
Parallel Computing 108 (2021) 102827

A
0

a

b

c

d

e

f

(
(

h
R

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Implementation and evaluation of MPI 4.0 partitioned communication
libraries
Matthew G.F. Dosanjh a, Andrew Worley b, Derek Schafer c, Prema Soundararajan d,
Sheikh Ghafoor b, Anthony Skjellum c,∗, Purushotham V. Bangalore e, Ryan E. Grant a,f
Sandia National Laboratories, Albuquerque, NM, United States of America
Tennessee Tech University, Cookeville, TN, United States of America
University of Tennessee at Chattanooga, Chattanooga, TN, United States of America
University of Alabama at Birmingham, Birmingham, AL, United States of America
University of Alabama, Tuscaloosa, AL, United States of America
Queens University, Kingston, Ontario, Canada

A R T I C L E I N F O

Keywords:
MPI
Partitioned communication
Point-to-point partitioned

A B S T R A C T

Partitioned point-to-point communication primitives provide a performance-oriented mechanism to support
a hybrid parallel programming model and have been included in the upcoming MPI-4.0 standard. These
primitives enable an MPI library to transfer parts of the data buffer while the application provides partial
contributions using multiple threads or tasks or simply pipelines the buffers sequentially. The focus of this
paper is the design and implementation of a layered library that provides the functionality of these newer
APIs and supports application development using these newer APIs. This library provides an opportunity to
explore potential optimizations and identify further enhancements to the APIs. Initial experience in designing
this library along with preliminary performance results are presented. In addition, the library is compared
to initial prototype libraries that have recently become available that have been updated to the standard-
compliant interface. These prototype libraries were built on remote-memory-access (RMA) primitives, offering
insight into different implementation strategies. In general, we observe an interesting trade-off space, with the
RMA-based implementation proving more performant for send-side partitioning, with increases in perceived
bandwidth 8.9x on average over a single send, compared to the persistent-based implementation, which shows
improvements 4.0x on average. In comparing the two implementations, we find that the persistent-based
implementation enables more overlap for receive-side partitioning up to 5.37X the RMA library’s overlap,
while the RMA-based implementation provides better send-side performance of up to 70%.
1. Introduction

Partitioned point-to-point communication was introduced [1] as an
alternative to the failed MPI endpoints concept [2]. This was based
on application developer feedback from a major survey in the US for
exascale MPI development that indicated applications wanted RMA-like
performance benefits for multi-threading but with a send-receive-type
model [3]. Partitioned point-to-point operations provide a thread inter-
face for message passing that supports pipelined and parallel message
buffer filling and emptying, with the potential for overlapping buffer
completion with transfer. This type of pipelining can have significant
benefits for hybrid programming, such as MPI and OpenMP with fork-
join assembly of messages in non-overlapping partitions (send-side

∗ Corresponding author.
E-mail addresses: mdosanj@sandia.gov (M.G.F. Dosanjh), apworley42@tntech.edu (A. Worley), derek-schafer@utc.edu (D. Schafer), prema@uab.edu

P. Soundararajan), sghafoor@tntech.edu (S. Ghafoor), tony-skjellum@utc.edu (A. Skjellum), pvbangalore@ua.edu (P.V. Bangalore), ryan.grant@queensu.ca
R.E. Grant).

overlap of computation and communication) and/or partitioned com-
pletion of messages for overlapping receipt and work as data is received
(receive-side overlap of communication and computation). Further,
this model addresses the concerns raised for the send-receive model
and endpoints model regarding the growth of the message queues
on the receive-side of transfers while also avoiding the need for the
entirety of an MPI implementation function in the lower performance
MPI_THREAD_MULTIPLE mode [1,4]. Our motivation for the present
work is to make a standalone MPI library that enables partitioned com-
munication in MPI implementations. Since partitioned communication
is new in MPI 4.0 [5], there are few, if any, public implementations
currently available. Availability of a functional library that is portable
vailable online 28 August 2021
167-8191/© 2021 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.parco.2021.102827
eceived 15 February 2021; Received in revised form 10 June 2021; Accepted 13 A
ugust 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:mdosanj@sandia.gov
mailto:apworley42@tntech.edu
mailto:derek-schafer@utc.edu
mailto:prema@uab.edu
mailto:sghafoor@tntech.edu
mailto:tony-skjellum@utc.edu
mailto:pvbangalore@ua.edu
mailto:ryan.grant@queensu.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102827&domain=pdf


Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

c
c
t
r
p
t
o
r
o

a
o
s
u
t
M
t
b
A
t

t
s
a
o
i
o
c
M

o
i
W
p
e
f

L

will enable adoption and provide a reference implementation for MPI
library-specific implementations that will be optimized over the next
months as MPI-4.0 becomes fully supported. We have prototyped a
portable MPI extension library (with the MPIX function name denoting
functions that are not included in the MPI Standard yet). This extension
library implements the partitioned communication API on top of any
existing MPI library. This design choice means that our library can be
used to help applications experiment with partitioned communication
as one of the communication options. These applications can test out
how partitioned communication helps new algorithms and provides
developers with an opportunity to get familiar with how partitioned
communication operations behave. Then, when larger-scale MPI im-
plementations have fully integrated the partitioned communication
API into their libraries, developers and applications will be ready for
deployment in a production settings without changes to their source
code.

2. Background

As interest in efficient multi-threaded MPI programming has in-
creased in recent years [3], there have been several proposals for
supporting large numbers of threads with MPI that differ from the
traditional multi-threaded environment offered in the MPI standard.
Expressing concurrency to the MPI library in a form more complicated
than asking for multi-thread safe MPI calls has the potential to unleash
greater performance from MPI. The first of such recent attempts was
called endpoints [2] and aimed to expose individual threads as network
address targets in MPI (i.e., MPI process ranks). Unfortunately, this ef-
fort failed to be adopted by the MPI Forum because, although it offered
a new way to address threads, it had drawbacks to how hardware could
efficiently support such MPI mechanisms. For example, it expanded
the MPI ‘‘process rank space’’ from the default MPI_COMM_WORLD
communicator in codes today to one of size in proportion to the number
of threads used. This made it difficult to use hardware-level addressing
translations in networking hardware that supported such features [6].
And, much of the performance benefit of the endpoints approach could
also be hidden from the user inside the MPI library [7,8].

