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1. Introduction

In decades past, specialists on the New York Stock Ex-
change and dealers on Nasdaq provided liquidity to other
traders by buying when other traders sell and selling when
other traders buy. These traditional liquidity providers
have almost disappeared in modern electronic markets
(Clark-Joseph et al., 2017). Anyone can supply liquidity, but
no one is obligated to provide it. Providing liquidity sim-
ply means posting a limit order (an offer to buy or sell
at a specified price). A trade occurs when another trader
(a liquidity demander) uses a market order to accept the
terms of a posted offer. In the new ecosystem of voluntary
liquidity supply, who provides liquidity and who demands
liquidity, and when?

One hypothesis is that high-frequency traders (HFTs)
become natural liquidity providers in modern elec-
tronic markets, because they incur lower operating costs
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(Carrion, 2013), adverse selection costs (Hoffmann, 2014),
and inventory costs (Brogaard et al., 2015; Ait-Sahalia and
Saglam, 2017). These cost advantages imply that HFTs
should win the price competition in liquidity provision.
Surprisingly, Yao and Ye (2018) find the opposite: Non-
HFTs tend to quote more aggressive prices than HFTs.
Who, then, are these non-HFTs and why can they undercut
HFTs?

A more complex challenge is that no types of traders
consistently dominate liquidity provision. For example,
Yao and Ye (2018) and O’Hara et al. (2018) find that HFTs
provide relatively more liquidity for low-priced stocks
and that non-HFTs provide relatively more liquidity for
high-priced stocks. Yao and Ye (2018) show that non-HFTs
provide more liquidity as adverse selection risk increases.
Therefore, who provides liquidity depends endogenously
on security characteristics. Traditional market microstruc-
ture theory usually exogenously assigns who provides
liquidity. Then, what drives the cross-sectional variations
on who provides liquidity?

One key to addressing these questions is to explore un-
charted territory: algorithmic traders who are not HFTs.
To minimize transaction costs, buy-side institutions, such
as mutual funds and pension funds, use computer algo-
rithms extensively to execute their trades (Frazzini et al.,
2018; O’Hara, 2015). Although execution algorithms (EAs)
are key players in the financial ecosystem (Hasbrouck and
Saar, 2013), they lack an independent identity in exist-
ing models. According to one view, financial markets in-
clude HFTs and everyone else, with the latter covering
both sophisticated institutions and unsophisticated retail
traders [see the survey by O'Hara (2015)]. According to the
other view, algorithmic traders and HFTs are interchange-
able [see the survey by Biais and Foucault (2014)]. The
stark simplicity of these classifications has proved valu-
able and appropriate for studying basic foundational ques-
tions about machine-human interactions, but the same di-
chotomy prevents the study of interactions between differ-
ent types of algorithms, and such machine-machine inter-
actions are the key to understanding the current structure
of financial markets.

Our model captures two fundamental differences
between EAs and HFTs (Hasbrouck and Saar, 2013;
O’Hara, 2015). First, EAs can use limit orders to provide liq-
uidity, but their goal is to minimize transaction costs, not
to profit from bid-ask spreads (Hasbrouck and Saar, 2013;
Jones, 2013). Second, EAs are fast, but they are slower
than HFTs (O'Hara, 2015). The differences in incentives and
trading speed between algorithms are the main drivers of
our model. EAs enjoy lower opportunity costs for provid-
ing liquidity because they must complete a trade. EAs can
lose money when providing liquidity as long as the loss is
lower than paying the bid-ask spread. We find that EAs al-
ways choose to provide liquidity at more aggressive prices
than HFTs if pricing is continuous. In reality, pricing is dis-
crete. For example, the US Securities and Exchange Com-
mission (SEC) Regulation National Market Systems (Reg
NMS) Rule 612 mandates a uniform tick size (minimum
price variation) of 1 cent for any quote above $1. Discrete
pricing increases the cost to EAs of narrowing the bid-ask
spread. At the extreme, EAs cannot undercut HFTs at all if
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the bid-ask spread is binding at one tick. Under discrete
pricing, we discover three types of equilibria, thereby of-
fering testable predictions regarding who provides liquidity
and when.

Our model contains N competitive HFTs who have no
private value to trade. HFTs provide or demand liquidity to
maximize their expected trading profits. Non-HFTs arrive
at the market following a Poisson process, bringing inelas-
tic demand to buy or sell one unit of a security. A frac-
tion B of non-HFTs are EAs, and they can choose between
limit and market orders to minimize transaction costs, and
the remaining non-HFTs are market order traders (MOTS).
When g =0, our model degenerates into the Budish et al.
(2015; BCS hereafter) framework, in which all non-HFTs
must demand liquidity. MOTs have to pay a positive bid-
ask spread even if the fundamental value of a security
is public information. The positive bid-ask spread results
from the sniping risk: The quote from an HFT can be
sniped by N — 1 equally fast HFTs during value jumps.

Once we allow non-HFTs to provide liquidity, they
never demand liquidity when pricing is continuous, be-
cause the following strategy dominates demanding liquid-
ity. Suppose that an EA buyer submits a limit order at
price & above the fundamental value. Her order immedi-
ately stimulates HFTs to submit market orders to collect &
as profit. The EA loses &, but the loss is lower than the bid-
ask spread when ¢ is sufficiently small. HFTs immediately
accept a lower price than the ask price, because accept-
ing an offer does not expose them to a sniping risk. Under
continuous pricing, our model generates only one type of
equilibrium, in which EAs provide liquidity to HFTs at the
fundamental value and HFTs immediately accept the offer.
The EA’s limit order executes immediately like a market or-
der and does not rest in the limit order book (LOB). HFTSs,
therefore, provide liquidity to MOTs.

When pricing becomes discrete, our model generates
three types of equilibria because discrete pricing creates
rents for both providing and demanding liquidity. When
the sniping risk is very low relative to the tick size, the
breakeven bid-ask spread can drop below one tick. The
difference between the one tick-mandated bid-ask spread
and the breakeven bid-ask spread becomes rents for pro-
viding liquidity, and speed allocates these rents to HFTs. In
the first type of equilibrium, the queuing equilibrium, HFTs
dominate liquidity provision because they can achieve time
priority at the constrained one-tick bid-ask spread. This
prediction is consistent with Yao and Ye (2018), who find
that HFTs dominate liquidity provision when either the ad-
verse selection risk is too low or the tick size is too large.

