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ABSTRACT

Dimethyl sulfide (DMS) serves as an anti-greenhouse gas, plays multiple roles in aquatic ecosystems, and
contributes to the global sulfur cycle. The chlorophyll a (CHL, an indicator of phytoplankton biomass)-
DMS relationship is critical for estimating DMS emissions from aquatic ecosystems. Importantly, recent
research has identified that the CHL-DMS relationship has a breakpoint, where the relationship is positive
below a CHL threshold and negative at higher CHL concentrations. Conventionally, mean regression meth-
ods are employed to characterize the CHL-DMS relationship. However, these approaches focus on the re-
sponse of mean conditions and cannot illustrate responses of other parts of the DMS distribution, which
could be important in order to obtain a complete view of the CHL-DMS relationship. In this study, for
the first time, we proposed a novel Bayesian change point quantile regression (BCPQR) model that inte-
grates and inherits advantages of Bayesian change point models and Bayesian quantile regression models.
Our objective was to examine whether or not the BCPQR approach could enhance the understanding of
shifting CHL-DMS relationships in aquatic ecosystems. We fitted BCPQR models at five regression quan-
tiles for freshwater lakes and for seas. We found that BCPQR models could provide a relatively complete
view on the CHL-DMS relationship. In particular, it quantified the upper boundary of the relationship,
representing the limiting effect of CHL on DMS. Based on the results of paired parameter comparisons,
we revealed the inequality of regression slopes in BCPQR models for seas, indicating that applying the
mean regression method to develop the CHL-DMS relationship in seas might not be appropriate. We also
confirmed relationship differences between lakes and seas at multiple regression quantiles. Further, by
introducing the concept of DMS emission potential, we found that pH was not likely a key factor leading
to the change of the CHL-DMS relationship in lakes. These findings cannot be revealed using piecewise
linear regression. We thereby concluded that the BCPQR model does indeed enhance the understand-
ing of shifting CHL-DMS relationships in aquatic ecosystems and is expected to benefit efforts aimed at
estimating DMS emissions. Considering that shifting (threshold) relationships are not rare and that the
BCPQR model can easily be adapted to different systems, the BCPQR approach is expected to have great
potential for generalization in other environmental and ecological studies.

© 2021 Elsevier Ltd. All rights reserved.

* Corresponding author.

1. Introduction

Dimethyl sulfide (DMS) was recognized as an anti-greenhouse
gas because its oxidized products acted as cloud condensation
nuclei, which reflected solar irradiation and thereby contributed
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Charlson et al., 1987). Despite recent debates or rejection of the
CLAW hypothesis (Cropp et al., 2018; Quinn and Bates, 2011), the
hypothesis is likely relevant in some regions like the Southern and
Arctic Oceans (Kriiger and Graf3l, 2011; Levasseur, 2013). DMS also
plays multiple essential roles in aquatic ecosystems, such as serv-
ing as an antioxidant for phytoplankton (Sunda et al., 2002) and
facilitating a tritrophic mutualism between primary producers and
top predators (Savoca and Nevitt, 2014). In addition, DMS is impor-
tant to the global sulfur cycle (Eyice et al., 2015), accounting for
about 80% of global biogenic sulfur emissions to the atmosphere
(Kettle and Andreae, 2000). Phytoplankton, indicated by chloro-
phyll a (CHL) (Bates et al., 1994; Zhang et al., 2008), is the ma-
jor producer of DMS (Charlson et al., 1987; Gondwe et al., 2003).
Therefore, understanding the CHL-DMS relationship is critical for
estimating regional or global DMS emissions from aquatic ecosys-
tems (Anderson et al., 2001; Gali et al.,, 2015; Simé and Dachs,
2002).

Correlation analysis and ordinary linear regression have been
the most widely used methods to explore the CHL-DMS relation-
ship. Most studies revealed a positive effect of CHL on DMS (e.g.,
a significantly positive correlation coefficient or regression slope)
(Gao et al., 2017; Iverson et al., 1989; Lana et al., 2011; Law et al.,
2017; Lizotte et al., 2020; Tan et al., 2017; Tortell et al., 2011;
Walker et al., 2000; Yang, 1999; 2000; Yang and Tsunogai, 2005;
Yang et al,, 2009; 2011; Zhang et al., 2014), while several studies
reported a negative relationship (Froelichd et al., 1985) or no re-
lationship at all (Nemcek et al., 2008; Watanabe et al., 1995). We
note that maximum CHL concentrations in studies deducing pos-
itive CHL-DMS relationships were always much lower than those
deducing negative or no relationships. For example, CHL concen-
trations in a series of studies on Chinese seas (Yang, 1999; 2000;
Yang and Tsunogai, 2005; Yang et al., 2009; 2011) were all lower
than 4 pg/L. In contrast, the CHL concentration can reach approxi-
mate 60 wg/L in Froelichd et al. (1985).

A recent study examining the CHL-DMS relationship across a
broad range of CHL concentrations implemented a change point
model to capture the ascending and descending limbs of this rela-
tionship (Deng et al., 2020). The change point model aims to deter-
mine one or more unknown change points at which the stressor-
response relationship changes. In Deng et al. (2020), the authors
used 246 paired observations of CHL and DMS from 100 Chinese
lakes and collected 426 paired observations from global oceans.
They applied a piecewise linear regression model (Muggeo, 2003)
to detect thresholds of CHL concentration, at which CHL-DMS re-
lationships significantly changed. Benefiting from the novel appli-
cation of piecewise regression, the authors revealed hump-shaped
CHL-DMS relationships in both lakes and seas, which were ex-
pected to increase the estimation accuracy of global DMS emis-
sions from aquatic ecosystems (Deng et al, 2020). The hump-
shaped relationship also seemed to resolve the contradiction
of the sign of the CHL-DMS relationship in previous studies,
whose deductions might have been constrained by a relatively
smaller sample size, a narrow range of sampled CHL concentra-
tion, or an application of a overly simplified linear regression
model.

