post-seeding before measurements of

proliferation weremadewith replicates. For six well plate experiments

(Cellstar, Greiner Bio-One) a total volume of 3 mL was used with the

same ratios of PBS to media and seeding density (150,000 cells per

well), with all other steps being the same.

2.2 Assays and objective function

After 48 h of incubation, the performance of the media was measured

usingAlamarBlue[10] metabolic colorimetric assay (AB).After pipetting

in 10% volume of AB assay (20 μL) for each well, all wells were left to

incubate for 3 h at 25◦C and 5% CO2. The %AB reduction was mea-

sured using a microplate reader at 600 and 570 μm using Equation (1)

with six replicates of each experimental and control well.

%AB =
117216 ∗ 𝜆570,media − 80586 ∗ 𝜆600,media

155677 ∗ 𝜆600,control − 14625 ∗ 𝜆570,control
(1)

To quantify the relative proliferation of cells after 48 h of growth,

the ratio of%AB for a givenmedium to%AB for basic GMwas used as a

metric of the success. The economic cost of a medium was considered

by normalizing the %AB ratio by the volume of FBS, which constitutes

the vast majority of the media cost.[11] Therefore, the objective func-

tion α and the optimization problem used in this work (finding the best

media components X*) are as follows, where X̄FBS is the normalized vol-

ume of FBS ranging from [0, 1].

X∗ = argmaxX𝛼 (X)

𝛼 (X) =
%AB∕%ABGM

1 + X̄FBS

X̄i =
Xi − Xi,low

Xi,high − Xi,low

This objective function strikes a balance between a proportionality

to cell proliferation and cost, and ease of use. A more elaborate objec-

tive function that describes multi-passage dynamics or further eco-

nomic costs couldbeemployed, but at theexpenseof significantlymore

time and labor.
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TABLE 1 Details of media design space | components and bounds used inmedia optimization for proposedmethod (HND), control
optimizationmethod (DOE), and commercial (GM) indicated

Concentration [mg L–1]

Component GM Low High HND DOE

Calcium chloride EMD 265 132.5 530 287.3 265

Ferric nitrate Fischer 0.1 0.05 0.2 0.1 0.1

Magnesium sulphate RPI 97.7 48.85 195.4 176.8 97.7

Potassium chloride Fischer 400 200 800 555.8 200

Sodium chloride Fischer 6400 3200 12800 8182.8 6400

Glycine Fischer 30 15 60 23.1 30

L-Arginine Spectrum 84 42 168 76.1 84

L-Cystine RPI 62.6 31.3 125.2 94.7 62.6

L-Glutamine Spectrum 584 292 1168 977.8 584

L-Histidine Spectrum 42 21 84 75.6 42

L-Isoleucine Acros 105 52.5 210 125.8 105

L-Leucine Acros 105 52.5 210 92.1 105

L-Lysine RPI 146 73 292 207.5 146

L-Methionine Spectrum 30 15 60 45.5 30

L-Phenylalanine AMRESCO 66 33 132 87.6 66

L-Serine AMRESCO 42 21 84 52.6 42

L-Threonine Spectrum 95 47.5 190 146.4 95

L-Tryptophan Biosynth 16 8 32 24.9 16

L-Tyrosine Disodium Salt RPI 103.8 51.9 207.6 152.3 104

L-Valine Spectrum 94 47 188 117 94

Choline chloride Sigma 4 2 8 4.5 4

D-Ca-Pantothenate Acros 4 2 8 5.7 4

Folic acid TCI 4 2 8 5.2 4

Nicotinamide Sigma 4 2 8 6.8 4

Pyridoxal hydrochloride Acros 4 2 8 3.7 4

Riboflavin Sigma 0.4 0.2 0.8 0.5 0.4

Thiamine hydrochloride Sigma 4 2 8 4 4

I-Inositol Fischer 7.2 3.6 14.4 6.4 7.2

D-Glucose Sigma 4500 2250 9000 6145.7 9000

FBS Biowest 10% 5% 20% 6.8% 5%

2.3 Experimental design algorithm

A novel hybrid nonlinear experimental design algorithm (HND) was

developed [9] to optimize high dimensional experimental design sys-

tems such as the one outlined above. It is based on a truncated genetic

algorithm (TGA) method [8] hybridized with a dynamic coordinate

search framework (DYCORS).[12] This method starts by constructing

an RBF approximation ŷ of the system from an initial set of exper-

iments with inputs and outputs {X0,α0} respectively. The RBF takes

the form of a sum of nc cluster λi-weighted radial functions φ(x, x′) in
Equation (2).

