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other (Liu et al., 2018; Poikane et al., 2019; Tong et al., 2019; Huo et al., 
2019). That is, the TP criterion is deduced based on the TP-CHL rela
tionship, while the TN criterion is deduced using the TN-CHL relation
ship. However, it has been recognized that TP and TN should often be 
simultaneously considered as predictors in the nutrient-CHL relation
ship (Malve and Qian, 2006; Liang et al., 2019). Therefore, the effec
tiveness of a nutrient criterion deduced from a single nutrient-CHL 
relationship may be highly uncertain. Moreover, there might be a sig
nificant interaction between TP and TN on CHL, which would be missed 
when developing an independent criterion (Kotamäki et al., 2015; Qian 
et al., 2019). Failure to account for such a significant interaction may 
result in biased parameter estimates and might lead to an improper 
nutrient criterion. 

The second obstacle is that the linkage between nutrient criteria and 
the compliance assessment of CHL has not been well established (Scott 
and Haggard, 2015). To curb lake eutrophication, an important goal is to 
reduce CHL to a specific target level. The compliance assessment of CHL 
is essential to evaluate the achievement of lake eutrophication man
agement. In practice, the compliance assessment metric has long been an 
upper percentile of water quality variables (Mcbride and Ellis, 2001; 
Borsuk et al., 2002; Qian et al., 2015; Smith and Canale, 2015). For 
example, Walker (1984) proposed a compliance assessment method 
based on the frequency of CHL exceeding a specific level. The U.S. 
Environmental Protection Agency guidelines require a waterbody to be 
listed as impaired when more than 10% of the samples violate the 
standard (Smith et al., 2001), indicating that the 90% quantile of sam
ples is used to compare with the standard. Generally, the assessment of 
an upper percentile is a more conservative way than that of the average, 
and in the meanwhile, allows for the violation of a small proportion of 
samples (Gibbons, 2003). Such an assessment method could provide 
information on the noncompliance probability of water quality variables 
(Liang et al., 2017). Moreover, the upper percentile of CHL is more 
related to some extreme conditions (e.g. algal bloom) than the average 
CHL and thus can better inform lake eutrophication management 
(Ostrofsky and Rigler, 1987; Jones et al., 2011). 

While the compliance assessment method of CHL is percentile-based, 
current nutrient-CHL relationships are often developed using mean 
regression methods (e.g. linear regression or random forest) (Xu et al., 
2015; Tong et al., 2019). Common practices of mean regression methods 
often focus on the average CHL concentration (Heiskary and Wilson, 
2008; Trebitz, 2012; Tong et al., 2019; Liang et al., 2020), which would 
guarantee the compliance of average CHL, but might not meet the 
requirement of the percentile-based compliance assessment. Note that 
the percentile of CHL concentration could also be obtained using a mean 
regression method (Borsuk et al., 2002; Malve and Qian, 2006; Grone
wold et al., 2008). However, its accuracy heavily relies on meeting the 
homoscedasticity assumption (Cade and Noon, 2003; Das et al., 2019). 
The log-transformation has been successfully used to accommodate this 
assumption (Oliver et al., 2017; Wagner and Schliep, 2018; Liang et al., 
2019), but this may not guarantee homoscedasticity for all cases. 

In this study, we propose a novel analytical framework for nutrient 
criteria development. In the framework, we 1) propose joint nutrient 
criteria to reflect the linkage of TP and TN criterion for determining 
target CHL levels; and 2) employ quantile regression (QR) (Koenker and 
Bassett, 1978) to illustrate the nutrient-CHL relationship to bridge the 
gap between nutrient criteria and the percentile-based CHL compliance 
assessment method. QR explores the effect of predictor(s) on any 
interested quantiles of the response (Das et al., 2019). Compared with 
mean regression, QR is robust to outliers in the response, requires no 
assumptions on the distribution of the response, and provides a more 
complete view of the relationship between predictor(s) and response 
variables (Cade and Noon, 2003; Das et al., 2019). Although QR has 
been used in ecological studies for about two decades (Cade et al., 1999), 
it has only recently been applied to illustrate nutrient-CHL relationships 
(Xu et al., 2015) and has rarely been used in nutrient criteria develop
ment. To demonstrate steps of the proposed framework, we used TP, TN, 

and CHL data from a hypereutrophic lake (Lake Dianchi, China) as a case 
study. We further discuss applications of the proposed joint nutrient 
criteria to lake eutrophication management. 

