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ABSTRACT

Nutrient criteria provide the numeric baziz for lake eotrophication management Howewver, there are two ob-
stacles that can hinder the effective application of nutrient criteria, including 1) althowgh total phosphoms (TF)
and total nitrogen (TW) might co-limit phytoplankton biomass in eutrophic lakes, their criteria are often
developed indepemdently; and 2) the linkage between nuirient eriteria and the percentile-bazed compliance
azsessment method of chlorophyll a (CHL; as a measure of phytoplankton biomass) has not been well establizhed.
To resolve theze obstacles, we propose a novel analytical framework of nutrient criteria development, by which
joint motrient criteria are developed uzing quantile regreszion (QR). We demonsorated the steps necessary to
utilize thiz novel approach using TP, TN, and CHL data from lake Dianchi, a hypereutrophic lake located in
southwestern China  First, we built candidate QB models to quantify the nutrient-CHL relationship at six
regreszion quantiles. Next, we conducted the sequential Wald test to select the “best”™ model for each regression
quantile. Finally, we visualized the joint nutrient criteria surface uzing a contour map. The contour map effec-
tively illustrated the joint nutrient criteria by showing the linkage of TP and TN critedion. In addition, based on
the B, it was eazy to deduce nuirient eriteria which met the requirement of percentile-bazed compliance
assezzment. We further found that joint nutrient criteria could help the selection of an efficient load reduction
srategy in the watershed. The proposed method can be generalized to other systems and may facilitate site-

1. Introduction

(Freeman et al_, 2009; USEPA, 2010; Bachmann et al., 2012; Huo et al ,
2013). In fact, a substantial amount of work has been conducted to

Mutrient eriteria provide the numeric foundation for lake eutrophi-
cation management (Heizkary and Bouchard, 2015), particularly for
curbing excessive phytoplankton biomass (Soranno et al | 2008) and
informing watershed load reduction strategies (Poikane =t al |, 2019).
While other factors, such as water temperature, could impact the growth
of phytoplankton, nutrients are relatively more manageable through
actions like watershed load reduction (Paesrl et al, 2011). Nutrent
criteria are mainly deduced from the nutnent-Chlorophyll a (CHL, az a
meazure of phytoplankton biomass) relationship by identifying eritical
nutrient concentrations that result in a target CHL concentration

* Correzponding authors.

develop total phoephorus (TF) and total nitrogen (TN) eriteria for inland
lakes (Heiskary and Wilson, 2008; Herlhhy et al., 201 3; Huo et al_, 201 8).

Although many informative studies have been performed on the
development of nutrient eriteria, there are two obstacles hindering
effective application of nutrient eriteria to lake cutrophication man-
agement. The first one is that, although CHL might be co-limited by TP
and TN in cutrophic lakes (Filstrup and Downing, 2017; Wurtsbaugh
et al., 2019), there iz a lack of linkage between TP and TN criterion
Current eriterion development of one nutrient based on the stressor-
response model iz often independent and without consideration of the

E-mail addresses: zv15373@pouedu (Z Liang), yyxou@iveac.en (Y. Xu), Ugg@ive.acen (Q. Qin), yonglin@pku.edu.cn (Y. Liu), luwt@ecasp org.co (W. Lu),

bow] 9@ pau.edu (T. Wagner).

https://doiorg/10.1016/] jhydrol 2020.125383

Received 17 October 2020; Received in revized form 25 November 2020; Accepted 11 December 2020

Available online 5 January 2021
0022-1694,0 2020 Elsevier B.V. All rights reserved.


mailto:zvl5373@psu.edu
mailto:yyxu@iue.ac.cn
mailto:llqq@iue.ac.cn
mailto:yongliu@pku.edu.cn
mailto:luwt@caep.org.cn
mailto:txw19@psu.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2020.125883
https://doi.org/10.1016/j.jhydrol.2020.125883
https://doi.org/10.1016/j.jhydrol.2020.125883
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2020.125883&domain=pdf