Although many informative studies have investigated the CHL-
DMS relationship, we note that those studies mainly used mean
regression methods (e.g., the ordinary linear regression or piece-
wise regression), by which the relationship between CHL and
the mean of DMS distribution was estimated. A practically im-
portant alternative to classical mean regression methods is quan-
tile regression (QR) (Koenker and Bassett, 1978). To the best
of our knowledge, QR has not been used to examine CHL-DMS
relationships.

QR explores the effect of one or more predictors on any quan-
tile of the response variable distribution (Das et al., 2019; Koenker
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and Bassett, 1978). Compared with mean regression methods, QR
can provide a more complete view of possible causal relationships
and can reveal useful predictive relationships at some parts of the
response variable distribution, even when there is a weak or no
predictive relationship between the predictor(s) and the mean of
the response variable distribution (Cade and Noon, 2003). In ad-
dition, QR appears more robust to outliers of the response vari-
able (Scharf et al., 1998) and is not constrained by the equal vari-
ance assumption (Cade and Noon, 2003; Das et al., 2019). QR has
been successfully applied to environmental and ecological stud-
ies. QR has been used to 1) illustrate a relatively complete view
of stressor-response relationships at multiple regression quantiles
(Cade et al., 2008; Liang et al., 2021; Muller et al., 2018; Niinemets
and Valladares, 2006; Simkin et al., 2016; Xu et al., 2015), 2) ob-
tain reliable prediction intervals of the response variable (Heiskary
and Bouchard, 2015; Kampichler and Sierdsema, 2018), and 3) re-
veal the limiting effect of the stressor on the response variable via
the upper boundary of the stressor-response relationship (Fornaroli
et al., 2016; Keeley et al., 2012; Youngflesh et al., 2017). The up-
per boundary of a stressor-response relationship illustrates the be-
havior of response variable when the stressor is the limiting factor
(Cade et al., 1999; Sankaran et al., 2005).

Because the CHL-DMS relationship represents a stressor-
response relationship (McDowell et al., 2018), QR seems applica-
ble and helpful to enhance the understanding of the CHL-DMS re-
lationship. Considering the recent finding on the shifting nature
of CHL-DMS relationships (Deng et al., 2020), a simple linear QR
might not be adequate. A QR method with the ability to detect a
change point is required but has rarely been explored (an explo-
ration of this approach could be found in Zhou et al. (2015) who
proposed a sequential change point detection method for linear
QR).

In this study, we propose a novel Bayesian change point quan-
tile regression (BCPQR) approach to investigate the CHL-DMS rela-
tionship in aquatic ecosystems. The BCPQR model integrates two
well-developed Bayesian models: a Bayesian change point (BCP)
model (Barry and Hartigan, 1993; Erdman and Emerson, 2007) and
a Bayesian quantile regression (BQR) model (Benoit and Van den
Poel, 2017; Yu and Moyeed, 2001). Both the BCP model (Beckage
et al.,, 2007; Liang et al., 2019; Thomson et al., 2010) and the BQR
model (Barneche et al.,, 2016; Uranchimeg et al., 2018; Yu et al,,
2019; Zou and Shi, 2020) have been recently introduced and ap-
plied to develop a stressor-response relationship in environmen-
tal and ecological fields. However, to our knowledge, this is the
first proposal of BCPQR model in environmental and ecological
studies.

There are several features of the BCPQR model that makes it de-
sirable for ecological investigations. First, the BCPQR model inherits
advantages of the BQR model and the BCP model. It is expected to
be able to provide a complete view on the stressor-response re-
lationship (Muller et al., 2018; Xu et al., 2015). The detection of
any change point in the regression intercept, slopes, and/or vari-
ance of residuals is possible (Beckage et al., 2007; Liang et al.,
2019). Second, the Bayesian framework would provide the conve-
nience for parameters estimation. We can straightforwardly incor-
porate the change point into the BQR model structure. Parameter
estimation of BCPQR model could then be achieved using Markov-
chain Monte Carlo (MCMC) methods (Qian et al., 2003). Moreover,
the parameter estimation framework would allow for the calcula-
tion of probability densities representing the uncertainty of param-
eters (including the change point and the other model parameters)
(Ellison, 2004; Gende et al., 2011; Underwood et al., 2017). In ad-
dition, based on posterior distributions of parameters, comparing
parameters is straightforward (Alameddine et al., 2011; Qian et al.,
2009). Finally, prior information - if available - could be used dur-
ing model development (Ellison, 1996; 2004).
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Our objective was to examine whether or not the BCPQR
approach can enhance the understanding of CHL-DMS rela-
tionships in lakes and seas. We applied the proposed BCPQR
model to reevaluate shifting CHL-DMS relationships revealed in
Deng et al. (2020). We separately fitted BCPQR models at five re-
gression quantiles. To avoid over confidence in the change point
model, a common practice is comparing the change point model
with a model without any change point (Cahill et al., 2015; Liang
et al., 2019). Therefore, we also fitted a BQR model at each regres-
sion quantile and compared performances of the two models as
a means to select the best model for characterizing the CHL-DMS
relationship.

2. Materials and methods
2.1. Data source

Observations of CHL, DMS, and pH in lakes were directly ob-
tained from Deng et al. (2020), in which the authors sampled 246
sites from 100 shallow lakes in China. Locations of these lakes
range from 111°E to 122°E in longitude and from 28°N to 39°N in
latitude. CHL concentrations varied widely, ranging from 0.55 pg/L
to 58 wg/L, with an average of 11.87 ug/L and a standard deviation
of 10.95 ug/L. The average DMS concentration was 175 ng/L, with
a standard deviation of 189 ng/L.

