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a b s t r a c t 

We model competition for liquidity provision between high-frequency traders (HFTs) and 

slower execution algorithms (EAs) designed to minimize investors’ transaction costs. Under 

continuous pricing, EAs dominate liquidity provision by using aggressive limit orders to 

stimulate HFTs’ market orders. Under discrete pricing, HFTs dominate liquidity provision 

if the bid-ask spread is binding at one tick. If the tick size (minimum price variation) is 

not binding, EAs choose between stimulating HFTs and providing liquidity to non-HFTs. 

Transaction costs increase with the tick size but can be negatively correlated with the bid- 

ask spread when all traders can provide liquidity. 
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1. Introduction 

In decades past, specialists on the New York Stock Ex- 

change and dealers on Nasdaq provided liquidity to other 

traders by buying when other traders sell and selling when 

other traders buy. These traditional liquidity providers 

have almost disappeared in modern electronic markets 

( Clark-Joseph et al., 2017 ). Anyone can supply liquidity, but 

no one is obligated to provide it. Providing liquidity sim- 

ply means posting a limit order (an offer to buy or sell 

at a specified price). A trade occurs when another trader 

(a liquidity demander) uses a market order to accept the 

terms of a posted offer. In the new ecosystem of voluntary 

liquidity supply, who provides liquidity and who demands 

liquidity, and when? 

One hypothesis is that high-frequency traders (HFTs) 

become natural liquidity providers in modern elec- 

tronic markets, because they incur lower operating costs 
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( Carrion, 2013 ), adverse selection costs ( Hoffmann, 2014 ),

and inventory costs ( Brogaard et al., 2015 ; Aït-Sahalia and

Sa ̆glam, 2017 ). These cost advantages imply that HFTs

should win the price competition in liquidity provision.

Surprisingly, Yao and Ye (2018) find the opposite: Non-

HFTs tend to quote more aggressive prices than HFTs.

Who, then, are these non-HFTs and why can they undercut

HFTs? 

A more complex challenge is that no types of traders

consistently dominate liquidity provision. For example,

Yao and Ye (2018) and O’Hara et al. (2018) find that HFTs

provide relatively more liquidity for low-priced stocks

and that non-HFTs provide relatively more liquidity for

high-priced stocks. Yao and Ye (2018) show that non-HFTs

provide more liquidity as adverse selection risk increases.

Therefore, who provides liquidity depends endogenously

on security characteristics. Traditional market microstruc-

ture theory usually exogenously assigns who provides

liquidity. Then, what drives the cross-sectional variations

on who provides liquidity? 

One key to addressing these questions is to explore un-

charted territory: algorithmic traders who are not HFTs.

To minimize transaction costs, buy-side institutions, such

as mutual funds and pension funds, use computer algo-

rithms extensively to execute their trades ( Frazzini et al.,

2018 ; O’Hara, 2015 ). Although execution algorithms (EAs)

are key players in the financial ecosystem ( Hasbrouck and

Saar, 2013 ), they lack an independent identity in exist-

ing models. According to one view, financial markets in-

clude HFTs and everyone else, with the latter covering

both sophisticated institutions and unsophisticated retail

traders [see the survey by O’Hara (2015) ]. According to the

other view, algorithmic traders and HFTs are interchange-

able [see the survey by Biais and Foucault (2014) ]. The

stark simplicity of these classifications has proved valu-

able and appropriate for studying basic foundational ques-

tions about machine-human interactions, but the same di-

chotomy prevents the study of interactions between differ-

ent types of algorithms, and such machine-machine inter-

actions are the key to understanding the current structure

of financial markets. 

Our model captures two fundamental differences

between EAs and HFTs ( Hasbrouck and Saar, 2013 ;

O’Hara, 2015 ). First, EAs can use limit orders to provide liq-

uidity, but their goal is to minimize transaction costs, not

to profit from bid-ask spreads ( Hasbrouck and Saar, 2013 ;

Jones, 2013 ). Second, EAs are fast, but they are slower

than HFTs ( O’Hara, 2015 ). The differences in incentives and

trading speed between algorithms are the main drivers of

our model. EAs enjoy lower opportunity costs for provid-

ing liquidity because they must complete a trade. EAs can

lose money when providing liquidity as long as the loss is

lower than paying the bid-ask spread. We find that EAs al-

ways choose to provide liquidity at more aggressive prices

than HFTs if pricing is continuous. In reality, pricing is dis-

crete. For example, the US Securities and Exchange Com-

mission (SEC) Regulation National Market Systems (Reg

NMS) Rule 612 mandates a uniform tick size (minimum

price variation) of 1 cent for any quote above $1. Discrete

pricing increases the cost to EAs of narrowing the bid-ask

spread. At the extreme, EAs cannot undercut HFTs at all if
969 
the bid-ask spread is binding at one tick. Under discrete 

pricing, we discover three types of equilibria, thereby of- 

fering testable predictions regarding who provides liquidity 

and when. 

Our model contains N competitive HFTs who have no 

private value to trade. HFTs provide or demand liquidity to 

maximize their expected trading profits. Non-HFTs arrive 

at the market following a Poisson process, bringing inelas- 

tic demand to buy or sell one unit of a security. A frac- 

tion β of non-HFTs are EAs, and they can choose between 

limit and market orders to minimize transaction costs, and 

the remaining non-HFTs are market order traders (MOTs). 

When β = 0 , our model degenerates into the Budish et al. 

(2015 ; BCS hereafter) framework, in which all non-HFTs 

must demand liquidity. MOTs have to pay a positive bid- 

ask spread even if the fundamental value of a security 

is public information. The positive bid-ask spread results 

from the sniping risk: The quote from an HFT can be 

sniped by N − 1 equally fast HFTs during value jumps. 

Once we allow non-HFTs to provide liquidity, they 

never demand liquidity when pricing is continuous, be- 

cause the following strategy dominates demanding liquid- 

ity. Suppose that an EA buyer submits a limit order at 

price ε above the fundamental value. Her order immedi- 

ately stimulates HFTs to submit market orders to collect ε
as profit. The EA loses ε, but the loss is lower than the bid- 

ask spread when ε is sufficiently small. HFTs immediately 

accept a lower price than the ask price, because accept- 

ing an offer does not expose them to a sniping risk. Under 

continuous pricing, our model generates only one type of 

equilibrium, in which EAs provide liquidity to HFTs at the 

fundamental value and HFTs immediately accept the offer. 

The EA’s limit order executes immediately like a market or- 

der and does not rest in the limit order book (LOB). HFTs, 

therefore, provide liquidity to MOTs. 

When pricing becomes discrete, our model generates 

three types of equilibria because discrete pricing creates 

rents for both providing and demanding liquidity. When 

the sniping risk is very low relative to the tick size, the 

breakeven bid-ask spread can drop below one tick. The 

difference between the one tick–mandated bid-ask spread 

and the breakeven bid-ask spread becomes rents for pro- 

viding liquidity, and speed allocates these rents to HFTs. In 

the first type of equilibrium, the queuing equilibrium, HFTs 

dominate liquidity provision because they can achieve time 

priority at the constrained one-tick bid-ask spread. This 

prediction is consistent with Yao and Ye (2018) , who find 

that HFTs dominate liquidity provision when either the ad- 

verse selection risk is too low or the tick size is too large. 

The second and the third type of equilibria occur when 

the breakeven spread for HFTs becomes wider than one 

tick. EAs can place limit orders within the spread, but 

they can no longer stimulate HFTs at the fundamental 

value. Instead, they need to cross the fundamental value 

to stimulate HFTs. The difference between the price that 

HFTs accept and the fundamental value is the rent for 

HFTs to demand liquidity and the loss for EAs to stimu- 

late HFTs. EAs’ choices then depend on whether such loss 

is larger than the loss from improving the breakeven bid- 

ask spread. Fig. 1 shows that the second and third type 

of equilibria rotates with parameter values. The second 
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Fig. 1. Parameter ranges of the equilibria for the example of tick size � = 
1 
3 
. When sniping risks are very low, high-frequency traders (HFTs) quote a 

one-tick bid-ask spread and provide liquidity to all execution algorithms (EAs) and market order traders (MOTs) ( Proposition 3 , queuing equilibrium). 

