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Abstract—Does Federated Learning (FL) work when both
uplink and downlink communications have errors? How much
communication noise can FL handle and what is its impact to
the learning performance? This work is devoted to answering
these practically important questions by explicitly incorporating
both uplink and downlink noisy channels in the FL pipeline.
We present a rigorous convergence analysis of FL over simul-
taneous uplink and downlink noisy communication channels,
and characterize the sufficient conditions for FL to maintain
the same convergence rate scaling as the ideal case of no
communication error. The analysis reveals that, in order to
maintain the O(1/T ) convergence rate of FEDAVG with perfect
communications, the uplink and downlink signal-to-noise-ratio
(SNR) should be controlled such that they scale as O(t2) where
t is the index of communication rounds. This key result leads to
a transmit power control policy for analog aggregation, whose
performance is shown to be superior over the standard method
via extensive numerical experiments using real-world FL tasks.

Index Terms—Federated Learning; Convergence Analysis;
Noisy Communications.

I. INTRODUCTION

Federated Learning (FL) is an emerging distributed machine
learning (ML) paradigm that has many attractive properties. In
particular, FL caters to the growing trend that massive amount
of the real-world data is generated exogenously at the edge
devices. For better privacy protection, it is desirable to keep the
data locally at the device and enable distributed model training,
which motivated the development of FL [1]. The power of FL
has been realized in commercial devices (e.g., Pixel 2 uses FL
to train ML models to personalize user experience) and ML
tasks (e.g., Gboard uses FL for keyboard prediction) [2].

It is well known that communication is one of the primary
bottlenecks for FL [1], [3]. However, existing research has
largely focused on either reducing the number of communi-
cation rounds [4], or decreasing the size of the payload for
transmission [5]. This is because in most FL literature that
deal with communication efficiency, it is often assumed that
a perfect communication “tunnel” has been established (e.g.,
using existing Wi-Fi or cellular architecture [2], [3]), and the
task of improving communication efficiency largely resides on
the ML design that trades off computation and communication.
There are also recent studies that focus on the communication
system design, particularly for wireless FL [5]–[9], but the
focus has been on resource allocation, device selection, or
cellular system design.

While the early studies provide a glimpse of the potential of
optimizing communication for learning, the important issue of

noisy communications for both uplink (clients send local mod-
els to the parameter server) and downlink (server sends global
model to clients) have not been well investigated. In particular,
it is often taken for granted that standard signal processing and
communication techniques can be directly applied to FL. We
show in this paper that this can be highly suboptimal because
they are mostly designed for independent and identically
distributed (IID) sources over time, while the communicated
model updates (both uplink and downlink) in FL represent
a long-term process consisting of many progressive learning
rounds that collectively determine the final learning outcome.
Channel noise and bit/packet error rates cannot be directly
translated to the ultimate model accuracy and convergence
rate. It is thus of utmost importance to rethink the wireless
system design that caters to the unique characteristics of FL.

The goal of this paper is to answer the following fun-
damental question: how much communication noise can FL
handle, and what is its impact to the learning performance?
Towards this end, we first describe a complete FL system
where both model upload and download take place over
noisy channels, which is novel as all prior works either
study uplink or downlink noisy communications, but not both.
We then present the first major contribution of this work
– a novel convergence analysis of the standard FEDAVG
scheme under non-IID datasets, partial clients participation,
and noisy downlink and uplink channels. More importantly, the
analysis reveals that, in order to maintain the same O(1/T )
convergence rate of FEDAVG with perfect communications,
the uplink and downlink signal-to-noise-ratio (SNR) should be
controlled such that they scale as O(t2) where t is the index
of communication rounds. This key result leads to the second
major contribution of this work – a transmit power control
method for analog aggregation that achieves the same model
accuracy and convergence rate scaling of FEDAVG without
noisy communications. The power control policy satisfies
the sufficient SNR conditions of the convergence analysis,
and its effectiveness is fully corroborated in the numerical
experiments using standard real-world datasets.

The remainder of this paper is organized as follows. The
system model that captures the noisy channels of FL in both
uplink and downlink is described in Section II. Theoretical
analysis is presented in Section III, which leads to a transmit
power control policy that is described in Section IV. Ex-
perimental results are given in Section V, followed by the
conclusions in Section VI.