2. Materials and methods 

2.1. Study area 

Lake Dianchi (24◦29′N–25◦28′N, 102◦29′E–103◦01′E) is located on 
Yunnan-Guizhou Plateau, southwest China. It is a shallow lake with the 
mean depth of 4.4 m. The lake area is approximately 309 km2. The east 
to west distance of the lake is 7 km and the north to south distance is 40 
km. The watershed is in a subtropical moist monsoon zone, with an 
average annual precipitation of approximately 1,000 mm and an 
average air temperature of approximately 14.5◦C. 

Lake Dianchi is located in the lower part of the watershed and re
ceives both point (wastewater) and non-point sources of nutrients. The 
lake is facing a severe eutrophication problem that has spanned the past 
two decades (Liang et al., 2018), and therefore it is critical to develop 
reasonable nutrient criteria to inform eutrophication management. 
Long-term (January 1999–June 2019) monthly observations of TP, TN, 
and CHL from eight sites were used for this analysis. Data are from the 
Environmental Monitoring Site of Yunnan Province (http://www. 
ynsem.com.cn/). There are few (32) missing values, which were inter
polated using the median polish method following Qian et al. (2000). 
The average TP, TN, and CHL concentrations during our research period 
are 0.160 mg/L, 2.04 mg/L, and 0.069 mg/L, respectively, showing the 
hypereutrophic state of Lake Dianchi. 

2.2. Joint nutrient criteria development and modeling 

In this study, we focus on the criteria development of TP and TN. It is 
worth noting that some active forms of nutrients, e.g. dissolved inor
ganic nitrogen and phosphate, are more directly related to algal growth 
and the criteria development of other nutrient forms could also be 
important (Yang et al., 2019). However, the development of reliable 
site-specific nutrient criteria requires a relatively long-term data set. The 
development of criteria of other nutrient forms is thereby often con
strained by the lack of necessary data. 

Examination of the scatter plots between TP and TN versus CHL 
(Figure S1), indicates that linear QR is appropriate for illustrating the 
nutrient-CHL relationship in Lake Dianchi. The main function of the 
linear QR (Eq. 1) is shown below: 

yi = θ0 + θXi + ∊i (1)  

where i is the rank of observations (i = 1, 2, …, N, N is the sample size), y 
represents the response (CHL), and X represents the predictor(s) (TP 
and/or TN). θ0 and θ represent the regression intercept and slope(s). ∊ is 
the error. Unlike ordinary least squares, which estimates parameters by 
minimizing the residual sum of squares (Altman and Krzywinski, 2015), 
the parameters estimation in linear QR is based on the minimum of 
weighted absolute biases (Eq. 2) (Koenker and Bassett, 1978): 

min

[
∑

i∊{i:yi⩾θXi}

τ|yi − θ0 − θXi| +
∑

i∊{i:yi<θXi}

(1 − τ)|yi − θ0 − θXi|

]

(2)  

where τ represents the quantile of the response. 
Effects of nutrients at several upper quantiles of CHL were explored 

(τ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95). While the QR is robust to outliers of the 
response (CHL), observations with very high or very low values of pre
dictors (TN and TP) can influence the relationship. For example, a small 
number of observations with high nutrient concentrations but low CHL 
concentrations can easily change the shape of the regression curve. 
Because these observations only account for a small proportion of the 
total observations and do not span the entire distribution of CHL, their 
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impact on the relationship can be substantial. For the purpose of nutrient 
criteria development, we do not have to pay much attention to these 
more “extreme” observations, because model extrapolation is not 
required. As such, we selected observations with nutrient concentrations 
in the range of their 10%–90% quantile. The final sample size is 1306 
observations of TP, TN, and CHL. The proposed framework for joint 
nutrient criteria development has three steps (Fig. 1). 

