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ABSTRACT 

The Boltzmann distribution lies at the heart of essentially all of statistical thermodynamics. In most 
textbooks, this distribution is introduced either ad hoc or it is mathematically derived by constrained 10 
entropy optimization using the method of Lagrange multipliers. Unfortunately, when students enroll in 
a statistical thermodynamics course, many are not familiar with this method from their prerequisite 
calculus courses. The recent availability of powerful computational devices for essentially all students 
provides an alternative way to explore the origin of qualitative and quantitative aspects of the 
Boltzmann distribution. Here we demonstrate a straightforward simulation approach to obtain an 15 
intuitive understanding of this distribution. We also make available concise and easily understandable 
computer programs in MATLAB and Python providing an opportunity for an active learning experience 
of this fundamental law. 
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The Boltzmann distribution (BD), sometimes also referred to as the Boltzmann distribution law or the 

Boltzmann factor, 

pi =
e−Ei kT

e−Ei kT
i
∑

      (1) 

was introduced by Ludwig Boltzmann 150 years ago. It applies to a system of N identical molecules at 

absolute temperature T where pi is the probability that any particular molecule is in state i with energy 30 

Ei, where k is the Boltzmann constant. The BD is fundamental and has a remarkably simple form, 

which makes it one of the most celebrated relationships in all of physical chemistry and physics. 

Starting out from the Boltzmann distribution many key results of statistical thermodynamics can be 

derived, such as the Maxwell-Boltzmann velocity distribution, equipartition, free energies, heat 

capacities, and equilibrium constants of chemical reactions. The central role of the BD is also 35 

highlighted in popular Physical Chemistry textbooks, such as “The Boltzmann distribution is the key 

to understanding a great deal of chemistry. … There is, perhaps, no more important unifying concept 

in chemistry.”1 or “The Boltzmann factor is one of the most fundamental and useful quantities of 

physical chemistry”.2 

 The BD implies that for a system at thermodynamic equilibrium at positive absolute 40 

temperature T, high-energy states have a lower probability than low-energy states and, hence, in the 

absence of degeneracy the most populated state is always the ground state. Interestingly, when asking 

physical chemistry students in the classroom what they expect which state has the highest population 

as a function of temperature, many think that for increasing temperature the highest populated state 

will also have a higher energy. This misconception is a consequence of the fact that the BD has little 45 

analogy in daily life (perhaps with the exception of the altitude dependence of pressure of the 

isothermal atmosphere) and, thus, students arrive with little or no intuition even at a qualitative level 

when they encounter statistical thermodynamics for the first time in college.   

 In most textbooks, the BD is introduced either ad hoc or it is derived using the elegant 

mathematical Lagrange multiplier method.3 Unfortunately, when they enroll in a statistical 50 

thermodynamics course, an increasing number of students are not familiar with this method from 
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their prerequisite calculus courses, which makes the derivation of the BD a double challenge that from 

a didactical point of view should be avoided. Even for students familiar with Lagrange multipliers, the 

emergence of the BD, which is the energy distribution that maximizes the entropy of a large system 

when the average energy per molecule (or the total energy of the system Etot) is kept at a predefined 55 

value, is perceived as a “deus ex machina”. As a consequence, students often fail to appreciate the 

precise mathematical form of the BD and even more importantly they often do not develop much 

intuition for the qualitative characteristics of this fundamental law.  

 Over the years, alternative analytical approaches for the derivation or rationalization of the BD 

in the classroom have been introduced. Some are mathematically similarly abstract as the Lagrange 60 

multiplier method,4 focus on special cases (such as the 2-level system),5 show that the free energy of 

the BD is a local minimum,6 or use analytical combinatorial approaches for finite systems with equally 

spaced energy levels.7,8,9  

 Fortunately, the recent availability of powerful desktop and portable computational devices 

available to essentially all students provides an alternative opportunity to explore the origin of the BD. 65 