II. SYSTEM MODEL

We first introduce the standard FL problem formulation, and
then describe a complete FL pipeline where both model upload
and download take place over noisy channels.

A. FL Problem Formulation

The general federated learning problem setting follows the
standard model in the original paper [1]. In particular, we
consider a FL system with one central parameter server (e.g.,
base station) and a set of at most N clients (e.g., mobile
devices). Client n stores a local dataset Dn = {zi}Dni=1 with its
size denoted by Dn. Datasets across devices are assumed to be
non-IID and disjoint. The maximum data size when all devices
participate in FL is D =

∑N
n=1Dn. The loss function f(w, z)

measures how well a ML model with parameter w ∈ Rd
fits a particular data sample z. Without loss of generality, we
assume that w has zero-mean and unit-variance elements1, i.e.,
E||wi||22 = 1 ∀i = 1 · · · d. For the n-th device, its local loss
function Fn(·) is defined by

Fn(w) ,
1

Dn

∑
z∈Dn

f(w, z).

The goal of wireless FL is for the base station to learn a global
machine learning (ML) model based on the distributed local
datasets at the N clients, by coordinating and aggregating the
training processes at individual clients without accessing the
raw data. Specifically, the global optimization objective over
all N clients is given by

F (w) ,
N∑
n=1

Dn

D
Fn(w) =

1

D

N∑
n=1

∑
z∈Dn

f(w, z). (1)

The global loss function measures how well the model fits
the entire corpus of data on average. The learning objective
is to find the best model parameter w∗ that minimizes the
global loss function: w∗ = arg minw F (w). Let F ∗ and F ∗k
be the minimum value of F and Fk, respectively. Then, Γ =
F ∗− 1

N

∑N
k=1 F

∗
k quantifies the degree of non-IID as in [11].

B. FL over Noisy Uplink and Downlink Channels

We consider a generic FL framework where partial client
participation and non-IID local datasets, two critical features
that separate FL from conventional distributed ML, are explic-
itly captured. However, both the upload and download trans-
missions take place over noisy communication channels. The
overall system diagram is depicted in Fig. 1. In particular, the
FL-over-noisy-channel pipeline works by iteratively executing
the following steps at the t-th learning round, ∀t = 1, · · · , T .

1) Downlink communication for global model download.
The centralized server broadcasts the current global ML
model, which is described by the latest weight vector wt−1,
to a set of randomly selected clients denoted as St with

1The parameter normalization and de-normalization method can be found
in the appendix in [10].

Fig. 1. End-to-end FL system diagram in the tth communication round. The
impact of noisy channels in both uplink and downlink is captured.

|St| = K. Because of the imperfection introduced in
communications, client k receives a noisy version of wt−1:

ŵk
t−1 = wt−1 + ekt , (2)

where ekt = [ekt,1, · · · , ekt,i, · · · , ekt,d]T ∈ Rd is the d-
dimensional downlink effective noise vector at client k
and time t. We assume that ekt is a zero-mean random
vector consisting of IID elements with bounded variance:
E||ekt,i||22 = ζ2t,k,∀t, k, i; E||ekt ||22 = dζ2t,k,∀t, k. Note that
the effective noise term does not necessarily correspond to
only the channel noise – it also captures post-processing
errors in a communication transceiver, such as estimation,
decoding and demodulation, frequency offset and phase
noise, etc. We define the receive local (post-processing) SNR
for the k-th client at the t-th communication round as

SNRL
t,k =

E||wt−1||22
E||ekt ||22

=
1

ζ2t,k
. (3)

2) Local computation. Each client uses its local data to train
a local ML model improved upon the received global ML
model. In this work, we assume that mini-batch stochastic
gradient descent (SGD) is used in training. Note that this is
the most common training method in modern ML tasks, e.g.,
deep neural networks. Specifically, mini-batch SGD operates
by updating the weight wk

t−1 iteratively (for E steps in each
learning round) at device k as follows.

Initialization: wk
t,0 = ŵk

t−1,

Iteration: wk
t,τ = wk

t,τ−1 − ηt∇F k(wk
t,τ−1, ξ

k
τ ),

∀τ = 1, · · · , E,
Output: wk

t = wk
t,E ,

where ξkτ is a batch of data points that are sampled inde-
pendently and uniformly at random from the local dataset
of client k in the τ -th iteration of mini-batch SGD.