Z. Liang et al.

other (Liu et al., 2018; Poikane et al., 2019; Tong et al., 2019; Huo et al.,
2019). That is, the TP criterion is deduced based on the TP-CHL rela-
tionship, while the TN criterion is deduced using the TN-CHL relation-
ship. However, it has been recognized that TP and TN should often be
simultaneously considered as predictors in the nutrient-CHL relation-
ship (Malve and Qian, 2006; Liang et al., 2019). Therefore, the effec-
tiveness of a nutrient criterion deduced from a single nutrient-CHL
relationship may be highly uncertain. Moreover, there might be a sig-
nificant interaction between TP and TN on CHL, which would be missed
when developing an independent criterion (Kotamaki et al., 2015; Qian
et al., 2019). Failure to account for such a significant interaction may
result in biased parameter estimates and might lead to an improper
nutrient criterion.

The second obstacle is that the linkage between nutrient criteria and
the compliance assessment of CHL has not been well established (Scott
and Haggard, 2015). To curb lake eutrophication, an important goal is to
reduce CHL to a specific target level. The compliance assessment of CHL
is essential to evaluate the achievement of lake eutrophication man-
agement. In practice, the compliance assessment metric has long been an
upper percentile of water quality variables (Mcbride and Ellis, 2001;
Borsuk et al., 2002; Qian et al., 2015; Smith and Canale, 2015). For
example, Walker (1984) proposed a compliance assessment method
based on the frequency of CHL exceeding a specific level. The U.S.
Environmental Protection Agency guidelines require a waterbody to be
listed as impaired when more than 10% of the samples violate the
standard (Smith et al., 2001), indicating that the 90% quantile of sam-
ples is used to compare with the standard. Generally, the assessment of
an upper percentile is a more conservative way than that of the average,
and in the meanwhile, allows for the violation of a small proportion of
samples (Gibbons, 2003). Such an assessment method could provide
information on the noncompliance probability of water quality variables
(Liang et al., 2017). Moreover, the upper percentile of CHL is more
related to some extreme conditions (e.g. algal bloom) than the average
CHL and thus can better inform lake eutrophication management
(Ostrofsky and Rigler, 1987; Jones et al., 2011).

While the compliance assessment method of CHL is percentile-based,
current nutrient-CHL relationships are often developed using mean
regression methods (e.g. linear regression or random forest) (Xu et al.,
2015; Tong et al., 2019). Common practices of mean regression methods
often focus on the average CHL concentration (Heiskary and Wilson,
2008; Trebitz, 2012; Tong et al., 2019; Liang et al., 2020), which would
guarantee the compliance of average CHL, but might not meet the
requirement of the percentile-based compliance assessment. Note that
the percentile of CHL concentration could also be obtained using a mean
regression method (Borsuk et al., 2002; Malve and Qian, 2006; Grone-
wold et al., 2008). However, its accuracy heavily relies on meeting the
homoscedasticity assumption (Cade and Noon, 2003; Das et al., 2019).
The log-transformation has been successfully used to accommodate this
assumption (Oliver et al., 2017; Wagner and Schliep, 2018; Liang et al.,
2019), but this may not guarantee homoscedasticity for all cases.

In this study, we propose a novel analytical framework for nutrient
criteria development. In the framework, we 1) propose joint nutrient
criteria to reflect the linkage of TP and TN criterion for determining
target CHL levels; and 2) employ quantile regression (QR) (Koenker and
Bassett, 1978) to illustrate the nutrient-CHL relationship to bridge the
gap between nutrient criteria and the percentile-based CHL compliance
assessment method. QR explores the effect of predictor(s) on any
interested quantiles of the response (Das et al., 2019). Compared with
mean regression, QR is robust to outliers in the response, requires no
assumptions on the distribution of the response, and provides a more
complete view of the relationship between predictor(s) and response
variables (Cade and Noon, 2003; Das et al., 2019). Although QR has
been used in ecological studies for about two decades (Cade et al., 1999),
it has only recently been applied to illustrate nutrient-CHL relationships
(Xu et al., 2015) and has rarely been used in nutrient criteria develop-
ment. To demonstrate steps of the proposed framework, we used TP, TN,
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and CHL data from a hypereutrophic lake (Lake Dianchi, China) as a case
study. We further discuss applications of the proposed joint nutrient
criteria to lake eutrophication management.

