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ABSTRACT

Collaborative game-based learning environments offer significant
promise for creating engaging group learning experiences. On-
line chat plays a pivotal role in these environments by providing
students with a means to freely communicate during problem solv-
ing. These chat-based discussions and negotiations support the
coordination of students’ in-game learning activities. However, this
freedom of expression comes with the possibility that some students
might engage in undesirable communicative behavior. A key chal-
lenge posed by collaborative game-based learning environments is
how to reliably detect disruptive talk that purposefully disrupt team
dynamics and problem-solving interactions. Detecting disruptive
talk during collaborative game-based learning is particularly im-
portant because if it is allowed to persist, it can generate frustration
and significantly impede the learning process for students. This
paper analyzes disruptive talk in a collaborative game-based learn-
ing environment for middle school science education to investigate
how such behaviors influence students’ learning outcomes and
varies across gender and students’ prior knowledge. We present
a disruptive talk detection framework that automatically detects
disruptive talk in chat-based group conversations. We further inves-
tigate both classic machine learning and deep learning models for
the framework utilizing a range of dialogue representations as well
as supplementary information such as student gender. Findings
show that long short-term memory network (LSTM)-based disrup-
tive talk detection models outperform competitive baseline models,
indicating that the LSTM-based disruptive talk detection framework
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offers significant potential for supporting effective collaborative
game-based learning through the identification of disruptive talk.
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1 INTRODUCTION

Computer-supported collaborative learning (CSCL) fosters the so-
cial aspects of learning using a variety of technological and con-
structive pedagogical strategies, such as problem-based learning
and inquiry learning [9, 18, 22]. In collaborative learning, students
engage in problem solving, artifact design, and inquiry in small
groups. Small groups have been proven to be effective for collabora-
tive learning and developing deep disciplinary engagement [10, 18].
Collaborative game-based learning environments bring game-based
learning to small groups, providing immersive virtual learning ex-
periences with progressively advanced challenges focused on the
desired learning objectives [48]. Collaborative game-based learning
environments often provide students with in-game chat facilities
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that support open discussions and negotiations among team mem-
bers to support the coordination of their in-game learning activities.
However, students can abuse the chat system to engage in unde-
sirable communicative talk, which can negatively affect the group
learning experience.

Thus, it is critical to examine collaborative discussions to under-
stand how certain types of talk can promote learning outcomes [30].
In high quality collaborative talk, students build on each other’s
ideas and move toward deep disciplinary engagement [41]. How-
ever, negative socio-emotional engagement can manifest as disrup-
tive talk and can be a barrier to high-quality collaborative talk. Dis-
ruptive talk can include insults, bullying, and negative expressions.
These utterances can generate frustration, harm communication,
and produce a negative group atmosphere [20]. Disruptive individ-
uals or groups who engage in unproductive social processes may
distract others from learning and can interfere with deeper learning
by continually interrupting learning activities [4]. For example, stu-
dents who engage in disputational talk focus on finding the flaws in
others’ opinions, which can impede the overall collaborative learn-
ing process [13, 31]. The ability to detect disruptive talk is therefore
critical for achieving high-quality collaborative learning. However,
determining whether talk is acceptable or not is context-dependent.
For example, conflicts that are either process-related (e.g., disagree-
ment on the collaboration process) or relationship-related (e.g.,
interpersonal clashes) negatively impact group learning. On the
other hand, task-related conflicts, which are induced during group
problem solving, can positively impact students’ learning outcomes
[21, 25, 38]. Thus, we need refined models that surface the types
of interactions that potentially interfere with learning, rather than
identifying disruptive talk in general.

Researchers have investigated various approaches to mitigate
disruptive talk in collaborative learning environments by devising
both non-computational and computational techniques. Incorpo-
rating peer assessments during the CSCL process is an attractive
non-computational option for reducing students’ disruptive talk
as it can encourage positive attitudes toward collaborative prob-
lem solving [39]. Previous work has investigated computational
approaches for automatically detecting bullying and off-task behav-
ior in collaborative learning environments with language models
ranging from classic approaches (e.g., n-grams) to more recent state-
of-the-art contextualized word embeddings (e.g., BERT), which were
used in conjunction with machine learning classification techniques
(e.g., logistic regression, random forest, long-short term memory
networks) [5, 35].