When sniping risks are higher, HFTs widen their quoted spreads and provide liquidity to MOTs only. The regions in which HFTs quote differing spreads 

are separated by solid lines. Within each region, EAs choose between stimulating HFTs ( Proposition 4 , stimulating equilibrium) and undercutting HFTs 

( Proposition 5 , undercutting equilibrium) depending on the parameters. When the tick size is not binding, the undercutting equilibrium alternates with the 

stimulating equilibrium with respect to π and β . m is the number of tick grids between the midpoint and the ask price, and h is the half bid-ask spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

type of equilibrium, the undercutting equilibrium, arises

when the breakeven ask (bid) price is close to the price

grid below (above). As the loss incurred by improving the

breakeven spread is small, EAs choose to undercut the

breakeven spread and provide liquidity to other non-HFTs.

The third type of equilibrium, the stimulating equilibrium,

arises when the breakeven ask (bid) price is far from the

price grid below (above). As the cost for improving the

breakeven ask and bid prices is higher than stimulating

HFTs, EAs choose to cross the midpoint to stimulate HFTs.

HFTs then race to take liquidity to capture the rents from

demanding liquidity. In the stimulating equilibrium, EAs

provide liquidity to HFTs, and HFTs provide liquidity to

MOTs because limit orders from EAs never stay in the LOB.

By opening the door to exploring the diversity of com-

puter algorithms, our paper not only develops new pre-

dictions but also generates new perceptions. Machine-

machine interaction blurs the distinction between provid-

ing and demanding liquidity. By definition, an EA provides

liquidity because she uses a limit order, but her goal is to

trigger immediate market orders from HFTs. In this sense,

the EA demands liquidity because her stimulating limit or-

der executes like a market order. HFTs use market orders,

but they satisfy the EA’s trading needs. In this sense, HFTs

provide liquidity even though they take quotes from EAs. 

After blurring the distinction between providing and

demanding liquidity, this machine-machine interaction

also makes it challenging to measure liquidity. Traditional

liquidity measures, such as the bid-ask spread and depth,

are based on orders resting on the LOB. Our model shows

that the liquidity offered by the LOB can move in the

opposite direction of true liquidity. Consider the case in

which pricing is continuous. The bid-ask spread increases

as the fraction of EAs increases because fewer non-HFTs

take liquidity from HFTs. The average transaction costs that
970 
non-HFTs incur decline, however, because more EAs enjoy 

zero transaction costs. At the extreme, the bid-ask spread 

reaches its widest magnitude when all non-HFTs are EAs, 

but the market becomes infinitely liquid because non-HFTs 

always choose to stimulate HFTs when no transaction costs 

exist. 

The discrete pricing channel of speed competition rec- 

onciles a number of contradictions between existing chan- 

nels of speed competition and empirical facts, for both 

supplying liquidity and demanding liquidity. Regarding 

supplying liquidity, Carrion (2013) , Hoffmann (2014) , and 

Brogaard et al. (2015) show that speed reduces HFTs’ 

intermediation costs, particularly adverse selection costs. 

Such reduced costs should give HFTs a competitive ad- 

vantage in providing liquidity for stocks that are subject 

to higher adverse selection risk ( Han et al., 2014 ). In ad- 

dition, when the tick size is small, HFTs face less con- 

straint in offering better prices and they should there- 

fore crowd out liquidity provision by non-HFTs. Yao and 

Ye (2018) find, however, that an increase in adverse se- 

lection risk reduces HFTs’ share in liquidity provision 

and that a small tick size crowds out liquidity provision 

from HFTs. The discrete pricing channel helps to recon- 

cile these apparent contradictions. EAs can provide liquid- 

ity at better prices because they enjoy lower opportunity 

costs for doing so. Lower adverse selection risk or larger 

tick size, however, reduces the breakeven spread to be- 

low one tick and lead to speed competition at constrained 

prices. 

Liquidity demand from HFTs usually has a nega- 

tive connotation because, in existing models, HFTs typi- 

cally adversely select liquidity providers when they de- 

mand liquidity (BCS; Foucault et al., 2017 ; Menkveld and 

Zoican, 2017 ). In our model, EAs use aggressive limit or- 

ders to stimulate HFTs. HFTs demand liquidity, but they do 
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not adversely select EAs. Instead, the transaction costs that

EAs pay are lower when HFTs demand liquidity than when

HFTs provide liquidity. This surprising prediction could ex-

plain why Latza et al. (2014) find that limit orders executed

within 50 milliseconds after submission incur no adverse

selection costs. 

The closest paper to ours is BCS. We relax two assump-

tions made in BCS. First, because non-HFTs in BCS can use

only market orders, the sniping risk leads to a positive bid-

ask spread, motivating BCS to recommend frequent batch

auctions. Our model shows that when all non-HFTs can

choose between limit and market orders, transaction costs

drop to zero once pricing is continuous. Second, we re-

lax their assumption of continuous pricing and show that

discrete pricing generates an arms race in speed. There-

fore, BCS argue for a more discrete market with respect

to time, while as an alternative, we posit a more contin-

uous market with respect to pricing. Our insight under-

mines the rationale for increasing the tick size to 5 cents

as proposed by the 2012 US Jumpstart Our Business Star-

tups (JOBS) Act and the SEC’s 2016 tick size pilot program.

Proponents of increasing the tick size argue that a larger

tick size increases liquidity, discourages HFTs, increases

market-making profits, supports sell-side equity research,

and, eventually, increases the number of initial public of-

ferings (IPOs) ( Weild et al., 2012 ). Our results show that an

increase in the tick size reduces liquidity, encourages speed

racing between HFTs, and allocates resources to latency re-

duction. 

The paper proceeds as follows. Section 2 sets up the

model. Section 3 presents the results when the price

is continuous, and all non-HFTs use market orders. In

Section 4 we allow some non-HFTs to use limit orders but

keep price continuous and compare with the results in

Section 3 . In Section 5 , we add one more realistic feature

to our model: discrete pricing. Section 6 contains empiri-

cal predictions and policy implications. Section 7 concludes

with a discussion for future research. 

2. Model 

We consider a continuous-time trading model with an

infinite horizon. There is one security, and its fundamental

value v t is common knowledge, t ∈ [ 0 , ∞ ) , with v 0 = 0 . 

There are two types of traders: HFTs and non-HFTs. All

traders are risk-neutral, and there is no time discounting.

There are N ( 2 ≤ N ≤ ∞ ) HFTs always present in the mar-

ket with the goal of maximizing expected trading profits. 

Every non-HFT has an inelastic need to buy or sell one

unit of a security. A fraction β of non-HFTs can choose

between limit and market orders to minimize transaction

costs. These are the EAs. The remaining fraction of 1 − β
non-HFTs, MOTs, use only market orders upon arrival. 

As in BCS, non-HFTs arrive at the market at Poisson in-

tensity λI , and the asset’s fundamental value, v t , evolves
as a compound Poisson jump process with arrival rate λJ .

Therefore, at any time t , with probability π = 

λJ 

λI + λJ 
the

next event is a value jump, and with probability 1 − π the

next event is an arrival of a non-HFT. During the value

jump, the fundamental value of the security, v t , increases
971 
to v t + 1 or decreases to v t − 1 with equal probability. 

Upon arrival, non-HFTs buy or sell with equal probability. 

Therefore, the probability that the next event is the arrival 

of a buy MOT is 1 2 ( 1 − β)( 1 − π) . 

The stock exchange operates as a continuous LOB. Each 

trade in the LOB requires a liquidity provider and a liq- 

uidity demander. The liquidity provider submits a limit or- 

der, which is an offer to buy or sell at a specified price 

and quantity. The liquidity demander accepts the price and 

quantity of a limit order. Execution precedence for liquid- 

ity providers follows price-time priority. Limit orders with 

higher buy or lower sell prices execute before less aggres- 

sive limit orders. For limit orders queuing at the same 

price, orders arriving earlier execute before later orders. 

HFTs are all equally fast, and their order messages (limit 

orders, market orders, or cancelations) are processed seri- 

ally in random order if those messages arrive at the ex- 

change at the same time. 

