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ABSTRACT

The Boltzmann distribution lies at the heart of essentially all of statistical thermodynamics. In most
textbooks, this distribution is introduced either ad hoc or it is mathematically derived by constrained
entropy optimization using the method of Lagrange multipliers. Unfortunately, when students enroll in
a statistical thermodynamics course, many are not familiar with this method from their prerequisite
calculus courses. The recent availability of powerful computational devices for essentially all students
provides an alternative way to explore the origin of qualitative and quantitative aspects of the
Boltzmann distribution. Here we demonstrate a straightforward simulation approach to obtain an
intuitive understanding of this distribution. We also make available concise and easily understandable
computer programs in MATLAB and Python providing an opportunity for an active learning experience
of this fundamental law.
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The Boltzmann distribution (BD), sometimes also referred to as the Boltzmann distribution law or the

Boltzmann factor,
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was introduced by Ludwig Boltzmann 150 years ago. It applies to a system of N identical molecules at
absolute temperature T where p; is the probability that any particular molecule is in state i with energy
E;, where k is the Boltzmann constant. The BD is fundamental and has a remarkably simple form,
which makes it one of the most celebrated relationships in all of physical chemistry and physics.
Starting out from the Boltzmann distribution many key results of statistical thermodynamics can be
derived, such as the Maxwell-Boltzmann velocity distribution, equipartition, free energies, heat
capacities, and equilibrium constants of chemical reactions. The central role of the BD is also
highlighted in popular Physical Chemistry textbooks, such as “The Boltzmann distribution is the key
to understanding a great deal of chemistry. ... There is, perhaps, no more important unifying concept
in chemistry.”! or “The Boltzmann factor is one of the most fundamental and useful quantities of
physical chemistry”.2

The BD implies that for a system at thermodynamic equilibrium at positive absolute
temperature T, high-energy states have a lower probability than low-energy states and, hence, in the
absence of degeneracy the most populated state is always the ground state. Interestingly, when asking
physical chemistry students in the classroom what they expect which state has the highest population
as a function of temperature, many think that for increasing temperature the highest populated state
will also have a higher energy. This misconception is a consequence of the fact that the BD has little
analogy in daily life (perhaps with the exception of the altitude dependence of pressure of the
isothermal atmosphere) and, thus, students arrive with little or no intuition even at a qualitative level
when they encounter statistical thermodynamics for the first time in college.

In most textbooks, the BD is introduced either ad hoc or it is derived using the elegant
mathematical Lagrange multiplier method.3 Unfortunately, when they enroll in a statistical

thermodynamics course, an increasing number of students are not familiar with this method from
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their prerequisite calculus courses, which makes the derivation of the BD a double challenge that from
a didactical point of view should be avoided. Even for students familiar with Lagrange multipliers, the
emergence of the BD, which is the energy distribution that maximizes the entropy of a large system
when the average energy per molecule (or the total energy of the system Ei:) is kept at a predefined
value, is perceived as a “deus ex machina’. As a consequence, students often fail to appreciate the
precise mathematical form of the BD and even more importantly they often do not develop much
intuition for the qualitative characteristics of this fundamental law.

Over the years, alternative analytical approaches for the derivation or rationalization of the BD
in the classroom have been introduced. Some are mathematically similarly abstract as the Lagrange
multiplier method,* focus on special cases (such as the 2-level system),5> show that the free energy of
the BD is a local minimum,® or use analytical combinatorial approaches for finite systems with equally
spaced energy levels.7:8.9

Fortunately, the recent availability of powerful desktop and portable computational devices
available to essentially all students provides an alternative opportunity to explore the origin of the BD.
It should be emphasized that the goal here is not to re-derive the BD (Eq. (1)). Rather, the goal is to
provide students a framework that allows them explore by means of simple “numerical experiments”
the most probable energy distributions on their own and compare them with the BD. Once some
intuition has been developed for the BD, the students can be acquainted with a formal derivation and
other analytical approaches, such as the ones mentioned above.78.9

The approach we propose here uses computer simulations for the straightforward counting of
energy configurations that are consistent with the total energy constraint. The system consists of N
distinguishable molecules numbered k = 1, 2, ..., N where each of them can have an energy Ei
without degeneracy. For simplicity, we assume that the energies available to each molecule are
equidistantly spaced, akin to the 1D quantum-mechanical harmonic oscillator, although other energy
level diagrams can of course be used instead:

g=1-¢€ where i =0,1,2, ..., {54y (2)
where ¢ is the energy spacing. A microstate is uniquely defined by the energies e=(¢(), ¢, ..., e M) and

has total energy
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We now use a computer program to generate random energy vectors £ by choosing integers i from a
uniform random distribution from O to imax. Importantly, we only store an energy vector ¢ when it
fulfills (or nearly fulfills) Eq. (3) and repeat the procedure many times, e.g. Niiat = 105 to 108. This key
concept our approach is built on uses the “equal a priori probability postulate” of statistical
mechanics. This central postulate, which can be motivated but not proven, assumes that each
microstate of a microcanonical ensemble has the same probability. It can be viewed as an application
of the “principle of indifference” in statistics, which states that in the absence of any further
information or constraints, equal probabilities should be assigned to each allowed state. As a result,
we obtain a set of unbiased microstates that all have the same total energy Eiot, thereby representing a
microcanonical ensemble. Next, we count the relative frequency that any particle has energy e
according to Eq. (2) and convert this into probabilities pi. We finally plot pi vs. & to visualize the
statistical energy distribution adopted by the N particles. For sufficiently small N, this procedure can
be done manually through exact enumeration (Table 1), but for larger N either some more
sophisticated combinatorics methods are needed?-8:9 or a modern computer as demonstrated here.