In this work, we present a disruptive talk detection framework
for collaborative game-based learning that automatically detects
disruptive talk during in-game chat-based group conversations. We
evaluate the effectiveness of the model with a dialogue dataset col-
lected from students’ interactions with a CSCL-based educational
game for middle-grade science. We investigate two classification
models (i.e., logistic regression, and long short-term memory net-
works) utilizing a range of dialogue-based linguistic representations
and student attributes. We also consider how disruptive talk inter-
sects with gender, prior knowledge, individual outcomes, and group
learning outcomes. The research questions (RQs) we address in this
work are as follows:

Park et al.

e RQ1. To what extent does disruptive talk influence learning
outcomes?

e RQ2. To what extent do the classification models accurately
detect disruptive talk?

2 RELATED WORK

There is a growing literature on using natural language processing
techniques for learning analytics and automatic analysis of talk in
collaborative learning environments. We discuss each of these in
turn.

2.1 Natural Language Processing in Learning
Analytics

A wide range of natural language processing (NLP) approaches
have been used in learning analytics [27]. Automated essay scor-
ing and short answer grading have been widely investigated. Prior
work has presented algorithms that use latent semantic analysis
(LSA) for assessing the similarity of an essay to benchmark essays
[24], and explored text cohesion for assessing essay quality [28, 29].
More recently, advanced NLP techniques, such as neural network-
based distributed language representation learning approaches (e.g.,
word2vec) and transfer learning approaches (e.g., BERT), have been
applied to short answer grading [34, 44, 45]. In massive open online
courses (MOOCs), NLP techniques along with classification algo-
rithms (e.g., logistic regression, random forest) have examined data
from discussion forums for a wide range of tasks such as predicting
students’ learning outcomes, sentiment analysis [27], confusion
detection [14], and cognitive presence [3, 12]. NLP techniques, such
as LSA and other machine learning techniques have also been ap-
plied to group discourse in collaborative learning environments,
particularly in CSCL systems [5, 7, 27, 35, 47]. Trausan-Matu et al.
presented a tool that incorporates textual and gestural interactions
within collaborative groups, where LSA was used to identify top-
ics, semantic similarities, and links between utterances [47]. Later,
Dascalu et al. presented a cohesion network analysis method to
evaluate students’ participation in CSCL conversations, utilizing
basic text mining techniques such as tokenization, lemmatization,
part-of-speech tagging, and LSA and latent Dirichlet allocation
(LDA)-based semantic similarity scores as cohesive links used to
build a cohesion network analysis graph [7].

2.2 Natural Language Processing in Automatic
Analysis of Talk in Collaborative Learning
Environments

Effective facilitation is important in CSCL environments to guide
discussions such that positive learning experiences are provided for
all students. To support the facilitation process, efforts have been
made to explore the automatic detection of specific types of talk in
collaborative learning. Ai et al. presented the analysis of transactive
conversation within group classroom discussions in middle school
math classrooms. They focused on exploring how cognitive conflict
can benefit the problem-solving process and investigated the use
of automatic analysis of transactive utterances using naive Bayes,
support vector machines, and decision trees [1]. Gweon et al. in-
vestigated the automatic analysis of transactive contributions from
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Figure 1: EcoJourneys collaborative game-based learning environment.

speech data of undergraduate-level dyad discussions for controver-
sial topics and created a generalizable approach for measuring the
prevalence of transactive contributions utilizing an unsupervised
dynamic Bayesian network modeling approach [17]. At times, stu-
dents’ talk can cause disruptions that impede collaborative learning
processes. Recent work investigating bullying and off-task behavior
in collaborative learning environments used word representation
approaches along with classic machine learning and deep learn-
ing techniques [5, 35]. Nikiforos et al. investigated the automatic
detection of aggressive actions within student dialogues in CSCL
environments. They adopted unigrams as the word-representation
approach and investigated machine learning techniques includ-
ing naive Bayes, decision trees, and feedforward neural networks
[35]. However, they did not investigate recent word embedding
techniques, and they focused on individual messages without con-
sidering the dialogue context. Carpenter et al. investigated the use
of dialogue analysis to determine if students’ messages were ei-
ther on-task or off-task during collaborative game-based learning.
They introduced an off-task behavior detection system, which uti-
lizes three different distributed word representation approaches
(i.e., word2vec, ELMo, BERT) and various contextual information
extracted from chat messages [5]. However, the authors did not
compare their results with classical approaches (e.g., bag-of-words),
which could be more effective at modelling a domain-specific lan-
guage dataset limited in size. Furthermore, none of the previous
work investigated disruptive talk. In this work, we introduce a
disruptive talk detection framework that can automatically detect
disruptive talk that can negatively impact the learning process,
by exploring recent dynamic (i.e., contextualized) and static word
embedding approaches as well as bag-of-words approach. We then