It should be emphasized that the goal here is not to re-derive the BD (Eq. (1)). Rather, the goal is to 

provide students a framework that allows them explore by means of simple “numerical experiments” 

the most probable energy distributions on their own and compare them with the BD. Once some 

intuition has been developed for the BD, the students can be acquainted with a formal derivation and 

other analytical approaches, such as the ones mentioned above.7,8,9    70 

 The approach we propose here uses computer simulations for the straightforward counting of 

energy configurations that are consistent with the total energy constraint. The system consists of N 

distinguishable molecules numbered k = 1, 2, …, N where each of them can have an energy Ei(k)  

without degeneracy. For simplicity, we assume that the energies available to each molecule are 

equidistantly spaced, akin to the 1D quantum-mechanical harmonic oscillator, although other energy 75 

level diagrams can of course be used instead: 

𝜀! = 𝑖 ⋅ 𝜀             where   𝑖 = 0,1,2,… , 𝑖!"#    (2) 

where ε is the energy spacing. A microstate is uniquely defined by the energies ε=( ε (1), ε (2), …, ε (N)) and 

has total energy  
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Etot = ε (k )
k=1

N
∑         (3) 80 

We now use a computer program to generate random energy vectors ε by choosing integers i from a 

uniform random distribution from 0 to imax. Importantly, we only store an energy vector ε when it 

fulfills (or nearly fulfills) Eq. (3) and repeat the procedure many times, e.g. Ntrial = 105 to 108. This key 

concept our approach is built on uses the “equal a priori probability postulate” of statistical 

mechanics. This central postulate, which can be motivated but not proven, assumes that each 85 

microstate of a microcanonical ensemble has the same probability. It can be viewed as an application 

of the “principle of indifference” in statistics, which states that in the absence of any further 

information or constraints, equal probabilities should be assigned to each allowed state. As a result, 

we obtain a set of unbiased microstates that all have the same total energy Etot, thereby representing a 

microcanonical ensemble. Next, we count the relative frequency that any particle has energy εi 90 

according to Eq. (2) and convert this into probabilities pi. We finally plot pi vs. εi to visualize the 

statistical energy distribution adopted by the N particles. For sufficiently small N, this procedure can 

be done manually through exact enumeration (Table 1), but for larger N either some more 

sophisticated combinatorics methods are needed7,8,9 or a modern computer as demonstrated here. 

Table 1. Allowed energy configurations for N = 4 distinguishable molecules (A, B, C, D) with total 
energy Etot = 6ε. The degeneracy Wj accounts for all possible permutations. 

 Energy of each molecule in multiples of ε  

Energy 
Configuration, 

j 

E(A) E(B) E(C) E(D) Degeneracy Wj a 

1 0  0 0 6 4 

2   0 0 1 5 12 

3 0 0 2 4 12 

4 0 0 3 3 6 

5 0 1 1 4 12 

6 0 1 2 3 24 

7 0 2 2 2 4 

8 1 1 1 3 4 

9 1 1 2 2 6 

a Determination of the degeneracies Wj are simple albeit instructive combinatorics problems for the students. 

 95 
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 To illustrate the approach, for N = 4 molecules and a total energy Etot = 6ε an explicit 

enumeration of all energy configurations is possible as shown in Tables 1, 2, and Figure 1A. The 

degeneracy Wj accounts for all possible permutations of a given energy configuration. Even for such a 

small molecular ensemble, the populations of the energies are non-uniformly distributed with the 

lowest energy level having the highest population and populations belonging to increasing molecular 100 

energies decaying monotonously, which is consistent with the BD, although the distribution is 

polynomial rather than exponential because of finite size effects.  

 

Table 2. Total number of occurrences of molecular energy ε i = i ε (i= 0, 1, …, 6) of 
example of Table 1. 