The first step is to develop candidate models that represent potential 
nutrient-CHL relationships. In our case, we developed five candidate 
models that represent hypotheses of how CHL responds to TP and TN. 
The first model (Model 1) was developed according to the common 
practice of illustrating the nutrient-CHL relationship using mean 
regression (Malve and Qian, 2006). In this model, main effects of TP, TN, 
and their interaction term were included (this was an effects- 
parameterized regression that included an intercept term). For a mean 
nutrient-CHL regression, a log–log linear model is typically fitted to 
accommodate the normality and homoscedasticity assumptions (Oliver 
et al., 2017). However, QR is not constrained by the above assumptions 
and the log-transformation is not necessary. Theoretically, when nutri
ents concentrations approach zero, the CHL concentration should also 
be near zero (Heiskary and Bouchard, 2015). Thus, we also developed a 
candidate model without the intercept term (Model 2). Some studies 
have also revealed that the interaction term might not be important 
(Liang et al., 2018), so the third candidate model lacked an interaction 
term. Lastly, we considered single nutrient limiting conditions and 
developed candidate models four and five for TP and TN, respectively. A 
summary of the candidate models is shown in Table 1. 

The second step is to fit the models and perform model selection to 
obtain the “best” model for describing the nutrient-CHL relationship. For 
each candidate model, there were six quantiles to fit, resulting in a total 
of 30 QR models. A modified version of the Barrodale and Roberts al
gorithm for l1-regression was used for parameters estimation (Koenker 
and D’Orey, 1987). After parameter estimation, we selected the “best” 
model for each regression quantile using a sequential Wald test. The 
Wald test is a commonly used method for nested model comparison 
(Koenker and Bassett, 1982) and tests the null hypothesis that less 
complex models with fewer estimated parameters are adequate relative 
to the largest specified model (full model). Using the sequential Wald 
test, we first test all five models, by which Model 1 is the full model. If 
the performances of all the four simpler models, candidate model 2–5, 
are significantly worse than the full model as indicated by sequential 
Wald test results, then the full model should be selected as the “best” 

model and the sequential test terminates. Otherwise, Model 1 is 
removed, and Model 2 becomes the full model for comparing the 
remaining models. This process is repeated until the “best” model is 
identified. Moreover, we applied joint Wald test to examine the equality 
of slopes, which could indicate the whether the homoscedasticity 
assumption is violated or not for a mean regression method. 

After model selection, the third step is to deduce the joint nutrient 
criteria. We first select several target CHL levels. Then, we determine the 
joint nutrient criteria using the estimated parameters from the best 
nutrient-CHL relationship. The deduced nutrient criteria were reflected 
by an expression between TN and TP. Because the joint nutrient criteria 
are 2-dimensional and difficult to show in a table, the final step is to 
illustrate the joint nutrient criteria using a contour map (Fig. 1). The 
contour map is an effective way to show the nutrient-CHL relationship 
when both TN and TP are used as predictors (Malve and Qian, 2006; 
Yuan and Pollard, 2015; Liang et al., 2019). Note that if the selected 
model has only one nutrient as the predictor, the contour map is not 
required. 

2.3. Single nutrient criterion development 

To compare the joint nutrient criteria and the single nutrient criteria, 
we also developed single nutrient criterion. Following common prac
tices of single nutrient criterion development (Huo et al., 2013), we 
fitted log–log linear nutrient-CHL relationship to deduce the single 
nutrient criterion: 

log(yi) = β0 + βlog(xi) + εi (3)  

where i is the rank of observations (i = 1, 2, …, N, N is the sample size), 
log(y) represents the log-transformed CHL observation, and log(x) rep
resents the log-transformed TP or TN observation. β0 and β represent the 
regression intercept and slope(s). ε is the error. Note that Eq. 3 is similar 
to Eq. 1, but Eq. 3 only includes one nutrient as the predictor, while Eq. 1 
could have more predictors. 

All the computations were conducted using the R software (R version 
3.6.1) (R Core Team, 2019). The algorithm for parameter estimation of 
QR models was implemented using the rq function in the quantreg 
package (Koenker et al., 2019). The sequential and joint Wald tests are 
based on the anova function in the quantreg package. The code for the 
development of QR and model selection can be found at https://doi.org/ 
10.5281/zenodo.3956328. 