As in BCS, v t is common knowledge, but liquidity 

providers are subject to a sniping risk if they fail to up- 

date their stale quotes following value jumps. EAs are al- 

ways subject to such a sniping risk because they are slower 

than HFTs, but an HFT is also subject to a sniping risk with 

a positive probability because other HFTs are equally fast. 

In equilibrium, sniping stale quotes are always profitable, 

and we allow an HFT to snipe her own quotes because it 

is economically equivalent to order cancelation. 

The LOB contains all outstanding limit orders. Outstand- 

ing orders to buy are called bids, and outstanding orders 

to sell are called asks. In this paper, we focus on the high- 

est bid and the lowest ask around v t , which are called the 

best bid and ask. To simplify exposition, we assume that a 

limit order is canceled if it has no chance of trading with 

a non-HFT before the next jump occurs. This simplification 

rules out the trivial strategy of laying the book, that is, at- 

tempting to satiate all bid price levels below v t − 1 or all 

ask price levels above v t + 1 , because such pricing levels 

involve no sniping risk at time t . 

3. Continuous-pricing model without EAs 

When β = 0 , all non-HFTs use market orders, and our 

model essentially degenerates into the BCS framework. 

We use this section as a benchmark for evaluating, in 

Sections 4 and 5 , the impact of allowing non-HFTs to pro- 

vide liquidity. 

Let h be the HFTs’ quoted half bid-ask spread. We con- 

sider, without loss of generality, the expected payoff for an 

HFT’s sell limit order at v t + h if the HFT posts the first 

share at this price. When a buy event occurs, this sell or- 

der has the following expected payoff: 

( 1 − π) · h − N − 1 

N 

π · ( 1 − h ) + 

1 

N 

π · 0 . (1) 

Conditional on the occurrence of a buy event, with 

probability 1 − π a non-HFT takes the limit order and the 

payoff is h , and with probability π v t jumps upward by one 

and all HFTs race to snipe stale quotes on the ask side. 

HFTs are equally fast, so the probability that an HFT order 

is sniped by other HFTs is N−1 
N . The loss for being sniped 

is ( v t + 1 ) − ( v t + h ) = 1 − h . 
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An HFT’s outside option beyond providing liquidity is

to snipe the share when v t jumps. The value for this out-

side option is zero when a non-HFT takes the share before

the value jumps. When v t jumps upward, each HFT has a
1 
N chance of sniping the share and the payoff for the suc-

cessful sniper is ( v t + 1 ) − ( v t + h ) = 1 − h . Therefore, the

expected payoff for a sniper at v t + h is 

1 

N 

π · ( 1 − h ) . (2)

In equilibrium, HFTs should be indifferent between liq-

uidity provision and stale quote sniping. Thus, the equilib-

rium half bid-ask spread is the value h = h 0 , which solves

( 1 − π) · h − N − 1 

N 

π · ( 1 − h ) = 

1 

N 

π · ( 1 − h ) . (3)

The best bid and ask prices contain only one share be-

cause undercutting h 0 or quoting a second share at h 0 loses

money. We summarize the equilibrium in Proposition 1 . 

Proposition 1 . When non-HFTs cannot supply liquidity, the

equilibrium half bid-ask spread under continuous pricing is

h 0 = π . 

HFTs almost always maintain one unit in the LOB at the

ask price v t + h 0 and one unit at the bid price v t − h 0 . 
1 The

bid and ask prices can belong to different HFTs. 

(i) Upon arrival, non-HFTs demand liquidity from HFTs

and pay h 0 . 

(ii) When v t jumps up (down), all HFTs race to take stale

ask (bid) quotes. 

The positive transaction cost h 0 results from the sniping

risk (BCS). 2 Next, we show that non-HFTs can avoid such

costs completely as long as they can use limit orders. 

4. Continuous-pricing model with EAs 

In this section, we relax only one assumption made in

BCS. We allow a fraction of β > 0 of non-HFTs to provide

liquidity. EAs’ objective function is to minimize expected

transaction costs, and they can update their orders at any

time. 3 

After we allow non-HFTs to provide liquidity, they never

demand liquidity from HFTs under continuous pricing be-

cause crossing the midpoint strictly dominates paying HFTs

a half-spread. When an EA submits a buy limit order at

v t + ε, the order immediately stimulates HFTs to demand

liquidity because HFTs make a profit of ε by selling above

the fundamental value. EA loses ε by providing liquidity,

but the cost is lower if ε < h . Therefore, EAs never demand

liquidity from HFTs. 

The foregoing discussion reveals two new economic

mechanisms. The first mechanism is the opportunity cost

of liquidity provision. EAs can afford more aggressive limit

order prices than HFTs because EAs enjoy a negative op-

portunity cost for providing liquidity. EAs’ outside option
1 HFTs’ stale quotes can be sniped during value jumps, but HFTs imme- 

diately replenish the share around the new fundamental value. 
2 Aquilina, Budish, and O’Neill (2020) quantify return from the sniping. 
3 As our paper focus on costs led by the sniping risk, we assume away 

delay costs for EAs ( Parlour, 1998 ; Foucault, 1999 ; Foucault, Kadan, and 

Kandel, 2005 ). 

972 
for providing liquidity is to demand liquidity by paying h . 

Therefore, EAs can afford buy limit orders at price v t + ε
as long as the loss is less than h . HFTs do not provide liq- 

uidity if they lose money. What is more, HFTs incur a pos- 

itive opportunity cost for providing liquidity. When an HFT 

chooses to provide liquidity, she cannot profit from snip- 

ing the share, and the probability of sniping conditional on 

a value jump is 1 N . This positive opportunity cost is equal 

to HFTs’ reduced sniping cost relative to the cost to EAs. 4 

Therefore, EAs can afford more aggressive quotes than HFTs 

for any of the model’s parameter values. 

The second mechanism, the make-take spread, captures 

the difference in prices between a trader’s willingness to 

post an offer and her willingness to accept an offer. An 

HFT quoting an ask price of v t + h would accept any buy 

limit price v t + ε ( ε → 0 ). HFTs accept a worse price than 

the price they offer because accepting an order incurs no 

sniping risk. In our model, an HFT seller accepts any offer 

at or above v t , but she quotes v t + h . As a consequence, the 

EA’s buy limit order at v t + ε executes immediately like a 

market order. 

We discover the make-take spread because we allow 

traders to switch between providing and demanding liq- 

uidity at any time. Models with market makers, such as 

those used in Kyle (1985) and Glosten and Migrom (1985) , 

exogenously assign the liquidity-provider and liquidity- 

demander roles. In LOB literature [ Foucault et al. (2005) , 

among others], traders can choose limit orders or market 

orders upon arrival, but they can no longer update their 

roles after the initial decision. 

Proposition 2 characterizes the equilibrium. In the equi- 

librium, EAs always choose limit order prices at v t and 
HFTs immediately demand liquidity once EAs submit such 

limit orders. EAs provide liquidity to HFTs, but the LOB 

contains no resting limit orders placed by the EAs. HFTs 

provide liquidity to MOTs by quoting one share at v t + h β
and one share at v t − h β . The half-spread h β equalizes the 

payoff of liquidity provision and stale quote sniping for 

HFTs, which is given by 

( 1 − β) ( 1 − π) 

( 1 − β) ( 1 − π) + π
· h − N − 1 

N 

π

( 1 − β) ( 1 − π) + π

· ( 1 − h ) = 

1 

N 

π

( 1 − β) ( 1 − π) + π
· ( 1 − h ) . (4) 

The left-hand side of Eq. (4) is the HFT seller’s liquidity- 

provision profit conditional on a trade’s occurring at the 

ask, and the right-hand side is a sniper’s profit. The only 

difference between Eq. (4) and Eq. (3) is the factor ( 1 − β) 

[ Eq. (4) degenerates into Eq. (3) when β = 0 ]. We call 

Proposition 2 the stimulating equilibrium because EAs, 

who have an internal need to trade, use aggressive limit 

orders to stimulate HFTs to demand liquidity. 

Proposition 2 . (stimulating equilibrium). With a tick size of 

zero and a positive fraction of EAs ( β > 0 ), the equilibrium 

half bid-ask spread is h β = 
π

1 −β( 1 −π) 
. 
4 During value jumps, an HFT is sniped with probability of N−1 
N 

and an 

EA is sniped with probability of one. 
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5 When execution algorithms can use only market orders, Li and 

Ye (2021) show that bid-ask spread is still zero if execution algorithms 

can divide their demand of one share into a series of infinitesimal child 

orders. Therefore, sniping leads to positive spread under two conditions. 