In seas, Deng et al. (2020) complied 426 paired observations of
CHL and DMS from 20 contributors of the Global Surface Seawater
DMS Database (https://saga.pmel.noaa.gov/dms/). The sampling oc-
curred during 1981 and 2012. According to the contributors table
(Supplementary Table 2 in Deng et al. (2020)), we found 25, rather
than 20, contributors meeting the data filtering requirements. In
our analysis, all the data from these 25 contributors were included.
We aggregated data by the sampling year and location (longitude
and latitude), so that yearly site-specific averages of CHL and DMS
were used to develop the CHL-DMS relationship in seas. The final
sample size was 497 rather than the 426 in Deng et al. (2020).
CHL concentrations ranged from 0.04 ug/L to 57.71 ug/L, with an
average of 3.11 ug/L and a standard deviation of 6.11 ug/L. The av-
erage DMS concentration was 378 ng/L, with a standard deviation
of 540 ng/L. Detailed information on the 25 contributors, code for
data aggregation, and the aggregated CHL and DMS data can be
found in the supplementary materials.

2.2. Model development

We fitted separate CHL-DMS relationship for lakes and seas at
five regression quantiles (0.1, 0.3, 0.5, 0.7, 0.9). We did not ex-
plore more extreme regression quantiles (e.g., 0.01, 0.05, 0.95 or
0.99) because the uncertainty of estimated parameters increases
(Scharf et al.,, 1998) with less data available at the tails of distribu-
tion of the response variable. For each regression quantile of a cer-
tain ecosystem type, we first developed a BQR model and a BCPQR
model, respectively. Then, we compared performances of these
two models based on the deviance information criterion (DIC) and
selected the model with better performance as our top-ranked
model. Consideration of both models is helpful for the develop-
ment of a more reliable relationship - compared to relying on ei-
ther model independently (Cahill et al., 2015). In the following sub-
sections we introduce the BQR model and the BCPQR model. Be-
cause the estimation of the change point can be straightforwardly
incorporated into the modeling framework of the BQR model, we
did not separately introduce the BCP model. For detailed informa-
tion on the BCP model, please refer to Beckage et al. (2007) or
Erdman and Emerson (2007).
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2.2.1. Bayesian quantile regression

A simple linear QR model to estimate the CHL-DMS relationship
at a specific regression quantile (p, 0 < p < 1) can be expressed by
Eq. 1:
yi=og +oafxi+ &l M
where y represents the log;q transformed DMS concentration
(ng/L), x represents the log;o transformed CHL concentration ug/L),
and i is the order of observations. ozg and af are the regression in-
tercept and slope at the p quantile, respectively. P represents the
error. The parameter estimation is based on the minimization of

weighted sums of absolute deviations (Koenker and Bassett, 1978;
Muller et al., 2018), which can be expressed by Eq. 2 in our case:

min ;pp(e{’) = min ;pp(y,- —af —afx), 2)

where pp is the loss function and can be expressed by Eq. 3 for a
given value u:

pp(u) =u(p —I(u <0)), (3)

where I(u < 0) means the value will be one if u < 0, and zero
otherwise.

The BQR was first proposed by Yu and Moyeed (2001), in which
the loss function (Eq. 3) was revealed to be equivalent to the max-
imization of a likelihood function formed by combining indepen-
dently distributed asymmetric Laplace densities. Since then, asym-
metric Laplace distribution (ALD) has been widely used for the
BQR model (Alhamzawi, 2018; Benoit and Van den Poel, 2017).
Benefiting from the attractive feature of ALD, the error can be ex-
pressed by Eq. 4 (Kotz et al., 2001; Wang et al., 2016; Zou and Shi,
2020):

1-2p [ 2w
el = 7‘/‘/14— 721', 4
' p(1-p) 8Pp(1-p) “@

where &P represents the precision parameter of the ALD, W is an
exponentially distributed random variable with a rate of §P, and
Z is a random variable with a standard normal distribution. It is
wroth noting that the two random variables, W and Z, are inde-
pendent (Kotz et al., 2001; Zou and Shi, 2020).

As such, according to Egs. 1 and 4, the distribution of y can be
expressed by Eq. 5:

p(i-p)  p(1-p) )

Then, posterior distributions of all the parameters can be deduced
by Eq. 6:

Vi~ N(ag +ofx; + (- 2pW; 2W )

7 (af. af 8P) o Aapy oy

H?:l N(yﬁ Otg-i-Othi-F p(=p) ° 3p-p)
<7t (ad) x 7w (af) x 7w (W; | 8P) x 7 (8P),

(6)

where n is the sample size. As noted by Yu and Moyeed (2001),
standard conjugate prior distributions might not be available.
However, according to Eq. 6, MCMC methods can be easily ap-
plied to calculate posterior distributions of unknown parameters
(Chernozhukov and Hong, 2003; Kozumi and Kobayashi, 2011; Lee
and Neocleous, 2010; Yu and Moyeed, 2001). For more detailed
introductions on the derivation of the BQR model, please refer
to Yu and Moyeed (2001), Lancaster and Jun (2009), or Zou and
Shi (2020).

2.2.2. Bayesian change point quantile regression
The main functions of BCPQR model used in the CHL-DMS rela-
tionship development can be expressed by Eq. 7 and Eq. 8:

Yi= /35 + ﬂﬁ@a[i](xi —cpP) + gip’ (7)
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X; < cpP
X; > cpP’

¢l = {;; (8)
where cp? represent the change point of log;o transformed CHL, at
which the CHL-DMS relationship changes. 8 1 and B; , are regres-
sion slopes before and after the change point, respectively. ¢P[i] is
the step function controlling the index of regression slope. B is
the estimated value of log;y transformed DMS at the change point.
We did not seek to estimate two different regression intercepts,
but used Eq. 7 to make sure the continuity of relationship at the
change point.