Molecular energy in 
multiples of ε 

0 1 2 3 4 5 6 

Number of 
occurrences 

112 84 60 40 24 12 4 

Probability pi 0.333 0.250 0.179 0.119 0.071 0.036 0.012 
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 105 
Figure 1. (A) Probability distribution {pi} of Table 2 of molecular energies εi = i ε (i = 0, 1, …, 6) for 4 molecules with total energy Etot = 6ε. (B) 
Visual representation of the 9 configurations of Table 1 with Etot = 6ε with their degeneracies Wi indicated at bottom. Note that molecules with 
zero energy have zero block size and are not depicted in the figure. Even when one does not account for degeneracies, the higher propensity 
for lower energy states is clearly visible, e.g. ε(k) = ε occurs 9 times, ε(k) = 3ε occurs 4 times, and ε(k) = 4ε occurs only 2 times.   
 110 

 For an analogy in daily life, we like to compare the role of the single contribution ε(k) to the 

predefined Etot to a mason who needs to construct a wall of predefined height (Etot) by stacking on top 

of each other a predefined number of rocks (N) of various sizes ε(k). Each rock size is equally abundant. 

The mason randomly picks them and builds the wall until it has reached the correct height. If by 

chance the mason only picks small rocks, he cannot reach the required height and if he only picks 115 

large rocks, the wall will be too tall. Therefore, statistically speaking, he must strike a balance between 

small and large rocks. As the rocks are chosen randomly, a general preference for smaller rocks will 

naturally emerge as they offer more viable combinations to fit them with (on average) fewer larger rocks 

(Figure 1B). 
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 With larger N, the populations increasingly approach an exponential distribution consistent 120 

with the Boltzmann law in the thermodynamic limit as illustrated in Figure 2 with N = 30 for two 

different total energies Etot using the MATLAB or Python computer programs described below. As 

usual, the level of exponential behavior can be easiest assessed visually in a log-linear plot. The nearly 

perfectly straight lines (Figure 2B) demonstrate that a system with N = 30 molecules is already 

approaching the thermodynamic limit and, hence, temperature T is defined and can be extracted via 125 

the slope -1/kT. Consistent with intuition, Figure 2B shows how a higher total energy Etot (red lines) 

leads to a probability distribution {pi} with a shallower slope corresponding to a higher temperature T. 

The relationship between Etot and T can be explored empirically by computer simulations requiring 

only minimal modifications of the computer code. The simulations also demonstrate that although the 

system is isolated (microcanonical ensemble), for large N the energies of individual molecules 130 

increasingly adopt a BD as they use the other molecules as a heat bath.   
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Figure 2. Simulation results for probability distribution {pi} of molecular energies εi = i ε (i= 0, 1, …, 100) for N = 30 particles and average 135 
energy Etot/N = 30ε (blue) and Etot/N = 36ε (red) plotted with (A) linear axes and (B) log-linear axes. The lines in (B) are almost straight (see 
dashed straight lines for comparison) indicating that the thermodynamic limit has almost been reached.   

 

 In order to take full advantage of this empirical computer-assisted counting approach for the 

rationalization of the BD, students need to know some basic computer programming. However, the 140 

availability of the MATLAB and Python programs provided here allows students with even only very 

little prior programming experience to experiment with input parameters, such as the size N of the 

ensemble, the total energy Etot, the number of Ntrials or alternative energy level diagrams. The MATLAB 
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and Python programs are available via Github (https://github.com/active-learning-

boltzmann/boltzmann). 145 

 As part of the active learning experience for students, it is useful to discuss the findings also in 

qualitative and semi-quantitative terms. This includes the discussion of small ensemble effects that 

give rise to non-exponential behavior of the probability distribution, which are typically not covered in 

statistical thermodynamics courses, the change of the functional form of the probability distribution 

as a function of the number of molecules N, the effect of a change of Etot on the probability 150 

distribution, the relationship between the slope -1/kT of Figure 2B and Etot, population inversion and 

negative temperatures when i has a ceiling, and the effect of an energy level diagram other than 

equidistantly spaced levels (e.g. with energies that scale with a positive or negative power of i or have 

some other predefined values). Active learning aspects can also encompass basic, but important 

elements of scientific computing, such as the discussion of uncertainties and convergence for different 155 

values of Ntrial, the meaning of pseudo-random vs. random numbers and the role of the random seed.   
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