2. Materials and methods
2.1. Study area

Lake Dianchi (24°29'N-25°28'N, 102°29'E-103°01’E) is located on
Yunnan-Guizhou Plateau, southwest China. It is a shallow lake with the
mean depth of 4.4 m. The lake area is approximately 309 km?. The east
to west distance of the lake is 7 km and the north to south distance is 40
km. The watershed is in a subtropical moist monsoon zone, with an
average annual precipitation of approximately 1,000 mm and an
average air temperature of approximately 14.5°C.

Lake Dianchi is located in the lower part of the watershed and re-
ceives both point (wastewater) and non-point sources of nutrients. The
lake is facing a severe eutrophication problem that has spanned the past
two decades (Liang et al., 2018), and therefore it is critical to develop
reasonable nutrient criteria to inform eutrophication management.
Long-term (January 1999-June 2019) monthly observations of TP, TN,
and CHL from eight sites were used for this analysis. Data are from the
Environmental Monitoring Site of Yunnan Province (http://www.
ynsem.com.cn/). There are few (32) missing values, which were inter-
polated using the median polish method following Qian et al. (2000).
The average TP, TN, and CHL concentrations during our research period
are 0.160 mg/L, 2.04 mg/L, and 0.069 mg/L, respectively, showing the
hypereutrophic state of Lake Dianchi.

2.2. Joint nutrient criteria development and modeling

In this study, we focus on the criteria development of TP and TN. It is
worth noting that some active forms of nutrients, e.g. dissolved inor-
ganic nitrogen and phosphate, are more directly related to algal growth
and the criteria development of other nutrient forms could also be
important (Yang et al., 2019). However, the development of reliable
site-specific nutrient criteria requires a relatively long-term data set. The
development of criteria of other nutrient forms is thereby often con-
strained by the lack of necessary data.

Examination of the scatter plots between TP and TN versus CHL
(Figure S1), indicates that linear QR is appropriate for illustrating the
nutrient-CHL relationship in Lake Dianchi. The main function of the
linear QR (Eq. 1) is shown below:

yi =00 +6X; + < (@]

where i is the rank of observations (i =1, 2, ..., N, N is the sample size), y
represents the response (CHL), and X represents the predictor(s) (TP
and/or TN). 6y and 6 represent the regression intercept and slope(s). ¢ is
the error. Unlike ordinary least squares, which estimates parameters by
minimizing the residual sum of squares (Altman and Krzywinski, 2015),
the parameters estimation in linear QR is based on the minimum of
weighted absolute biases (Eq. 2) (Koenker and Bassett, 1978):

min| Y 2y~ 6 —0X|+ Y (1-7)i— 6 - 60X 2

ie{i:yi26X;} ie{iy;<6X;}

where 7 represents the quantile of the response.

Effects of nutrients at several upper quantiles of CHL were explored
(r=0.5,0.6,0.7, 0.8, 0.9, 0.95). While the QR is robust to outliers of the
response (CHL), observations with very high or very low values of pre-
dictors (TN and TP) can influence the relationship. For example, a small
number of observations with high nutrient concentrations but low CHL
concentrations can easily change the shape of the regression curve.
Because these observations only account for a small proportion of the
total observations and do not span the entire distribution of CHL, their
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impact on the relationship can be substantial. For the purpose of nutrient
criteria development, we do not have to pay much attention to these
more “extreme” observations, because model extrapolation is not
required. As such, we selected observations with nutrient concentrations
in the range of their 10%-90% quantile. The final sample size is 1306
observations of TP, TN, and CHL. The proposed framework for joint
nutrient criteria development has three steps (Fig. 1).