The second and the third type of equilibria occur when
the breakeven spread for HFTs becomes wider than one
tick. EAs can place limit orders within the spread, but
they can no longer stimulate HFTs at the fundamental
value. Instead, they need to cross the fundamental value
to stimulate HFTs. The difference between the price that
HFTs accept and the fundamental value is the rent for
HFTs to demand liquidity and the loss for EAs to stimu-
late HFTs. EAs’ choices then depend on whether such loss
is larger than the loss from improving the breakeven bid-
ask spread. Fig. 1 shows that the second and third type
of equilibria rotates with parameter values. The second
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Fig. 1. Parameter ranges of the equilibria for the example of tick size A = % When sniping risks are very low, high-frequency traders (HFTs) quote a
one-tick bid-ask spread and provide liquidity to all execution algorithms (EAs) and market order traders (MOTs) (Proposition 3, queuing equilibrium).
When sniping risks are higher, HFTs widen their quoted spreads and provide liquidity to MOTs only. The regions in which HFTs quote differing spreads
are separated by solid lines. Within each region, EAs choose between stimulating HFTs (Proposition 4, stimulating equilibrium) and undercutting HFTs
(Proposition 5, undercutting equilibrium) depending on the parameters. When the tick size is not binding, the undercutting equilibrium alternates with the
stimulating equilibrium with respect to 7 and . m is the number of tick grids between the midpoint and the ask price, and h is the half bid-ask spread.

type of equilibrium, the undercutting equilibrium, arises
when the breakeven ask (bid) price is close to the price
grid below (above). As the loss incurred by improving the
breakeven spread is small, EAs choose to undercut the
breakeven spread and provide liquidity to other non-HFTs.
The third type of equilibrium, the stimulating equilibrium,
arises when the breakeven ask (bid) price is far from the
price grid below (above). As the cost for improving the
breakeven ask and bid prices is higher than stimulating
HFTs, EAs choose to cross the midpoint to stimulate HFTs.
HFTs then race to take liquidity to capture the rents from
demanding liquidity. In the stimulating equilibrium, EAs
provide liquidity to HFTs, and HFTs provide liquidity to
MOTs because limit orders from EAs never stay in the LOB.
By opening the door to exploring the diversity of com-
puter algorithms, our paper not only develops new pre-
dictions but also generates new perceptions. Machine-
machine interaction blurs the distinction between provid-
ing and demanding liquidity. By definition, an EA provides
liquidity because she uses a limit order, but her goal is to
trigger immediate market orders from HFTs. In this sense,
the EA demands liquidity because her stimulating limit or-
der executes like a market order. HFTs use market orders,
but they satisfy the EA’s trading needs. In this sense, HFTs
provide liquidity even though they take quotes from EAs.
After blurring the distinction between providing and
demanding liquidity, this machine-machine interaction
also makes it challenging to measure liquidity. Traditional
liquidity measures, such as the bid-ask spread and depth,
are based on orders resting on the LOB. Our model shows
that the liquidity offered by the LOB can move in the
opposite direction of true liquidity. Consider the case in
which pricing is continuous. The bid-ask spread increases
as the fraction of EAs increases because fewer non-HFTs
take liquidity from HFTs. The average transaction costs that
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non-HFTs incur decline, however, because more EAs enjoy
zero transaction costs. At the extreme, the bid-ask spread
reaches its widest magnitude when all non-HFTs are EAs,
but the market becomes infinitely liquid because non-HFTs
always choose to stimulate HFTs when no transaction costs
exist.

The discrete pricing channel of speed competition rec-
onciles a number of contradictions between existing chan-
nels of speed competition and empirical facts, for both
supplying liquidity and demanding liquidity. Regarding
supplying liquidity, Carrion (2013), Hoffmann (2014), and
Brogaard et al. (2015) show that speed reduces HFTs’
intermediation costs, particularly adverse selection costs.
Such reduced costs should give HFTs a competitive ad-
vantage in providing liquidity for stocks that are subject
to higher adverse selection risk (Han et al.,, 2014). In ad-
dition, when the tick size is small, HFTs face less con-
straint in offering better prices and they should there-
fore crowd out liquidity provision by non-HFTs. Yao and
Ye (2018) find, however, that an increase in adverse se-
lection risk reduces HFTs’ share in liquidity provision
and that a small tick size crowds out liquidity provision
from HFTs. The discrete pricing channel helps to recon-
cile these apparent contradictions. EAs can provide liquid-
ity at better prices because they enjoy lower opportunity
costs for doing so. Lower adverse selection risk or larger
tick size, however, reduces the breakeven spread to be-
low one tick and lead to speed competition at constrained
prices.

Liquidity demand from HFTs usually has a nega-
tive connotation because, in existing models, HFTs typi-
cally adversely select liquidity providers when they de-
mand liquidity (BCS; Foucault et al., 2017; Menkveld and
Zoican, 2017). In our model, EAs use aggressive limit or-
ders to stimulate HFTs. HFTs demand liquidity, but they do
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not adversely select EAs. Instead, the transaction costs that
EAs pay are lower when HFTs demand liquidity than when
HFTs provide liquidity. This surprising prediction could ex-
plain why Latza et al. (2014) find that limit orders executed
within 50 milliseconds after submission incur no adverse
selection costs.

The closest paper to ours is BCS. We relax two assump-
tions made in BCS. First, because non-HFTs in BCS can use
only market orders, the sniping risk leads to a positive bid-
ask spread, motivating BCS to recommend frequent batch
auctions. Our model shows that when all non-HFTs can
choose between limit and market orders, transaction costs
drop to zero once pricing is continuous. Second, we re-
lax their assumption of continuous pricing and show that
discrete pricing generates an arms race in speed. There-
fore, BCS argue for a more discrete market with respect
to time, while as an alternative, we posit a more contin-
uous market with respect to pricing. Our insight under-
mines the rationale for increasing the tick size to 5 cents
as proposed by the 2012 US Jumpstart Our Business Star-
tups (JOBS) Act and the SEC’s 2016 tick size pilot program.
Proponents of increasing the tick size argue that a larger
tick size increases liquidity, discourages HFTs, increases
market-making profits, supports sell-side equity research,
and, eventually, increases the number of initial public of-
ferings (IPOs) (Weild et al., 2012). Our results show that an
increase in the tick size reduces liquidity, encourages speed
racing between HFTs, and allocates resources to latency re-
duction.

The paper proceeds as follows. Section 2 sets up the
model. Section 3 presents the results when the price
is continuous, and all non-HFTs use market orders. In
Section 4 we allow some non-HFTs to use limit orders but
keep price continuous and compare with the results in
Section 3. In Section 5, we add one more realistic feature
to our model: discrete pricing. Section 6 contains empiri-
cal predictions and policy implications. Section 7 concludes
with a discussion for future research.

2. Model

We consider a continuous-time trading model with an
infinite horizon. There is one security, and its fundamental
value v; is common knowledge, t € [0, co), with vy = 0.

There are two types of traders: HFTs and non-HFTs. All
traders are risk-neutral, and there is no time discounting.
There are N (2 < N < oo) HFTs always present in the mar-
ket with the goal of maximizing expected trading profits.

Every non-HFT has an inelastic need to buy or sell one
unit of a security. A fraction 8 of non-HFTs can choose
between limit and market orders to minimize transaction
costs. These are the EAs. The remaining fraction of 1 - S
non-HFTs, MOTs, use only market orders upon arrival.

As in BCS, non-HFTs arrive at the market at Poisson in-
tensity A;, and the asset’s fundamental value, v;, evolves
as a compound Poisson jump process with arrival rate A;.

. . . A
Therefore, at any time t, with probability 7 = MT]/\] the

next event is a value jump, and with probability 1 — 7 the
next event is an arrival of a non-HFT. During the value
jump, the fundamental value of the security, v;, increases
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to vy +1 or decreases to v; —1 with equal probability.
Upon arrival, non-HFTs buy or sell with equal probability.
Therefore, the probability that the next event is the arrival
of a buy MOT is (1 - B)(1 - ).

The stock exchange operates as a continuous LOB. Each
trade in the LOB requires a liquidity provider and a liq-
uidity demander. The liquidity provider submits a limit or-
der, which is an offer to buy or sell at a specified price
and quantity. The liquidity demander accepts the price and
quantity of a limit order. Execution precedence for liquid-
ity providers follows price-time priority. Limit orders with
higher buy or lower sell prices execute before less aggres-
sive limit orders. For limit orders queuing at the same
price, orders arriving earlier execute before later orders.
HFTs are all equally fast, and their order messages (limit
orders, market orders, or cancelations) are processed seri-
ally in random order if those messages arrive at the ex-
change at the same time.