3. Results 

3.1. Model selection and parameter estimation 

Model selection results are shown in Table 2. The best models were 

Prepare Data

Should the QR have an intercept?
Is there an interaction between TP and TN?
Is single nutrient-CHL relationship better?

Step 2: Model Selection
a) Parameter estimation of candidate models
b) Model comparison based on a sequential Wald 
test

Step 3: Joint Nutrient Criteria Deduction

a) Parameters of the selected model
b) Determination of targeted CHL levels
c) Illustrate joint nutrient criteria using contour map

Step 1: Candidate Models Development

Fig. 1. Steps to implement the framework for joint nutrient criteria develop
ment using quantile regression. 

Table 1 
Candidate models to illustrate the nutrient-CHL relationship in Lake Dianchi. In 
the model formula, expressions show predictor structures to predict CHL, “−1” 
means the regression equation has no intercept.  

Model 
# 

Formula Description     

1 TP + TN +
TP × TN 

TP and TN have significant effect on 
CHL. Interactive effect and intercept 
are also significant.     

2 TP + TN +
TP × TN−1 

TP and TN have significant effect on 
CHL. Interactive effect is significant. 
Intercept is not significant.     

3 TP + TN−1 TP and TN have significant effect on 
CHL. Neither interactive effect nor 
intercept is significant.     

4 TP−1 Only TP has significant effect on 
CHL. Intercept is not significant.     

5 TN−1 Only TN has significant effect on 
CHL. Intercept is not significant.      

Z. Liang et al.                                                                                                                                                                                                                                    



Journal of Hydrology 594 (2021) 125883

4

either models 2 or 3, depending on the quantile. The addition of the 
intercept did not significantly improve model performance, supporting 
the common view that when nutrient concentrations are zero, the CHL 
concentration should also be zero (Heiskary and Bouchard, 2015). In 
addition, model selection indicated that both nutrients were important 
predictors of CHL and therefore should be included as predictors for all 
the regression quantiles evaluated. 

The estimated parameters for the effects of TP and TN across the 
different quantiles indicate that the response of CHL per unit increase in 
TP or TN is greater at higher regression quantiles (Table 2). The inter
action term for TP and TN was not significant for lower quantiles (τ =
0.5, 0.6, 0.7) and was more likely to be significant at upper quantiles (τ 
= 0.8, 0.9, 0.95). The significant interaction terms were negative, 
indicating that the increase of one nutrient would lower the effect of the 
other nutrient on CHL, which agrees with previous work using mean 
regression (Qian et al., 2019). The magnitude of the interaction term 
was larger at a higher quantile, indicating an increasing interactive ef
fect with increasing regression quantile. 

3.2. Joint nutrient criteria 

Contour maps (Fig. 2) illustrate the deduced nutrient criteria. In the 
contour map, x- and y- axes represent TP and TN, respectively, and 
isolines represent a range of target CHL concentrations. As regression 
quantiles increase, isolines move toward the lower left of the plots, 
indicating stricter nutrient criteria at higher regression quantiles. Iso
lines in Fig. 2(d)–(f) are curvlinear, illustrating the interactive effect of 
TP and TN on CHL. We explored joint nutrient criteria for six target CHL 
concentrations at six regression quantiles. In practice, however, if the 
target CHL and the regression quantile are determined, joint nutrient 
criteria can be simply shown by a single isoline. For example, if the 
target CHL is 0.08 mg/L and the regression quantile is 0.9, the corre
sponding joint nutrient criteria is the green curve in Fig. 2(e). 

4. Discussion 

4.1. Incorporating the linkage between TP and TN criterion 

The joint nutrient criteria incorporate the linkage of TP and TN cri
terion via the inclusion of both nutrients as predictors in the nutrient- 
CHL relationship. Joint nutrient criteria simultaneously reflect effects 
of both nutrients on CHL. As shown by the contour map, for a certain 
target CHL level, the criterion for one nutrient may be dependent on the 
concentration of the other nutrient (Fig. 2). This is the most notable 
feature of joint nutrient criteria compared with the development of 
single nutrient criterion, where the nutrient criterion is invariant across 
concentrations of other potentially limiting nutrients. 