3) Uplink communication for local model upload. The K
participating clients upload their latest local models to the
server. More specifically, client k transmits a vector xkt to
the server at the t-th round. We again consider the practical



case where the upload communication is erroneous, and
the server receives a noisy version of the individual weight
vectors from each client due to various imperfections in the
uplink communications (e.g. channel noise, transmitter and
receiver distortion, processing error). The received vector
can be written as

x̂kt = xkt + nkt , (4)

where nkt ∈ Rd is the d-dimensional effective uplink
noise vector for decoding client k’s model at time t. We
assume that nkt is a zero-mean random vector consist-
ing of IID elements with bounded variance: E||nkt,i||22 =
σ2
t,k,∀t, k, i; E||nkt ||22 = dσ2

t,k,∀t, k. For mathematical sim-
plicity, we again assume that each element of the transmitted
signal xkt has zero-mean and unit-variance elements, i.e.,
E||xkt,i||22 = 1, ∀t, k, i. The receive SNR at the server for
decoding k-th client’s signal xkt can be written as

SNRS
t,k =

E||xkt ||22
E||nkt ||22

=
1

σ2
t,k

. (5)

Here we consider the direct model transmission scheme2 in
the uplink. The K participating clients upload the latest local
models wk

t themselves to the server, i.e., xkt = wk
t .

4) Global aggregation. The server aggregates the received
local models to generate a new global ML model following
the standard FEDAVG [1]: wt =

∑
k∈St

Dk∑
i∈St

Di
x̂kt . The

server then moves on to the (t + 1)-th round. For ease of
exposition and to simply the analysis, we assume in the
remainder of the paper that the local dataset sizes at all
devices are the same: Di = Dj , ∀i, j ∈ [N ], and focus on
the general case of randomly selected K out of N clients
participating in the server aggregation with non-IID datasets.
The aggregation can be simplified as

wt =
1

K

∑
k∈St

x̂kt =
1

K

∑
k∈St

(
wk
t + nkt

)
. (6)

the SNR for the global model (after aggregation) can be
written as

SNRGt =
E||
∑
k∈St w

k
t ||2

E||
∑
k∈St n

k
t ||2

=
E||
∑
k∈St w

k
t ||2

dσ2
t

, (7)

where σ2
t ,

∑
k∈St σ

2
t,k.

III. CONVERGENCE ANALYSIS OF FL OVER NOISY
CHANNELS

In this section, we analyze the convergence of FEDAVG
in the presence of both uplink and downlink communication
noise when direct model transmission is adopted for local
model upload. We first make the following standard assump-
tions that are widely used in the convergence analysis of
FEDAVG; see [11], [13], [14].

2We extend it to a more practical model differential transmission scheme,
where the difference of latest model and the previous global model is
transmitted, in the online version [12].

Assumption 1. 1) L-smooth:
‖∇Fk(w)−∇Fk(v)‖ ≤ L ‖w − v‖ ,∀ v,w.

2) µ-strongly convex:
(∇Fk(w)−∇Fk(v))

T
(w − v) ≥ µ ‖w − v‖2 ,∀ v,w.

3) Bounded variance for mini-batch SGD: The variance of
stochastic gradients at any client k = 1, · · · , N satisfies:

E ‖∇Fk(w, ξ)−∇Fk(w)‖2 ≤ δ2k,

for any mini-batch data ξ at client k.
4) Uniformly bounded gradient: E ‖∇Fk(w, ξ)‖2 ≤ H2

∀k = 1, · · · , N and any mini-batch data ξ at client k.

For simplicity, we consider homogeneous noise power levels
at the uplink and downlink, i.e., we assume

σ2
t,k = σ̄2

t , and ζ2t,k = ζ̄2t , ∀t ∈ [T ], k ∈ [N ]. (8)

Theorem 1. Define κ = L
µ , γ = max{8κ,E}. Choose

learning rate ηt = 2
µ(γ+t) and adopt a SNR control policy

that scales the effective uplink and downlink noise power over
t such that:

σ̄2
t ≤

4K

µ2(γ + t− 1)2
∼ O

(
1

t2

)
(9)

ζ̄2t ≤
4N

µ2(γ + t)(γ + t− 2)
∼ O

(
1

t2

)
. (10)

where σ̄2
t and ζ̄2t represent the individual client effective noise

in the uplink and downlink, respectively, which are defined in
Eqn. (8). Then, under Assumption 1, the convergence of FE-
DAVG with non-IID datasets and partial clients participation
satisfies

E ‖wT −w∗‖2 ≤ 8κ+ E

γ + T
‖w0 −w∗‖2 +

4D

µ2(γ + T )
, (11)

where D =
∑N
k=1

δ2k
N2 +6LΓ+8(E−1)2H2+N−K

N−1
4
KE

2H2+
2d.