Comparing functions of the BCP model with those of BCPQR
model, we can find that the major difference is the addition of a
change point in the BCPQR model structure. Benefiting from the
flexibility of Bayesian framework, it is straightforward to incorpo-
rate the estimation of a change point into the parameter estima-
tion process of the BQR model. Specifically, we can modify the pa-
rameter estimation process for a Bayesian linear regression model
to that of a BCP model (Cahill et al., 2015; Liang et al., 2019). Fol-
lowing similar steps of Eq. 2 — 4, we can easily obtain the distri-
bution expression of y in the BCPQR model (Eq. 9):

2Weniiy, i
(Sgp[i]p(‘l -D)
(9)

Accordingly, posterior distributions of all the parameters in the
BCPQR model can be expressed by Eq. 10, which can be further
deduced using MCMC methods (Wang et al., 2016):

ﬂ(ﬂg,ﬁfl,ﬂf_zﬁp,cpp)

* l_[fL]N(y 5 BE BT g (% = €PP) + S, ;‘2’3’{&‘;)
XJT(:B(I))) X ﬂ(ﬂlpl) X JT(,Blpz) X 7T<W¢p[j]_i | (S;P[i]) X T
(55;!’[1']) x T (CpP).

(1 =2p)Wop(iy, i
p(1-p)

Yi~ N(,Bg‘i‘lgf #rli] (xi - Cpp)+

(10)

2.2.3. Model selection

To conduct the model selection between the BQR model and
the BCPQR model, we calculated DIC values for each pair of mod-
els. DIC combines a measure of goodness-of-fit and a measure
of model complexity (Spiegelhalter et al., 2002). DIC is a reliable
criterion and has been widely used for Bayesian model selection
(Cahill et al., 2015; Liang et al., 2019; Meyer, 2016). A smaller DIC
indicates a better model. Generally, the model with a smaller DIC
is strongly supported if the difference of DIC values between the
two moddels is larger than 10 (Ribatet, 2020).

2.2.4. Parameter comparisons

Parameter comparison aims to test whether or not a significant
difference exists between two estimated parameters. For Bayesian
models, posterior distributions of parameters can be conveniently
used to calculate the posterior distribution of the difference be-
tween two parameters (Qian et al., 2009). In this study, to com-
pare the difference of paired parameters, we used 3000 samples
from the posterior distributions of the parameters of interest and
derived the posterior distribution of the difference between the
parameters being compared. We then calculated the 95% credible
interval of the difference and if the 95% credible interval covered
zero, then we deduced that the two parameters were not signif-
icantly different. Otherwise, the two parameters were considered
significantly different.
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We used parameter comparisons to examine the equality of re-
gression slopes at multiple regression quantiles. Classical mean re-
gression methods, including piecewise regression, should meet the
assumption of equal variance (Cade and Noon, 2003). Convention-
ally, comparing regression slopes of QR models at a range of re-
gression quantiles is an effective tool to test the equal variance as-
sumption (Das et al., 2019). If all the test results were not signifi-
cant, then the equal variance assumption was assured. Otherwise,
the assumption was violated and applications of mean regression
methods were deemed inappropriate.

We also compared parameters of BCPQR models for lakes with
those for seas. At each regression quantile, we tested differences
of four regression parameters, including By, 1.1, B1.2, and cp in
Eq. 7. In addition to indicating parameter differences, the com-
parison can also reveal differences between relationships in lakes
and those in seas. If any test result was significant, then the
model for lakes and that for seas would be considered significantly
different.

Based on the results of BCPQR models, we can examine
whether or not the BCPQR approach can enhance the understand-
ing of CHL-DMS relationships. Based on previous studies utilizing
Bayesian analysis (Cahill et al.,, 2015; Yu and Moyeed, 2001) and
examining CHL-DMS relationships (Deng et al., 2020), we expected
that the BCPQR model would provide new findings on three as-
pects of the CHL-DMS relationship. Specifically, the BCPQR model
would 1) advance the statistical modeling of CHL-DMS relation-
ships and therefore the inferences that can be made about the
ecological implications of this relationship, 2) elucidate relation-
ship differences between lakes and seas, and 3) identify factors
that might mediate the CHL-DMS relationship. The modeling of
CHL-DMS relationship includes providing a full view of the rela-
tionship at multiple regression quantiles, reflecting the limiting ef-
fect of CHL on DMS, and testing the violation of equal variance
assumption. Specifically, based on the results of BCPQR models, we
expected to be able to:

e show a relatively complete view of CHL-DMS relationships at
multiple regression quantiles, reflecting responses across much
of the DMS distribution;

illustrate the limiting effect of CHL on DMS using the upper
boundary of relationship;

o test the equality of regression slopes at multiple regression
quantiles to determine whether or not a mean regression
method is adequate to develop a reliable CHL-DMS relationship;
detect relationships differences between lakes and seas at mul-
tiple regression quantiles;

explore whether or not another variable (i.e. pH) influences the
limiting effect of CHL on DMS in lakes.