The successor effort to endpoints was finepoints [1,9]. The approach
in finepoints was to express a single MPI operation in such a manner
that multiple threads could contribute to it in an efficient manner.
This deviated from the endpoints approach significantly since mul-
tiple threads contributed to a single operation (as opposed to each
performing separate operations), and threads were not individually
addressable with an MPI process. This kept the process rank space
from expanding beyond that expressed by MPI_COMM_WORLD. The
motivations for this design were results indicating issues around the
processing of the large number of messages that could be extrapolated
for future highly concurrent systems [4]. While it had been apparent
for some time that network interface cards (NICs) that onloaded most
of the communication message processing to the CPU could become a
bottleneck with the move to many-core type architectures [10], it was
not until recent studies and purpose-built benchmarks were developed
that the magnitude of the overheads of processing such large volumes of
messages became clear [11]. Finepoints addresses this issue by keeping
the MPI level message volume identical to the single-threaded MPI
model. Finepoints eventually evolved into MPI partitioned point-to-
point communication in the MPI standard in version 4.0, formally
approved by the MPI Forum in June, 2021.

2.1. Introduction to partitioned point-to-point communication

MPI partitioned point-to-point communication adds several new
functions to the MPI standard. The functions added in MPI 4.0 are
shown in Table 1.

To illustrate the basic usage of partitioned point-to-point communi-
cation, we provide two code examples demonstrating simple use cases
2

for the send-side in Listing 1 and for the recv-side in Listing 2 as MPI
ode in C. The basic setup of a partitioned is similar to persistent
ommunication operations. The partitioned operation begins with a call
o an initialization function, Line 1 in Listings 1 and 2. These functions
eturns a handle to a request object used to query the operation. As
art of the call, the user defines a number of partitions on each side of
he communication. Each partition consists of an independent portion
f the communication buffer. Of note is that the number of sender and
eceiver partitions do not have to be related to each other, only the
verall size of buffer must be consistent.
After initialization, the overall partitioned operation is then marked

s active by a call to MPI_Start, Line 4; however, unlike persistent
perations, data transmission is not started immediately. Data transmis-
ion is instead devolved to a secondary function associated with each
ser-defined partition. This function, MPI_Pready, is only called on
he sending side Listing 1, Line 8, and is called once per partition. Each
PI_Pready call activates a portion of the overall request to allow
hat partition to be transmitted. Before the call to MPI_Pready, the
uffer partition has not entered the active stage, thus can be modified.
fter a partition calls MPI_Pready and transitions to an active state,
he transmission of the partition is handled by the library.
The MPI standard grants a high degree of freedom for how this

ransmission occurs, including permission to delay some initialization
teps up until the point of transmission. Completion of the overall oper-
tion can be queried by current existing functions such as MPI_Test
r MPI_Wait. Additional information on the completion status of
ndividual receiver partitions can be found by calling MPI_Parrived
n the partition in question. Once the operation is complete, resources
an be released by calling MPI_Request_Free on the appropriate
PI_Request handle.
In our receive-side example in Listing 2, we have denoted several

pportunities for the application to do computational work while wait-
ng for the incoming partitioned communication operation to complete.
hile it is possible for the receive-side to be aware of individual
artition completions, we have not demonstrated this in our code
xample. Next, we will demonstrate the use of the MPI_Parrived
unction in a high level flow diagram.

1 MPI_Psend_init(&buffer, partitions ,
count, datatype , dest, tag, comm,
info, &request);

2

3 for (i=0; i<num_iterations; i++){
4 MPI_Start(&request);
5 /*Parallel loop with some number of

threads*/
6 parallel for (partition=0; partition

<10; partition++) {
7 /* Do work to fill partition#

portion of buffer */
8 MPI_Pready(partition , &request);
9 }
10 MPI_Wait{&request};
11 }

isting 1: Example Partitioned Point-to-Point Communication
send-side code

1 MPI_Precv_init(&buffer, partitions ,
count, datatype , source, tag, comm,
info, &request);

2

3 for (i=0; i<num_iterations; i++){
4 MPI_Start(&request);
5 /*Parallel loop with some number of

threads*/
6 parallel for (loop=0; loop <10; loop

++) {
7 /* do compute work */



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

p
M

Table 1
MPI 4.0 and 4.1 partitioned point-to-point communication application programmer interface (API) [5].
Approved MPI 4.0 functions C language binding

MPI_Psend_init void *buf, int partitions, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Info info, MPI_Request *request

MPI_Precv_init void *buf, int partitions, MPI_Count count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Info info, MPI_Request *request

MPI_Pready int partition, MPI_Request *request
MPI_Pready_range int partition_low, int partition_high, MPI_Request *request
MPI_Pready_list int length, int array_of_partitions[], MPI_Request *request
MPI_Parrived MPI_Request *request, int partition, int *flag

Proposed MPI 4.1 functions

MPI_Pbuf_prepare MPI_Request request
MPI_Pbuf_prepareall int count, MPI_Request requests[]
Fig. 1. Overview of Partitioned Point-to-Point Communication.

8 MPI_Parrived(&request, loop, &flag);
9 /* do work on early arrivals if

available if not goto next iteration
*/

10 }
11 MPI_Test(&request, &flag,

MPI_STATUS_IGNORE);
12 }

Listing 2: Example Partitioned Point-to-Point Communication
Receive-side Code

The basic control and data flow is illustrated in Fig. 1. Like our
revious code examples, the developer calls an initializing function like
PI_P*_init followed by a call to MPI_Start. As portions of the
data buffer become ready to send corresponding to a given partition ex-
pressed to MPI in the initialization call, the user calls MPI_Pready to
indicate that it is safe to move the data in that partition to the receiver.
Unlike our previous code examples, Fig. 1 shows the optional receive-
side MPI_Parrived call that the receiver can use to determine if it
can access a given partition’s portion of the incoming data buffer before
the MPI operation itself is complete (the MPI operation is indicated as
complete after a successful return from MPI_Wait or MPI_Test).
3

3. Partitioned communication

Partitioned communication is a technique introduced in MPI 4.0 to
perform point-to-point communications efficiently with high levels of
concurrency (threads). Previous work on partitioned communication
has focused on prototype libraries [1,9] and performance that was used
as a basis for the interface that was adopted in MPI 4.0, but varied
in significant ways, making the libraries not directly comparable to
ones that implement the final MPI-4.0-approved interface. Some of
these differences in interface included buffer length and management,
and whether the MPI library or the user should define the partitions.
The official MPI 4.0 interface asks the user to define the equal-size
partitions rather than asking the library to handle all edge cases where
the user could erroneously define a partition layout that was not easily
partitioned.