First, investors cannot choose between market and limit orders. Second, 

if they can use market orders only, they face discrete lot size or other 

frictions that prevent them from slicing their orders. 
6 Goettler, Parlour, and Rajan (2005) allow limit orders to queue at the 

same price, but they have to rely on numerical solutions. 
(i) HFTs almost always maintain one unit in the LOB at

the ask price v t + h β and one unit at the bid price v t −
h β . 

(ii) EAs submit limit orders at v t when they arrive and all

HFTs immediately demand liquidity at v t . 
(iii) When v t jumps up (down), all HFTs race to take stale

limit orders at the ask (bid) price . 

In the existing literature, when HFTs demand liq-

uidity, they usually adversely select other traders (BCS;

Menkveld and Zoican, 2017 ; Foucault et al., 2017 ). Con-

sequently, liquidity demand from HFTs often has negative

connotations. Our model shows that HFTs can demand liq-

uidity without adversely selecting other traders. Instead,

transaction costs are lower for EAs when HFTs demand liq-

uidity than when EAs demand liquidity from HFTs. There-

fore, researchers and policymakers should not evaluate the

welfare impact of HFTs based simply on whether they pro-

vide or demand liquidity. 

Proposition 2 also shows that the definitions of pro-

viding and demanding liquidity blur when a machine in-

teracts with another machine. Technically, EAs are liquid-

ity providers in equilibrium because they use limit orders,

but the goal of their limit orders is to immediately attract

HFTs to submit market orders. Therefore, HFTs economi-

cally provide liquidity to EAs even though the HFTs use

market orders. 

The blurring of the distinction between providing and

demanding liquidity has, in turn, a significant impact on

how liquidity is measured. When more non-HFTs use limit

orders, competitive HFTs receive fewer order flows and

have to quote wider bid-ask spreads for the remaining

market orders. Therefore, h β > h 0 > 0 . Despite an increase

in the bid-ask spread, Corollary 1 shows that the total

transaction costs for non-HFTs decrease, because EAs never

pay the bid-ask spread. Let C̄ (β) denote the weighted av-

erage transaction cost for all non-HFTs. We then have 

¯
 ( β) = β · 0 + ( 1 − β) · h β = 

( 1 − β) π

1 − β( 1 − π) 
. (5)

Corollary 1 . The half-spread h β strictly increases in β and

¯ (β) strictly decreases in β . When β → 1 , h β → 1 and

¯ (β) → 0 . 

Corollary 1 shows that the quoted bid-ask spread, a

common measure of liquidity, can move in the opposite

direction of the actual transaction costs when every trader

can provide liquidity. As the proportion of EAs’ β increases,

the quoted bid-ask spread widens, but transaction costs

fall. When all non-HFTs are EAs, HFTs’ half bid-ask spreads

widen to one, the maximum possible value jump size, but

transaction costs zero out. The transaction costs drop be-

cause the bid-ask spread no longer represents all traders’

interest in satisfying the trading needs of non-HFTs. 

BCS show that continuous trading creates snip-

ing risks and positive transaction costs for non-HFTs.

Corollary 1 shows that their results no longer hold when

all traders can provide liquidity. When all traders are EAs

( β = 1 ), HFTs make zero profits in equilibrium and they
973 
have no economic incentive to invest in speed. 5 In the next 

section, we show that discrete pricing generates rents for 

both providing and demanding liquidity, thereby triggering 

an arms race in speed. 

5. Discrete pricing 

In this section, we add another realistic feature to 

our model: discrete pricing. In Section 5.1 , we show that 

discrete pricing creates rents for providing liquidity. In 

Section 5.2 , we show that discrete pricing also creates 

rents for demanding liquidity. These rents, in turn, destroy 

the unique type of equilibrium outlined in Section 4 , in 

which EAs always provide liquidity to HFTs and HFTs al- 

ways provide liquidity to MOTs. Discrete pricing generates 

three types of equilibria depending on parameter values, 

which then lead to cross-sectional and time-series predic- 

tions regarding who provides liquidity to whom. 

We set the tick size � = 
1 
L . Therefore, the tick size 

decreases as L increases. For illustration purposes, we as- 

sume that L = 1 , 2 , 3 , · · · and that v 0 is at the mid- 

point of a tick. Therefore, v t is always at the midpoint 

of the two nearest ticks and the available price grids are 

{ · · · , v t − 3�
2 , v t − �

2 , v t + 
�
2 , v t + 

3�
2 , · · ·} . 

When v t does not coincide with a pricing grid, EAs can 

no longer stimulate HFTs’ market orders at zero cost. A 

positive cost for stimulating HFTs could lead EAs to choose 

limit orders that reside in the LOB. These resting orders 

could cause an explosion in the number of states in the 

LOB because infinitely many EAs will arrive in the future. 

To reduce the number of states, we make the following as- 

sumption for discrete pricing that is common in the LOB 

literature ( Foucault et al., 2005 ). 6 

Assumption 1 . Limit orders must be price-improving, that is, 

they must narrow the spread by at least one tick. 

We relax Assumption 1 in the Online Appendix and 

find that the model’s main intuition holds with dramat- 

ically greater mathematical complexity. Assumption 1 re- 

duces the state of the LOB to 2 n , where n is the num- 

ber of price levels between HFTs’ best bid and ask prices. 

Assumption 1 is not binding under continuous pricing be- 

cause the best bid and offer contains only one share when 

pricing is continuous. Therefore, we are able to compare 

the results obtained under discrete pricing with those ob- 

tained under continuous pricing. 

Assumption 1 also rules out infinite loops between 

traders. For instance, without this assumption, an EA can 

submit an unprofitable undercutting order to force an in- 

cumbent EA’s profitable limit order to cancel. Then, the en- 

trant EA revises her undercutting order to the incumbent’s 
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7 Li, Ye, and Zheng (2021) provide empirical evidence on speed races 

between orders for front queue positions and estimate the economic 

gains from winning the races for front queue position. 
8 This result holds after we remove Assumption 1, which we do in the 

Online Appendix. Even when EAs use limit orders to queue after HFTs, 

the queue positions of EAs involve positive transaction costs. If not, HFTs 

would occupy those queue positions. Furthermore, an EA would use mar- 

ket orders if the queue were too long. 
profitable price level. In return, the initial incumbent could

want to fight back with the same strategy. By disallowing

a trader to worsen the quotes, including her own quotes,

our assumption rules out such trivial loops without affect-

ing the model’s main economic insights. 

Assumption 2 . N = ∞ . 

In Sections 3 and 4 , we show that the number of HFTs

does not affect the equilibrium bid-ask spread quoted by

HFTs. An increase in N reduces the value of providing liq-

uidity because it increases the probability of being sniped.

An increase in N, however, reduces the value of sniping

stale quotes by the same amount because each sniper is

less likely to be successful. Therefore, N can affect sniping

costs and opportunity costs, but it cannot affect the sum

of these two costs. In turn, the equilibrium bid-ask spread

does not depend on N as long as there is more than one

HFT. To simplify the notation, we drop N−1 
N from our ex-

position by assuming that the number of HFTs is infinite.

Consequently, the expected sniping profit for any share is

zero, and an HFT provides liquidity as long as its expected

profit is greater than zero. 

5.1. Rents for providing liquidity and the queuing equilibrium

Consider the extreme case when h 0 → 0 , where the

breakeven spreads in Propositions 1 and 2 are both close to

zero. In that case, the bid-ask spread is binding at one tick

and the tick size becomes pure rent for providing liquidity.

As long as the breakeven bid-ask spread is smaller than

one tick, the difference between the mandated one-tick

minimum spread and the breakeven spread creates rents

for providing liquidity, and the time priority rule allocates

such rents to HFTs. EAs are not able to provide liquidity

because they can neither win time priority nor place limit

orders within the bid-ask spread. Therefore, a low sniping

risk relative to the tick size leads to a queuing equilibrium,

in which HFTs provide liquidity to both EAs and MOTs. 