All computations were conducted using the R software (ver-
sion 4.0.2, R Core Team, 2020). We used the JAGS software (ver-
sion 4.3.0, Plummer, 2017) for parameter estimation of all the
BQR and BCPQR models. We called JAGS from R using the rjags
(Plummer, 2019) and R2jags (Su and Yajima, 2020) packages. Dif-
fuse priors were used for all the parameters. We used four chains
with random initial values and ran 1,000,000 iterations for each
chain. The first half of the iterations were used for the burn-in pro-
cess, while the second half were used for summarizing the poste-
rior distribution. Model convergence was evaluated by the Gelman-
Rubin convergence statistic (Rj (Brooks and Gelman, 1998) and as-
sured by R°< 1.10 (Filstrup et al., 2017). Code for model develop-
ment and parameters estimation are available in the supplemen-
tary materials.
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Table 1

Model comparison results using DIC to compare a Bayesian quantile
regression (BQR) model and a Bayesian change point quantile regres-
sion (BCPQR) model for describing CHL-DMS relationships in lakes
and seas. DIC values are provided for each model and quantile. The
DIC difference (“BQR - BCPQR”) at each regression quantile was cal-
culated by subtracting the DIC value of the BQR model from the DIC
value of the BCPQR model.

Regression quantile

Watbtbddy

0.1 0.3 0.5 0.7 0.9
LakéBQR 386.8 348.6 3132 3321 335.0
BCPQR 1752 2263 2331 267.2  275.0
BQR - BCPQR  211.6 1223  80.2 64.8 60.0
SeasBQR 827.6  759.1 7123  753.1 770.2
BCPQR 681.3 6370 6240 6836 7225

BQR - BCPQR  146.3 1221 88.4 69.5 47.7

3. Results
3.1. Model selection

DIC values for each pair of BQR and BCPQR models at each re-
gression quantile in lakes or seas are summarized in Table 1. The
DIC difference was calculated by subtracting the DIC value of the
BQR model from the DIC value of BCPQR model. For all model
pairs, the BCPQR model had a much smaller DIC value compared
with the BQR model (DIC differences > 47 for all comparisons;
Table 1). According to Ribatet (2020), a DIC difference larger than
10 indicates that the model with a larger DIC value has no sup-
port relative to the model with the lowest DIC value. Therefore,
DIC results support the BCPQR model for describing the CHL-DMS
relationship at all regression quantiles and in both lakes and seas.

3.2. Parameter estimation

Because the BCPQR model was the top-ranked model based on
DIC, we only reported parameter estimates for the BCPQR mod-
els. Posterior distributions of the four key parameters are shown
in Fig. 1. Because regression slopes were all positive before the
change point and post-change point slopes were all negative, the
regression parameter, By, can be interpreted as the maximum of
log1oDMS at the corresponding regression quantile according to
Eq. 7, as noted in Fig. 1a. The parameter B increased with increas-
ing regression quantile, which is expected because the observed
DMS should be greater at higher quantiles. From the 0.1 quantile
to the 0.9 quantile, the posterior mean of By increases from 2.08
to 2.98 for lakes and from 2.16 to 3.26 for seas, corresponding to
an average increase of DMS from 120 ng/L to 955 ng/L for lakes
and from 145 ng/L to 1820 ng/L for seas.

As for the estimated change points of logoCHL (cp, Fig. 1b),
posterior means ranged from 0.656 to 0.828. This corresponds to
CHL concentrations on the raw scale of 4.53 ug/L and 6.73 ug/L,
which is a relatively narrow range. Comparing change points of
BCPQR models for lakes and those for seas, there are large over-
laps in posterior distributions at all the regression quantiles and
the posterior means of the change points are very similar, except
for those at the 0.1 regression quantile.

Posterior means of the slopes before the change point for lakes
varied substantially with regression quantile, while those for seas
were relatively stable (Fig. 1c). Estimates for lakes are also more
uncertain compared to estimates for seas. However, for the slopes
after the change point, the opposite is true. That is, the posterior
means of slopes after the change point for lakes were relatively
stable, while those for seas varied with regression quantile and are
more uncertain (Fig. 1d). In addition, for seas, the absolute value of
slopes increases before the change point with increasing regression
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quantile (Fig. 1c) and decreases after the change point (Fig. 1d).
For lakes, before the change point, the regression slope decreases
except at the 0.9 quantile (Fig. 1c). After the change point, the re-
gression slopes show no apparent pattern (Fig. 1d).

4. Discussion
4.1. Relationships at multiple regression quantiles

While a mean regression method, e.g., the piecewise linear re-
gression used in Deng et al. (2020), focuses on the mean of DMS
distribution, the BCPQR model revealed a more complete view of
the CHL-DMS relationships at multiple regression quantiles (Fig. 2),
thus allowing for a more thorough understanding of the response
of DMS to changes in CHL across the DMS distribution.

In practice, it is difficult to obtain the true upper boundary of
the relationship due to the lack of data at the tail ends of the
distribution. However, the model at an upper regression quantile
provides a reasonable approximation of the true upper boundary
(Cade et al., 1999). Therefore, if we are interested in the upper
boundary of the CHL-DMS relationship, which generally represents
the limiting effect of CHL on DMS, we can set the regression quan-
tile to be 0.9 (top curves in Fig. 2a & b). Similarly, we could explore
the relationship at the 0.1 quantile if we want to explore the rela-
tionship when DMS is mainly limited by factors other than CHL.
Furthermore, combining prediction results at the 0.1 and 0.9 quan-
tiles results in the 80% prediction interval of the DMS distribution,
if the range of the DMS distribution is of interest.

It is also convenient to conduct uncertainty analysis for regres-
sion parameters (Fig. 1) and for predicted DMS values (shaded re-
gions in Fig. 2). In addition, the results provide a visual compari-
son of relationship differences at multiple regression quantiles. For
the relationship in seas, DMS increases faster before the change
point, but reduces slower after the change point with increasing
regression quantile (Fig. 2b, also revealed by the parameter estima-
tion results in Fig. 1). The CHL-DMS relationship in lakes varies but
shows no monotonic trend with the change of regression quantile
(Fig. 2a). The variations among regression slopes (Fig. 1) and the
relationship differences at multiple regression quantiles (Fig. 2) re-
flect varied responses to CHL among different parts of DMS dis-
tribution. These observed differences in CHL-DMS relationships at
different quantiles and before and after change points highlights
the fact that multiple mechanisms and processes are likely in-
volved in governing CHL-DMS dynamics and that these drivers may
differ between seas and lakes. Currently, we do not have specific
hypotheses regarding what drivers might be involved; however,
identifying primary drivers and if these drivers vary in importance
as a function of CHL or DMS concentrations represents an area of
meaningful future research.