The first step is to develop candidate models that represent potential
nutrient-CHL relationships. In our case, we developed five candidate
models that represent hypotheses of how CHL responds to TP and TN.
The first model (Model 1) was developed according to the common
practice of illustrating the nutrient-CHL relationship using mean
regression (Malve and Qian, 2006). In this model, main effects of TP, TN,
and their interaction term were included (this was an effects-
parameterized regression that included an intercept term). For a mean
nutrient-CHL regression, a log-log linear model is typically fitted to
accommodate the normality and homoscedasticity assumptions (Oliver
et al., 2017). However, QR is not constrained by the above assumptions
and the log-transformation is not necessary. Theoretically, when nutri-
ents concentrations approach zero, the CHL concentration should also
be near zero (Heiskary and Bouchard, 2015). Thus, we also developed a
candidate model without the intercept term (Model 2). Some studies
have also revealed that the interaction term might not be important
(Liang et al., 2018), so the third candidate model lacked an interaction
term. Lastly, we considered single nutrient limiting conditions and
developed candidate models four and five for TP and TN, respectively. A
summary of the candidate models is shown in Table 1.

The second step is to fit the models and perform model selection to
obtain the “best” model for describing the nutrient-CHL relationship. For
each candidate model, there were six quantiles to fit, resulting in a total
of 30 QR models. A modified version of the Barrodale and Roberts al-
gorithm for [;-regression was used for parameters estimation (Koenker
and D’Orey, 1987). After parameter estimation, we selected the “best”
model for each regression quantile using a sequential Wald test. The
Wald test is a commonly used method for nested model comparison
(Koenker and Bassett, 1982) and tests the null hypothesis that less
complex models with fewer estimated parameters are adequate relative
to the largest specified model (full model). Using the sequential Wald
test, we first test all five models, by which Model 1 is the full model. If
the performances of all the four simpler models, candidate model 2-5,
are significantly worse than the full model as indicated by sequential
Wald test results, then the full model should be selected as the “best”

Prepare Data

Step 1: Candidate Models Development

o Should the QR have an intercept?
o |s there an interaction between TP and TN?
¢ Is single nutrient-CHL relationship better?

A\ 4
Step 2: Model Selection
a) Parameter estimation of candidate models

b) Model comparison based on a sequential Wald
test

A\ 4
Step 3: Joint Nutrient Criteria Deduction

a) Parameters of the selected model
b) Determination of targeted CHL levels
c) lllustrate joint nutrient criteria using contour map

Fig. 1. Steps to implement the framework for joint nutrient criteria develop-
ment using quantile regression.
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Table 1

Candidate models to illustrate the nutrient-CHL relationship in Lake Dianchi. In
the model formula, expressions show predictor structures to predict CHL, “—1”
means the regression equation has no intercept.

Model Formula Description

#

1 TP + TN + TP and TN have significant effect on

TP x TN CHL. Interactive effect and intercept
are also significant.

2 TP + TN + TP and TN have significant effect on

TP x TN—-1 CHL. Interactive effect is significant.
Intercept is not significant.

3 TP + TN-1 TP and TN have significant effect on
CHL. Neither interactive effect nor
intercept is significant.

4 TP-1 Only TP has significant effect on
CHL. Intercept is not significant.

5 TN-1 Only TN has significant effect on

CHL. Intercept is not significant.

model and the sequential test terminates. Otherwise, Model 1 is
removed, and Model 2 becomes the full model for comparing the
remaining models. This process is repeated until the “best” model is
identified. Moreover, we applied joint Wald test to examine the equality
of slopes, which could indicate the whether the homoscedasticity
assumption is violated or not for a mean regression method.

After model selection, the third step is to deduce the joint nutrient
criteria. We first select several target CHL levels. Then, we determine the
joint nutrient criteria using the estimated parameters from the best
nutrient-CHL relationship. The deduced nutrient criteria were reflected
by an expression between TN and TP. Because the joint nutrient criteria
are 2-dimensional and difficult to show in a table, the final step is to
illustrate the joint nutrient criteria using a contour map (Fig. 1). The
contour map is an effective way to show the nutrient-CHL relationship
when both TN and TP are used as predictors (Malve and Qian, 2006;
Yuan and Pollard, 2015; Liang et al., 2019). Note that if the selected
model has only one nutrient as the predictor, the contour map is not
required.