As in BCS,v; is common knowledge, but liquidity
providers are subject to a sniping risk if they fail to up-
date their stale quotes following value jumps. EAs are al-
ways subject to such a sniping risk because they are slower
than HFTs, but an HFT is also subject to a sniping risk with
a positive probability because other HFTs are equally fast.
In equilibrium, sniping stale quotes are always profitable,
and we allow an HFT to snipe her own quotes because it
is economically equivalent to order cancelation.

The LOB contains all outstanding limit orders. Outstand-
ing orders to buy are called bids, and outstanding orders
to sell are called asks. In this paper, we focus on the high-
est bid and the lowest ask around v, which are called the
best bid and ask. To simplify exposition, we assume that a
limit order is canceled if it has no chance of trading with
a non-HFT before the next jump occurs. This simplification
rules out the trivial strategy of laying the book, that is, at-
tempting to satiate all bid price levels below v; — 1 or all
ask price levels above v; + 1, because such pricing levels
involve no sniping risk at time t.

3. Continuous-pricing model without EAs

When B =0, all non-HFTs use market orders, and our
model essentially degenerates into the BCS framework.
We use this section as a benchmark for evaluating, in
Sections 4 and 5, the impact of allowing non-HFTs to pro-
vide liquidity.

Let h be the HFTs’ quoted half bid-ask spread. We con-
sider, without loss of generality, the expected payoff for an
HFT’s sell limit order at v + h if the HFT posts the first
share at this price. When a buy event occurs, this sell or-
der has the following expected payoff:

N-1 1

(1-m)-h- N n.(l—h)—l—Ner. (1)

Conditional on the occurrence of a buy event, with
probability 1 — 7 a non-HFT takes the limit order and the
payoff is h, and with probability 7 v jumps upward by one
and all HFTs race to snipe stale quotes on the ask side.
HFTs are equally fast, so the probability that an HFT order
is sniped by other HFTs is % The loss for being sniped
is(vp+1) —(we+h)=1-h.



S. Li, X. Wang and M. Ye

An HFT'’s outside option beyond providing liquidity is
to snipe the share when v; jumps. The value for this out-
side option is zero when a non-HFT takes the share before
the value jumps. When v; jumps upward, each HFT has a
% chance of sniping the share and the payoff for the suc-
cessful sniper is (vt +1) — (vt + h) = 1 — h. Therefore, the

expected payoff for a sniper at vy + h is

1

57 (1=h). 2)
In equilibrium, HFTs should be indifferent between lig-

uidity provision and stale quote sniping. Thus, the equilib-

rium half bid-ask spread is the value h = hy, which solves

(1—n)-h—¥n.(1—h)=%n-(l—h).

3)
The best bid and ask prices contain only one share be-

cause undercutting hg or quoting a second share at hg loses

money. We summarize the equilibrium in Proposition 1.

Proposition 1. When non-HFTs cannot supply liquidity, the
equilibrium half bid-ask spread under continuous pricing is
ho =T.

HFTs almost always maintain one unit in the LOB at the
ask price vy + hg and one unit at the bid price vy — hy.! The
bid and ask prices can belong to different HFTS.

(i) Upon arrival, non-HFTs demand liquidity from HFTs
and pay hy.

(ii) When v; jumps up (down), all HFTs race to take stale
ask (bid) quotes.

The positive transaction cost hy results from the sniping
risk (BCS).2 Next, we show that non-HFTs can avoid such
costs completely as long as they can use limit orders.

4. Continuous-pricing model with EAs

In this section, we relax only one assumption made in
BCS. We allow a fraction of 8 > 0 of non-HFTs to provide
liquidity. EAs’ objective function is to minimize expected
transaction costs, and they can update their orders at any
time.’

After we allow non-HFTs to provide liquidity, they never
demand liquidity from HFTs under continuous pricing be-
cause crossing the midpoint strictly dominates paying HFTs
a half-spread. When an EA submits a buy limit order at
V¢ + &, the order immediately stimulates HFTs to demand
liquidity because HFTs make a profit of & by selling above
the fundamental value. EA loses ¢ by providing liquidity,
but the cost is lower if ¢ < h. Therefore, EAs never demand
liquidity from HFTs.

The foregoing discussion reveals two new economic
mechanisms. The first mechanism is the opportunity cost
of liquidity provision. EAs can afford more aggressive limit
order prices than HFTs because EAs enjoy a negative op-
portunity cost for providing liquidity. EAs’ outside option

1 HFTs’ stale quotes can be sniped during value jumps, but HFTs imme-
diately replenish the share around the new fundamental value.

2 Aquilina, Budish, and O’Neill (2020) quantify return from the sniping.

3 As our paper focus on costs led by the sniping risk, we assume away
delay costs for EAs (Parlour, 1998; Foucault, 1999; Foucault, Kadan, and
Kandel, 2005).
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for providing liquidity is to demand liquidity by paying h.
Therefore, EAs can afford buy limit orders at price v; + ¢
as long as the loss is less than h. HFTs do not provide lig-
uidity if they lose money. What is more, HFTs incur a pos-
itive opportunity cost for providing liquidity. When an HFT
chooses to provide liquidity, she cannot profit from snip-
ing the share, and the probability of sniping conditional on
a value jump is % This positive opportunity cost is equal
to HFTs’ reduced sniping cost relative to the cost to EAs.*
Therefore, EAs can afford more aggressive quotes than HFTs
for any of the model’s parameter values.

The second mechanism, the make-take spread, captures
the difference in prices between a trader’s willingness to
post an offer and her willingness to accept an offer. An
HFT quoting an ask price of vy +h would accept any buy
limit price vy + & (¢ — 0). HFTs accept a worse price than
the price they offer because accepting an order incurs no
sniping risk. In our model, an HFT seller accepts any offer
at or above v, but she quotes v; + h. As a consequence, the
EA’s buy limit order at v; + ¢ executes immediately like a
market order.

We discover the make-take spread because we allow
traders to switch between providing and demanding liq-
uidity at any time. Models with market makers, such as
those used in Kyle (1985) and Glosten and Migrom (1985),
exogenously assign the liquidity-provider and liquidity-
demander roles. In LOB literature [Foucault et al. (2005),
among others], traders can choose limit orders or market
orders upon arrival, but they can no longer update their
roles after the initial decision.

Proposition 2 characterizes the equilibrium. In the equi-
librium, EAs always choose limit order prices at v; and
HFTs immediately demand liquidity once EAs submit such
limit orders. EAs provide liquidity to HFTs, but the LOB
contains no resting limit orders placed by the EAs. HFTs
provide liquidity to MOTs by quoting one share at v; + hg
and one share at v — hg. The half-spread hg equalizes the
payoff of liquidity provision and stale quote sniping for
HFTs, which is given by

1-B)(1-m) _N-1 P
A=A -m)+n N O-fpd-n)+n
(d-hy=1 i (1—h). (a)

NA-B(d-m)+n

The left-hand side of Eq. (4) is the HFT seller’s liquidity-
provision profit conditional on a trade’s occurring at the
ask, and the right-hand side is a sniper’s profit. The only
difference between Eq. (4) and Eq. (3) is the factor (1 — )
[Eq. (4) degenerates into Eq. (3) when B =0]. We call
Proposition 2 the stimulating equilibrium because EAs,
who have an internal need to trade, use aggressive limit
orders to stimulate HFTs to demand liquidity.