Due to the space limitation, we omit the proof of Theorem
1. The complete proof can be found in [12]. Theorem 1
guarantees that even under simultaneous uplink and downlink
noisy communications, the same O(1/T ) convergence rate of
FEDAVG with perfect communications can be achieved if we
control the effective noise power of both uplink and downlink
to scale at rate O(1/t2) and choose the learning rate at O(1/t)
over t. We note that the choice of ηt to scale as O(1/t) is
well-known in distributed and federated learning [11], [13],
[14], which essentially controls the “noise” that is inherent
to the stochastic process in SGD to gradually shrink as the
FL process converges. The fundamental idea that leads to
Theorem 1 is to control the “effective channel noise” to not
dominate the “effective SGD noise”, i.e., to always have the
effective channel noise floor to be below that of the SGD noise.
This idea is both critical and utilized in a non-trivial fashion
in the proof of Theorem 1.

We further note that although the requirement of Theo-
rem 1 is presented in terms of the effective noise power,
what ultimately matters is the signal-to-noise ratio defined in



Section II-B. There exist signal processing and communication
techniques that can satisfy the requirement by either increasing
the signal power (e.g., transmit power control) or reducing the
post-processing noise power (e.g., diversity combining). In the
following section, we shown one such design example that
controls the effective noise by controlling the transmit power.

IV. TRANSMIT POWER CONTROL FOR ANALOG
AGGREGATION IN FL

An immediate engineering question following the theoreti-
cal analysis is how we can realize the SNR control policy in
Theorem 1. One natural approach is transmit power control,
which can alter the receive SNR while satisfying certain
constraints. In this work, we propose a power control policy
for the analog aggregation framework in [10] as an example
to demonstrate the communication system design for FL tasks
in presence of communication noise.

Consider a communication system where several narrow-
band orthogonal channels (e.g. sub-carriers in OFDM, time
slots in TDMA, or eigenchannels in MIMO) are shared by
K random selected clients in an uplink model update phase
of a communication round in FEDAVG. Each element in the
transmitted model w ∈ Rd is allocated and transmitted in a
narrowband channel and aggregated automatically over the air
[10]. Denote the received signal of each element i = 1, · · · , d
in the t-th communication round as

yt,i =
1

K

K∑
k=1

r
−α/2
t,k ht,k,ipt,k,iwt,k,i + nt,i ∀k ∈ St, (12)

where rα/2t,k and ht,k,i ∈ CN ∼ (0, 1) are the large-scale and
small-scale fading factors of the channel, respectively, nt,i ∈
CN ∼ (0, 1) is the IID additive Gaussian white noise, and
pt,k,i denotes the transmit power based on the power control
policy. We assume perfect channel state information at the
transmitters (CSIT). Due to the aggregation requirement of
federated learning, we adopt the channel inversion rule:

pt,k,i =

√
ρUL
t

r
−α/2
t,k ht,k,i

, (13)

where ρt is a scalar. Hence, the received SNR of the element
wt,i can be written as

SNRGt = E

∥∥∥∥∥∥
d∑
i=1

√
ρUL
t

K

∑
k∈St wt,k,i

nt,i

∥∥∥∥∥∥
2

=
ρUL
t E||

∑
k∈St w

k
t ||2

dK2
.