investigate the predictive performance of the models for disruptive
talk detection.

3 METHOD

To investigate disruptive talk in collaborative game-based learning,
we collected a corpus of middle school student dialogue as students
interacted in a collaborative game-based learning environment for
learning ecosystem concepts. Below we describe the collaborative
game-based learning environment and the collaborative dialogue
corpus, we introduce a disruptive talk annotation protocol, and we
describe analyses of student disruptive talk and the disruptive talk
detection framework.

3.1 EcoJourneys: Collaborative Game-Based
Learning Environment

EcoJourneys is a collaborative game-based learning environment
that has a curricular focus on middle school ecosystem science
(Figure 1). In this learning environment, students visit a virtual
remote island and are asked to investigate what is causing a myste-
rious illness with fish throughout the island. To solve the mystery,
students collaborate in groups of four within the game, where each
student works on a separate laptop and meets peers in the virtual
game world.

During gameplay, individual students investigate the fish illness
by gathering information and interacting with virtual characters.
The virtual characters act as local experts who provide details re-
garding ecosystem concepts and the unfolding narrative (e.g., “Dis-
solved oxygen is an abiotic factor, or non-living components that
animals and plants need to live”). After investigating and collecting
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Figure 2: In-game chat interface and virtual whiteboard.

information, students gather at a virtual whiteboard within the
game to share and categorize the information they have collected
into different components and discuss the most-likely cause of the
fish illness. Throughout the problem-solving activity within the
game, students are encouraged to share ideas, ask questions, and
negotiate with their team members via the in-game chat interface
(Figure 2). This built-in chat system is available throughout game-
play. For each group, a facilitator, who is either a researcher or
a teacher, asks questions and encourages students to share their
thoughts with other group members via the in-game chat interface.
Facilitators can monitor students’ activities and their conversation
using a separate in-game view and intervene in order to guide
students’ learning. Facilitators can select messages from a set of
pre-authored messages or provide free-form messages using the
in-game chat interface.

3.2 Study Procedure

The EcoJourneys collaborative game-based learning environment
was used in a classroom-based study. Students were either in the
sixth or seventh grade (11-12 years old) and played EcoJourneys
during 6 classroom periods. Among 14 groups with 56 students
(4 students per group) who participated in the study, we used the
group discourse data from 11 groups with 44 students (21 female
and 23 male) who consented to the study and completed all the
activities in the game-based learning environment. There was a
total of 3,749 chat messages available in the study dataset, with
831 messages from a facilitator and 2,918 of them from students.
We only consider the students’ messages in the disruptive talk
detection modeling. On average, students in each group sent 265.3
messages (min = 83, max = 722, SD = 166.1). Before and after the

game, students took the same pre- and post-test on ecosystems
to determine whether engaging in the collaborative game-based
learning environment improved their science learning. A paired
t-test comparing pre-test (M = 13.36, SD = 3.92) and post-test (M =
15.64, SD = 3.54) of students who completed both the tests showed
that student learning gains were statistically significant (i.e., t (39)
=2.70, p < 0.001).

3.3 Disruptive Talk Annotation of Group
Discourse

We adopted a binary annotation scheme, disruptive talk and non-
disruptive talk, adapted from previous work on disruptive talk anal-
ysis [4]. We labeled student utterances as disruptive talk if they
could distract the rest of the group members from learning and
could interfere with deeper learning by continually interrupting
the learning activity, and otherwise we labeled the utterance as
non-disruptive talk. Table 1 shows examples of disruptive and non-
disruptive messages along with the definition of each class.