Proposition 3 . ( queuing equilibrium ). When tick size is � =
1 
L and π ≤ �

2 ( h 0 ≤ �
2 ) , 

(i) HFTs almost always maintain one share at the ask

price v t + 
�
2 and one share at the bid price v t − �

2 . 

(ii) HFTs participate in two speed races: (a) the race to

fill the queue when the depth at v t ± �
2 becomes

zero and (b) the race to snipe all stale quotes fol-

lowing a value jump. 

(iii) All non-HFTs use market orders to trade upon ar-

rival. 

The queuing equilibrium has three features. First and

most important, discrete pricing generates speed races to

provide liquidity at v t ± �
2 because the expected profit for

providing liquidity on top of the book is higher than the

expected profit for sniping the share. When the market

opens, each HFT sends one sell limit order at v 0 + 
�
2 and

one buy limit order at v 0 − �
2 , and the winner of each race

becomes a liquidity provider. When a non-HFT arrives and

takes the order at v t + 
� or v t − � , HFTs race to refill the
2 2 

974 
order. 7 Following value jumps, HFTs race to provide liq- 

uidity at a half-spread of �
2 around the new fundamental 

value. 

Second, a discrete tick size forces EAs to use market or- 

ders because they cannot win the speed race. EAs never 

use market orders when pricing is continuous because 

they can use stimulating limit orders to achieve zero trans- 

action costs ( Proposition 2 ). When the tick size is discrete, 

EAs cannot submit stimulating orders at the fundamental 

value v t . If the tick size is also binding, EAs cannot sub- 
mit limit orders within the spread. EAs always use market 

orders under Proposition 3 because we assume that each 

price level can hold only one share. We show in the Online 

Appendix that the same intuition holds when each price 

level can hold more than one share. EAs never use market 

orders when pricing is continuous, but they use market or- 

ders when pricing is discrete because they can neither sub- 

mit limit orders at the fundamental value v t nor win speed 

races for top positions. 

Third, a discrete tick size increases transaction costs for 

non-HFTs. The result is straightforward for EAs because 

they pay zero transaction costs under continuous pricing 

but they need to pay the bid-ask spread under discrete 

pricing. 8 The transaction costs for all non-HFTs also in- 

crease because the average transaction cost under discrete 

pricing is higher than C̄ (0) , and Corollary 1 shows that 
¯ (0) is greater than C̄ (β) for any β > 0 . 

5.2. Rents for demanding liquidity: Stimulating and 

undercutting equilibria 

When the tick size � decreases or sniping risk π in- 

creases, the breakeven spread for HFTs is larger than the 

tick size. As HFTs lose money by providing liquidity at 

v t ± �
2 , EAs are able to submit limit orders within HFTs’ 

bid-ask spreads. Following a similar intuition expressed in 

Proposition 2 , EAs would never use market orders. EAs can 

stimulate HFTs to demand liquidity if EAs submit buy limit 

orders at v t + 
�
2 or sell limit orders at v t − �

2 . These stimu- 

lating limit orders strictly dominate market orders because 
�
2 is lower than the half-spread. Discrete pricing, mean- 

while, creates one new feature. 

When pricing is continuous, stimulating limit orders of- 

fer the minimum possible transaction cost of zero. When 

pricing is discrete, a stimulating limit order costs �
2 , and 

a limit order that does not cross the midpoint can cost 

less. In Proposition 2 , h β is the breakeven spread for HFTs. 

We define m as the number of tick grid points strictly in 

the interval ( v t , v t + h β ) [or equivalently in the interval 

( v t − h β, v t )]. Therefore, the tick grid immediately above 

v t + h β is v t + ( m + 
1 
2 )� and the tick immediately below 

v t + h β is v t + ( m − 1 
2 )�. Lemma 1 shows that m − 2 price 
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positions always cost more than �
2 , leaving only two price

positions for further consideration. For an EA seller, these

two remaining strategies are (1) submitting a sell order

immediately below v t + h β and (2) selling at v t + 
�
2 , the

price immediately above the midpoint. 

Lemma 1 . When m > 1 , the strategy for stimulating HFTs

strictly dominates all strategies except undercutting h β by

one or m ticks. 

The intuition behind Lemma 1 is as follows. When an

EA sells above v t + 
�
2 , she can attract only MOTs, be-

cause EA buyers never accept an ask price above v t + 
�
2 .

Proposition 2 finds that the half-spread to break even by

attracting all MOTs is h β . An EA then loses more than one

tick if she improves h β by more than one tick, which is

more costly than stimulating HFTs. 

Next, we show that EAs never sell at v t + 
�
2 or buy at

v t − �
2 unless m = 1 . Consequently, our model generates

only two types of equilibria depending on the parameter

value. In Section 5.2.1 , we present the stimulating equi-

librium in which EAs sell at v t − �
2 or buy at v t + 

�
2 . In

Section 5.2.2 , we present the undercutting equilibrium, in

which EAs choose to improve the h β to the closest tick.

The results reported in Fig. 1 show that stimulating equi-

libria and undercutting equilibria alternate in parameter

value and cover the whole parameter space outside the

queuing equilibrium. Intuitively, an EA undercuts HFTs on

the ask side if the breakeven ask price is less than half

a tick away from the price grid immediately below and

she chooses to stimulate HFTs if the breakeven ask price

is more than half a tick away from the price grid immedi-

ately below. 

5.2.1. Stimulating equilibrium under discrete pricing 

In the stimulating equilibrium, an EA incurs a cost of

�v = 
�
2 to attract HFTs. Proposition 4 outlines the param-

eter space in which stimulating is the optimal strategy

in equilibrium. A trader’s strategy involves her response

to all states of the LOB, even if such states do not ap-

pear in equilibrium. To conserve space and convey the

main economic intuition, we describe only traders’ best re-

sponses in the equilibrium path while deferring their off-

equilibrium strategies to the proof. 

Proposition 4 . ( stimulating equilibrium un-

der discrete pricing ) . When m = 1 and π ≥
β+2 −β�−

√ 

( �+1 ) 2 β2 +( 4 −12�) β+4 
2 β

or m ≥ 2 and h β −
( m − 1 

2 )� ≥ �v , 

(i) HFTs almost always maintain one share at the ask

price v t + ( m + 
1 
2 )� and one share at the bid price

v t − ( m + 
1 
2 )�. 

(ii) EA buyers submit limit orders at v t + 
�
2 and EA sell-

ers submit limit orders at v t − �
2 . 

(iii) HFTs participate in three speed races: (a) the race

to snipe all stale quotes following value jumps, (b)

the race to fill the queue when the depth at v t ±
( m + 

1 
2 )� becomes zero, and (c) the race to take the
liquidity offered by EAs. 

975 
Proposition 4 is highly intuitive when m ≥ 2 . In the 

stimulating equilibrium, the cost of stimulating HFTs ( �2 ) 

must be lower than the cost of undercutting h β to the clos- 

est tick. When m ≥ 2 , undercutting h β to the closest tick 

attracts MOTs and HFT snipers but not other EAs. There- 

fore, the EA faces the same order flows as that for HFTs in 

Proposition 2 . The breakeven half-spread for providing liq- 

uidity to all MOTs is h β . An EA then loses h β − ( m − 1 
2 )�

when she narrows the spread to the closest tick. Therefore, 

the EA chooses to stimulate HFTs when h β − ( m − 1 
2 )� ≥

�v . The intuition holds similarly when m = 1 , although the 

formula for the boundary becomes more complex, because 

the EA has to quote at v t ± �
2 if she chooses to narrow the 

spread, and the quote now attracts other EAs. 

In the stimulating equilibrium, EAs leave no limit orders 

on the book. Facing no competition in liquidity provision 

from EAs, HFTs provide liquidity to all MOTs. Even if the 

tick size is not binding, discrete pricing still creates rents 

for liquidity provision because HFTs now quote an ask 

price of v t + ( m + 
1 
2 )� and a bid price of v t − ( m + 

1 
2 )�. 

As ( m + 
1 
2 )� > h β by definition, HFTs still race to the top 

queue position to capture the rent created by the tick 

size. 