(14)
According the Theorem 1, we need to have

ρUL
t =

K

σ2
t

≥ µ2(γ + t− 1)2

4K
∼ O(t2) (15)

in the uplink to ensure the convergence of FEDAVG.
In the downlink case, when the server broadcasts the global

model to K randomly selected clients, the receive signal of
the i-th element for the k-th user in the t-th communication

round is

yt,n,i = r
−α/2
t,n ht,n,i

√
ρDL
t wt,i + et,n,i ∀n = 1 · · ·K, (16)

where et,k,i ∈ CN ∼ (0, 1) is the IID additive Gaussian
white noise, ρt is the transmitted power at the server and
pt,k,i = 1

r
−α/2
t,k ht,k,i

is the channel inversion factor applying

at the clients. The downlink SNR for the k-th user is

SNRLt,n,i = r−αt,n ρ
DL
t . (17)

Instead of keeping ρDL
t as a constant, we derive the following

policy based on Theorem 1 to guarantee the convergence of
FEDAVG:

ρDL
t ≥

rαt,kµ
2(γ + t)(γ + t− 2)

4N
∼ O(t2). (18)

By applying this power control policy, federated learning tasks
are able to achieve better performances under the same total
energy budget. This will also be numerically validated in the
experiment section.

Remark 1. We note that transmit power control is not the
only approach to have an increased effective SNR of model
parameters in FL. Methods such as increasing quantization
bit of parameters and applying diversity combining in wireless
communication systems may also be adapted to implement this
general SNR control policy.

V. SIMULATION RESULTS

A. Experiment Setup

We consider a communication system with narrowband
uplink and downlink parallel channels for FL tasks. For sim-
plicity, we assume that every channel has the same noise level.
During each communication round of FL, each parameter
of the ML model is transmitted in one of the narrowband
channels. Suppose that the total communication rounds is
T and both the uplink and downlink total power budget is
P =

∑T
t=1 Pt, where Pt is the transmission power of the t-th

round. We consider the following three schemes.
1) Noise free (ideal). This is the ideal case where there is no

noise in either uplink or downlink channels, i.e., the accu-
rate model parameters are perfectly received at both server
and clients. This servers as the best-case performance.

2) Equal power allocation. In each communication round,
the uplink and downlink transmission power is the same,
i.e., Pt = P/T, ∀t. This represents the current state of
the art in [10].

3) O(t2)-increased power allocation. Transmission power
is increased at the rate of O(t2) with the communication
rounds, i.e., the received SNR of the model parameters is
increased and the effective noise of the signal is decreased
with the progress of FL. With the total budget P , it is easy
to see that Pt = 6Pt2/(T (T + 1)(2T + 1)), ∀t.

We use the standard image classification FL tasks to evaluate
the performance of the above schemes. The following three
widely utilized datasets are adopted.
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Fig. 2. Comparing test accuracy and training loss for noise-free (ideal), equal power allocation scheme and O(t2)-increased power allocation in IID and
Non-IID data partitions on MNIST dataset.
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Fig. 3. Comparing test accuracy and training loss for noise-free (ideal), equal power allocation scheme and O(t2)-increased power allocation in IID and
Non-IID data partitions on CIFAR-10 dataset.
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Fig. 4. Comparing test accuracy and training loss for noise-free (ideal), equal
power allocation scheme and O(t2)-increased power allocation in IID and
Non-IID data partitions on Shakespeare dataset.

1) MNIST. The training sets are evenly partitioned over N =
2000 clients each containing 30 examples and we set K =
20 per round (1% of total users). For the IID case, the data
is shuffled and randomly assigned to each client while for
the non-IID case, the data is sorted by labels, divided into
4000 partitions, and each client is then randomly assigned
2 partitions with 1 or 2 labels. The CNN model has two
5× 5 convolution layers, a fully connected layer with 512
units and ReLU activation, and a final output layer with
softmax. The first convolution layer has 32 channels while
the second one has 64 channels, and both are followed by
2× 2 max pooling. The following parameters are used for
training: local batch size BS = 5, the number of local
epochs E = 1, and learning rate η = 0.065.

2) CIFAR-10. We set N = 100 and K = 10 for i.i.d while

N = K = 10 for non-IID We train a CNN model with
two 5× 5 convolution layers (both with 64 channels), two
fully connected layers (384 and 192 units respectively) with
ReLU activation and a final output layer with softmax.
The two convolution layers are both followed by 2 × 2
max pooling and a local response norm layer. The training
parameters are: (a) IID: BS = 50, E = 5, learning rate
initially sets to η = 0.15 and decays every 10 rounds with
rate 0.99; (b) non-IID: BS = 100, E = 1, η = 0.1 and
decay every round with rate 0.992.