Two human annotators labeled the students’ chat-based dialogue
collected during the study. Both annotators labeled approximately
20% of the entire corpus, achieving an inter-rater agreement of
0.63 using Cohen’s kappa, which indicates substantial agreement
among the annotators [6]. All utterances labeled differently between
the two annotators were discussed, and a label was eventually
chosen for each utterance for which there was not agreement before
labeling the remainder of the corpus. Then, each annotator labeled
approximately 40% of the remaining utterances. The distribution
of disruptive and non-disruptive utterances among the dataset is
370 (12.7%) and 2,548 (87.3%), respectively.
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Table 1: Example utterances of disruptive and non-disruptive talk.

Class Definition

Example

Disruptive Talk

Talk that generates frustration, annoyance,
harming communication, or contributes to

“I want to be right I'm gonna correct you I
am right”

an increasingly bad mood among the group “Um yea. yep, you can’t work”

members
Non-Disruptive Talk

Normal talk that does not create bad moods  “if [the fish] don’t come to the top to breath
among the group members.

then they are not going to breath at all”
“It could also be in the water quality section”

3.4 Disruptive Talk Analysis

Before we apply machine learning techniques to automatically
detect disruptive talk within the group discourse, we attempt to
analyze the disruptive talk in our dataset to better understand the
dataset and determine which features can be helpful for model
training. We analyze how each groups’ disruptive talk ratio (i.e.,
total number of disruptive messages / total number of messages)
affects individual and group learning outcomes, as well as how
the facilitators (i.e., researchers or teachers) intervention ratio (i.e.,
total number of facilitator messages / total number of messages)
affects the amount of disruptive talk in student groups. Lastly, we
analyze the distribution of words that appeared in both disruptive
and non-disruptive talk in our dataset.

3.5 Automatic Disruptive Talk Detection

3.5.1 Feature Extraction. Our disruptive talk detection framework
utilizes both the natural language features from student utterances
as well as student attributes to determine how those features col-
lectively contribute to prediction performance. First, we prepro-
cess students’ utterances with NLTK for tokenizing utterances,
removing stop words, lemmatization, and removing white space
and punctuation [2]. In addition, we adopt a sentiment-aware to-
kenizing method to handle Twitter-like informal messages (e.g.,
emoticons, lengthening words) so we can capture the sentiment of
the messages effectively [40]. The decision to use sentiment-aware
tokenizing was motivated by the fact that a large portion of middle
school students’ chat messages, especially the disruptive messages,
are informal [40].

Next, we transform the tokenized chat message into a vector
representation. We investigated three commonly used represen-
tations: (1) bag-of-words, which only considers the occurrence of
words in the message, (2) static word embedding, which maps each
word to a fixed, distributed vector representation, and (3) contex-
tualized word embedding, which maps each word to a distributed
vector representation that dynamically changes depending on the
context. First, the bag-of-words approach creates a word dictionary
containing words that are used in the training corpus only. Then
each tokenized message is converted to a vector with the dimen-
sion of the number of words in the dictionary plus one additional
dimension, representing the “unknown” word, which covers all
words that are not present in the training dataset. This addresses
the out-of-vocabulary issue that can emerge during the testing
phase. The vector for the bag-of-words approach only contains
zero or a positive number indicating how many times the specific