Partitioned communication is applicable to highly threaded CPU-
side MPI codes but has significant predicted utility for GPU-side MPI
kernel calls with low expected overheads. Current proposals are un-
derway for MPI 4.1 further to optimize a GPU-side implementation
of a MPI_Pready call on the GPU to trigger data movement. There-
fore, providing partitioned communication libraries as soon as possi-
ble to the MPI application developer community is a critical aspect
of application readiness for next-generation supercomputers. While
the libraries presented here are not GPU-based, they nonetheless al-
low developers to being the coding process today and make perfor-
mance analyses for their codes. The process of converting a CPU-side
partitioned communication exchange to a GPU-side one is relatively
straightforward.

Since partitioned communication is included in MPI 4.0, all MPI
libraries will have to add this functionality to their implementations.
This work provides the first comparison between two different, reason-
able approaches to implementing partitioned communication calls. As
partitioned communication adopts some aspects of MPI RMA because
of its design being intended to work with Remote Direct Memory
Access (RDMA) semantics. Therefore, a partitioned communication im-
plementation based on RMA/RDMA is a logical approach. Partitioned
communication also adopts elements of persistent communication in
MPI, making it another obvious approach on which to build partitioned
communication support. This paper extends previous work focusing
on a persistent communication library implementation of partitioned
communication [12] by comparing performance between it and an
RMA-based library.

3.1. Partitioned operation library via persistent MPI interfaces

A library called MPIPCL was implemented to perform partitioned
communication based on persistent point-to-point MPI operations [12].
MPIPCL layers on top of existing MPI implementations and provides
all of the MPI 4.0 standard functionality. Therefore, there are not as
many opportunities to provide aggregation of messages and overlap
of communication and computation with the partitioned operations as
with a native solution. Partitions are broken up into multiple persistent
point-to-point operations and triggered to move data when the user
calls MPI_Pready.



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

o
a
m
b
t
c
o

a
n
o
o
b
s
c
c
c

c
p
t
d
d
m
a

3

m
C
p
r
a
t
o
o

t
i
a
t
O
n
p
o
t
s
o
H

c
l
i
(

Table 2
List of provided functions in MPIPCL.
Partition functions Augmented functions

MPI_Psend_init MPI_Start
MPI_Precv_init MPI_Startall
MPI_Pready MPI_Wait
MPI_Pready_range MPI_Waitall
MPI_Pready_list MPI_Waitany
MPI_Parrived MPI_Waitsome
MPIX_Pbuf_prepare MPI_Test
MPIX_Pbuf_prepareallall MPI_Testall

MPI_Testany
MPI_Testsome
MPI_Request_free

3.2. MPIPCL library implementation details

The functions listed in Table 2 represent those that our library has
implemented on top of the existing MPI library. The six partitioned
communication functions on the left-hand side that start with MPI_
represent new functionality that is to appear in the MPI 4.0 standard,
the remaining two are not yet accepted in the standard and use the
MPIX_ denotation. The functions on the right are reimplemented (aug-
mented) functions to enable support for the new request object (an
attendant side effect of a layered implementation).

3.2.1. New request object
Normal MPI_Request objects have no mechanism to keep track

f partial progress of the request. Because partitioned requests are
collection of underlying partial communications, it is necessary to
aintain a more flexible record of completion than would normally
e needed. As such, a new request object was created for use with
he MPIPCL library. As shown in Listing 3, the new request object
ontains metadata about the overall request as well as an internal array
f requests to fulfill.

1 typedef struct _mpix_request
2 {
3 int state;
4 int size;
5 int side;
6 int sendparts;
7 int recvparts;
8 int readycount;
9 MPI_Request *request;
10 ... // Other thread information
11 } MPIX_Request;

Listing 3: The MPIX_Request object for the MPI persistent
operation-based library (MPIPCL).

3.2.2. Internal request negotiation
MPIPCL is built upon MPI point-to-point communications and as

such requires some additional information to be held in MPI_Request
objects. These expanded request objects are not part of the MPI stan-
dard and therefore are delineated as experimental with the use of MPIX
at the start of their function names as the standard requires for any
non-standard extensions to MPI. Each MPIX_Request object contains
number of standard requests, so the number of sends and receives
eeds to be balanced. The API has no defined mechanism for this to
ccur; but, both sides of the communication need to agree in advance
n the internal number of requests generated. The library is meant to
e portable; as such, it does not have access to the implementation-
pecific control structures. And, the library is forced to use additional
ommunication requests to share the required metadata. This is further
omplicated by the realization that this setup phase is a blocking pro-
ess, yet MPI_Psend_init, MPI_Precv_init, and MPI_Start
4

d

Fig. 2. Partition Remapping.

are all required to be non-blocking functions. The implemented solu-
tion to this is the spawning of a new thread to execute part of this
initialization operation while still returning control of the main thread
back to the program, see Fig. 1. This thread enables the program to
continue (return immediately) until progress is required of the parti-
tioned request, thus effectively postponing any blocking activities until
a blocking procedure is called. Currently, communication is limited to
sharing the number of internal requests being sent to the receiver, but
could be used as part of data aggregation or optimization algorithms
(something intended for fully optimized partitioned communication
implementations).

3.2.3. Partition remapping
When the number of send-side and receive-side partitions are un-

equal, the data can be remapped inside the receiving buffer (to further
abstract the user defined partitions away from the internal commu-
nication structure). The current method is a simple mapping based
on offsets from the start of the buffer. The MPI_Parrived function
alculates which portion of the buffer is needed to for the requested
artition then finds which internal receive requests contain some part
he required data. The data is marked as available only after all the
ependent partitions have arrived. This effectively allows the user to
efine any number of partitions at either end, while permitting internal
essage aggregation to proceed unhindered. Fig. 2 demonstrates this
pproach.

.2.4. Limitations
Because this library current layers on top of existing MPI imple-
entations, there are certain limitations that we would like to address.
urrently, because we cannot access the library’s internals, we cannot
roperly return a fully formed MPI_Status object. Instead, our cur-
ent implementation ignores any status objects passed to the function,
nd similarly uses MPI_STATUS_IGNORE as arguments to any func-
ion that requires a status object. In the future, we plan to provide our
wn status object to fulfill these needs. The current implementation
nly supports primitive built-in datatypes and contiguous datatypes.1
It is anticipated that applications that use partitioned communica-

ion will use multiple threads to achieve the best performance; that
s, multiple threads fill or empty buffer partitions concurrently. In
ddition, our current library has an extra thread to achieve some of
he progress needed to keep the partitioned communications moving.
ur library depends on thread support in the MPI implementation,
ecessitating at least the MPI_THREAD_SERIALIZED level of sup-
ort by the underlying MPI implementation and any application using
ur library must call MPI_Init_thread (with the aforementioned
hread support level or greater) instead of MPI_Init. Additionally,
ince this library is not fully implemented in a unified way inside any
ne library, we are limited in how we can optimize our functions.
owever, we are still aiming to achieve minimal extra overhead (if any)

1 The most performant modes of partitioned communication are likely to be
ontiguous, partitioned buffers, so this is not a major limitation for an initial
ibrary implementation. But, addressing packing/unpacking of partitions is
mportant future work for non-contiguous partitions based on MPI user-defined
derived) data types. We intend to consider support for such user-defined

atatypes as a future part of this effort.