2.3. Single nutrient criterion development

To compare the joint nutrient criteria and the single nutrient criteria,
we also developed single nutrient criterion. Following common prac-
tices of single nutrient criterion development (Huo et al., 2013), we
fitted log-log linear nutrient-CHL relationship to deduce the single
nutrient criterion:

log(y;) = py + Plog(x;) + & 3

where i is the rank of observations (i =1, 2, ..., N, N is the sample size),
log(y) represents the log-transformed CHL observation, and log(x) rep-
resents the log-transformed TP or TN observation. f, and f represent the
regression intercept and slope(s). ¢ is the error. Note that Eq. 3 is similar
to Eq. 1, but Eq. 3 only includes one nutrient as the predictor, while Eq. 1
could have more predictors.

All the computations were conducted using the R software (R version
3.6.1) (R Core Team, 2019). The algorithm for parameter estimation of
QR models was implemented using the rq function in the quantreg
package (Koenker et al., 2019). The sequential and joint Wald tests are
based on the anova function in the quantreg package. The code for the
development of QR and model selection can be found at https://doi.org/
10.5281/zenodo.3956328.

3. Results
3.1. Model selection and parameter estimation

Model selection results are shown in Table 2. The best models were
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Table 2

Results of model selection based on the sequential Wald test and parameter
estimates of selected models at five regression quantiles. Mean and standard
error (subscript) of regression parameters are shown. All parameters are sig-
nificant (p < 0.05). “~” represents the model does not include the model term.
Refer to Table 1 for the formula and description of each model.

Quantile Model Parameters
number
intercept slope: TP slope: TN interaction
0.5 3 - 0.2370.0250 0.013¢.0017 -
0.6 3 - 0.2710.0204 0.0140.0019 -
0.7 3 - 0.3040.0204 0.017¢.0019 -
0.8 2 - 0.49300544  0.0199.0025 —0.0710.0242
0.9 2 - 0.60300798  0.027¢.0042 —0.1230,0352
0.95 2 - 0.721¢.1219 0.034.0061 —0.1570.0736

either models 2 or 3, depending on the quantile. The addition of the
intercept did not significantly improve model performance, supporting
the common view that when nutrient concentrations are zero, the CHL
concentration should also be zero (Heiskary and Bouchard, 2015). In
addition, model selection indicated that both nutrients were important
predictors of CHL and therefore should be included as predictors for all
the regression quantiles evaluated.

The estimated parameters for the effects of TP and TN across the
different quantiles indicate that the response of CHL per unit increase in
TP or TN is greater at higher regression quantiles (Table 2). The inter-
action term for TP and TN was not significant for lower quantiles (z =
0.5, 0.6, 0.7) and was more likely to be significant at upper quantiles (¢
= 0.8, 0.9, 0.95). The significant interaction terms were negative,
indicating that the increase of one nutrient would lower the effect of the
other nutrient on CHL, which agrees with previous work using mean
regression (Qian et al., 2019). The magnitude of the interaction term
was larger at a higher quantile, indicating an increasing interactive ef-
fect with increasing regression quantile.
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3.2. Joint nutrient criteria

Contour maps (Fig. 2) illustrate the deduced nutrient criteria. In the
contour map, x- and y- axes represent TP and TN, respectively, and
isolines represent a range of target CHL concentrations. As regression
quantiles increase, isolines move toward the lower left of the plots,
indicating stricter nutrient criteria at higher regression quantiles. Iso-
lines in Fig. 2(d)-(f) are curvlinear, illustrating the interactive effect of
TP and TN on CHL. We explored joint nutrient criteria for six target CHL
concentrations at six regression quantiles. In practice, however, if the
target CHL and the regression quantile are determined, joint nutrient
criteria can be simply shown by a single isoline. For example, if the
target CHL is 0.08 mg/L and the regression quantile is 0.9, the corre-
sponding joint nutrient criteria is the green curve in Fig. 2(e).