word appears in the message. The number of distinct words across
folds in our cross-validation evaluation ranges from 1,546 to 1,557.
Second, we adopt word2vec as our static word embedding methods,
which uses neural network models to represent words in a contin-
uous vector space where semantically similar words are mapped
to nearby points [32]. We employed a word embedding set that
was trained with the Google news dataset, which consist of over
100 billion words and each word is represented in 300-dimensional
latent features [32]. For the sentence embedding of each chat mes-
sage in our work, we averaged each words’ embedding. Third, we
adopt a state-of-the art contextualized word-embedding approach,
Bidirectional Encoder Representations from Transformers (BERT)
[8], which utilizes masked language models with self-attention
mechanism to pre-train deep bidirectional representations from
unlabeled text by jointly conditioning on both left and right context
of input sentences through multiple layers. Pre-trained BERT or
fine-tuned BERT models have been used in a wide range of NLP
tasks including text classification and question answering, where
they achieved state-of-the-art performance over other contextu-
alized embeddings, such as ELMo and GPT [8, 11]. We adopted a
pre-trained BERT model (i.e., BERT-base) that was trained with the
Wikipedia dataset, which consists of 12 layers in the encoder with
110 million parameters and outputs 768 dimensional vectors for
each word. For the sentence embedding of each chat message in our
work, we used an output vector of the very first token (i.e., [CLS]),
which is a special token inserted in front of the input sentence in
the BERT architecture, rather than taking the average of the output
embeddings of all the sentence words, since it effectively represents
the essence of the input sentence and thus has been often used
for BERT-based classification tasks [8]. It should be noted that we
used the pre-trained BERT model without a fine-tuning process
to ensure a fair comparison to the competitive methods based on
bag-of-words and word2vec with respect to the representational ca-
pacity and impact on the performance of disruptive talk prediction.
For the inputs for BERT models, we tokenized words into word
pieces using standard BERT tokenizer.

Furthermore, we use additional linguistic features for the chat
messages inspired by prior work in off-task behavior prediction
[5]. First, we include the number of characters in the original chat
message. We observed from the dataset that the disruptive mes-
sages tend to be shorter than the non-disruptive messages since
students often try to annoy other team members by sending multi-
ple short messages. Second, we include the Jaccard similarity [36]
between the chat message and the game’s text content (e.g., virtual
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Figure 3: Illustrated LSTM-based disruptive talk detection model with a context length of 5. (A) In order to classify whether the
target utterance is disruptive or not, previous 5 utterances are added sequentially to each LSTM cell. (B) Input vector of each
LSTM cell consists of six parts; 1) Sentence embedding: each pre-processed chat message is converted to a vector representation
based on the word representation choice (i.e., bag-of-words (BoW), word2vec, BERT), 2) Jaccard similarity between the original
chat message and the game text content, 3) Original chat message length, 4) One-hot encoded sentiment of the chat message
(Positive, Neutral, Negative), 5) One-hot encoded gender with an additional feature for the facilitator, and 6) One-hot encoded

pre-test score based on the tertile split.

character dialogue, narration) to capture content similarity, since
the messages that contain the same words as the game content are
more likely to be non-disruptive. Third, we include the sentiment
of the chat message. The sentiment of messages can serve as a
predictor for the disruptive talk detection model since negative
sentiment messages are more likely to be disruptive than posi-
tive messages. For measuring sentiment, we used a valence aware
dictionary of sentiment reasoning (VADER) model [15] included
in NLTK. We conjectured that these additional linguistic features
might provide additional evidence for the disruptive talk detec-
tion models. In addition to the features used in off-task behavior
prediction, we examined two additional features, students’ gender
and their ecosystems pre-test score. These features were chosen
since previous studies suggested that gender and prior knowledge
level can influence students’ negative behavior patterns in CSCL
environments [16, 26, 46]. Lastly, because disruptive talk is judged
by the annotators considering a series of chat messages from the
group, rather than a single message, we pre-process the data so
that each data point retains the contextual information containing
the history of previous messages from the group communication.

3.5.2 Modeling Disruptive Talk Detection. In order to identify the
best performing model for detecting disruptive talk within col-
laborative game-based learning, we compare the models by vary-
ing 1) linguistic representations of chat messages: bag-of-words,
word2vec, and BERT, 2) machine learning algorithms for classifica-
tion: logistic regression, long short-term memory recurrent neural
networks (LSTMs), and 3) the number of the previous messages
utilized as context for classifying the current message: 5 or 20. The
linguistic features introduced in the previous section (i.e., the num-
ber of characters, the content similarity, and the sentiment), as well
as gender and pretest features, are used consistently for all models.
Figure 3 shows our framework using a context length of 5.

LSTMs are a variant of recurrent neural networks (RNNs) de-
signed to capture long-term sequential patterns, by overcoming
conventional RNNs’ vanishing and exploding gradient problems
[19]. LSTM-based approaches have been introduced in a variety
of computational sequence-labeling tasks, including speech recog-
nition and machine translation, where LSTM-based approaches
have shown state-of-the-art performance [42, 49]. As we described
above, disruptive talk is highly dependent on the context of mes-
sages that dynamically changes across time. Thus, we hypothesize
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Table 2: Descriptive statistics of average number of disruptive talk per gender and pre-test score.