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.
Fig. 3. An example of early-bird communication, where with partitioned communication data movement occurs when portions of the buffer become available, thereby allowing
use of the network over a longer period of time than the traditional send model. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 3
List of provided functions in RMA-based partitioned
communication library.
Partitioned functions Limitations

MPI_Psend_init Not non-blocking
MPI_Precv_init Not non-blocking
MPI_Pready None
MPI_Pready_range None
MPI_Pready_list None
MPI_Parrived None

to inform users of potential performance benefits they might get from
using partitioned communications. Because the library uses persistent
point-to-point APIs, applications should at least see the performance
benefits of persistent point-to-point APIs, if they are optimized by the
underlying MPI implementation.

3.3. RMA-based library

An alternative implementation approach for MPI partitioned com-
munication is to build the operations on top of MPI RMA. While
this is not as ideal as building an implementation on top of RDMA
primitives, using RDMA directly is only possible when done internally
to an MPI library, making the changes implementation specific and
non-portable between MPI libraries. As such, we have developed a
library based on early prototypes [1] used to prove the usefulness
of MPI partitioned communication. The original prototype libraries
needed additional implementation work to bring them into compliance
with the MPI specification as well as further optimizations to represent
the benefit of some of the interfaces changes made for MPI 4.0. A list of
the MPI partitioned communication functions supported by this library
is given in Table 3.

This implementation uses two, single-direction RMA windows: one
for the data and another for completion flags. To ensure isolation
from other partitioned communication operations, these windows use
a separate communicator between the two processes involved. Because
of the use of a separate flag window, the two processes need to agree
on a number of completion partitions (the number of completion flags)
during initialization. For simplicity, this is done using the greatest
common denominator, to ensure both send and receive partitions only
correspond to a single flag.

When MPI_Pready is called, MPI_Put is called corresponding
to the referenced partition. After that, a completion partition counter
is atomically fetched and incremented, if that counter has reached
a threshold (the number of send partitions per completion partition)
MPI_Flush is called on the data window, MPI_Put is called setting
the flag for the completion partition, and finally MPI_Flush is called
on the completion flag window.
5

3.3.1. Limitations
Like the persistent-operation-based library, the RMA-based library

is limited to building on top of MPI RMA. This means that the parti-
tioned operations are limited by the feature set available at the MPI
level and cannot take full advantage of lower-level RDMA primitives.
For example, the RMA-based library cannot provide an entirely non-
blocking initialization call as it is based on MPI_Win_create, which
is itself a blocking call. There are also limitations to the number and
types of optimizations that can occur with regards to aggregation as the
RMA-based library is not aware of the underlying hardware being used
by the MPI implementation. Therefore, parameters like the network
Maximum Transmission Unit (MTU) cannot be optimized for since there
is no way of knowing what the relevant network values to optimize
for are. This limitation can be remedied by using a fully integrated
approach in the MPI libraries that would allow for further optimization.
However, even with the RMA-based libraries limitations, application
developers can build upon it with the knowledge that the eventual
integrated support will provide better performance and less restrictive
initialization semantics.

4. Experimental results

4.1. Experimental platform and benchmarks

To compare both of these approaches, we have run a modified
version of partitioned communication benchmark used in our prior
work [1,13]. These modifications include updating the interface to
match the MPI 4.0 spec In this section, we will compare and contrast
the two MPI partitioned communication library implementations with
each other and with traditional MPI communication sends. All of the
tests take two parameters to define a computation region, compute
and noise. Compute is the expected compute time, and noise is the
percentage delay that is applied to a single thread’s compute time.
Noise serves as an analogue to the system noise we would expect to see
on a system, such as having the operating system functionality interrupt
computation on a core. We will examine two types of traditional MPI
send approaches. The first we will refer to as single-send. Single-send
is a single MPI_(I)Send operation for the entire buffer, the most
commonly used MPI point-to-point communication call. The second
approach we refer to as multi-send. The multi-send approach uses a
separate MPI_(I)Send call for each thread which is the most similar
method in traditional MPI to accomplish an approach like partitioned
communication. Third, we will test sender-side partitioning, by convert-
ing the MPI_(I)Send calls in the multi-send test with MPI_Pready
calls on different partitions a single combined partitioned request.
Finally, we added a new test to measure receive-side partitioning. This
test adds a measurement to time between when the first partition has
arrived (as reported by MPI_Parrived) and when the final partition
arrived (as reported by MPI_Wait).

These benchmarks emulate a threaded computation phase with
noise (jitter) on a single thread prior to a communication phase every



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

r
t
o
t
t
e
a
t
w
c

f
p
E
E
p
i
r
f
a
c
c
u
p

4

o
e
t
s
a
t
c
c
d
A
t
l
i
t
d
t
o
b
o
m
d
m

iteration. This emulated computation is done by sleeping the threads
for the amount of time equal to a user-specified computation time,
with the noise-impacted thread sleeping for a user-specified additional
percentage of that time. Of these two tests, the first test measures the
performance effect of sender-side ’early bird’ communication and the
second test measures the effect of receiver-side early notification. Both
use a compute time and noise factor to emulate a computation period
where a single thread is delayed by noise (details are in Section 4.2).
The first test measures ‘‘perceived bandwidth’’ from the sender-side
perspective; the bandwidth as it appears from the last thread joining
the communication to the completion of the communication. Perceived
bandwidth is equivalent to how fast a network would have to be to ob-
serve the same time period between calling the single large buffer send
call and the MPI completion function (e.g., MPI_Wait or MPI_Test)
eturning. A visual example of this can be seen in Fig. 3 between the
ime noted as all threads being completed to the green completion box
n the timeline. Because this test does not utilize MPI_Parrived,
he number of partitions at the receiver can be set to 1. The second
est measures the receive-side extra compute time available through
arly notification; the time between the first partitioned being flagged
s arrived and the final partition being flagged. Also measured in this
est is communication time as perceived by the receiver (the time from
hen the last thread on the sender-side joins the communication to the
ommunication being complete, on the receiver process).
For these experiments, we used a cluster, Mutrino, that is a testbed

or the Trinity supercomputer. These experiments use the Haswell
artition of this cluster. This cluster is a Cray XC40 with 16 core Xeon
5-2698v3 processors running at 2.3 GHz over an Aries interconnect.
ach test was run in the MPI threading mode required by the operations
erformed with the best performance (i.e. single send is run not run
n MPI_THREAD_MULTIPLE mode). Each test was run 10 times (to
andomize allocated nodes) for 100 iterations with a dedicated node
or each process, unless otherwise noted. For the send-side results, there
re additional baselines of multi-send (replacing partitioned communi-
ation with individual sends and receives) and single send (where the
ommunication happens after the threads converge). All of these tests
se a thread per core (in this case 64) each responsible for a single
artition (a total of 64 partitions).