4.2. Limiting effect of CHL on DMS

The theoretical basis of limiting effect comes from Liebigs
law of the minimum, in which a limiting factor is the one
least available among those factors affecting the response variable
(Cade et al,, 1999). In our analysis, the limiting effect is when CHL
is the limiting factor of DMS - which can be illustrated by the
upper quantile of the CHL-DMS relationship (Fig. 3). In contrast,
piecewise linear regression results (solid lines in Fig. 3) cannot
quantify such a limiting effect (Cade et al., 1999).

Following common practice of QR (Joseph et al., 2016; Keeley
et al., 2012; Monkkonen et al., 2017), we employed the relation-
ship deduced by the BCPQR model at the 0.9 regression quantile
as the upper boundary of CHL-DMS relationship to reflect the lim-
iting effect of CHL on DMS. We back-transformed log;qCHL and
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Fig. 1. Posterior summaries of BCPQR model parameters at multiple regression quantiles for lakes (grey symbols) and seas (black symbols). Solid points represent posterior
means, while the thin and thick lines represent the 50% and 95% credible intervals, respectively.

log1oDMS to their raw scales (Fig. 3). On the raw scales, the dif-
ference between the upper boundary of CHL-DMS relationship in
lakes and that in seas is apparent. The upper boundary in seas
is much greater than that in lakes. In addition, before the change
point, DMS increases more sharply with an increase in CHL in seas
when compared to that in lakes. Both upper boundaries are right
skewed, which means with the increase of CHL, DMS increases
faster before the change point and then decreases slower after the
change point.

4.3. Equality of regression slopes

The examination of equality of regression slopes can determine
whether or not a mean regression method violates the equal vari-
ance assumption (Das et al., 2019). Parameter differences of paired
slopes are shown in Fig. 4. For slope differences of BCPQR models
in seas, 95% credible intervals of several paired slopes (e.g., “0.5-
0.1” in Fig. 4a and “0.9-0.1" in Fig. 4b) do not cover zero, indicating
significant differences. Therefore, the equal variance assumption is
violated. That is, mean regression methods are not appropriate for
developing the CHL-DMS relationship in seas. Although some mean
regression methods could be used to deduce some quantiles of the
DMS distribution (Borsuk et al., 2002), it can be problematic when

trying to predict some quantiles of DMS distribution using a mean
regression method because of the violation of the equal variance
assumption (Cade and Noon, 2003; Das et al., 2019).

For the lake model, there were no significant differences be-
tween paired slopes (Fig. 4). However, the sample size is relatively
small and uncertainties of regression slopes were large (Fig. 1c
& d), which contributed to the insignificance of parameter differ-
ences. Before additional data are included to further confirm re-
sults of parameter differences, piecewise linear regression methods
might be used with caution for the development of CHL-DMS rela-
tionship in lakes.

While the piecewise linear regression method might not be ap-
propriate for the development of CHL-DMS relationship in seas, the
BCPQR model is not constrained by the equal variance assumption
(Cade and Noon, 2003) and thereby can be used as a reliable and
robust tool for DMS prediction. Because the median regression is a
robust alternative to ordinary linear regression (Koenker and Hal-
lock, 2001), the BCPQR model at the 0.5 regression quantile can act
as an effective alternative to the piecewise linear regression. In ad-
dition, because of the violation of equal variance assumption, the
piecewise linear regression should not be used to deduce predicted
quantiles of the DMS distribution (Das et al., 2019); whereas, re-
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Fig. 2. Estimated fitted lines of the CHL-DMS relationship from the BCPQR model for lakes (a) and for seas (b). From bottom to top, dashed lines represent posterior means
of predicted log;oDMS at the 0.1, 0.3, 0.5, 0.7, and 0.9 quantiles. The corresponding shaded region represent the 50% credible intervals. We show the 50% credible intervals to
improve visual interpretation. For the 95% credible intervals, please refer to Fig. S1. Solid lines are results of piecewise regression (obtained using the segmented package
in R (Muggeo, 2008)), which are close to coresponding lines of BCPQR models at the 0.5 regression quantile.
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Fig. 3. The limiting effect of CHL on DMS estimated by the CHL-DMS relationship at the 0.9 regression quantile in lakes (a) and in seas (b). Lines represent means of
predicted DMS concentrations. The corresponding shaded regions represent the 95% credible intervals of predicted DMS concentrations. For comparison, solid lines are
piecewise linear regression results of the logioCHL — log1oDMS relationship obtained using the segmented package in R (Muggeo, 2008).

liable intervals of predicted DMS distributions are possible using
the BCPQR model (Heiskary and Bouchard, 2015; Kampichler and
Sierdsema, 2018).