Moreover, there might be biases between joint nutrient criteria and 
nutrient criteria deduced from the single nutrient-CHL relationship. We 
fitted QR models with only one nutrient as the predictor (Model 4 and 5 
in Table 1) and then calculated the nutrient criteria by setting the target 
CHL concentration to be 0.08 mg/L and by setting the quantile to be 0.9, 
respectively. In Fig. 3, the deviation of the point from the isoline in the 
same color shows the bias between the two types of nutrient criteria. As 
we can see, in a few cases, the point matches with the isoline, indicating 
that the single nutrient criterion might be consistent with the joint 

Table 2 
Results of model selection based on the sequential Wald test and parameter 
estimates of selected models at five regression quantiles. Mean and standard 
error (subscript) of regression parameters are shown. All parameters are sig
nificant (p < 0.05). “–” represents the model does not include the model term. 
Refer to Table 1 for the formula and description of each model.  

Quantile Model 
number 

Parameters   

intercept slope: TP slope: TN interaction 

0.5 3 – 0.2370.0250  0.0130.0017  – 
0.6 3 – 0.2710.0294  0.0140.0019  – 
0.7 3 – 0.3040.0294  0.0170.0019  – 

0.8 2 – 0.4930.0544  0.0190.0025  −0.0710.0242  

0.9 2 – 0.6030.0798  0.0270.0042  −0.1230.0352  

0.95 2 – 0.7210.1219  0.0340.0061  −0.1570.0736   

Legend: target CHL concentration (mg/L)
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Fig. 2. Percentile-based joint nutrient criteria for target CHL concentrations at different regression quantiles (τ). x- and y-axes represent TP and TN, respectively, and 
isolines represent a range of target CHL concentrations. Dashed lines are ±1 standard deviation. 
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nutrient criteria. However, the bias exists for most cases (Fig. 3), 
emphasizing the necessity of including both nutrients in the nutrient- 
CHL relationship. Besides, the joint nutrient criteria provide many 
combinations of TP and TN criterion, while the single nutrient criterion 
only has one combination. 

4.2. Advantages of using quantile regression 

The main advantage of applying QR is to bridge the management gap 
between nutrient criteria and compliance assessment. Based on the QR, 
we easily obtain the joint nutrient criteria given the target CHL con
centration and the regression quantile. The regression quantile is 
consistent with the percentile of the compliance assessment. Suppose 
that the percentile is τ for the compliance assessment, the deduced 
nutrient criteria aim to make the τth-quantile of CHL meet the standard. 
The QR can easily accommodate water quality compliance assessments 
with different percentiles. Therefore, QR makes the nutrient criteria 
development in harmony with the compliance assessment, which could 
facilitate effective lake eutrophication control practices. 

In contrast, nutrient criteria deduced by mean regression might give 

ambiguous information for the percentile-based compliance assessment. 
For example, we fitted the log–log linear nutrient-CHL relationship for 
TP and TN, respectively. Then, we calculated the corresponding criteria 
setting the target CHL to be 0.04 mg/L, 0.06 mg/L, and 0.08 mg/L. We 
found that the combination of these nutrient criteria would locate be
tween isolines of 0.7–0.8 quantile (Fig. 4(a)), isolines of 0.6–0.7 quantile 
(Fig. 4(b)), and around the isoline of 0.5 quantile (Fig. 4(c)), respec
tively. That is, probabilities of CHL exceeding corresponding targets are 
between 0.2 and 0.3, between 0.3 and 0.4, and about 0.5, respectively. 
This discrepancy in noncompliance probability makes it difficult to meet 
the requirement of percentile-based compliance assessments using the 
nutrient criteria deduced from mean regression. 