4. Discussion
4.1. Incorporating the linkage between TP and TN criterion

The joint nutrient criteria incorporate the linkage of TP and TN cri-
terion via the inclusion of both nutrients as predictors in the nutrient-
CHL relationship. Joint nutrient criteria simultaneously reflect effects
of both nutrients on CHL. As shown by the contour map, for a certain
target CHL level, the criterion for one nutrient may be dependent on the
concentration of the other nutrient (Fig. 2). This is the most notable
feature of joint nutrient criteria compared with the development of
single nutrient criterion, where the nutrient criterion is invariant across
concentrations of other potentially limiting nutrients.

Moreover, there might be biases between joint nutrient criteria and
nutrient criteria deduced from the single nutrient-CHL relationship. We
fitted QR models with only one nutrient as the predictor (Model 4 and 5
in Table 1) and then calculated the nutrient criteria by setting the target
CHL concentration to be 0.08 mg/L and by setting the quantile to be 0.9,
respectively. In Fig. 3, the deviation of the point from the isoline in the
same color shows the bias between the two types of nutrient criteria. As
we can see, in a few cases, the point matches with the isoline, indicating
that the single nutrient criterion might be consistent with the joint

—0.04

Legend: target CHL concentration (mg/L)
—0.06 0.08

25

2.0

0
-
B
z <
o .
o .
o N
N \
0
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o | =095 (f)t=0.95
A T T T T T T T T T T
0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
TP(mg/L)

Fig. 2. Percentile-based joint nutrient criteria for target CHL concentrations at different regression quantiles (7). x- and y-axes represent TP and TN, respectively, and
isolines represent a range of target CHL concentrations. Dashed lines are +1 standard deviation.
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Fig. 3. Comparison of percentile-based joint nutrient criteria (isolines) and nutrient criteria deduced from the single-nutrient relationship (points). In the left panel
(a), we set the target CHL concentration to be 0.08 mg/L and nutrient criteria for different regression quantiles are identified by the color. In the right panel (b), we
set the regression quantile to be 0.9 and nutrient criteria for different CHL levels are identified by the color.

nutrient criteria. However, the bias exists for most cases (Fig. 3),
emphasizing the necessity of including both nutrients in the nutrient-
CHL relationship. Besides, the joint nutrient criteria provide many
combinations of TP and TN criterion, while the single nutrient criterion
only has one combination.

4.2. Advantages of using quantile regression

The main advantage of applying QR is to bridge the management gap
between nutrient criteria and compliance assessment. Based on the QR,
we easily obtain the joint nutrient criteria given the target CHL con-
centration and the regression quantile. The regression quantile is
consistent with the percentile of the compliance assessment. Suppose
that the percentile is 7 for the compliance assessment, the deduced
nutrient criteria aim to make the 7"-quantile of CHL meet the standard.
The QR can easily accommodate water quality compliance assessments
with different percentiles. Therefore, QR makes the nutrient criteria
development in harmony with the compliance assessment, which could
facilitate effective lake eutrophication control practices.

In contrast, nutrient criteria deduced by mean regression might give

ambiguous information for the percentile-based compliance assessment.
For example, we fitted the log-log linear nutrient-CHL relationship for
TP and TN, respectively. Then, we calculated the corresponding criteria
setting the target CHL to be 0.04 mg/L, 0.06 mg/L, and 0.08 mg/L. We
found that the combination of these nutrient criteria would locate be-
tween isolines of 0.7-0.8 quantile (Fig. 4(a)), isolines of 0.6-0.7 quantile
(Fig. 4(b)), and around the isoline of 0.5 quantile (Fig. 4(c)), respec-
tively. That is, probabilities of CHL exceeding corresponding targets are
between 0.2 and 0.3, between 0.3 and 0.4, and about 0.5, respectively.
This discrepancy in noncompliance probability makes it difficult to meet
the requirement of percentile-based compliance assessments using the
nutrient criteria deduced from mean regression.