.2. Factors in assessing partitioned communication performance

Partitioned communication provides several performance benefits
ver traditional MPI point-to-point communications in that it allows
arly data movement before an entire buffer is ready. This motivates a
esting environment which allows for typical system noise that causes
light variation in MPI process loop completion times. This manifests
s a range of arrival times to any given synchronization point in
he application code. Typically such points occur as communication
ompletion events, either for collective operations or for point-to-point
ommunication. For a typical system, this variation is in the low single
igit range, with 4% representing a reasonable target in this range [14].
pplications can be impacted with larger amounts of noise, especially
hose with unbalanced loads and resource contention. We measured
arger amounts of noise, 10% in this paper, to explore the range of real-
stic noise levels. Partitioned communication can take advantage of the
ime variance between different thread compute completion by sending
ata as soon as it becomes available from the threads that first complete
he computational task. This ‘‘early-bird’’ communication [1] enables
verlapping of data transmission from the completed portions of a
uffer with computation that is still occurring for incomplete portions
f a data buffer. Therefore, the analysis of partitioned communication
ust include an evaluation of the overlap potential enabled by the
ifferent implementation approaches. An example of the overlap being
easured is shown in Fig. 3.
6

Fig. 4. 10 ms compute 4% noise.

Fig. 5. 100 ms compute 4% noise.

Fig. 6. 10 ms compute 10% noise.

4.3. Send-side results

Figs. 4–7 show the results for the send-side experiments. There are
a number of different independent variables, including compute time,
noise, transfer mechanism, and total buffer size. There are a couple
of general observations one can make here, including that both parti-
tioned communication implementations perform better than single send



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

T
D

i
a
C

p

i
i

Fig. 7. 100 ms compute 10% noise.

able 4
elay and peak perceived BW for the RMA implementation.
Compute &
noise

Delay Buffer size Peak perceived
bandwidth

10 ms 4% 0.4 ms 4 MiB 13372 MiB/s
10 ms 10% 1 ms 8 MiB 29367 MiB/s
100 ms 4% 4 ms 32 MiB 45166 MiB/s
100 ms 10% 10 m 32 MiB 58484 MiB/s

and multi-send. Additionally, the RMA-based implementation performs
better than the persistent implementation. This is due to a number of
factors including reduced overhead from one-sided communication and
differences in the notification method. For the notification method, the
RMA implementation relies on a small window of completion flags,
in this case a single element, to provide notification reducing the
amount of messages on the network. On the other hand, the persistent
implementation uses a point-to-point communication for each send-side
partition; this requires network traffic for completion of each send-
side partition regardless of the number of receive-side partitions. The
peaks observed in Figs. 4–7 demonstrate the channel packing effect that
is the result of early-bird communication. At the point at which the
partitioned communication can send all of the data that is available
early and then have little to no time to wait until the final laggard
data arrives, the channel is well packed, leading to peak performance.
Having more data to send than can be transmitted in the early-bird
phase and the laggard data leads to network having a backlog of data to
send after the laggard threads have completed. This impacts the overall
perceived network bandwidth as the data transfer is dominated by the
data transmission volume lessening the perceived impact of the early
bird data transmission opportunities. One can observe that the per-
sistent communication implementation occasionally peaks at a larger
message size than RMA, this is due to the overheads in the persistent
send versus the RMA Put, which leads to a shift in the channel packing
best performance buffer size. Ultimately with extremely large message
sizes, the partitioned communication and transitional send methods
will converge as the time to send the data dominates any opportunities
to send early-bird data.

Shown in Table 4 is noise-induced delay compared against the high-
est performing buffer size for the RMA implementation. This shows that
increased delay is associated with better performance at larger total
buffer sizes. Additionally, the amount of noise induced delay also ap-
pears to be associated with higher-peak bandwidth. This matches with
expectations as the noise induced delay provides a constant overlap
with communication. As that delay grows, more communication calls
can be progressed before the last thread reaches the communication.
7

Additionally, as the total buffer size grows, we expect the perceived
bandwidth to converge back down to the measured bandwidth (assum-
ing a constant delay) as after the peak, any extra data must be handled
after the last thread joins the communication section.

We observe similar maxima for two of the tests using MPIPCL. In
the 10 ms 4%, we observe a maxima at 16 MiB total buffer size with
9058 MiB/s. Additionally, in the 10 ms 10% we observe a maxima
at 16 MiB with 13546 MiB/s. These are not as high as the peaks for
the respective RMA implementation experiments. We do not observe
maxima in the 100 ms. The results will eventually converge with the
single-send results.

4.4. Receive-side results

Figs. 8–11 show the results for the receive-side experiments. The
ndependent variables are mostly the same, but two dependent vari-
bles are measured, communication time and extra compute time.
ommunication time is the time from when the first MPI_Pready call
is made, until the point at which MPI_Wait returns on the receiver.
Extra compute time measures from when the first partition is flagged as
complete (via MPI_Parrived) to the time MPI_Wait returns. This
measures the additional time to work on the data that has arrived
early before computation could normally begin. It is important to note
that the number of receive-side partitions is equal to the number of
send-side partitions for these tests.

We can make some general observations about this data. First is
that, for both cases, the extra compute time is often greater than the
observed communication time, particularly for the 100 ms tests. In the
100 ms 4% test for example, we observe extra compute times of up
to 5.37 times larger than communication time. This means that the
first partition arrives before the last partition is sent. This is why these
results are measured in time, rather than perceived bandwidth; the
time between the last partition to be called for MPI_Pready and first
artition to return true for MPI_Parrived can be negative.
The second observation we can make is that, as transfers become

ncreasingly larger, the extra compute time decreases for the RMA
mplementation. This is because the MPI_Put calls for the data and the
notification are separate calls to the network; if all the data transfers
enqueued before the notification transfers (which becomes increasingly
likely with larger buffer sizes) the data traffic may be prioritized. By
way of contrast, because the persistent implementation uses a single
point-to-point message, this approach avoids the ordering problem. We
observe that the extra compute time actually increases at high message
counts, due to the extra time spent in communication.