Although QR has advantages and intuitive appeal for developing 
criteria, some mean regression methods, such as linear regression, could 
also be used to deduce the quantile of CHL concentrations (Borsuk et al., 
2002; Malve and Qian, 2006; Gronewold et al., 2008) and thereby are 
potentially capable of quantile-based nutrient criteria. In such studies, 
the log–log linear nutrient-CHL relationship was first built using a mean 
regression method, and then the distribution of CHL was obtained. Note 
that the accuracy of the quantile estimation relies heavily on the 

Legend: regression quantile τ
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Fig. 3. Comparison of percentile-based joint nutrient criteria (isolines) and nutrient criteria deduced from the single-nutrient relationship (points). In the left panel 
(a), we set the target CHL concentration to be 0.08 mg/L and nutrient criteria for different regression quantiles are identified by the color. In the right panel (b), we 
set the regression quantile to be 0.9 and nutrient criteria for different CHL levels are identified by the color. 
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Fig. 4. Comparison of joint nutrient criteria and single nutrient criterion given different target CHL concentrations. The isolines are joint nutrient criteria under 
different regression quantiles. The black point represents the combination of TP and TN criterion deduced from the single nutrient-CHL relationship (Eq. 3). 
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homoscedasticity assumption in mean regression methods, which might 
be violated. An effective tool to test the violation is to examine the 
regression slopes of QR models for a range of regression quantiles (Das 
et al., 2019). If slopes are significantly different, then the mean regres
sion method might be inadequate and the deduced nutrient criteria 
might be misleading. In our case, we examined the QR slopes of TP, TN, 
and interactive term for nine symmetrical regression quantiles (0.1, 0.2, 
…, 0.9). The observations were log-transformed following common 
practices of building nutrient-CHL relationship (Borsuk et al., 2002; 
Malve and Qian, 2006; Gronewold et al., 2008). A joint Wald test 
(Koenker et al., 2019) was employed to test the equality of slopes at 
different regression quantiles and showed the inequality of slopes (p <
0.05). Therefore, the mean regression method is not adequate to esti
mate percentiles of CHL concentration in our case. 

There may be occasions where using mean regression methods to 
predict the percentile of CHL concentration is adequate. However, above 
results suggest that this should be done with caution. It would be useful 
to examine the equality of slopes for a range of regression quantiles 
using QR prior to applying mean regression. If the equality of slopes is 
confirmed, then nutrient criteria could be deduced. Otherwise, using 
mean regression is not suitable due to the possibility of violation of the 
homoscedasticity assumption. In contrast, the usage of QR is much more 
convenient, intuitive, and reliable. 

4.3. Informing watershed load reduction 

Joint nutrient criteria can also inform the selection of an efficient 
watershed load reduction strategy. TP and TN loads are often simulta
neously reduced by watershed load reduction actions, e.g., via wetlands 
(Fisher and Acreman, 2004), sewage treatment plants (Boynton et al., 
2008), and best management practices (Qiu et al., 2018). In addition, TP 
and TN are also highly coupled in lake ecosystems (Oliver et al., 2017; 
Aubriot, 2018). In practice, through the modelling of nutrient dynamics 
in the watershed and waterbody using a water quality model, the effect 
of a load reduction strategy on nutrient concentrations can be quantified 
(Dai et al., 2018) and the concentration reduction curve (red or blue 
curve in Fig. 5) could be obtained. For example, suppose the effect of a 
load reduction strategy on nutrient concentrations is the blue line in 
Fig. 5a) and the aim of load reduction is to make the probability of CHL 
exceeding 0.08 mg/L less than 10%. The green lines in Fig. 5 shows joint 
nutrient criteria when the target CHL concentration is 0.08 mg/L and the 
regression quantile is 0.9 (the same as the green isoline in Fig. 2(e)). 

Point A shows the current combination of TP and TN concentrations. 
The intersection of the effect curve of load reduction strategy and joint 
nutrient criteria (point B in Fig. 5(a)) shows expected nutrient concen
trations when CHL meets the standard, based on which we can calculate 
the cost (e.g. required time or money) to get from point A to point B. 
Suppose now we have another load reduction strategy and its effect 
curve is the red line in Fig. 5(a). We can also calculate the corresponding 
cost to get from point A to point C and compare the two strategies. 