Although QR has advantages and intuitive appeal for developing
criteria, some mean regression methods, such as linear regression, could
also be used to deduce the quantile of CHL concentrations (Borsuk et al.,
2002; Malve and Qian, 2006; Gronewold et al., 2008) and thereby are
potentially capable of quantile-based nutrient criteria. In such studies,
the log-log linear nutrient-CHL relationship was first built using a mean
regression method, and then the distribution of CHL was obtained. Note
that the accuracy of the quantile estimation relies heavily on the

o | — 05 —— 06
@ 07 —— 038 .
09 —— 095
:r\‘)_ 7] ® Mean Regression
j o
B
E
P .
= 9
" .
24\ (a) CHL = 0.04 mg/L (b) CHL = 0.06 mg/L (c) CHL = 0.08 mg/L|
0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20
TP(mg/L)

Fig. 4. Comparison of joint nutrient criteria and single nutrient criterion given different target CHL concentrations. The isolines are joint nutrient criteria under
different regression quantiles. The black point represents the combination of TP and TN criterion deduced from the single nutrient-CHL relationship (Eq. 3).
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homoscedasticity assumption in mean regression methods, which might
be violated. An effective tool to test the violation is to examine the
regression slopes of QR models for a range of regression quantiles (Das
et al., 2019). If slopes are significantly different, then the mean regres-
sion method might be inadequate and the deduced nutrient criteria
might be misleading. In our case, we examined the QR slopes of TP, TN,
and interactive term for nine symmetrical regression quantiles (0.1, 0.2,
..., 0.9). The observations were log-transformed following common
practices of building nutrient-CHL relationship (Borsuk et al., 2002;
Malve and Qian, 2006; Gronewold et al., 2008). A joint Wald test
(Koenker et al., 2019) was employed to test the equality of slopes at
different regression quantiles and showed the inequality of slopes (p <
0.05). Therefore, the mean regression method is not adequate to esti-
mate percentiles of CHL concentration in our case.

There may be occasions where using mean regression methods to
predict the percentile of CHL concentration is adequate. However, above
results suggest that this should be done with caution. It would be useful
to examine the equality of slopes for a range of regression quantiles
using QR prior to applying mean regression. If the equality of slopes is
confirmed, then nutrient criteria could be deduced. Otherwise, using
mean regression is not suitable due to the possibility of violation of the
homoscedasticity assumption. In contrast, the usage of QR is much more
convenient, intuitive, and reliable.

4.3. Informing watershed load reduction

Joint nutrient criteria can also inform the selection of an efficient
watershed load reduction strategy. TP and TN loads are often simulta-
neously reduced by watershed load reduction actions, e.g., via wetlands
(Fisher and Acreman, 2004), sewage treatment plants (Boynton et al.,
2008), and best management practices (Qiu et al., 2018). In addition, TP
and TN are also highly coupled in lake ecosystems (Oliver et al., 2017;
Aubriot, 2018). In practice, through the modelling of nutrient dynamics
in the watershed and waterbody using a water quality model, the effect
of a load reduction strategy on nutrient concentrations can be quantified
(Dai et al., 2018) and the concentration reduction curve (red or blue
curve in Fig. 5) could be obtained. For example, suppose the effect of a
load reduction strategy on nutrient concentrations is the blue line in
Fig. 5a) and the aim of load reduction is to make the probability of CHL
exceeding 0.08 mg/L less than 10%. The green lines in Fig. 5 shows joint
nutrient criteria when the target CHL concentration is 0.08 mg/L and the
regression quantile is 0.9 (the same as the green isoline in Fig. 2(e)).
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Point A shows the current combination of TP and TN concentrations.
The intersection of the effect curve of load reduction strategy and joint
nutrient criteria (point B in Fig. 5(a)) shows expected nutrient concen-
trations when CHL meets the standard, based on which we can calculate
the cost (e.g. required time or money) to get from point A to point B.
Suppose now we have another load reduction strategy and its effect
curve is the red line in Fig. 5(a). We can also calculate the corresponding
cost to get from point A to point C and compare the two strategies.