Number of Students

Gender Male 23
Female 21
Low 11
Pre-test Score Medium 19
High 14

that an LSTM-based approach will achieve higher performance than
classical approaches, by capturing the latent sequential patterns
embedded in the series of chat messages. We set the number of
hidden units to 50, and the number of epochs to 20 while using
early stopping with a patience of 5 to avoid overfitting. The models
were trained and evaluated using 10-fold cross-validation.

Furthermore, to alleviate the data imbalance issue in our dataset
(12.7% of disruptive, and 87.3% of non-disruptive messages), we
adopt a random oversampling approach for the minority class (i.e.,
disruptive talk) to have a 50-50 distribution between the two labels
for the training set in each fold. This oversampling approach has
been demonstrated to be effective for achieving a higher recall rate
[33], which is a relatively more important measure in disruptive
talk detection (i.e., we desire to detect disruptive talk as accurately
as possible). Please note that we did not oversample during either
validation or testing to avoid data leakage. As a baseline model, we
adopted logistic regression (LR), which has been successfully used
in prior text classification work [5, 14, 23].

3.5.3 Evaluation. We evaluate the performance of the disruptive
talk detection models on five evaluation metrics, accuracy, precision,
recall, f1-score, and area under the ROC curve (AUC), which are
typically used to assess the model’s generalization performance. We
apply data level 10-fold cross-validation after processing each data
point to be a set of messages containing selected context length
(i.e., 5 or 20) of previous utterances, and report the average of 10
folds’ results for the final result. These settings were consistent
across different modeling techniques and sentence representation
approaches. It should be noted that we expect prediction models
trained with the oversampling technique to achieve higher recall
over precision since we expect the model to be trained to minimize
the false negatives (i.e., missing disruptive talks that exist in the
dataset), rather than false positives.

4 RESULT AND DISCUSSION

4.1 Disruptive Talk Analysis

4.1.1 Disruptive Talk distributions. Table 2 shows the overall dis-
tribution and the average number of individual student’s disruptive
talk across gender and pre-test scores based on tertile split (i.e.,
Low, Medium, High). Tertile split was adopted to create a balanced
distribution among all classes while avoiding potential data spar-
sity issues. The distribution shows that male students are more
likely to engage in disruptive talk (70.3%) than female students
(29.7%). Furthermore, it also shows that students who achieved
lower performance on their pre-test assessment tend to engage in

Disruptive Talk Avg. # of Disruptive Talk
Distribution
70.3% 11.3
29.7% 5.2
44.6% 13.57
42.4% 7.85
13.0% 3
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Figure 4: Facilitator intervention ratio (# of facilitator’s chat
messages / total # of messages), and the disruptive talk ratio
(# of disruptive chat messages / total # of student messages).

more disruptive talk. These patterns suggest that students’ gen-
der and prior knowledge can serve as strong predictive features to
detect whether a message is disruptive or not.

4.1.2  Disruptive Talk and Facilitator Intervention Frequency. Figure
4 shows the distribution of the ratio of the facilitator’s messages
over the disruptive talk ratio of each group, which shows a mod-
erate negative correlation (r = -0.56, p < .01). This indicates that
an appropriate level of facilitator intervention is needed to reduce
students’ disruptive talk that could interfere with the group learn-
ing process. This also suggests that without proper facilitation, we
would observe the groups exceeding their tolerance. The automatic
disruptive talk detection framework can 1) help teachers by in-
forming them when to support students by identifying disruptive
moments, 2) assist teachers to preemptively guiding students to
avoid engaging in disruptive talk, and 3) play the role of the facilita-
tor by providing students with adaptive feedback when disruptive
talk is detected.