Finally, we observe that, for smaller buffer sizes, the RMA im-
plementation has a lower communication time than the persistent
implementation. At larger buffer sizes, this can change to where the
persistent implementation performs better. The exception to this is
shown in Fig. 11 where the time that the emulated noise is large (10%
of 100 ms). This contrasts with the send-side experiment where the
RMA implementation is more performant in all of the experiments
we have done. The communication time results of the receive-side
experiments can be compared to the send-side experiments as they both
measure the time from the last call to MPI_Pready to the MPI_Wait
call. In both of these experiments, the time is measured on the send
side to measure communication time, so the major difference in these
experiments is how many receive-side partitions are declared. One of
the major things that has changed (that could be the cause of this
behavior) is the extra notification calls. In the send-side experiments,
the RMA implementation used a single completion flag resulting in
64 calls to MPI_Put on the data buffer, one MPI_Flush call on the
data buffer, one MPI_Put call on the completion flags buffer, and one
call to MPI_Flush on the completion flags buffer. However, in the
receive-side tests, the RMA implementation makes 64 of each of those
calls. This could be detrimental to performance because of a significant

increase in overhead.



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.

4

a
p
p
t

Fig. 8. Receive Side - 10 ms compute 4% noise.

Fig. 9. Receive Side - 100 ms compute 4% noise.

Fig. 10. Receive Side - 10 ms compute 10% noise.

.5. Discussion

Given the results of our experiments, it is clear that both approaches
re useful. However, each approach has benefits that depend on the
articular use case for the partitioned communication. The RMA im-
lementation has better data transmission performance but obtains
his performance by avoiding data fences that impact the ability of
8

Fig. 11. Receive Side - 100 ms compute 10% noise.

the MPI_Parrived function to provide fine-grain notification on
partition completion. The notification mechanism for the persistent
implementation makes it better suited when using MPI_Parrived
on a large buffer transfer. This motivates a further exploration of the
impact of finer-grain arrival notifications with the RMA method. This
should be done in addition to further data transmission optimizations
like data and notification aggregation, full integration into an MPI
library, and a direct conversion from the partitioned interface into
RDMA calls.

To evaluate how these results might correlate to impact on real
applications, it is important to view these results in the context of real
world application behavior. Prior work demonstrates applications, such
as LULESH (a hydrodynamics proxy application), are targeted at 50–
100 ms per iteration of compute kernels [15]. Additionally, a survey
of MPI usage in applications has observed that message sizes fall into
a bi-modal distribution pattern, with most messages containing under
800KiB and another set of sizes greater than 1 MiB [16]. This obviously
will fluctuate with system and application set-up (number of cores,
memory available, number of processes per node, etc.) but this gives
us a reasonable idea of the potential impact on today’s applications. In
addition, more optimization could occur during the initialization phase
with better knowledge of the network that would be possible with a
full MPI library integration. This would help in negotiating the arrival
side notification to optimize for bandwidth while also allowing more
overlapping compute time on early arriving data on the receiver.

5. Related work

Integrating threading internally in an MPI implementation has been
attempted in FG-MPI [17]. FG-MPI treats threads as the equivalent of
MPI processes. This allows for many concurrent threads and conse-
quently creates a large amount of state for each thread/process. The
concepts in FG-MPI were never incorporated into the MPI standard.
Benchmarks for testing and profiling MPI threading [18] and RMA have
been developed [19], but these focus on existing MPI functionality. The
general concept of composing RDMA messages into a large transaction
has been explored for application in unreliable datagram networks at
the hardware level [20,21]. Similar benchmarks have also been devel-
oped for other one-sided communication APIs like OpenSHMEM [22].
Commercial MPI’s such as MPI/Pro, which were designed for internal
concurrency and the option of blocking completion notification (to
avoid polling), are no longer widely available [23]. Approaches for im-
proving performance for large scale MPI jobs by dynamically building
communicators and controlling thread levels in ‘‘Sessions’’ [24] have

been adopted into MPI 4.0.



Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.
Message aggregation is a well known method for networks, hav-
ing been explored in MPI RMA [25]. Aggregation methods are also
common with TCP/Ethernet networking. Previous work has introduced
earlier versions of the partitioned communication libraries expanded
and enhanced in this work [1,12].

The MPI Forum has had a proposal before it to enhance support for
threads using endpoints [2], in which each thread can be assigned a
unique rank in an endpoint communicator. However, endpoints never
attempted to address the underlying communication model, and the
endpoints model only adds the ability to address messages to specific
threads. This work differs from previous efforts by the requirements it
places on applications and the corresponding decrease both in resources
needed by MPI and in synchronization overhead achieved.

6. Conclusions

This paper has evaluated two key implementation methods for
MPI partitioned communication via libraries built on top of existing
MPI implementations. Overall, it was shown that there are benefits
to computation and communication overlap that occur with parti-
tioned communication regardless of the implementation approach. Us-
ing remote-memory access (RMA), we observed additional benefits
for data-transmission performance over the persistent-communication-
based approach, and better arrival notification and opportunity for
early computation on the buffer with persistent communication. We
also found that partitioned communication performed best versus tradi-
tional MPI single- and multi-send methods when buffers are sufficiently
large to take advantage of early thread arrival and data transmission.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was performed with partial support from the National
Science Foundation under Grants Nos. CCF-1562306, CCF-1822191,
CCF-1821431, OAC-1923980, OAC-1549812, and OAC-1925603, the
U.S. Department of Energy’s National Nuclear Security Administra-
tion (NNSA) under the Predictive Science Academic Alliance Program
(PSAAP-III), Award DE-NA0003966, the University of Alabama at Birm-
ingham, and the Alabama Innovation Fund.

Sandia National Laboratories is a multi-mission laboratory managed
and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc.
for the U.S. Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-NA0003525. This research was supported by
the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

This paper describes objective technical results and analysis. Any
subjective views or opinions that might be expressed in the paper do
not necessarily represent the views of the U.S. Department of Energy
or the United States Government.

Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation, the U.S. De-
partment of Energy’s National Nuclear Security Administration, or the
Sandia National Laboratories.