Table 1. Allowed energy configurations for N = 4 distinguishable molecules (A, B, C, D) with total
energy Eiw: = 6¢. The degeneracy Wj accounts for all possible permutations.

Energy of each molecule in multiples of ¢

Energy EA) E®B) E(©) E{D) Degeneracy Wja
Configuration,
J
0 0 0 6 4
2 0] 0 1 5 12
3 0 0 2 4 12
4 0 0 3 3 6
) 0 1 1 4 12
6 0 1 2 3 24
7 0] 2 2 2 4
8 1 1 1 3 4
9 1 1 2 2 6

a Determination of the degeneracies Wj are simple albeit instructive combinatorics problems for the students.
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To illustrate the approach, for N = 4 molecules and a total energy Ew: = 6¢ an explicit
enumeration of all energy configurations is possible as shown in Tables 1, 2, and Figure 1A. The
degeneracy W, accounts for all possible permutations of a given energy configuration. Even for such a
small molecular ensemble, the populations of the energies are non-uniformly distributed with the

100 lowest energy level having the highest population and populations belonging to increasing molecular
energies decaying monotonously, which is consistent with the BD, although the distribution is

polynomial rather than exponential because of finite size effects.

Table 2. Total number of occurrences of molecular energy ¢i =i¢ (i=0, 1, ..., 6) of
example of Table 1.

Molecular energy in 0 1 2 3 4 5 6
multiples of ¢
Number of 112 84 60 40 24 12 4
occurrences
Probability pi 0.333 0.250 0.179 0.119 0.071 0.036 0.012
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Figure 1. (A) Probability distribution {p} of Table 2 of molecular energies ;=i e (i=0, 1, ..., 6) for 4 molecules with total energy E,: = 6¢. (B)
Visual representation of the 9 configurations of Table 1 with E;; = 6& with their degeneracies W;indicated at bottom. Note that molecules with
zero energy have zero block size and are not depicted in the figure. Even when one does not account for degeneracies, the higher propensity
for lower energy states is clearly visible, e.g. £ = £ occurs 9 times, ¥ = 3¢ occurs 4 times, and £* = 4 occurs only 2 times.

For an analogy in daily life, we like to compare the role of the single contribution &® to the
predefined Ei: to a mason who needs to construct a wall of predefined height (Eiw:) by stacking on top
of each other a predefined number of rocks (N) of various sizes ¢®. Each rock size is equally abundant.
The mason randomly picks them and builds the wall until it has reached the correct height. If by
chance the mason only picks small rocks, he cannot reach the required height and if he only picks
large rocks, the wall will be too tall. Therefore, statistically speaking, he must strike a balance between
small and large rocks. As the rocks are chosen randomly, a general preference for smaller rocks will

naturally emerge as they offer more viable combinations to fit them with (on average) fewer larger rocks

(Figure 1B).
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With larger N, the populations increasingly approach an exponential distribution consistent
with the Boltzmann law in the thermodynamic limit as illustrated in Figure 2 with N = 30 for two
different total energies Ei: using the MATLAB or Python computer programs described below. As
usual, the level of exponential behavior can be easiest assessed visually in a log-linear plot. The nearly
perfectly straight lines (Figure 2B) demonstrate that a system with N = 30 molecules is already
approaching the thermodynamic limit and, hence, temperature T is defined and can be extracted via
the slope -1/kT. Consistent with intuition, Figure 2B shows how a higher total energy Ei. (red lines)
leads to a probability distribution {p;} with a shallower slope corresponding to a higher temperature T.
The relationship between Ew: and T can be explored empirically by computer simulations requiring
only minimal modifications of the computer code. The simulations also demonstrate that although the
system is isolated (microcanonical ensemble), for large N the energies of individual molecules

increasingly adopt a BD as they use the other molecules as a heat bath.
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Figure 2. Simulation results for probability distribution {p} of molecular energies €;=i € (i= 0, 1, ..., 100) for N = 30 particles and average

energy E;/N = 30¢ (blue) and E;/N = 36¢ (red) plotted with (A) linear axes and (B) log-linear axes. The lines in (B) are almost straight (see
dashed straight lines for comparison) indicating that the thermodynamic limit has almost been reached.

In order to take full advantage of this empirical computer-assisted counting approach for the
rationalization of the BD, students need to know some basic computer programming. However, the
availability of the MATLAB and Python programs provided here allows students with even only very
little prior programming experience to experiment with input parameters, such as the size N of the

ensemble, the total energy Ew:, the number of Nwias or alternative energy level diagrams. The MATLAB
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and Python  programs are available via Github (https://github.com/active-learning-
boltzmann/boltzmann).

As part of the active learning experience for students, it is useful to discuss the findings also in
qualitative and semi-quantitative terms. This includes the discussion of small ensemble effects that
give rise to non-exponential behavior of the probability distribution, which are typically not covered in
statistical thermodynamics courses, the change of the functional form of the probability distribution
as a function of the number of molecules N, the effect of a change of Ei: on the probability
distribution, the relationship between the slope -1/kT of Figure 2B and Ei., population inversion and
negative temperatures when i has a ceiling, and the effect of an energy level diagram other than
equidistantly spaced levels (e.g. with energies that scale with a positive or negative power of i or have
some other predefined values). Active learning aspects can also encompass basic, but important
elements of scientific computing, such as the discussion of uncertainties and convergence for different

values of Niial, the meaning of pseudo-random vs. random numbers and the role of the random seed.
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