4.4. Relationship differences between lakes and seas

We compared the CHL-DMS relationships in lakes to those in
seas by comparing the parameters of the BCPQR models at mul-

tiple regression quantiles (Fig. 5). The parameter comparisons pro-
vide statistical evidence that the CHL-DMS relationship does in fact
differ between lakes and seas. Considering that By in the BCPQR
model represents a logg transformed DMS concentration (Eq. 7,
Fig. 1a), when calculating the difference, we retransformed Sy to
the raw unit of DMS (ng/L, Fig. 5a). With increasing regression
quantile, the difference of maximum DMS increases. Specifically,
at the 0.7 and 0.9 quantiles, posterior means of the differences are
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more than 500 ng/L (DMS concentratons in seas are higher than in
lakes), which are large considering the average DMS concentrations
for lakes and seas are only 175 ng/L and 378 ng/L, respectively.
We also retransformed the cp parameter into the raw units of
CHL concentration ug/L) to calculate differences between change
points for the lake and seas models (Fig. 5b). We found no signifi-
cant differences. Particularly, posterior means of differences were
close to zero, ranging from -1.78 ug/L to 0.59 ug/L. Also, for
each ecosystem type, tests on paired cp values showed no sig-
nificant differences for all combinations of regression quantiles
(Fig. S2). These results indicate that the change point of CHL at
which the CHL-DMS relationship changes is consistent at multi-
ple regression quantiles and for different ecosystem types. While
Deng et al. (2020) revealed that change points were very close for
lakes and seas using the piecewise linear regression method, we
confirmed this conclusions at multiple regression quantiles based
on results from the BCPQR models. It is worth emphasizing, as
previously mentioned, that despite the relatively consistent loca-
tion of CHL change points, corresponding DMS concentrations are
substantially different at some regression quantiles (Fig. 5a).
Before the change point, regression slopes of BCPQR models for
lakes are significantly larger than those for seas, except for those at
the 0.7 regression quantile (Fig. 5¢). While Deng et al. (2020) found

that the slope before the change point for lakes were almost twice
as large as the value for seas (1.22 and 0.62, respectively), our re-
sults show that the ratio is not as simple as two at varied quan-
tiles. According to the results of BCPQR models (Fig. 1c), the ratio
would be 4.3, 2.7, 2.4, 2.0, and 2.8 for the five regression quan-
tiles from 0.1 to 0.9, respectively. As for regression slopes after the
change point, the only significant difference was at the 0.1 regres-
sion quantile (Fig. 5d).

Considering significant differences of some regression parame-
ters between models for lakes and those for seas, we conclude that
the CHL-DMS relationship in lakes and that in seas are different
at each regression quantile, despite the consistency of CHL change
points. Obviously, the piecewise linear regression method cannot
reveal the consistency of CHL change points for lakes and seas and
cannot examine parameter and relationship differences at multiple
regression quantiles.

The CHL-DMS relationship differences between lakes and seas
indicates that some drivers or processes controlling the emis-
sion of DMS are likely to be different in lakes and seas.
Deng et al. (2020) revealed the effect of pH on the CHL-DMS re-
lationship in lakes and also extended the finding to seas. How-
ever, based on our results, currently, transferring any potential
mechanisms controlling DMS in either lake or sea ecosystems
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into the other ecosystem may be misleading. A possible explana-
tion for the ecosystem-dependent relationship might be the differ-
ence in salinity between lakes and seas, with DMS emission likely
increasing with increasing salinity concentrations (Gibson et al.,
1991; Taalba et al., 2013) - concentrations that promote the pro-
duction of dimethylsulfoniopropionate (major precursor for DMS)
(Curson et al., 2017) Importantly, however, additonal efforts are
needed to explore drivers and processes leading to the relationship
differences between lakes and seas.

4.5. Impact of pH on CHL-DMS relationship

The pH was emphasized to be the key factor impacting the
CHL-DMS relationship in Deng et al. (2020). Specifically, the emis-
sion of DMS would increase with increasing CHL when pH < 8.1,
and would decease when pH 8.1 (Deng et al., 2020). We reevalu-
ated the effect of pH on the limiting effect of CHL on DMS. We
first defined a term, emission potential, to represent the difference
between the maximum emission (when DMS was solely limited
by CHL) and observed DMS emission. The emission potential can

be calculated by the predicted upper boundary minus observed
DMS values. Next, assuming that pH is the key factor impacting
DMS emission, pH should explain a large proportion of variation
of emission potential. Specifically, since the pH threshold value fa-
voring DMS emission is 8.1, the emission potential of DMS should
decrease with increasing pH when pH < 8.1, and should increase
with additional increases in pH when pH 8.1. That is, the observed
DMS should become closer to the upper boundary and the emis-
sion potential should become smaller when pH approaches 8.1.

To examine whether or not the above assumption was rea-
sonable, we used the predicted DMS emissions deduced from the
BCPQR model for lakes at the 0.9 regression quantile minus the
observed DMS concentrations to reflect the emission potential of
DMS (Fig. 6). Surprisingly, we found that pH does not explain sig-
nificant variation in the DMS emission potential. The assumption
that pH is a key factor impacting the CHL-DMS relationship is not
supported by our results.

Although there is a significant change point of pH in the pH-
DMS relationship (refer to Fig. 1c in Deng et al. (2020)), consid-
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Fig. 6. The effect of pH on the emission potential of DMS in lakes. The emission potential is calculated by the predicted upper boundary (relationship deduced by the BCPQR
model at the 0.9 regression quantile) minus the observed DMS value. Observed pH values were not available for seas, so the corresponding analysis was not performed.

ering the obvious positive pH-CHL correlation (refer to Fig. 1d in
Deng et al. (2020)) and that CHL can be a causal variable impact-
ing both pH and DMS (Charlson et al., 1987; Nakano and Watan-
abe, 2005), the causal effect of pH on the CHL-DMS relationship
change point is likely a result of a statistical correlation resulting
from a shared environmental driver (i.e., CHL drives DMS and pH).
However, it is hard to distinguish the causal effect from correlation
using a mean regression method. By contrast, the BCPQR model is
a useful tool for such an analysis by introducing the emission po-
tential and linking it to the possible driver. Note that the calcula-
tion of emission potential relies on the upper boundary deduced
from the BCPQR model.