The authors wish to thank the anonymous reviewers whose feed-
back helped improve this paper significantly.
9

References

[1] R.E. Grant, M.G.F. Dosanjh, M.J. Levenhagen, R. Brightwell, A. Skjellum,
Finepoints: Partitioned multithreaded MPI communication, in: M. Weiland, G.
Juckeland, C. Trinitis, P. Sadayappan (Eds.), High Performance Computing -
34th International Conference, ISC High Performance 2019, Frankfurt/Main,
Germany, June 16-20, 2019, Proceedings, in: Lecture Notes in Computer Science,
vol. 11501, Springer, 2019, pp. 330–350, http://dx.doi.org/10.1007/978-3-030-
20656-7_17.

[2] J. Dinan, R.E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir, R. Thakur, Enabling
communication concurrency through flexible MPI endpoints, Int. Jour. High
Perform. Comput. Appl. 28 (4) (2014) 390–405.

[3] D.E. Bernholdt, S. Boehm, G. Bosilca, M. Venkata, R.E. Grant, T. Naughton, H.
Pritchard, G. Vallee, A survey of MPI usage in the U.S. Exascale Computing
Project, Concurr. Comput.: Pract. Exper. (2018) http://dx.doi.org/10.1002/cpe.
4851.

[4] W. Schonbein, M.G. Dosanjh, R.E. Grant, P.G. Bridges, Measuring multithreaded
message matching misery, in: M. Aldinucci, L. Padovani, M. Torquati (Eds.),
Euro-Par 2018: Parallel Processing - 24th International Conference on Parallel
and Distributed Computing, Turin, Italy, August 27-31, 2018, Proceedings, in:
Lecture Notes in Computer Science, vol. 11014, Springer, 2018, pp. 480–491,
http://dx.doi.org/10.1007/978-3-319-96983-1_34.

[5] MPI Forum, MPI: A Message-Passing Interface Standard 4.0., Tech. Rep., Univ.
of Tennessee, Knoxville, TN, USA, 2021.

[6] B.W. Barrett, R. Brightwell, R.E. Grant, S. Hemmert, K. Pedretti, K. Wheeler,
K. Underwood, R. Riesen, T. Hoefler, A.B. Maccabe, T. Hudson, The Portals 4.2
Network Programming Interface, Tech. Rep., (SAND2018-12790) Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2018.

[7] R. Zambre, A. Chandramowliswharan, P. Balaji, How I learned to stop worrying
about user-visible endpoints and love MPI, in: Proceedings of the 34th ACM
International Conference on Supercomputing, 2020, pp. 1–13.

[8] R. Zambre, A. Chandramowlishwaran, P. Balaji, Scalable communication end-
points for MPI+ threads applications, in: 2018 IEEE 24th International
Conference on Parallel and Distributed Systems, ICPADS, IEEE, 2018, pp.
803–812.

[9] R. Grant, A. Skjellum, P.V. Bangalore, Lightweight Threading With MPI
using Persistent Communications Semantics, Tech. Rep., Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), 2015.

[10] M.G.F. Dosanjh, R.E. Grant, P.G. Bridges, R. Brightwell, Re-evaluating network
onload vs. offload for the many-core era, in: IEEE Intl. Conf. on Cluster
Computing, CLUSTER, IEEE, 2015, pp. 342–350.

[11] W. Schonbein, S. Levy, W.P. Marts, M.G. Dosanjh, R.E. Grant, Low-cost MPI
multithreaded message matching benchmarking, in: International Conference on
High Performance Computing and Communications, HPCC, 2020, pp. 1–10.

[12] P.V. Bangalore, A. Worley, D. Schafer, R.E. Grant, A. Skjellum, S. Ghafoor, A
portable implementation of partitioned point-to-point communication primitives,
in: EuroMPI, 2020, pp. 1–3.

[13] M. Dosanjh, R.E. Grant, Receive-Side Partitioned Communication, Technical
Report SAND2019-11403, Sandia National Laboratories, 2019.

[14] K.B. Ferreira, P. Bridges, R. Brightwell, Characterizing application sensitivity
to OS interference using kernel-level noise injection, in: High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008. International
Conference for, IEEE, 2008, pp. 1–12.

[15] E.A. León, I. Karlin, R.E. Grant, Optimizing explicit hydrodynamics for power,
energy, and performance, in: 2015 IEEE International Conference on Cluster
Computing, IEEE, 2015, pp. 11–21.

[16] K.B. Ferreira, S. Levy, Evaluating MPI message size summary statistics, in:
27th European MPI Users’ Group Meeting, EuroMPI/USA ’20, Association for
Computing Machinery, New York, NY, USA, 2020, pp. 61–70, http://dx.doi.org/
10.1145/3416315.3416322.

[17] H. Kamal, A. Wagner, An integrated fine-grain runtime system for MPI, Com-
puting 96 (4) (2014) 293–309, http://dx.doi.org/10.1007/s00607-013-0329-
x.

[18] R. Thakur, W. Gropp, Test suite for evaluating performance of MPI implemen-
tations that support MPI_THREAD_MULTIPLE, in: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Springer, 2007, pp. 46–55.

[19] M.G.F. Dosanjh, T. Groves, R.E. Grant, R. Brightwell, P.G. Bridges, RMA-MT: a
benchmark suite for assessing MPI multi-threaded RMA performance, in: 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid, IEEE, 2016, pp. 550–559.

[20] R.E. Grant, M.J. Rashti, A. Afsahi, P. Balaji, RDMA capable iWARP over
datagrams, in: IEEE Int. Parallel & Distributed Processing Symp., IPDPS, IEEE,
2011, pp. 628–639.

[21] M.J. Rashti, R.E. Grant, A. Afsahi, P. Balaji, iWARP redefined: Scalable con-
nectionless communication over high-speed ethernet, in: Intl. Conf. on High
Performance Computing, HiPC, IEEE, 2010, pp. 1–10.

[22] H. Weeks, M.G.F. Dosanjh, P.G. Bridges, R.E. Grant, SHMEM-MT: A bench-
mark suite for assessing multi-threaded SHMEM performance, in: Workshop on
OpenSHMEM and Related Technologies, Springer, 2016, pp. 227–231.

http://dx.doi.org/10.1007/978-3-030-20656-7_17
http://dx.doi.org/10.1007/978-3-030-20656-7_17
http://dx.doi.org/10.1007/978-3-030-20656-7_17
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb2
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb2
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb2
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb2
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb2
http://dx.doi.org/10.1002/cpe.4851
http://dx.doi.org/10.1002/cpe.4851
http://dx.doi.org/10.1002/cpe.4851
http://dx.doi.org/10.1007/978-3-319-96983-1_34
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb5
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb5
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb5
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb6
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb8
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb9
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb9
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb9
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb9
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb9
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb10
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb10
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb10
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb10
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb10
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb13
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb13
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb13
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb14
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb15
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb15
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb15
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb15
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb15
http://dx.doi.org/10.1145/3416315.3416322
http://dx.doi.org/10.1145/3416315.3416322
http://dx.doi.org/10.1145/3416315.3416322
http://dx.doi.org/10.1007/s00607-013-0329-x
http://dx.doi.org/10.1007/s00607-013-0329-x
http://dx.doi.org/10.1007/s00607-013-0329-x
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb18
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb18
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb18
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb18
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb18
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb19
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb20
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb20
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb20
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb20
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb20
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb21
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb21
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb21
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb21
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb21
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb22
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb22
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb22
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb22
http://refhub.elsevier.com/S0167-8191(21)00075-2/sb22