Proposition 2. (stimulating equilibrium). With a tick size of
zero and a positive fraction of EAs (B > 0), the equilibrium

half bid-ask spread is hg = %

4 During value jumps, an HFT is sniped with probability of %

EA is sniped with probability of one.

and an
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(i) HFTs almost always maintain one unit in the LOB at
the ask price v + hﬂ and one unit at the bid price v; —
hg.

(ii) Eﬁs submit limit orders at v; when they arrive and all
HFTs immediately demand liquidity at v;.

(iii) When v; jumps up (down), all HFTs race to take stale
limit orders at the ask (bid) price.

In the existing literature, when HFTs demand lig-
uidity, they usually adversely select other traders (BCS;
Menkveld and Zoican, 2017; Foucault et al., 2017). Con-
sequently, liquidity demand from HFTs often has negative
connotations. Our model shows that HFTs can demand lig-
uidity without adversely selecting other traders. Instead,
transaction costs are lower for EAs when HFTs demand liq-
uidity than when EAs demand liquidity from HFTs. There-
fore, researchers and policymakers should not evaluate the
welfare impact of HFTs based simply on whether they pro-
vide or demand liquidity.

Proposition 2 also shows that the definitions of pro-
viding and demanding liquidity blur when a machine in-
teracts with another machine. Technically, EAs are liquid-
ity providers in equilibrium because they use limit orders,
but the goal of their limit orders is to immediately attract
HFTs to submit market orders. Therefore, HFTs economi-
cally provide liquidity to EAs even though the HFTs use
market orders.

The blurring of the distinction between providing and
demanding liquidity has, in turn, a significant impact on
how liquidity is measured. When more non-HFTs use limit
orders, competitive HFTs receive fewer order flows and
have to quote wider bid-ask spreads for the remaining
market orders. Therefore, hg > hg > 0. Despite an increase
in the bid-ask spread, Corollary 1 shows that the total
transaction costs for non-HFTs decrease, because EAs never
pay the bid-ask spread. Let C(8) denote the weighted av-
erage transaction cost for all non-HFTs. We then have

(a-g)m

T—B(-m) )

CB)=B-0+(1~p)-hy=

Corollary 1. The half-spread hg strictly increases in 8 and
C(B) strictly decreases in B. When B — 1, hg — 1 and
C(B) — 0.

Corollary 1 shows that the quoted bid-ask spread, a
common measure of liquidity, can move in the opposite
direction of the actual transaction costs when every trader
can provide liquidity. As the proportion of EAs’ 8 increases,
the quoted bid-ask spread widens, but transaction costs
fall. When all non-HFTs are EAs, HFTs’ half bid-ask spreads
widen to one, the maximum possible value jump size, but
transaction costs zero out. The transaction costs drop be-
cause the bid-ask spread no longer represents all traders’
interest in satisfying the trading needs of non-HFTs.

BCS show that continuous trading creates snip-
ing risks and positive transaction costs for non-HFTs.
Corollary 1 shows that their results no longer hold when
all traders can provide liquidity. When all traders are EAs
(B =1), HFTs make zero profits in equilibrium and they
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have no economic incentive to invest in speed.” In the next
section, we show that discrete pricing generates rents for
both providing and demanding liquidity, thereby triggering
an arms race in speed.

5. Discrete pricing

In this section, we add another realistic feature to
our model: discrete pricing. In Section 5.1, we show that
discrete pricing creates rents for providing liquidity. In
Section 5.2, we show that discrete pricing also creates
rents for demanding liquidity. These rents, in turn, destroy
the unique type of equilibrium outlined in Section 4, in
which EAs always provide liquidity to HFTs and HFTs al-
ways provide liquidity to MOTs. Discrete pricing generates
three types of equilibria depending on parameter values,
which then lead to cross-sectional and time-series predic-
tions regarding who provides liquidity to whom.

We set the tick size A = % Therefore, the tick size
decreases as L increases. For illustration purposes, we as-
sume that L=1, 2, 3, --- and that vy is at the mid-
point of a tick. Therefore, v; is always at the midpoint
of the two nearest ticks and the available price grids are
TR T ST G TS

When v; does not coincide with a pricing grid, EAs can
no longer stimulate HFTs’ market orders at zero cost. A
positive cost for stimulating HFTs could lead EAs to choose
limit orders that reside in the LOB. These resting orders
could cause an explosion in the number of states in the
LOB because infinitely many EAs will arrive in the future.
To reduce the number of states, we make the following as-
sumption for discrete pricing that is common in the LOB
literature (Foucault et al., 2005).5

Assumption 1. Limit orders must be price-improving, that is,
they must narrow the spread by at least one tick.

We relax Assumption 1 in the Online Appendix and
find that the model’s main intuition holds with dramat-
ically greater mathematical complexity. Assumption 1 re-
duces the state of the LOB to 2", where n is the num-
ber of price levels between HFTs’ best bid and ask prices.
Assumption 1 is not binding under continuous pricing be-
cause the best bid and offer contains only one share when
pricing is continuous. Therefore, we are able to compare
the results obtained under discrete pricing with those ob-
tained under continuous pricing.

Assumption 1 also rules out infinite loops between
traders. For instance, without this assumption, an EA can
submit an unprofitable undercutting order to force an in-
cumbent EA’s profitable limit order to cancel. Then, the en-
trant EA revises her undercutting order to the incumbent’s

5 When execution algorithms can use only market orders, Li and
Ye (2021) show that bid-ask spread is still zero if execution algorithms
can divide their demand of one share into a series of infinitesimal child
orders. Therefore, sniping leads to positive spread under two conditions.
First, investors cannot choose between market and limit orders. Second,
if they can use market orders only, they face discrete lot size or other
frictions that prevent them from slicing their orders.

6 Goettler, Parlour, and Rajan (2005) allow limit orders to queue at the
same price, but they have to rely on numerical solutions.
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profitable price level. In return, the initial incumbent could
want to fight back with the same strategy. By disallowing
a trader to worsen the quotes, including her own quotes,
our assumption rules out such trivial loops without affect-
ing the model’s main economic insights.

Assumption 2. N = oo.

In Sections 3 and 4, we show that the number of HFTs
does not affect the equilibrium bid-ask spread quoted by
HFTs. An increase in N reduces the value of providing lig-
uidity because it increases the probability of being sniped.
An increase in N, however, reduces the value of sniping
stale quotes by the same amount because each sniper is
less likely to be successful. Therefore, N can affect sniping
costs and opportunity costs, but it cannot affect the sum
of these two costs. In turn, the equilibrium bid-ask spread
does not depend on N as long as there is more than one
HFT. To simplify the notation, we drop % from our ex-
position by assuming that the number of HFTs is infinite.
Consequently, the expected sniping profit for any share is
zero, and an HFT provides liquidity as long as its expected
profit is greater than zero.

5.1. Rents for providing liquidity and the queuing equilibrium

Consider the extreme case when hy — 0, where the
breakeven spreads in Propositions 1 and 2 are both close to
zero. In that case, the bid-ask spread is binding at one tick
and the tick size becomes pure rent for providing liquidity.
As long as the breakeven bid-ask spread is smaller than
one tick, the difference between the mandated one-tick
minimum spread and the breakeven spread creates rents
for providing liquidity, and the time priority rule allocates
such rents to HFTs. EAs are not able to provide liquidity
because they can neither win time priority nor place limit
orders within the bid-ask spread. Therefore, a low sniping
risk relative to the tick size leads to a queuing equilibrium,
in which HFTs provide liquidity to both EAs and MOTs.