ŷ =
nc∑
i=1

𝜆i𝜙 (ri) (2)

The radial functions project a set of [0, 1] normalized inputs x and

x′ (in this case two media concentrations) into a single output space

using the Euclidean distance r = ||x − x′||2
2
. This quantifies the dif-

ference between two media combinations for arbitrary media compo-

nents. Two media that are more similar have smaller r values, so are

going to have similar predictions of ŷ. The radial function used in this

work was the cubic function φ (x, x′)= r3 . The weights are determined

by solving the linear equation for Φ(X, X) for a training set of data that
has been collected {X, α}.

𝜆 =
(
ΦΦT

)−1
ΦT𝛼 (3)

To find the optimal location of RBF nodes nc we used the K-

Means Clustering Algorithm. This algorithm was repeated for K = 4
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F IGURE 1 Hybrid nonlinear design (HND) algorithm

cross-validated data splits for each batch of experiments, where the nc
with the lowest cross-validatederror for the given training setwas cho-

sen as the optimal number of clusters. Cross-validation is critical for

making sure models generalize well for small amounts of noisy data. In

general, higher nc makes the model more complex (wiggly), so here we

balance accuracy withmodel simplicity/generalizability.

Using the trained RBF model, the two arms of our algorithm, TGA,

and DYCORS, each suggest five experimental conditions for a total of

10 experiments per batch within the design space [ × 1/2, × 2] of

the GM (see Table 1) that optimize α. The TGA arm runs a genetic algo-

rithm (a stochastic global optimization method) over the RBFmodel to

predict the best designs. Because themodel is based on a small amount

of noisy data, the genetic algorithm is stoppedbefore it can converge to

implicitly consider model and experimental uncertainty. The DYCORS

arm of the algorithm searches in the region around the best design and

picks the best predicted set of designs in that region, which expands

and contracts based on the quality of previous experiments. The new

experiments are conducted and the resulting data is used to correct

and retrain theRBFmodel. To allow theRBFmodel to generalize better

during early periods of optimization, 30 randomly selected experimen-

tal conditions were taken initially. The optimization loop was stopped

when the α quality of the media showed a lack of improvement. The

general framework for the HND is shown in Figure 1.

As a control method, a traditional DOE was used to optimize the

samemedia design problem in three steps. (i) A ’Leave-One-Out’ (LOO)

experimentwas conductedwhere amedia composedof all components

at theirGMconcentrations, excludingeach individual component,were

tested for their proliferation capacity using the %AB metric (α was

not used because all media had the same amount of FBS), similar to

what was done in previous work.[13] The lowest performing compo-

nents had their concentrations fixed at their respective GMconcentra-

tions. Next (ii) a Folded/Un-Folded Plackett-Burman design was imple-

mentedwith the remaining components at the upper and lower bounds

of the design problem. Thiswas done to determine the first order linear

effects of each component on the objective function α. A linear model

to predict α was used in conjunction with a LASSO algorithm (Hastie,

2017, p. 68) to rank the most important first order effects, and all but

the highest impact components were kept at their GM concentrations.

Finally, (iii) the remaining components were used to design a Central

CompositeDesign (CCD)where experiments are spread out across the

design space tomore thoroughly explorepotential optimal designs. The

best α design from this DOE method was considered the optimal DOE

design.

2.4 Computing environment

Hardware used: Dell Precision 5820 Tower, Intel XeonW-2145DDR4-

2666 Processor (3.7 GHz), 32 GB Memory. Software used: MATLAB

R2019awith Bioinformatics Package.

3 RESULTS

3.1 Performance of traditional DOE for media
optimization

The DOE-LOO step identified Ferric Nitrate, MgSO4, Glycine, L-

Isoleucine, Choline Chloride, Riboflavin, and Thiamine HCl as compo-

nents that, when left out of GM, had no (or positive) statistical effect on

%AB after 48 h post-seeding (30 experiments needed). These compo-

nentswere set to their respectiveGMconcentration for all subsequent

DOE experiments. Next, the DOE-PB with LASSO identified the six

most α-important components of the remaining 23 components (KCl,

L-Glutamine, Glucose, FBS, L-Cystine, L-Serine). To reduce the number

of experiments for the DOE-CCD design, L-Cystine and L-Serine were

kept constant at × 1/2 normalized units above and below their GM

midpoint concentrations respectively (10.4 and 28 mg mL–1) based on

the sign of their coefficients (48 experiments required). The remaining

four components in the CCD had their upper/lower bounds changed

to × 1/2 normalized units above (KCl, L-Glutamine, FBS) and below

(Glucose) their GM midpoints. The remaining components were var-

ied in a CCD design, with the best medium being 200 mg L–1 KCl,

388 mg L–1 L-Glutamine, 9000 mg L–1 Glucose, 5% FBS (25 experi-

ments) shown in detail in Table 1. An 80% increase in α at 48 h post-

seeding over GM was measured (Figure 2 left) using 50% less FBS

than GM.