The new insight from Proposition 4 is that the tick size 

generates rents and speed competition for demanding liq- 

uidity. When pricing is continuous, EAs can place limit or- 

ders at v t . When pricing is discrete, EAs need to pay �
2 

more to attract HFTs, and HFTs race to demand liquidity to 

capture this rent. This race does not exist under continu- 

ous pricing because EAs leave no rents for HFTs. This race 

also does not exist under a queuing equilibrium because 

no price level exists at which to submit stimulating limit 

orders. 

5.2.2. Undercutting equilibrium 

In the undercutting equilibrium, the cost that EAs 

pay to sell at v t + ( m − 1 
2 )� or buy at v t − ( m − 1 

2 )� is 

less than �
2 . Therefore, the LOB can contain limit or- 

ders placed by EAs, and traders’ strategies depend on the 

number of limit orders that EAs place on the LOB. We 

use ( i 1 t , i 
2 
t , · · · , i m 

t , j 
m 

t , · · · , j 2 t , j 
1 
t ) to denote the state 

of the LOB, where i k t , j 
k 
t ∈ { 0 , 1 } with 1 ≤ k ≤ m and k ∈ 

N 
+ indicate the depth at prices v t + ( m + 

1 
2 − k )� and v t −

( m + 
1 
2 − k )�, which are the prices k ticks below (above) 

HFT’s ask (bid) in Proposition 4 . 

Fortunately, the proof of Proposition 5 shows that EAs 

never improve HFTs by more than one tick in equilibrium. 

For any equilibrium states of the LOB, EAs choose to sell 

at v t + ( m − 1 
2 )� or to buy at v t − ( m − 1 

2 )� if these price 

levels contain no other limit orders. In turn, i k t = j k t = 0 for 

all 2 ≤ k ≤ m always holds in equilibrium. Therefore, HFTs 

face four states of the LOB in equilibrium depending on the 

value of i 1 t and j 
1 
t . Instead of ( i 

1 
t , 0 , · · · , 0 , 0 , · · · , 0 , j 1 t ) , 

for simplicity we use ( i, j ) to represent each equilibrium 

state of the LOB, where i represents the number of EAs 

who quote a half-spread of ( m − 1 
2 )� on the ask side and 

j denotes the number of EAs who quote a half-spread of 

( m − 1 
2 )� on the bid side. The core of Proposition 5 char- 

acterizes HFTs’ best response for each event and in each 
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Fig. 2. Markov transition between limit order book (LOB) states and payoffs from the point of view of high-frequency trader (HFT) liquidity providers on 

the ask side. For instance, in the undercutting equilibrium when m = 1 , HFTs quote at v t ± 3�
2 

and execution algorithms (EAs) can submit undercutting 

orders at v t ± �
2 
. In state ( i, j ) , the number of undercutting EA sell orders at v t + 

�
2 

is i , and the number of buy orders at v t − �
2 

is j. EB and ES represent 

the arrival of EAs’ buy and sell limit orders, MB and MS represent the arrival of market order traders’ (MOTs’) buy and sell market orders, and UJ and DJ 

denote upward and downward value jumps. The arrows between states represent state transitions, and arrows pointing toward the outside represent either 

order executions or cancelations. The number next to each event is the immediate payoff to HFTs from the event. 

 

 

 

 

 

 

 

equilibrium state ( i, j ) . The four states of the LOB are 

( 0 , 0 ) No limit order from EAs , 

( 1 , 0 ) An EA sell limit order at v t + 

(
m − 1 

2 

)
� only , 

( 0 , 1 ) An EA buy limit order at v t −
(
m − 1 

2 

)
�only , and 

( 1 , 1 ) EA limit orde rs on both v t + 

(
m − 1 

2 

)
� and v t −

(
m − 1 

2 

)
�. (6)

Denote the HFTs’ expected value by supplying liquidity

in state ( i, j ) as L P ( i, j ) (m ) . Fig. 2 shows that L P ( i, j ) (m ) de-

pends on the expected value of all other states of the LOB.

For example, consider L P ( 0 , 0 ) (m ) for an HFT on the ask side

of the LOB. 9 

(1) An EA buyer (EB) undercuts the bid side at v t −
( m − 1 

2 )� and changes L P ( 0 , 0 ) (m ) to L P ( 0 , 1 ) (m ) . 

(2) An EA seller (ES) undercuts the ask side at v t +
( m − 1 

2 )� and changes L P ( 0 , 0 ) (m ) to L P ( 1 , 0 ) (m ) . 

(3) An MOT buyer (MB) submits a buy market order and

the HFT gains ( m + 
1 
2 )�. 
9 HFTs make independent decisions on the bid and ask sides. HFTs’ best 

response on the bid side can be characterized similarly. When the sniping 

risk is very high, such that ( m + 
1 
2 
)� > 1 , the HFTs lose zero in case (5) 

and always maintain a quote at v t ± ( m + 
1 
2 
)�. This happens only in the 

highest undercutting equilibrium, e.g., the m = 3 case in Fig. 1 . 

976 
(4) An MOT seller (MS) submits a sell market order, 

HFTs race to fill the bid side immediately, and 

L P ( 0 , 0 ) (m ) remains the same. 

(5) In an upward value jump (UJ), the limit order on the 

ask side loses 1 − ( m + 
1 
2 )�. 

(6) In a downward value jump (DJ), the liquidity 

provider cancels the limit order, thereby changing 

L P ( 0 , 0 ) (m ) to zero. 

The first equation in Eq. (7) summarizes the value of 

L P ( 0 , 0 ) (m ) , which depends on the six types of events and 

the values for the other three states of the book. Similarly, 

the remaining three equations describe the value for state 

L P ( 1 , 0 ) (m ) , L P ( 0 , 1 ) (m ) , and L P ( 1 , 1 ) (m ) . 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

LP ( 0 , 0 ) ( m ) = p 1 LP 
( 0 , 1 ) 

( m ) + p 1 LP 
( 1 , 0 ) 

( m ) + p 2 
(
m + 

1 
2 

)
�

+ p 2 LP 
( 0 , 0 ) ( m ) − p 3 

[
1 −

(
m + 

1 
2 

)
�

]
+ p 3 · 0 

LP ( 1 , 0 ) ( m ) = p 1 LP 
( 1 , 1 ) 

( m ) + p 1 LP 
( 1 , 0 ) ( m ) + p 2 LP 

( 0 , 0 ) 
( m ) 

+ p 2 LP 
( 1 , 0 ) ( m ) − p 3 

[
1 −

(
m + 

1 
2 

)
�

]
+ p 3 · 0 

LP ( 0 , 1 ) ( m ) = p 1 LP 
( 0 , 1 ) ( m ) + p 1 LP 

( 1 , 1 ) 
( m ) + p 2 

(
m + 

1 
2 

)
�

+ p 2 LP 
( 0 , 0 ) 

( m ) − p 3 
[
1 −

(
m + 

1 
2 

)
�

]
+ p 3 · 0 

LP ( 1 , 1 ) ( m ) = p 1 LP 
( 0 , 1 ) 

( m ) + p 1 LP 
( 1 , 0 ) 

( m ) + p 2 LP 
( 0 , 1 ) 

( m ) 

+ p 2 LP 
( 1 , 0 ) 

( m ) − p 3 
[
1 −

(
m + 

1 
2 

)
�

]
+ p 3 · 0 

(7) 

where p 1 = 
β( 1 −π) 

2 , p 2 = 
( 1 −β)( 1 −π) 

2 , and p 3 = 
π
2 are the 

probabilities that the next event is the arrival of an EA 

buyer (seller), the arrival of an MOT buyer (seller), and the 
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upward (downward) jump of the fundamental value, re-

spectively. We have LP 
( i, j ) 

(m ) = max { 0 , L P ( i, j ) (m ) } because
HFTs can simply choose not to submit limit orders or can-

cel existing limit orders once their expected values be-

come negative. Proposition 5 summarizes the EAs’ and

HFTs’ strategies in the undercutting equilibrium. To con-

serve space, we defer their off-equilibrium strategies to the

proof of Proposition 5 . 

Proposition 5 . ( undercutting equilibrium ) . When m = 1

and �
2 < π < 

β+2 −β�−
√ 

( �+1 ) 2 β2 +( 4 −12�) β+4 
2 β

or when m ≥
2 and h β − ( m − 1 

2 )� ∈ ( 0 , �2 ) , 

(i) EAs submit undercutting limit orders at price v t −
( m − 1 

2 )� to buy or v t + ( m − 1 
2 )� to sell if no existing limit

orders sit at that price level and they use stimulating orders

otherwise. 