Parallel Computing 108 (2021) 102827M.G.F. Dosanjh et al.
[23] R. Dimitrov, A. Skjellum, Software architecture and performance comparison
of MPI/Pro and MPICH, in: Int. Conf. Computational Science, ICCS, 2003, pp.
307–315, http://dx.doi.org/10.1007/3-540-44863-2_31.

[24] D. Holmes, K. Mohror, R.E. Grant, A. Skjellum, M. Schulz, W. Bland, J.M.
Squyres, MPI sessions: Leveraging runtime infrastructure to increase scalability
of applications at exascale, in: Proceedings of the 23rd European MPI Users’
Group Meeting, 2016, pp. 121–129.
10
[25] N. Hjelm, M.G.F. Dosanjh, R.E. Grant, T. Groves, P. Bridges, D. Arnold, Improving
MPI multi-threaded RMA communication performance, in: Proc. of the Int. Conf.
on Parallel Processing, 2018, pp. 1–10.

http://dx.doi.org/10.1007/3-540-44863-2_31


Implementation and evaluation of MPI 4.0 partitioned communication libraries - ScienceDirect

https://linkinghub.elsevier.com/retrieve/pii/S0167819121000752[9/29/21, 9:17:23 AM]

Get rights and content

•

•

•

•

•

Parallel Computing
Volume 108, December 2021, 102827

Implementation and evaluation of
MPI 4.0 partitioned
communication libraries
Matthew G.F. Dosanjh , Andrew Worley , Derek Schafer , Prema
Soundararajan , Sheikh Ghafoor , Anthony Skjellum , Purushotham V.
Bangalore , Ryan E. Grant 

Show more

https://doi.org/10.1016/j.parco.2021.102827

Highlights

Motivation and applications for MPI
Partitioned communication.

A summary of the MPI partitioned
communication interface with code examples.

Design and implementation of two MPI
partitioned communication libraries.

Evaluation and analysis of both libraries with
custom benchmarks.

Bandwidth and computational overlap
assessment of partitioned communication.

Abstract
Partitioned point-to-point communication primitives
provide a performance-oriented mechanism to support a
hybrid parallel programming model and have been
included in the upcoming MPI-4.0 standard. These
primitives enable an MPI library to transfer parts of the
data buffer while the application provides partial

No articles found.

Citing articles

About ScienceDirect Remote access Shopping cart Advertise Contact and support Terms and conditions Privacy policy

We use cookies to help provide and enhance our service and tailor content and ads. By continuing you agree to the use of
cookies.
Copyright © 2021 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V.
ScienceDirect ® is a registered trademark of Elsevier B.V.

ScienceDirect
 

a b c

d b c

e a, f

Share Cite

Recommended articles

https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0167819121000752&orderBeanReset=true
https://www.sciencedirect.com/science/journal/01678191
https://www.sciencedirect.com/science/journal/01678191
https://www.sciencedirect.com/science/journal/01678191/108/supp/C
https://www.sciencedirect.com/science/journal/01678191/108/supp/C
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.elsevier.com/solutions/sciencedirect
https://www.sciencedirect.com/customer/authenticate/manra
https://sd-cart.elsevier.com/?
http://elsmediakits.com/
https://service.elsevier.com/app/contact/supporthub/sciencedirect/
https://www.elsevier.com/legal/elsevier-website-terms-and-conditions
https://www.elsevier.com/legal/privacy-policy
https://www.sciencedirect.com/legal/use-of-cookies
https://www.sciencedirect.com/legal/use-of-cookies
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!
https://www.sciencedirect.com/science/article/pii/S0167819121000752?via%3Dihub#!


Implementation and evaluation of MPI 4.0 partitioned communication libraries - ScienceDirect

https://linkinghub.elsevier.com/retrieve/pii/S0167819121000752[9/29/21, 9:17:23 AM]

Previous article Next article

contributions using multiple threads or tasks or simply
pipelines the buffers sequentially. The focus of this paper
is the design and implementation of a layered library that
provides the functionality of these newer APIs and
supports application development using these newer
APIs. This library provides an opportunity to explore
potential optimizations and identify further
enhancements to the APIs. Initial experience in designing
this library along with preliminary performance results
are presented. In addition, the library is compared to
initial prototype libraries that have recently become
available that have been updated to the standard-
compliant interface. These prototype libraries were built
on remote-memory-access (RMA) primitives, offering
insight into different implementation strategies. In
general, we observe an interesting trade-off space, with
the RMA-based implementation proving more performant
for send-side partitioning, with increases in perceived
bandwidth 8.9x on average over a single send, compared
to the persistent-based implementation, which shows
improvements 4.0x on average. In comparing the two
implementations, we find that the persistent-based
implementation enables more overlap for receive-side
partitioning up to 5.37X the RMA library’s overlap, while
the RMA-based implementation provides better send-side
performance of up to 70%.

Keywords
MPI; Partitioned communication; Point-to-point
partitioned

View Abstract

© 2021 Published by Elsevier B.V.

https://www.sciencedirect.com/science/article/abs/pii/S0167819121000752

	Implementation and evaluation of MPI 4.0 partitioned communication libraries
	Introduction
	Background
	Introduction to partitioned point-to-point communication

	Partitioned communication
	Partitioned operation library via persistent MPI interfaces
	MPIPCL library implementation details
	New request object
	Internal request negotiation
	Partition remapping
	Limitations

	RMA-based library
	Limitations


	Experimental results
	Experimental platform and benchmarks
	Factors in assessing partitioned communication performance
	Send-side results
	Receive-side results
	Discussion

	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

	elsevier.com
	Implementation and evaluation of MPI 4.0 partitioned communication libraries - ScienceDirect


	EyMTAwMDc1Mj92aWElM0RpaHViAA==: 
	button1: 
	button0: 
	button0_(1): 
	button0_(1)_(2): 
	button0_(1)_(2)_(3): 
	button0_(1)_(2)_(3)_(4): 