By contrast, the form of current nutrient criteria might lead to extra
cost of load reduction. Current nutrient criteria consist of one TP crite-
rion and one TN criterion, and thus could be presented as a point in
Fig. 5, such as point D or E in Fig. 5(b). Suppose point D is the deduced
nutrient criteria and the blue line is the effect curve. We found that to
meet the requirement of the nutrient criteria, we would need to keep
taking management actions until the nutrient concentrations reduce to
point G, so that both nutrient concentrations are not larger than that of
point D. But, in fact, CHL should meet the requirement at point B. Extra
cost is paid from point B to point G. If point E is the deduced nutrient
criteria, extra cost is paid from point B to point F.

4.4. Generalization of joint nutrient criteria

Considering the mismatch between ecoregional and site-specific
nutrient-CHL relationships (known as ecological fallacy) caused by the
heterogeneity of ecological contexts (Qian et al., 2019; Liang et al.,
2020), there is a need for the development of site-specific nutrient
criteria (Olson and Hawkins, 2013; Liang et al., 2020). We have
demonstrated that the proposed joint nutrient criteria development
framework could reasonably link the TP and TN criterion, bridge the
management gap between water quality compliance assessment method
and nutrient criteria development, and further inform watershed
nutrient load reduction. Although our study focuses on a lake case study,
we suggest that the proposed method and application of joint nutrient
criteria could benefit site-specific lake ecosystem management more
broadly for the following reasons:

1) The application of QR and corresponding model selection process
are straightforward to implement in freely available statistical soft-
ware, e.g., the R software as we used in this study.

2) Because CHL, TN, and TP data are widely available, the proposed
method could be easily applied to other lakes.

TN(mg/L)
2.0
|

1.5

1.0
|
L
©
"

Fig. 5. Concept map showing how joint nutrient
criteria help the selection of water load reduction
A strategy (a) and how current nutrient criteria form
might lead to extra cost (b). The green isoline
represent the joint nutrient criteria given a target
CHL concentration and a regression quantile. The
blue and red lines represent two paths of TP and TN
concentration reduction due to eutrophication
management actions. Each point represents a com-
bination of TP and TN concentrations. The black
point A represents the current state of TP and TN
concentration, which is away from the required
nutrient concentrations (the green line). Any point
(B, C, D, & E) in the green line would meet the
requirement of CHL concentration control. Point B
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and C represents the nutrients concentrations
meeting the CHL concentration requirement of the
blue and red paths, respectively. Point D and E
represent the combination of single nutrient criteria.
When the concentration reduction follows the blue
line, if single nutrient criteria are development
(point D or E), the required nutrients concentrations
should be lower (point G or F) than those repre-
sented by point B, which would result in extra cost.
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3) This approach can be applied using other forms of nutrients,
which are often quantified in monitoring programs. Additional
nutrient forms could be added as predictors and additional candidate
models could be built in the first step of our approach. We can then
determine which nutrient form(s) should be included via the model
selection process in the second step. Finally, only nutrient forms that
would significantly improve model performance would be included
in the joint nutrient criteria. That said, careful consideration of what
types of nutrient forms to include is prudent, since including too
many nutrients into a joint nutrient criterion could make eutrophi-
cation management overly complicated.

4) Other management endpoints, such as algal communities
(Smucker et al.,, 2013) or macroinvertebrate metrics (Wagenhoff
et al., 2017), could also be chosen as the response, aiming to achieve
an acceptable ecological status. Our method could also be extended
to such cases, where nonlinear QR, such as additive non-parametric
QR (Koenker et al., 1994), QR neural networks (Cannon, 2011), or
QR forests (Meinshausen, 2006), might be required.

5. Conclusions

We proposed a novel analytical framework for the development of
nutrient criteria and used Lake Dianchi, China as a case to illustrate the
steps of the framework. The percentile-based joint nutrient criteria, as
shown by the contour map, incorporate the dependencies between TP
and TN criterion. The application of QR bridges the gap between
nutrient criteria and the compliance assessment. We further found that
joint nutrient criteria can help with the selection of a watershed nutrient
load reduction strategy and believe that our approach can help inform
site-specific lake eutrophication management. Our approach can also be
generalized to other lakes, nutrient forms, and management endpoints.
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