(ii) The HFTs’ strategy is as follows: 

(a) HFTs provide liquidity at v t ± ( m + 
1 
2 )� if

L P ( i, j ) (m ) ≥ 0 at state ( i, j ) , and L P ( i, j ) (m ) is determined by

the transition matrix in Eq. (7) . 

(b) HFTs race to snipe stale quotes from HFTs and EAs dur-

ing value jumps. 

(c) HFTs race to take stimulating limit orders from EAs. 

As in Proposition 4 , the boundary of the undercutting

equilibrium for m = 1 involves a formula that differs from

the formula involved in the case when m > 1 . Intuitively,

EAs provide liquidity to other EAs when m = 1 , because

quotes of v t ± �
2 are aggressive enough to attract other

EAs. When m > 1 , the quote from an EA no longer attracts

other EAs, because other EAs find that the cost of stimu-

lating HFTs is lower. Therefore, EAs no longer trade with

each other when m > 1 , and the quotes from EAs attract

only MOTs. 

The undercutting equilibrium provides one explanation

for the frequent addition and cancelation of HFTs’ quotes

( Hasbrouck and Saar, 2013 ; Biais and Foucault, 2014 ). In

the undercutting equilibrium, HFTs’ depth at their best

quotes is not constant because they need to respond to

EAs’ undercutting orders. Therefore, HFTs can update their

quotes even if the fundamental value does not change. For

example, when π = 
1 
3 , β = 0 . 6 , and � = 

1 
2 , we have m =

1 , L P ( 0 , j ) (1) > 0 , and L P ( 1 , j ) (1) < 0 . 10 HFTs provide liquid-

ity at a half-spread of 3 
2 � when there is no undercutting

order, but the depth at a half-spread of 3 2 � becomes zero

once an undercutting order establishes price priority over

an HFT’s order. If a market order executes against an un-

dercutting order from an EA, HFTs again find that provid-

ing liquidity at a half-spread of 3 
2 � is profitable and race

to provide liquidity at such a spread. 

6. Predictions and policy implications 

By exploring the interactions between distinct types of

trading algorithms, our paper not only rationalizes a num-

ber of puzzles in the literature but also generates new

testable predictions. In Section 6.1 , we summarize the pre-

dictions that are driven mainly by liquidity-providing non-
10 We solve these equations in the proof of Propositions 4 and 5 . 
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HFTs. In Section 6.2 , we summarize the predictions that are 

driven by discrete pricing. In Section 6.3 , we discuss the 

policy implications of our paper. 

6.1. Predictions driven by liquidity-providing non-HFTs 

In Prediction 1, we posit that EAs tend to quote more 

aggressive prices than HFTs quote. 

Prediction 1 . (price priority). Non-HFTs are more likely than 

HFTs to establish price priority in liquidity provision. 

Brogaard et al. (2015) and Yao and Ye (2018) find 

that non-HFTs are more likely than HFTs to establish 

price priority. Their results are puzzling because exist- 

ing channels suggest that HFTs should quote more ag- 

gressive prices because they incur lower adverse selec- 

tion costs [see Jones (2013) and Menkveld (2016) for sur- 

veys], lower inventory costs ( Brogaard et al., 2015 ; Aït- 

Sahalia and Sa ̆glam, 2017 ), and lower operational costs 

( Carrion, 2013 ). Our model shows that the opportunity cost 

of providing liquidity can reconcile this contradiction. EAs 

can afford to place more aggressive limit orders as long 

as they cost less to execute than market orders. There- 

fore, we show in Proposition 2 that EAs always quote more 

aggressive prices than HFTs do when pricing is continu- 

ous. Under discrete pricing, EAs also choose to establish 

price priority over HFTs as long as the tick size does not 

impose constraints that discourage EAs from undercutting 

HFTs ( Propositions 4 and 5 ). 

Prediction 2 . (negative correlation between the bid-ask 

spread and liquidity). Technology shocks that increase the 

fraction of EAs widen the bid-ask spread but reduce overall 

transaction costs. 

Black (1971, p. 30) describes a liquid market intuitively: 

The market for a stock is liquid if the following condi- 

tions hold: 

1) There are always bid and asked prices for the in- 

vestor who wants to buy or sell small amounts of 

stock immediately. 

2) The difference between the bid and asked prices 

(the spread) is always small. 

3) An investor who is buying or selling a large amount 

of stock, in the absence of special information, can 

expect to do so over a long period of time at a price 

not very different, on average, from the current mar- 

ket price. 

Conditions (1) through (3) were internally consistent 

when Black (1971) was published. At that time, most 

traders executed trades by paying the bid-ask spread to 

dealers or market makers. In the current market, every 

trader can use limit orders, and Conditions (1) through (3) 

could be internally inconsistent. As Proposition 2 implies, 

an increase in β widens the bid-ask spread because HFT 

market makers receive fewer non-HFT order flows. Mean- 

while, the average transaction cost for non-HFTs falls. In 

the extreme case in which β = 1 , the market becomes in- 

finitely liquid because every trader pays zero transaction 

costs. At the same time, the bid-ask spread is at its widest. 
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Proposition 2 and Corollary 1 suggest that the definition

of liquidity and the measure of liquidity should be up-

dated for modern electronic markets. Prediction 2 derives

directly from Corollary 1 . One way to test Prediction 2 is

to examine whether technology improvements for EAs can

increase the bid-ask spread but reduce transaction costs

for institutional traders (such as implementation shortfalls

measured by ANcerno data). 

6.2. Predictions driven by discrete pricing 

When pricing is continuous, EAs always provide liquid-

ity to HFTs, and HFTs always provide liquidity to MOTs.

When pricing is discrete, who provides liquidity to whom

depends on the parameter value, and this dependence gen-

erates cross-sectional and time series predictions regarding

liquidity provision and demand. 

Prediction 3 . (time priority versus price priority). HFTs

crowd out liquidity provision by non-HFTs when the tick size

is large. 

Prediction 3 derives from Proposition 3 . Chordia et al.,

644) worry that “HFTs use their speed advantage to crowd

out liquidity supply when the tick size is small and step-

ping in front of standing limit orders is inexpensive.” Yet

Yao and Ye (2018) find that HFTs crowd out non-HFTs’ liq-

uidity supply when the tick size is large. Our paper pro-

vides the theoretical foundation for reconciling this con-

tradiction. EAs can quote tighter bid-ask spreads than HFTs

because EAs incur lower opportunity costs for providing

liquidity. A large tick size prevents non-HFTs from estab-

lishing price priority over HFTs while helping HFTs estab-

lish time priority over non-HFTs. Yao and Ye (2018) find

that the tick size is more likely to be binding for low-

priced securities, for which a 1 cent uniform tick size leads

to a larger relative tick size. They also find that HFTs pro-

vide a larger share of liquidity for low-priced securities.

Ye et al., 2020 find that an increase in tick size crowds out

share repurchases by firms because they cannot win the

speed race in liquidity provision. 11 These results are con-

sistent with Prediction 3. 

In reality, the tick size is not the only source of con-

strained price competition. For example, the NYSE and

Nasdaq offer rebates to liquidity providers. When the tick

size is binding, the rebate to liquidity providers further

widens the effective tick size and the cum-fee bid-ask

spread ( Chao et al., 2018 ). Technically, every trader can get

the rebate for liquidity provision, but with discrete pricing,

traders with high-speed capability are more likely to ob-

tain the rebate, particularly when the tick size is binding. 

Prediction 4 . (sniping and liquidity provision). An increase

in sniping risk reduces the share of liquidity provided by HFTs.

We obtain Prediction 4 by comparing

Proposition 3 with Propositions 4 and 5 . When the

sniping risk is low, the binding bid-ask spread drives
11 To prevent firms from inflating their share prices by outbidding other 

traders, SEC rule 10b-18 discourages firms from demanding liqudity in 

share repurchases. 