Proposition 3. (queuing equilibrium). When tick size is A =
Yandw < 5 (hg < 3).

(i) HFTs almost always maintain one share at the ask
price v + 4 and one share at the bid price v; — 5.
(ii) HFTs participate in two speed races: (a) the race to
fill the queue when the depth at v; + % becomes
zero and (b) the race to snipe all stale quotes fol-
lowing a value jump.
(iii) All non-HFTs use market orders to trade upon ar-
rival.

The queuing equilibrium has three features. First and
most important, discrete pricing generates speed races to
provide liquidity at vy & % because the expected profit for
providing liquidity on top of the book is higher than the
expected profit for sniping the share. When the market
opens, each HFT sends one sell limit order at vy + % and
one buy limit order at vy — %. and the winner of each race
becomes a liquidity provider. When a non-HFT arrives and
takes the order at v; + £ or v — &, HFTs race to refill the
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order.” Following value jumps, HFTs race to provide lig-
uidity at a half-spread of % around the new fundamental
value.

Second, a discrete tick size forces EAs to use market or-
ders because they cannot win the speed race. EAs never
use market orders when pricing is continuous because
they can use stimulating limit orders to achieve zero trans-
action costs (Proposition 2). When the tick size is discrete,
EAs cannot submit stimulating orders at the fundamental
value v;. If the tick size is also binding, EAs cannot sub-
mit limit orders within the spread. EAs always use market
orders under Proposition 3 because we assume that each
price level can hold only one share. We show in the Online
Appendix that the same intuition holds when each price
level can hold more than one share. EAs never use market
orders when pricing is continuous, but they use market or-
ders when pricing is discrete because they can neither sub-
mit limit orders at the fundamental value v; nor win speed
races for top positions.

Third, a discrete tick size increases transaction costs for
non-HFTs. The result is straightforward for EAs because
they pay zero transaction costs under continuous pricing
but they need to pay the bid-ask spread under discrete
pricing.® The transaction costs for all non-HFTs also in-
crease because the average transaction cost under discrete
pricing is higher than C(0), and Corollary 1 shows that
C(0) is greater than C(B8) for any 8 > 0.

5.2. Rents for demanding liquidity: Stimulating and
undercutting equilibria

When the tick size A decreases or sniping risk 7 in-
creases, the breakeven spread for HFTs is larger than the
tick size. As HFTs lose money by providing liquidity at
Vi + 2, EAs are able to submit limit orders within HFTs’
bid-ask spreads. Following a similar intuition expressed in
Proposition 2, EAs would never use market orders. EAs can
stimulate HFTs to demand liquidity if EAs submit buy limit
orders at v; + 5 or sell limit orders at v; — 5. These stimu-
lating limit orders strictly dominate market orders because
% is lower than the half-spread. Discrete pricing, mean-
while, creates one new feature.

When pricing is continuous, stimulating limit orders of-
fer the minimum possible transaction cost of zero. When
pricing is discrete, a stimulating limit order costs %, and
a limit order that does not cross the midpoint can cost
less. In Proposition 2, hg is the breakeven spread for HFTs.
We define m as the number of tick grid points strictly in
the interval (v, vy +hg) [or equivalently in the interval
(vt — hg, vt)]. Therefore, the tick grid immediately above
Ve +hg is vp + (m+ %)A and the tick immediately below

Ut + hﬂ isve+ (m— %)A. Lemma 1 shows that m — 2 price

7 Li, Ye, and Zheng (2021) provide empirical evidence on speed races
between orders for front queue positions and estimate the economic
gains from winning the races for front queue position.

8 This result holds after we remove Assumption 1, which we do in the
Online Appendix. Even when EAs use limit orders to queue after HFTs,
the queue positions of EAs involve positive transaction costs. If not, HFTs
would occupy those queue positions. Furthermore, an EA would use mar-
ket orders if the queue were too long.
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positions always cost more than %, leaving only two price
positions for further consideration. For an EA seller, these
two remaining strategies are (1) submitting a sell order
immediately below v; +hg and (2) selling at v; + %, the
price immediately above the midpoint.

Lemma 1. Whenm > 1, the strategy for stimulating HFTSs
strictly dominates all strategies except undercutting hg by
one or m ticks.

The intuition behind Lemma 1 is as follows. When an
EA sells above Ut+%, she can attract only MOTs, be-
cause EA buyers never accept an ask price above v; + %.
Proposition 2 finds that the half-spread to break even by
attracting all MOTs is hg. An EA then loses more than one
tick if she improves hg by more than one tick, which is
more costly than stimulating HFTSs.

Next, we show that EAs never sell at vy + % or buy at
Ve — % unless m = 1. Consequently, our model generates
only two types of equilibria depending on the parameter
value. In Section 5.2.1, we present the stimulating equi-
librium in which EAs sell at v, — 4 or buy at v, + 2. In
Section 5.2.2, we present the undercutting equilibrium, in
which EAs choose to improve the hg to the closest tick.
The results reported in Fig. 1 show that stimulating equi-
libria and undercutting equilibria alternate in parameter
value and cover the whole parameter space outside the
queuing equilibrium. Intuitively, an EA undercuts HFTs on
the ask side if the breakeven ask price is less than half
a tick away from the price grid immediately below and
she chooses to stimulate HFTs if the breakeven ask price
is more than half a tick away from the price grid immedi-
ately below.

5.2.1. Stimulating equilibrium under discrete pricing

In the stimulating equilibrium, an EA incurs a cost of
Ay = % to attract HFTs. Proposition 4 outlines the param-
eter space in which stimulating is the optimal strategy
in equilibrium. A trader’s strategy involves her response
to all states of the LOB, even if such states do not ap-
pear in equilibrium. To conserve space and convey the
main economic intuition, we describe only traders’ best re-
sponses in the equilibrium path while deferring their off-
equilibrium strategies to the proof.

Proposition 4. (stimulating equilibrium un-
der discrete pricing. When m=1 and >
ﬁ+2—ﬁA—\/(A+12);,32+(4—12A)/3+4 or m=2 and hy—

(m—3)A > Ay,

(i) HFTs almost always maintain one share at the ask
price v + (m+ %)A and one share at the bid price
v — (m+ %)A

(ii) EA buyers submit limit orders at v; + % and EA sell-
ers submit limit orders at vy — %.

(iii) HFTs participate in three speed races: (a) the race
to snipe all stale quotes following value jumps, (b)
the race to fill the queue when the depth at v; +
(m+ %)A becomes zero, and (c) the race to take the
liquidity offered by EAs.
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Proposition 4 is highly intuitive whenm > 2. In the
stimulating equilibrium, the cost of stimulating HFTs (%)
must be lower than the cost of undercutting hg to the clos-
est tick. When m > 2, undercutting hg to the closest tick
attracts MOTs and HFT snipers but not other EAs. There-
fore, the EA faces the same order flows as that for HFTs in
Proposition 2. The breakeven half-spread for providing lig-
uidity to all MOTs is hg. An EA then loses hg — (m — %)A
when she narrows the spread to the closest tick. Therefore,
the EA chooses to stimulate HFTs when hg — (m — %)A >
Ay. The intuition holds similarly when m = 1, although the
formula for the boundary becomes more complex, because
the EA has to quote at v; + % if she chooses to narrow the
spread, and the quote now attracts other EAs.