By contrast, the form of current nutrient criteria might lead to extra 
cost of load reduction. Current nutrient criteria consist of one TP crite
rion and one TN criterion, and thus could be presented as a point in 
Fig. 5, such as point D or E in Fig. 5(b). Suppose point D is the deduced 
nutrient criteria and the blue line is the effect curve. We found that to 
meet the requirement of the nutrient criteria, we would need to keep 
taking management actions until the nutrient concentrations reduce to 
point G, so that both nutrient concentrations are not larger than that of 
point D. But, in fact, CHL should meet the requirement at point B. Extra 
cost is paid from point B to point G. If point E is the deduced nutrient 
criteria, extra cost is paid from point B to point F. 

4.4. Generalization of joint nutrient criteria 

Considering the mismatch between ecoregional and site-specific 
nutrient-CHL relationships (known as ecological fallacy) caused by the 
heterogeneity of ecological contexts (Qian et al., 2019; Liang et al., 
2020), there is a need for the development of site-specific nutrient 
criteria (Olson and Hawkins, 2013; Liang et al., 2020). We have 
demonstrated that the proposed joint nutrient criteria development 
framework could reasonably link the TP and TN criterion, bridge the 
management gap between water quality compliance assessment method 
and nutrient criteria development, and further inform watershed 
nutrient load reduction. Although our study focuses on a lake case study, 
we suggest that the proposed method and application of joint nutrient 
criteria could benefit site-specific lake ecosystem management more 
broadly for the following reasons: 

1) The application of QR and corresponding model selection process 
are straightforward to implement in freely available statistical soft
ware, e.g., the R software as we used in this study. 
2) Because CHL, TN, and TP data are widely available, the proposed 
method could be easily applied to other lakes. 
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Fig. 5. Concept map showing how joint nutrient 
criteria help the selection of water load reduction 
strategy (a) and how current nutrient criteria form 
might lead to extra cost (b). The green isoline 
represent the joint nutrient criteria given a target 
CHL concentration and a regression quantile. The 
blue and red lines represent two paths of TP and TN 
concentration reduction due to eutrophication 
management actions. Each point represents a com
bination of TP and TN concentrations. The black 
point A represents the current state of TP and TN 
concentration, which is away from the required 
nutrient concentrations (the green line). Any point 
(B, C, D, & E) in the green line would meet the 
requirement of CHL concentration control. Point B 
and C represents the nutrients concentrations 
meeting the CHL concentration requirement of the 
blue and red paths, respectively. Point D and E 
represent the combination of single nutrient criteria. 
When the concentration reduction follows the blue 
line, if single nutrient criteria are development 
(point D or E), the required nutrients concentrations 
should be lower (point G or F) than those repre
sented by point B, which would result in extra cost.   
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3) This approach can be applied using other forms of nutrients, 
which are often quantified in monitoring programs. Additional 
nutrient forms could be added as predictors and additional candidate 
models could be built in the first step of our approach. We can then 
determine which nutrient form(s) should be included via the model 
selection process in the second step. Finally, only nutrient forms that 
would significantly improve model performance would be included 
in the joint nutrient criteria. That said, careful consideration of what 
types of nutrient forms to include is prudent, since including too 
many nutrients into a joint nutrient criterion could make eutrophi
cation management overly complicated. 
4) Other management endpoints, such as algal communities 
(Smucker et al., 2013) or macroinvertebrate metrics (Wagenhoff 
et al., 2017), could also be chosen as the response, aiming to achieve 
an acceptable ecological status. Our method could also be extended 
to such cases, where nonlinear QR, such as additive non-parametric 
QR (Koenker et al., 1994), QR neural networks (Cannon, 2011), or 
QR forests (Meinshausen, 2006), might be required. 

5. Conclusions 

We proposed a novel analytical framework for the development of 
nutrient criteria and used Lake Dianchi, China as a case to illustrate the 
steps of the framework. The percentile-based joint nutrient criteria, as 
shown by the contour map, incorporate the dependencies between TP 
and TN criterion. The application of QR bridges the gap between 
nutrient criteria and the compliance assessment. We further found that 
joint nutrient criteria can help with the selection of a watershed nutrient 
load reduction strategy and believe that our approach can help inform 
site-specific lake eutrophication management. Our approach can also be 
generalized to other lakes, nutrient forms, and management endpoints. 
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