3.2 Performance of novel HND for media
optimization

For the HND optimization loop, α was used as the objective function

and calculated using %AB measured at 48 h post-seeding at 96 well

plate scale (the exact same as the DOE method). The RBF was initially

trained with 30 randomly selected experiments. Figure 2 shows that

the average HND designs improved in both α and %AB metric over

time (both cost andproliferation) quickly overcoming standardGMand

achieving similar results to the best DOE design (an α difference of

13.3%)with 70 experiments.Wehave included the proliferationmetric
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F IGURE 2 Iterative improvement of media using HND andDOE | (left) media efficiencymetric (right) %AB Proliferation. Both HND andDOE
improve over GM

(%AB / %AB GM) in Figure 2 for completeness even though it was not

used as the objective function α in this work. The HNDwas stopped at

70 experiments because both %AB and α stopped improving. The best

medium foundhad anαmeasured to be56%better thanGMduring the

optimization loop using 32.5% less FBS than GM.

3.3 Comparison of media resulting from novel
HND and traditional DOE

Figure 3 shows the differences between the optimal media. For the

most part theHND identified optimal concentrations thatwere slightly

elevated compared to DOE, except for KCl, FBS, and Glucose. It is also

notable that both HND and DOE determined that Glucose and FBS

should be elevated and reduced in relative to GM. Figure 4 shows the

media efficiency metric α plotted against the component concentra-

tions for all experiments, demonstrating the nonlinear, interactive, and

ultimately non-trivial nature of this experimental design optimization

problem. These α optimal HND and DOE designs were then tested

against GM using %AB at 24, 48, and 72 h post-seeding (Figure 5),

where the designed media have high %AB relative to GM but that

advantage is reduced over time. As a further check, α was calculated

using raw cell number normalized by the volume of FBS in each exper-

iment (at six well plate scale) where it was found HND and DOE again

outperformedGM (Figure 5) in terms of the objective function α. How-

ever, bothHNDandDOEproduced8%and9% fewer cells respectively,

using 70 and 103 total experiments respectively. This higher α comes

from their lower levels of FBS.

3.4 Evaluation of optimized media in
multi-passage proliferation

Finally, the C2C12 cells were grown in optimal HND, DOE, and GM

across five passages to mimic an industrial process where multi-

passage dynamics could have large effects on media design. Figure 6

indicates GM cumulatively grew more cells than HND and DOE

optimal media by the second passage, and by the third passage had

done so at higher α (again, approximated by number of cells normalized

by volume of FBS). Both the optimal HND and DOE media performed

roughly the same in terms of cumulative number of cells and media

efficiency, but with 9x and 11x fewer cells than GM respectively and

without a proportional decrease in cost per cell.

4 DISCUSSION

It is notable that, despite 30 components used, the HND was able to

design a similar media to DOE with a similar degree of proliferation

%AB and α in fewer experiments. Additionally, this DOEwasmore effi-

cient than any single DOE, suggesting that the HND is much more effi-

cient and simpler to use than the typical approach to high dimensional

optimization. This is valuable in optimizing media due to the difficulty

in collecting large amounts of data with many components. The rea-

sons for the success of this method are likely (i) the balance between

global and local optimization, and (ii) the ability of the HBD to accumu-

late information using the RBF, which can regress on nonlinear, noisy,

and interaction-heavy problems, reducing the need for cumbersome

dimensionality-reduction experiments used in the traditional DOE.

For the most part HND suggested higher concentrations of most

media components than GMor DOE, except for KCl, FBS, and Glucose.

This is likely because the DOE method utilized dimensionality reduc-

tion. That is, factors that demonstrated insignificant effects were fixed

at their GM level and no longer included in the optimization. On the

other hand, HND could vary components throughout the optimization

process, including increasing component concentrations when they

had even a small positive effect. Inclusion of a per component cost

(rather than just the cost of FBS) might dampen this effect.