In the stimulating equilibrium, EAs leave no limit orders
on the book. Facing no competition in liquidity provision
from EAs, HFTs provide liquidity to all MOTs. Even if the
tick size is not binding, discrete pricing still creates rents
for liquidity provision because HFTs now quote an ask
price of v; + (m+ $)A and a bid price of v; — (m+ 1)A.
As (m+ %)A > hg by definition, HFTs still race to the top
queue position to capture the rent created by the tick
size.

The new insight from Proposition 4 is that the tick size
generates rents and speed competition for demanding lig-
uidity. When pricing is continuous, EAs can place limit or-
ders at v;. When pricing is discrete, EAs need to pay %
more to attract HFTs, and HFTs race to demand liquidity to
capture this rent. This race does not exist under continu-
ous pricing because EAs leave no rents for HFTs. This race
also does not exist under a queuing equilibrium because
no price level exists at which to submit stimulating limit
orders.

5.2.2. Undercutting equilibrium

In the undercutting equilibrium, the cost that EAs
pay to sell at v;+ (m— 2)A or buy at v — (m— 1)A is
less than £. Therefore, the LOB can contain limit or-
ders placed by EAs, and traders’ strategies depend on the
number of limit orders that EAs place on the LOB. We
use (i}, 2, .-, " jm ..., j2, j}) to denote the state
of the LOB, where i¥, j*<{0,1} with 1<k<m and ke
Ntindicate the depth at prices vy + (m + % —k)A and vy —
(m+ % —k)A, which are the prices k ticks below (above)
HFT’s ask (bid) in Proposition 4.

Fortunately, the proof of Proposition 5 shows that EAs
never improve HFTs by more than one tick in equilibrium.
For any equilibrium states of the LOB, EAs choose to sell
at v+ (m—1)A or to buy at v, — (m — 1)A if these price
levels contain no other limit orders. In turn, if = j{‘ =0 for
all 2 < k <m always holds in equilibrium. Therefore, HFTs
face four states of the LOB in equilibrium depending on the
value of i} and j!. Instead of (i, 0, ---, 0, 0, ---, 0, jb),
for simplicity we use (i, j) to represent each equilibrium
state of the LOB, where i represents the number of EAs
who quote a half-spread of (m — %)A on the ask side and
j denotes the number of EAs who quote a half-spread of
(m— %)A on the bid side. The core of Proposition 5 char-
acterizes HFTs’ best response for each event and in each
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Fig. 2. Markov transition between limit order book (LOB) states and payoffs from the point of view of high-frequency trader (HFT) liquidity providers on
the ask side. For instance, in the undercutting equilibrium when m = 1, HFTs quote at v; + %A and execution algorithms (EAs) can submit undercutting
orders at vy £+ %. In state (i, j), the number of undercutting EA sell orders at v; + % is i, and the number of buy orders at v, — % is j. EB and ES represent
the arrival of EAs’ buy and sell limit orders, MB and MS represent the arrival of market order traders’ (MOTs’) buy and sell market orders, and UJ and DJ
denote upward and downward value jumps. The arrows between states represent state transitions, and arrows pointing toward the outside represent either
order executions or cancelations. The number next to each event is the immediate payoff to HFTs from the event.

equilibrium state (i, j). The four states of the LOB are

(0,0) No limit order from EAs,

(1,0) An EA sell limit order at v; + (m - %)A only,

(0,1) An EA buy limit order at v; — (m - %)Aonly, and

EA limit orders on both v; + (m - %)A and v, — (m - %)A (6)

a.mn

Denote the HFTs' expected value by supplying liquidity

in state (i, j) as LP(-J) (m). Fig. 2 shows that LP(J) (m) de-

pends on the expected value of all other states of the LOB.

For example, consider LP(©-9 (m) for an HFT on the ask side
of the LOB.”

(1) An EA buyer (EB) undercuts the bid side at v —
(m— })A and changes LP©0 (m) to LPO-D (m).

(2) An EA seller (ES) undercuts the ask side at v; +
(m— 1)A and changes LP©0 (m) to LP(:0)(m).

(3) An MOT buyer (MB) submits a buy market order and
the HFT gains (m + 1)A.

9 HFTs make independent decisions on the bid and ask sides. HFTs’ best
response on the bid side can be characterized similarly. When the sniping
risk is very high, such that (m + %)A > 1, the HFTs lose zero in case (5)
and always maintain a quote at v; £ (m + %)A. This happens only in the
highest undercutting equilibrium, e.g., the m = 3 case in Fig. 1.
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(4) An MOT seller (MS) submits a sell market order,
HFTs race to fill the bid side immediately, and
LP©.0) (m) remains the same.

(5) In an upward value jump (UJ), the limit order on the
ask side loses 1 — (m+ 1)A.

(6) In a downward value jump (D]), the liquidity
provider cancels the limit order, thereby changing
LP©.0) (m) to zero.

The first equation in Eq. (7) summarizes the value of
LP©-9) (m), which depends on the six types of events and
the values for the other three states of the book. Similarly,
the remaining three equations describe the value for state
LP(.0) (m), LPO-D (m), and LPD (m).

LPOO m) = py TP (m) + pi P (m) + pa(m + 1) A
+PaLPOO (m) — ps[1— (m+ 3)A]+ps-0
LP1.0) (m) = py TP (m) + pi L) (m) + po P (m)
+p2LPO0) (m) — ps[1— (m + 3)A]+ps -0

PO (m) = py PO (m) + P (m) + pa(m+ 1)a 7
—(0,0
+p, P (m) = ps[1 = (m+ 1)A] +p5 -0
LP-D(m) = pyTP ™ (m) -+ piEP" (m) + po TP (m)
+p, P (m) —ps[1—(m+3)A]+ps-0
where p; = 2070 p, — G=AN0-T) and py = Z are the

probabilities that the next event is the arrival of an EA
buyer (seller), the arrival of an MOT buyer (seller), and the
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upward (downward) jump of the fundamental value, re-
spectively. We have "7 (m) = max{0, LPU-)) (m)} because
HFTs can simply choose not to submit limit orders or can-
cel existing limit orders once their expected values be-
come negative. Proposition 5 summarizes the EAs’ and
HFTs’ strategies in the undercutting equilibrium. To con-
serve space, we defer their off-equilibrium strategies to the
proof of Proposition 5.

Proposition 5. (undercutting equilibrium). When m=1
ﬁ+2—ﬁA—\/(A+1);,32+(4—12A)/3+4
2

and & <7 < or whenm >

2and hg — (m—1)A e (0. %),

(i) EAs submit undercutting limit orders at price v; —
(m— 1)A to buy or v; + (m — 1) A to sell if no existing limit
orders sit at that price level and they use stimulating orders
otherwise.

(ii) The HFTs’ strategy is as follows:

(a) HFTs provide liquidity at v+ (m+ 1A if
LPGD (m) > 0 at state (i, j), and LPG-D) (m) is determined by
the transition matrix in Eq. (7).

(b) HFTs race to snipe stale quotes from HFTs and EAs dur-
ing value jumps.

(c) HFTs race to take stimulating limit orders from EAs.