3) Shakespeare. This dataset is built from The Complete
Works of William Shakespeare and each speaking role is
viewed as a client. Hence, the dataset is naturally unbal-
anced and non-IID since the number of lines and speaking
habits of each role vary significantly. There are totally 1129
roles in the dataset [15]. We randomly pick 300 of them
and build a dataset with 794659 training examples and
198807 test examples. We also construct an IID dataset by
shuffling the data and redistribute evenly to 300 roles and
set K = 10. The ML task is the next-character prediction,
and we use a classifier with an 8D embedding layer, two
LSTM layers (each with 256 hidden units) and a softmax
output layer with 86 nodes. The training parameters are:
BS = 20, E = 1, learning rate initially sets to η = 0.8
and decays every 10 rounds with rate 0.99.

B. Experiment Results

The final model accuracies (after FL is complete) of the
three schemes on MNIST, CIFAR-10 and Shakespeare datasets
in both IID and non-IID configurations are summarized in
Table I. As shown in the Fig. 2, we see that the proposed
O(t2)-increased power allocation scheme achieves higher test
accuracy and lower train loss than the equal power allocation
scheme under the same energy budget on MNIST. In partic-
ular, O(t2)-increased power allocation scheme achieves 0.6%



TABLE I
PERFORMANCE SUMMARY OF THREE SCHEMES ON MNIST, CIFAR-10 AND SHAKESPEARE DATASETS UNDER IID AND NON-IID SETTINGS.

Dataset Scheme Accuracy Percentage* Accuracy Percentage*
IID non-IID

MNIST Noise free 99.3% 100% 99.1% 100%
Increased power 99.1% 99.8% 99.0% 99.9%

Equal power 98.5% 99.2% 98.4% 99.3%
CIFAR-10 Noise free 79.5% 100% 63.3% 100%

Increased power 78.9% 99.2% 59.6% 94.2%
Equal power 71.7 % 90.2% 49.8% 78.7%

Shakespeare Noise free 57.8% 100% 56.8% 100%
Increased power 57.8% 100% 56.4% 99.3%

Equal power 52.9 % 91.5% 54.4% 95.8%

*: The percentage columns represent the FL accuracy against the ideal case of noise-free accuracy.

higher test accuracy than that of equal power allocation scheme
both in IID and non-IID data partitions. It might appear that
the gain is not significant, but the reason is mostly due to that
MNIST classification is a rather simple task. In fact, this gain
is more notable under the more challenging CIFAR-10 and
Shakespeare datasets as shown in Fig. 3 and Fig. 4. Comparing
with the equal power allocation scheme, which achieves 90.2%
and 78.7% of the ideal (noise free) test accuracy in IID and
non-IID data partitions under CIFAR-10 dataset, the proposed
method achieves 99.2% (IID) and 94.2% (non-IID) of the
ideal (noise free) test accuracy respectively after T = 500
communication rounds, which is significant. Specifically, the
training loss (test accuracy) of equal power allocation scheme
increases (decreases) during the later 350th to 500th round in
the non-IID case, implying that a non-increasing SNR may
occur deterioration in the convergence of FL for difficult ML
tasks. Similarly, under Shakespeare dataset, the equal power
allocation scheme achieves 91.5% (IID) and 95.8% (non-IID)
of the ideal (noise free) test accuracy, while the proposed
method improves 8.5% and 3.5%, respectively. All of the three
tasks have significant accuracy improvement due to the O(t2)
power control. We conclude that by allocating the transmission
power at the rate of O(t2) with the communication round t,
we can achieve lower training loss and better test accuracy of
the FL tasks than equal power allocation scheme under the
same energy budget.

VI. CONCLUSION

We have investigated FL over noisy channels, where a FE-
DAVG pipeline with both uplink and downlink communication
noise was studied. By theoretically analyzing its convergence
under noisy communications in both directions, we have
proved that the same O(1/T ) convergence rate scaling of
FEDAVG under perfect communications can be achieved if
the uplink and downlink SNRs are controlled as O(t2) over
noisy channels. Inspired by this critical result, we proposed
a transmit power control policy for the analog aggregation
FL system. Extensive experimental results have corroborated
the theoretical analysis and demonstrated the performance

superiority of the fine-tuned power allocation scheme over
baseline methods under the same total power budget.
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