4.1.3  Disruptive Talk and Individual/Group Learning Outcomes. Fig-
ure 5 and Figure 6 shows the distribution of disruptive utterances
of each group over the individual and group learning gains calcu-
lated by averaging individual learning gains. Figure 5 (Individual
learning gain) and Figure 6 (Group learning gain) show that there
is no strong relationship between the disruptive talk ratio and the
individual and group learning gain (r = -0.06, p < .001 and r = -0.18,
p < .001, respectively). However, it should be noted that the groups
had human facilitators who monitored the chat and intervened
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Figure 5: Individual learning gain over disruptive talk ratio
of each group (# of disruptive chat messages / total # of stu-
dent messages).
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Figure 6: Group learning gain over disruptive talk ratio of
each group (# of disruptive chat messages / total # of student
messages).

continuously throughout the learning process. Thus, as discussed
in previous section (i.e., 4.1.2), the presence of the facilitation might
have helped students from being distracted by disruptive talk. On
the other hand, this weak correlation might also suggest that in
some groups, students independently decide on what is an accept-
able level of disruption and then allowed those disruptions to occur,
or they agreed to ignore it and focus on the assigned task, meaning
that students themselves can effectively manage disruptions.

4.1.4  Linguistic Analysis of Disruptive Talk. We analyze the distri-
bution of words that appeared in both disruptive and non-disruptive
talk. Table 3 shows the top 15 discriminative unigrams of disruptive
and non-disruptive messages, obtained based on the word frequen-
cies. The set of top 15 words from the non-disruptive talk mostly
contains game-related words (e.g., “note”, “column”, “food”). This
suggests that a large part of non-disruptive messages is task related.
On the other hand, the set of top 15 words in disruptive messages
contains several negative words (e.g., “boo”, “nopy”), while none
of these words were used in the content of the game. Although
“chat” and “enter” are highly ranked in the disruptive category
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Table 3: Top words from disruptive and non-disruptive talk.

Rank Disruptive Talk Non-Disruptive Talk

1 “chat” “note”

2 “enter” “think”
3 “name” “water”
4 “like” “yes”

5 “boo” “need”
6 “brother” “column”
7 “nopy” “food”

8 “yes” “okay”
9 “nope” “space”
10 “do” “air”
11 Nicknamel “one”
12 Nickname2 “let”
13 “exit” “fish”
14 “beep” “say”
15 “exit” “know”

they are seemingly non-disruptive, we observed from the dataset
that students disturbed other group members by typing “[entered
chat]” constantly, which is also the message that the system gener-
ates whenever a student enters a message. The nicknames ranked
in positions 11 and 12 of disruptive talk were observed from the
dataset where one student kept annoying another student by call-
ing them with unwanted nicknames. Although we rarely observed
bullying-related words in our dataset, student conversation can be
detrimental depending on the students in a group. In such situations,
our disruptive talk detection model can be especially beneficial for
enhancing both the student behavior and the learning experience
of group members.

4.2 Automatic Disruptive Talk Detection

Table 4 shows the results of 12 different models for detecting disrup-
tive talk. Each value is the average of the results from the 10-fold
cross-validation. Overall, models using LSTMs performed better
than the ones with the logistic regression models suggesting that
LSTM:s effectively model the long-term dependency in the sequence
of chat messages. The model using bag-of-words and logistic re-
gression with the context length with 5, and word2vec+LR with the
context length of 20 achieved comparative accuracy with ones with
LSTMs but achieved poor performance on the other metrics. This
might be because of the imbalanced dataset, where the model still
can achieve high predictive accuracy if it predicts most messages
as non-disruptive (i.e., the majority class; 87.3%). With respect to
the number of previous chat messages (i.e., context), models with a
shorter message sequence length (i.e., 5 previous chat messages)
achieved worse predictive results than the ones with the longer
message sequence length (i.e., 20 previous chat messages), which
indicates that modeling more conversational history is beneficial
for the model to determine whether the current message is dis-
ruptive or not. Furthermore, performance of models using BERT
contextualized word embeddings generally outperform the models
using word2vec embeddings. These results suggest that considering
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Table 4: Prediction results of automatic disruptive talk detection models across language representations (bag-of-words (BoW),
word2vec, and BERT), context window length (5, 20), and classifiers (LSTM, logistic regression (LR). The best performance of

each evaluation metric is marked in bold.