As in Proposition 4, the boundary of the undercutting
equilibrium for m =1 involves a formula that differs from
the formula involved in the case when m > 1. Intuitively,
EAs provide liquidity to other EAs when m =1, because
quotes of v £ % are aggressive enough to attract other
EAs. When m > 1, the quote from an EA no longer attracts
other EAs, because other EAs find that the cost of stimu-
lating HFTs is lower. Therefore, EAs no longer trade with
each other when m > 1, and the quotes from EAs attract
only MOTs.

The undercutting equilibrium provides one explanation
for the frequent addition and cancelation of HFTs’ quotes
(Hasbrouck and Saar, 2013; Biais and Foucault, 2014). In
the undercutting equilibrium, HFTs’ depth at their best
quotes is not constant because they need to respond to
EAs’ undercutting orders. Therefore, HFTs can update their
quotes even if the fundamental value does not change. For
example, when 7 =1, B =0.6, and A = J, we have m =
1, LP©-) (1) > 0, and LP1-)) (1) < 0.1° HFTs provide liquid-
ity at a half-spread of %A when there is no undercutting
order, but the depth at a half-spread of %A becomes zero
once an undercutting order establishes price priority over
an HFT’s order. If a market order executes against an un-
dercutting order from an EA, HFTs again find that provid-
ing liquidity at a half-spread of %A is profitable and race
to provide liquidity at such a spread.

6. Predictions and policy implications

By exploring the interactions between distinct types of
trading algorithms, our paper not only rationalizes a num-
ber of puzzles in the literature but also generates new
testable predictions. In Section 6.1, we summarize the pre-
dictions that are driven mainly by liquidity-providing non-

10 We solve these equations in the proof of Propositions 4 and 5.
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HFTs. In Section 6.2, we summarize the predictions that are
driven by discrete pricing. In Section 6.3, we discuss the
policy implications of our paper.

6.1. Predictions driven by liquidity-providing non-HFTs

In Prediction 1, we posit that EAs tend to quote more
aggressive prices than HFTs quote.

Prediction 1. (price priority). Non-HFTs are more likely than
HFTs to establish price priority in liquidity provision.

Brogaard et al. (2015) and Yao and Ye (2018) find
that non-HFTs are more likely than HFTs to establish
price priority. Their results are puzzling because exist-
ing channels suggest that HFTs should quote more ag-
gressive prices because they incur lower adverse selec-
tion costs [see Jones (2013) and Menkveld (2016) for sur-
veys], lower inventory costs (Brogaard et al., 2015; Ait-
Sahalia and Saglam, 2017), and lower operational costs
(Carrion, 2013). Our model shows that the opportunity cost
of providing liquidity can reconcile this contradiction. EAs
can afford to place more aggressive limit orders as long
as they cost less to execute than market orders. There-
fore, we show in Proposition 2 that EAs always quote more
aggressive prices than HFTs do when pricing is continu-
ous. Under discrete pricing, EAs also choose to establish
price priority over HFTs as long as the tick size does not
impose constraints that discourage EAs from undercutting
HFTs (Propositions 4 and 5).

Prediction 2. (negative correlation between the bid-ask
spread and liquidity). Technology shocks that increase the
fraction of EAs widen the bid-ask spread but reduce overall
transaction costs.

Black (1971, p. 30) describes a liquid market intuitively:
The market for a stock is liquid if the following condi-
tions hold:

1) There are always bid and asked prices for the in-
vestor who wants to buy or sell small amounts of
stock immediately.

2) The difference between the bid and asked prices
(the spread) is always small.

3) An investor who is buying or selling a large amount
of stock, in the absence of special information, can
expect to do so over a long period of time at a price
not very different, on average, from the current mar-
ket price.

Conditions (1) through (3) were internally consistent
when Black (1971) was published. At that time, most
traders executed trades by paying the bid-ask spread to
dealers or market makers. In the current market, every
trader can use limit orders, and Conditions (1) through (3)
could be internally inconsistent. As Proposition 2 implies,
an increase in B widens the bid-ask spread because HFT
market makers receive fewer non-HFT order flows. Mean-
while, the average transaction cost for non-HFTs falls. In
the extreme case in which 8 =1, the market becomes in-
finitely liquid because every trader pays zero transaction
costs. At the same time, the bid-ask spread is at its widest.
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Proposition 2 and Corollary 1 suggest that the definition
of liquidity and the measure of liquidity should be up-
dated for modern electronic markets. Prediction 2 derives
directly from Corollary 1. One way to test Prediction 2 is
to examine whether technology improvements for EAs can
increase the bid-ask spread but reduce transaction costs
for institutional traders (such as implementation shortfalls
measured by ANcerno data).

6.2. Predictions driven by discrete pricing

When pricing is continuous, EAs always provide liquid-
ity to HFTs, and HFTs always provide liquidity to MOTs.
When pricing is discrete, who provides liquidity to whom
depends on the parameter value, and this dependence gen-
erates cross-sectional and time series predictions regarding
liquidity provision and demand.

Prediction 3. (time priority versus price priority). HFTs
crowd out liquidity provision by non-HFTs when the tick size
is large.

Prediction 3 derives from Proposition 3. Chordia et al.,
644) worry that “HFTs use their speed advantage to crowd
out liquidity supply when the tick size is small and step-
ping in front of standing limit orders is inexpensive.” Yet
Yao and Ye (2018) find that HFTs crowd out non-HFTs’ lig-
uidity supply when the tick size is large. Our paper pro-
vides the theoretical foundation for reconciling this con-
tradiction. EAs can quote tighter bid-ask spreads than HFTs
because EAs incur lower opportunity costs for providing
liquidity. A large tick size prevents non-HFTs from estab-
lishing price priority over HFTs while helping HFTs estab-
lish time priority over non-HFTs. Yao and Ye (2018) find
that the tick size is more likely to be binding for low-
priced securities, for which a 1 cent uniform tick size leads
to a larger relative tick size. They also find that HFTs pro-
vide a larger share of liquidity for low-priced securities.
Ye et al., 2020 find that an increase in tick size crowds out
share repurchases by firms because they cannot win the
speed race in liquidity provision.!! These results are con-
sistent with Prediction 3.

In reality, the tick size is not the only source of con-
strained price competition. For example, the NYSE and
Nasdaq offer rebates to liquidity providers. When the tick
size is binding, the rebate to liquidity providers further
widens the effective tick size and the cum-fee bid-ask
spread (Chao et al., 2018). Technically, every trader can get
the rebate for liquidity provision, but with discrete pricing,
traders with high-speed capability are more likely to ob-
tain the rebate, particularly when the tick size is binding.

Prediction 4. (sniping and liquidity provision). An increase
in sniping risk reduces the share of liquidity provided by HFTS.

We obtain Prediction 4 by comparing
Proposition 3 with Propositions 4 and 5. When the
sniping risk is low, the binding bid-ask spread drives

1 To prevent firms from inflating their share prices by outbidding other
traders, SEC rule 10b-18 discourages firms from demanding liqudity in
share repurchases.
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speed competition. If the incidence of sniping rises high
enough, the spread is wider than one tick, allowing non-
HFTs to undercut HFTs and reducing liquidity provision
on the part of HFTs. One limitation of our model is that
we consider only adverse selection led by sniping, but
other types of adverse selection should provide the same
economic mechanism. Generally, the breakeven bid-ask
spread should be lower when the adverse selection risk
is low. Once the breakeven spread falls below one tick,
speed competition to achieve time priority should be more
critical.