978 
speed competition. If the incidence of sniping rises high 

enough, the spread is wider than one tick, allowing non- 

HFTs to undercut HFTs and reducing liquidity provision 

on the part of HFTs. One limitation of our model is that 

we consider only adverse selection led by sniping, but 

other types of adverse selection should provide the same 

economic mechanism. Generally, the breakeven bid-ask 

spread should be lower when the adverse selection risk 

is low. Once the breakeven spread falls below one tick, 

speed competition to achieve time priority should be more 

critical. 

Prediction 4 differs significantly from predictions 

offered in the existing literature on HFTs. Prior stud- 

ies typically model HFTs as traders who can ac- 

cess information more rapidly than other traders. 

Hoffmann (2014) , Han et al. (2014) , and Bongaerts and 

Van Achter (2020) find that HFTs incur lower sniping 

costs than non-HFTs. Therefore, an increase in the level of 

information should give HFTs a comparative advantage in 

liquidity provision. 

Yao and Ye (2018) provide evidence consistent with Pre- 

diction 4. In the cross-section, an increase in adverse se- 

lection risk reduces the fraction of liquidity provided by 

HFTs. It would be interesting to test whether Prediction 4 

holds in a time series, that is, whether, for a given secu- 

rity, HFTs provide a smaller fraction of liquidity when the 

sniping risk is high. 

Prediction 5 . ( speed competition over taking liquidity ) . 

Non-HFTs are more likely to provide liquidity at price levels 

that cross the midpoint (stimulating limit orders) than HFTs. 

HFTs are also more likely to demand liquidity from stimulat- 

ing limit orders, but they do not adversely select these orders. 

In Proposition 4 , EAs always choose to cross the mid- 

point to stimulate HFTs. Proposition 5 implies that an EA 

chooses to stimulate HFTs when another EA undercuts 

HFTs on the same side. HFTs never cross the midpoint be- 

cause this strategy loses money, but EAs can cross the mid- 

point to stimulate HFTs as long as the loss is less than the 

cost of undercutting HFTs or using market orders. 

Latza et al. (2014) find evidence consistent with Predic- 

tion 5. They classify a market order as “fast” if it executes 

against a standing limit order that is less than 50 mil- 

liseconds old. These fast market orders should come from 

HFTs. They also find that fast market orders often execute 

against limit orders that cross the midpoint and lead to 

virtually no permanent price impacts. Testing Prediction 5 

more directly using data that include account information 

on traders could be fruitful. 

6.3. Policy implications 

Our paper offers policy implications for both HFTs and 

the tick size. For HFTs, BCS argue for a more discrete mar- 

ket in time, whereas we argue for a more continuous mar- 

ket in pricing. We show that when all non-HFTs are EAs, 

transaction costs are zero, and no incentive exists for HFTs 

to engage in speed competition. In this sense, our paper 

supports the Kyle and Lee (2017) vision of a fully continu- 

ous market. 
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Fig. 3. Simulation of the impacts of tick sizes on the expected execution costs with β ∼ U( 0 , 1 ) , π ∼ U( 0 , 1 ) . For each �, we draw 10 0,0 0 0 random 

combinations of ( β, π) and decide the equilibrium outcome (queuing, stimulating, or undercutting). We then calculate the expected execution cost of 

market order traders (MOTs) and execution algorithms (EAs) and take the average over all combinations of ( β, π) drawn. Both EAs and MOTs see an 

increase in execution costs with respect to the tick size �. When � → 0 , the execution cost of EAs goes to zero because they can use stimulating orders 

at the fundamental value. 
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On April 5, 2012, President Barack Obama signed the

Jumpstart Our Business Startups Act. Section 106 (b) re-

quires the SEC to examine the effects of tick sizes on initial

public offerings. On October 3, 2016, the SEC implemented

a pilot program to increase the tick size from 1 cent to

5 cents for twelve hundred common stocks. Proponents of

the proposal argue that a larger tick size can improve liq-

uidity ( Weild et al., 2012 ). In Corollary 2 and Prediction 6,

we posit that a larger tick size discourages non-HFTs from

quoting their desired prices and increases execution costs. 

Corollary 2 . For all π , β , and �, C̄ (β) < C̄ �(β) , where
¯ (β) ≡ ( 1 − β) h β is the average execution cost to non-HFTs

under continuous pricing and C̄ �(β) is the cost under dis-

crete pricing. 

Corollary 2 shows that, for any parameter, the trans-

action cost is higher under a discrete tick size than un-

der continuous pricing because the tick size creates rents

for demanding and supplying liquidity. To be sure, the tick

size is never continuous in reality. When we compare large

and small discrete tick sizes, we are not able to directly

compare the formulas for any parameter values because

of the complexity of the three equilibrium types. Instead,

we draw our two parameter values β and π from a uni-

form distribution [ 0 , 1 ] and compute the expected transac-

tion costs based on Propositions 3 –5 . The results reported

in Fig. 3 show that the expected transaction cost increases

with the tick size for both MOTs and EAs. The increase in

the cost paid by MOTs reflects an increase in the bid-ask

spread. An increase in the tick size leads to a larger in-

crease in transaction costs incurred by EAs because a larger

tick size not only increases the cost incurred by EAs when

they demand liquidity but also increases those costs when

they choose to stimulate HFTs. 

Following Corollary 2 and Fig. 3 , we derive our sixth

prediction. 
979 
Prediction 6 . . Discrete pricing leads to higher transaction 

costs for non-HFTs. 

Empirically, Yao and Ye (2018) and Albuquerque 

et al. (2020) find evidence consistent with Prediction 6. 

Our model’s prediction, along with their empirical evi- 

dence, shows that an increase in the tick size harms liq- 

uidity. 

7. Conclusion 

We provide the first model representing the behavior 

of algorithmic traders that are slower than HFTs. The in- 

teraction between these EAs and HFTs rationalizes several 

puzzles regarding who provides liquidity and when, as well 

as generates several new testable predictions. EAs incur 

lower opportunity costs than HFTs when providing liquid- 

ity. Therefore, EAs choose to provide liquidity at more ag- 

gressive prices if pricing is sufficiently continuous. A large 

tick size constrains price competition, creates rents for liq- 

uidity provision, and encourages speed competition to cap- 

ture such rents through the time priority rule. A higher 

sniping risk increases the breakeven bid-ask spread rela- 

tive to the tick size, which allows EAs to establish price 

priority over HFTs and reduces the share of liquidity pro- 

vided by HFTs. All these predictions are consistent with the 

empirical findings of Yao and Ye (2018) . 

Our model also provides several new testable predic- 

tions. (1) EAs should not use market orders once the tick 

size becomes small enough relative to the bid-ask spread. 

(2) EAs are more likely than HFTs to provide liquidity at 

price levels that cross the midpoint, and these limit or- 

ders are more likely to be taken by HFTs almost imme- 

diately. (3) The bid-ask spread widens when technological 

shocks increase the proportion of EAs, but overall transac- 

tion costs decrease. 
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We find that a larger tick size increases transaction

costs and drives an arms race in speed. These results chal-

lenge the rationale for the recent policy proposal that has

increased the tick size to 5 cents. Thus, we encourage reg-

ulators to consider decreasing the tick size, particularly for

liquid stocks. 

Current policy debates over HFTs usually follow the

binary classifications that pit fast versus slow traders or

computers versus humans. This dichotomy reflects and af-

fects the academic literature on HFTs. Our model shows

that this policy debate should consider diversity within

the class of machine traders, especially regarding machines

that are slower than HFTs but faster than humans. For ex-

ample, we find that EAs can cross the midpoint to stim-

ulate HFTs to demand liquidity immediately, and the cost

of stimulating HFTs is lower than the cost of paying the

bid-ask spread offered by HFTs. Therefore, the impact of

HFTs on liquidity and social welfare should not be eval-

uated based simply on whether they demand or provide

liquidity. We also find that the bid-ask spread can move in

the opposite direction of true liquidity. 

EAs in our model make only execution decisions, and

their incentives to buy or sell are exogenous. Some other

algorithmic traders could use computers and machine-

learning techniques to decide whether to buy or to

sell. Therefore, fully assessing the diversity of algorithmic

traders and their interactions is still in the early days. Just

as insights into human behavior from the psychology liter-

ature spawned the field of behavioral finance, so insights

into algorithmic behavior could prompt an analogous blos-

soming of research in algorithmic finance. 
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