Model Input Context Accuracy Precision Recall F1-Score AUC
Length
LSTM BERT 5 0.887 0.564 0.605 0.578 0.877
LSTM BoW 5 0.910 0.640 0.716 0.670 0.884
LSTM word2vec 5 0.825 0.381 0.562 0.447 0.815
LSTM BERT 20 0.912 0.637 0.722 0.674 0.922
LSTM BoW 20 0.922 0.682 0.746 0.710 0.933
LSTM word2vec 20 0.887 0.544 0.722 0.617 0.906
LR BERT 5 0.752 0.271 0.568 0.366 0.749
LR BoW 5 0.840 0.401 0.522 0.449 0.802
LR word2vec 5 0.679 0.239 0.697 0.355 0.737
LR BERT 20 0.768 0.259 0.443 0.325 0.712
LR BoW 20 0.686 0.228 0.619 0.333 0.697
LR word2vec 20 0.844 0.390 0.425 0.404 0.772

the meaning of words, that can vary in different contexts, is helpful
to predict disruptive talk.

The best performance was achieved by the model using LSTM
and bag-of-words across all evaluation metrics which might indi-
cate that simply knowing what words appeared in the message
is more useful in detecting disruptive talk, than considering the
syntactic and semantic relationship between words. A contributing
factor could also be that the student chat data examined in this work
contains domain-specific language as well as various colloquial or
misspelled words, which are not likely to be effectively captured by
the word2vec pre-trained word embeddings or the BERT-models
that were pre-trained with either news articles or Wikipedia, where
colloquial or misspelled words rarely appear. This finding is echoed
in [33, 43], which found that pre-trained word embedding models
(e.g., BERT, GloVe [37]) exerted a detrimental impact on models’
predictive performance compared to equivalent models utilizing
bag-of-words or n-gram-based language features that directly cap-
ture domain-specific characteristics in language data. Overall, the
prediction results suggest that LSTMs are an effective modeling
technique for disruptive talk detection, while the bag-of-words
representation can sufficiently capture salient features character-
ized in disruptive talks that appear in student dialogue. LSTMs
were capable of modeling the temporal context of the conversation
data, which can significantly improve the predictive accuracy for
disruptive talk prediction.

5 CONCLUSION

Collaborative game-based learning environments can offer stu-
dents engaging group-based learning experiences in immersive
virtual environments. However, collaborative game-based learning,
which elicits communication between students as they work toward
achieving shared goals, often creates situations in which students
are engaged in behaviors that are not conducive to effective learn-
ing. In this work, we analyzed disruptive talk within a collaborative
game-based learning environment for middle school ecology sci-
ence learning. We presented an automatic disruptive talk detection

framework that utilizes LSTMs adopting one of three language
representation techniques (bag-of-words, word2vec, or BERT), fea-
tures extracted from the utterances (i.e., Jaccard similarity between
the chat message and the game’s text content, message length, and
sentiment), and supplementary information about students (i.e.,
gender and prior knowledge).

Results on a dialogue corpus obtained from 44 middle-grade
students’ chat data in a collaborative game-based learning environ-
ment suggest that male students and students with low pre-test
scores are likely to engage in disruptive talk more often during
the learning process. Furthermore, proper facilitation is helpful in
reducing disruptive talk among groups, which can be supported by
our disruptive talk detection framework. The weak correlation be-
tween the disruptive talk and learning outcomes, which might have
stemmed from either facilitators’ or students’ abilities to manage
the disruptive situations, suggests a second use case for disruptive
talk models; encouraging students to discuss with group members
to manage disruptions. The findings on the automatic disruptive
talk detection models indicate that LSTM-based disruptive talk de-
tection accurately predicts disruptive talk with an accuracy rate of
0.92 and a recall rate of 0.75, suggesting that they offer potential
for analyzing and supporting effective collaborative learning.

There are several promising directions for future work. It will be
important to explore the framework with longer histories of mes-
sages since results have suggested that more context helps improve
the models’ predictive performance. Another promising direction
is investigating approaches to enhancing the framework with con-
textualized word embeddings, such as transfer learning, by which
pre-trained embeddings can be fine-tuned to better characterize the
domain-specific nature of a corpus. In addition, it will be instruc-
tive to investigate an extended set of features that include student
collaborative gameplay actions, which may provide additional con-
textual information to further improve disruptive talk detection
performance.
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