Prediction 4 differs significantly from predictions
offered in the existing literature on HFTs. Prior stud-
ies typically model HFTs as traders who can ac-
cess information more rapidly than other traders.
Hoffmann (2014), Han et al. (2014), and Bongaerts and
Van Achter (2020) find that HFTs incur lower sniping
costs than non-HFTs. Therefore, an increase in the level of
information should give HFTs a comparative advantage in
liquidity provision.

Yao and Ye (2018) provide evidence consistent with Pre-
diction 4. In the cross-section, an increase in adverse se-
lection risk reduces the fraction of liquidity provided by
HFTs. It would be interesting to test whether Prediction 4
holds in a time series, that is, whether, for a given secu-
rity, HFTs provide a smaller fraction of liquidity when the
sniping risk is high.

Prediction 5. (speed competition over taking liquidity).
Non-HFTs are more likely to provide liquidity at price levels
that cross the midpoint (stimulating limit orders) than HFTs.
HFTs are also more likely to demand liquidity from stimulat-
ing limit orders, but they do not adversely select these orders.

In Proposition 4, EAs always choose to cross the mid-
point to stimulate HFTs. Proposition 5 implies that an EA
chooses to stimulate HFTs when another EA undercuts
HFTs on the same side. HFTs never cross the midpoint be-
cause this strategy loses money, but EAs can cross the mid-
point to stimulate HFTs as long as the loss is less than the
cost of undercutting HFTs or using market orders.

Latza et al. (2014) find evidence consistent with Predic-
tion 5. They classify a market order as “fast” if it executes
against a standing limit order that is less than 50 mil-
liseconds old. These fast market orders should come from
HFTs. They also find that fast market orders often execute
against limit orders that cross the midpoint and lead to
virtually no permanent price impacts. Testing Prediction 5
more directly using data that include account information
on traders could be fruitful.

6.3. Policy implications

Our paper offers policy implications for both HFTs and
the tick size. For HFTs, BCS argue for a more discrete mar-
ket in time, whereas we argue for a more continuous mar-
ket in pricing. We show that when all non-HFTs are EAs,
transaction costs are zero, and no incentive exists for HFTs
to engage in speed competition. In this sense, our paper
supports the Kyle and Lee (2017) vision of a fully continu-
ous market.
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Fig. 3. Simulation of the impacts of tick sizes on the expected execution costs with g ~U(0,1), w ~U(0,1). For each A, we draw 100,000 random
combinations of (8,7) and decide the equilibrium outcome (queuing, stimulating, or undercutting). We then calculate the expected execution cost of
market order traders (MOTs) and execution algorithms (EAs) and take the average over all combinations of (B8, 7) drawn. Both EAs and MOTs see an
increase in execution costs with respect to the tick size A. When A — 0, the execution cost of EAs goes to zero because they can use stimulating orders

at the fundamental value.

On April 5, 2012, President Barack Obama signed the
Jumpstart Our Business Startups Act. Section 106 (b) re-
quires the SEC to examine the effects of tick sizes on initial
public offerings. On October 3, 2016, the SEC implemented
a pilot program to increase the tick size from 1 cent to
5 cents for twelve hundred common stocks. Proponents of
the proposal argue that a larger tick size can improve liq-
uidity (Weild et al., 2012). In Corollary 2 and Prediction 6,
we posit that a larger tick size discourages non-HFTs from
quoting their desired prices and increases execution costs.

Corollary 2. For all 7, B, and A, C(B) <Ca(B), where
C(B) = (1 - B)hg is the average execution cost to non-HFTs

under continuous pricing and Cx (B) is the cost under dis-
crete pricing.

Corollary 2 shows that, for any parameter, the trans-
action cost is higher under a discrete tick size than un-
der continuous pricing because the tick size creates rents
for demanding and supplying liquidity. To be sure, the tick
size is never continuous in reality. When we compare large
and small discrete tick sizes, we are not able to directly
compare the formulas for any parameter values because
of the complexity of the three equilibrium types. Instead,
we draw our two parameter values § and 7 from a uni-
form distribution [0, 1] and compute the expected transac-
tion costs based on Propositions 3-5. The results reported
in Fig. 3 show that the expected transaction cost increases
with the tick size for both MOTs and EAs. The increase in
the cost paid by MOTs reflects an increase in the bid-ask
spread. An increase in the tick size leads to a larger in-
crease in transaction costs incurred by EAs because a larger
tick size not only increases the cost incurred by EAs when
they demand liquidity but also increases those costs when
they choose to stimulate HFTSs.

Following Corollary 2 and Fig. 3, we derive our sixth
prediction.
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Prediction 6. . Discrete pricing leads to higher transaction
costs for non-HFTS.

Empirically, Yao and Ye (2018) and Albuquerque
et al. (2020) find evidence consistent with Prediction 6.
Our model’s prediction, along with their empirical evi-
dence, shows that an increase in the tick size harms lig-
uidity.

7. Conclusion

We provide the first model representing the behavior
of algorithmic traders that are slower than HFTs. The in-
teraction between these EAs and HFTs rationalizes several
puzzles regarding who provides liquidity and when, as well
as generates several new testable predictions. EAs incur
lower opportunity costs than HFTs when providing liquid-
ity. Therefore, EAs choose to provide liquidity at more ag-
gressive prices if pricing is sufficiently continuous. A large
tick size constrains price competition, creates rents for liq-
uidity provision, and encourages speed competition to cap-
ture such rents through the time priority rule. A higher
sniping risk increases the breakeven bid-ask spread rela-
tive to the tick size, which allows EAs to establish price
priority over HFTs and reduces the share of liquidity pro-
vided by HFTs. All these predictions are consistent with the
empirical findings of Yao and Ye (2018).

Our model also provides several new testable predic-
tions. (1) EAs should not use market orders once the tick
size becomes small enough relative to the bid-ask spread.
(2) EAs are more likely than HFTs to provide liquidity at
price levels that cross the midpoint, and these limit or-
ders are more likely to be taken by HFTs almost imme-
diately. (3) The bid-ask spread widens when technological
shocks increase the proportion of EAs, but overall transac-
tion costs decrease.
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We find that a larger tick size increases transaction
costs and drives an arms race in speed. These results chal-
lenge the rationale for the recent policy proposal that has
increased the tick size to 5 cents. Thus, we encourage reg-
ulators to consider decreasing the tick size, particularly for
liquid stocks.

Current policy debates over HFTs usually follow the
binary classifications that pit fast versus slow traders or
computers versus humans. This dichotomy reflects and af-
fects the academic literature on HFTs. Our model shows
that this policy debate should consider diversity within
the class of machine traders, especially regarding machines
that are slower than HFTs but faster than humans. For ex-
ample, we find that EAs can cross the midpoint to stim-
ulate HFTs to demand liquidity immediately, and the cost
of stimulating HFTs is lower than the cost of paying the
bid-ask spread offered by HFTs. Therefore, the impact of
HFTs on liquidity and social welfare should not be eval-
uated based simply on whether they demand or provide
liquidity. We also find that the bid-ask spread can move in
the opposite direction of true liquidity.

EAs in our model make only execution decisions, and
their incentives to buy or sell are exogenous. Some other
algorithmic traders could use computers and machine-
learning techniques to decide whether to buy or to
sell. Therefore, fully assessing the diversity of algorithmic
traders and their interactions is still in the early days. Just
as insights into human behavior from the psychology liter-
ature spawned the field of behavioral finance, so insights
into algorithmic behavior could prompt an analogous blos-
soming of research in algorithmic finance.
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