4.6. Implications for understanding CHL-DMS relationships

In this study, we proposed a novel BCPQR model to quantify
the CHL-DMS relationship in aquatic ecosystems. Here, we sum-
marize how the BCPQR approach enhanced the understanding of
shifting CHL-DMS relationships by comparing it with the applica-
tion of piecewise regression method:

e BCPQR models provided a relatively complete view of shifting
CHL-DMS relationships at multiple regression quantiles, rather
than only focusing on the mean of the DMS distribution, as
done with piecewise linear regression.

The upper boundary of the relationship was quantified by the
BCPQR model at the 0.9 regression quantile, while the piece-
wise regression cannot show such an effect.

We revealed that the equal variance assumption was violated
when applying piecewise linear regression in seas, while the
BCPQR model could be employed to predict different parts (e.g.,
the median or an interval) of the DMS distribution without be-
ing constrained by this assumption.

o We found consistency in change points of the CHL-DMS rela-
tionships for lakes and seas. However, CHL-DMS relationships
in lakes and seas were substantially different at all regression
quantiles. As such, we caution against transferring results and
inferences from one ecoystem type to another.

According to the upper boundary of CHL-DMS relationship, we
introduced and calculated the emission potential of DMS. Us-
ing this metric, we showed that pH was not likely to be the
key factor impacting the CHL-DMS relationship in lakes. While
piecewise linear regression cannot distinguish causality from

10

correlation, the application of BCPQR model might be helpful
for causality detection.

4.7. Generalizations of the proposed approach

In practice, shifting stressor-response relationsships, e.g., the
hump-shaped stressor-response relationship or other shapes of
stressor-response relationship with a change point (e.g., the sign
remains the same, but the magnitude of regression slope changes),
are not rare in ecology (Keeley et al., 2012; Liang et al., 2019; Wag-
ner and Midway, 2014). Most commonly, mean regression meth-
ods, such as the piecewise regression, have been applied to detect
the change point and develop the shifting stressor-response rela-
tionship (Massicotte et al., 2017; Wang et al., 2017). In this study,
we made a step forward in modeling shifting stressor-response
relationships in environmental and ecological research. We have
demonstrated that the BCPQR model is an effective tool to under-
stand a shifting stressor-response relationship by identifying the
change point, providing a complete view on the relationship across
the distribution of the response variable, examining significance of
parameter differences, making robust predictions, and conducting
uncertainty analysis.

Moreover, benefiting from the flexibility of Bayesian framework,
the BCPQR model can be easily modified, which will allow for it
to be broadly applied in ecological investigations. Potential modifi-
cations to the BCPQR model to address other ecological questions
include:

o Detecting change points over time. Time could be added as the
predictor to estimate a temporal change point, similar to what
Cahill et al. (2015) did for a BCP model.

Multivariate regression. Adding other predictor variables and

modeling change points is straightforward under a Bayesian

framework (Liang et al., 2019).

Detecting multiple change points. The model can be modified

to accommodate multiple change points, which has been done

using other modeling approaches (Beaulieu et al., 2009; Jochner

and Menzel, 2015).

« Binary or discrete response variables. The CHL-DMS relationship
is a continuous response case. In environmental and ecological
studies, the response variable is often binary or discrete (e.g.,
count data) (Wagner and Midway, 2014). Since the BQR model
can accommodate binary or discrete response variables (Benoit
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and Van den Poel, 2017; Lee and Neocleous, 2010), the BCPQR
model can as well.

o Hierarchical modeling. The hierarchical structure of regression
parameters (e.g., regression slopes before and after the change
point) can be incorporated into the modeling, as in a hierarchi-
cal BCP model (Authier et al., 2011; Thomson et al., 2010).

Therefore, the proposed BCPQR model is expected to have
great potential for generalizing to other ecological questions, which
will help to better understand shifting stressor-response relation-
ships in environmental and ecological studies. Note that several
other QR methods, such as polynomial regression (Fornaroli et al.,
2016; Youngflesh et al., 2017), spline smoothing (Keeley et al.,
2012), quantile regression forest (Kampichler and Sierdsema, 2018;
Veronesi and Schillaci, 2019), and quantile regression neural net-
works (Cannon, 2011) can be used to fit a nonlinear stressor-
response relationship and thereby might be applicable to the de-
velopment of a shifting CHL-DMS relationship. Compared with
these methods, the BCPQR model is parameterized to have fewer
parameters, which can effectively avoid over fitting.

The novelty of our research is due to two primary factors: the
proposal of the novel BCPQR model and the enhanced understand-
ing of CHL-DMS relationships. In this study, for the first time,
we integrated the BCP model and the BQR model to reveal shift-
ing stressor-response relationships at multiple regression quantiles.
The proposal of the novel approach thereby contributes to the re-
search field of environmental and ecological modeling. We applied
our novel model to reevaluate published CHL-DMS relationships in
aquatic ecosystems, by which we found several meaningful and in-
sightful findings regarding the CHL-DMS relationship insight that
would not be possible using a traditional piecewise linear regres-
sion approach. The insight derived from the proposed approach
may also help improve overall estimates of DMS emission from
aquatic ecosystems.

5. Conclusions

Integrating the BCP model and the BQR model, we proposed a
novel BCPQR model that was able to detect a change point in the
QR. We employed the proposed approach to investigate the CHL-
DMS relationship in aquatic ecosystems. We revealed new findings
in the CHL-DMS relationship modeling, relationship differences be-
tween lakes and seas, and factors impacting the CHL-DMS relation-
ship. We thereby concluded that the BCPQR model could indeed
enhance the understanding of shifting CHL-DMS relationship. We
believe that the BCPQR approach can be generalized to other cases
where shifting stressor-response relationships are observed.
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