While the RBF can model nonlinear and interactive processes, the

effect of each component on α is unclear without further experiments
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F IGURE 3 Distribution of components generated byHND | histogram of HND chosen component concentrations from low to high bound, best
DOE andHND results also compared to GM (as horizontal lines and in Table 1)

or model validation, a disadvantage of the HND approach. Nonethe-

less, sensitivity analysis using VARS[14] was conducted and indicates

FBS, Glucose, and MgSO4 likely have a significant effect on α, while

other effects are more difficult to determine with the limited data

available. Sobal sensitivity analysis utilizing polynomial regression like-

wise determined FBS, MgSO4, and L-Phenylalanine were the most

explanatory components when taking component-component inter-

actions into account. Focusing on optimizing only those components

might bring further improvements, which is now feasible because

fewer experiments were needed to arrive at this conclusion. Another

issue was that the HND algorithm often did not change experimen-

tal conditions enough, leading to heavy clustering around early high

performing local optima (as seen in Figure 3 and 4). Myopia (short-

termism) should be encoded into theDYCORSarmof theHND to allow

for more exploration of the design space, while balancing the need for

exploitation of regions of the design space that show promise. It is

also possible that initializing the optimization with a more dispersed

design would yield a more successful optimization. However, results

from Zhang and Block[15] indicate that the initialization strategy used

maynot have a large effect. In reality, the impact of initialization is likely
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F IGURE 4 Input and output of media generated by HND | each dot represents an experiment designed by HND at a chosen component
concentrations (normalized to be 0 to 1) and the respectivemedia efficiencymetric α

to be a strong function of the design surface andhowclose initial points

are to the true optimum, neither of which are known a priori.

Using α as a metric, HND performs similar to DOE, and both better

thanGM(Figure2). This is trueovermultiple days after cell seeding and

is true when using cell number to calculate α (Figure 5), seemingly vali-

dating the use of %AB at 48 h post-seeding in approximating prolifera-

tionmore generally. However, whenmeasuring cell number at multiple

passages (Figure 6) both designedmedia performworse than GM. This

is because the objective function α relied on measurements without

multiple passages, so does not account for the dynamics of long-term

cellular growth. This was amajor shortcoming of the objective function

picked, but not the HND or DOE itself. Future work in media design

should incorporate more relevant metrics for optimization, such as a

multi-passage objective function. Additionally, the%ABmetric was not

a perfectmeasure of cell number. Figure 5 (left) and Figure 2 appears to

indicateHNDandDOEmedia outperformGM, butwhen cell number is

measured both optimalmedia have 8–9% fewer cells. Because Alamar-

Blue is a metabolic indicator, using it in the objective function for both

methods may have biased the process towards higher metabolic activ-

ity rather thanmore proliferation.

Despite these shortcomings, the HND has been demonstrated to

be able to optimize high dimensional experimental systems. In our
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F IGURE 5 Result of optimal HND andDOE experiments | (left) %ABProliferation over time in 96well plates, error bars are standard deviation
of six replicates, seeded at 5000 cells per well (right) cell efficiencymetric at 48 h post-seeding in six well plates, error bars are standard deviations
of three replicates, seeded at 150,000 cells per well. Themedia efficiencymetric was approximated here by dividing number of cells by
concentration of FBS. Raw cell number for HND, DOE, and GMwere 594,000, 590,000, and 640,000 cells per well respectively

F IGURE 6 Optimal media over multiple passages | thesemedia were the best found in optimization experiments. All cell numbers were taken
at 48 h post-seeding using a hemocytometer in six-well plates, error bars are standard deviations of three replicates, seeded at 150,000 cells per
well (left) (right) natural log of approximate efficiency of media. Themedia efficiencymetric was approximated here by dividing number of cells by
concentration of FBS

previous work in media optimization, fewer variables (21 components)

required more experiments (73–94 data points) to complete. In this

work, we demonstrate optimization of 30 components with 70 exper-

iments with no dimensionality reduction or screening designs, to our

knowledge, a unique accomplishment in experimental optimization

efficiency. Therefore, this represents a valuable proof of concept in

the field of experimental optimization. While not able to fully replace

first principles understanding of systems often based on the DOE

approach (which is ill-advisable in any case), we show that the HND

could aid in the optimization of the hardest design problems, including

those found in the bioprocessing and larger cultivated meat industry,

reducing the cost of experimentation and time-to-market for a new

product.
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