Design of a Portable Implementation
of Partitioned Point-to-Point Communication Primitives

Prema Soundararajan
University of Alabama Birmingham
Birmingham, Alabama, USA
prema@uab.edu

Purushotham V. Bangalore
University of Alabama Birmingham
Birmingham, Alabama, USA
puri@uab.edu

Andrew Worley
Tennessee Tech University
Cookeville, Tennessee, USA

apworley42@tntech.edu

Derek Schafer
Univ. of Tennessee at Chattanooga
Chattanooga, Tennessee, USA
derek-schafer@utc.edu

Anthony Skjellum
Univ. of Tennessee at Chattanooga
Chattanooga, Tennessee, USA
tony-skjellum@utc.edu

Ryan E. Grant
Matthew G.F. Dosanjh*
Sandia National Laboratories
Albuquerque, New Mexico, USA
regrant@sandia.gov
mdosanj@sandia.gov

Sheikh Ghafoor
Tennessee Tech University
Cookeville, Tennessee, USA
sghafoor@tntech.edu

ABSTRACT

The Message Passing Interface (MPI) has been the dominant message
passing solution for scientific computing for decades. MPI point-to-
point communications are highly efficient mechanisms for process-
to-process communication. However, MPI performance is slowed
by concurrency protections in the MPI library when processes uti-
lize multiple threads. MPI’s current thread-level interface imposes
these overheads throughout the library when thread safety is needed.
While much work has been done to reduce multithreading overheads
in MPI, a solution is needed that reduces the number of messages
exchanged in a threaded environment.

Partitioned communication is included in the MPI 4.0 standard
as an alternative that addresses the challenges of multithreaded
communication in MPI today. Partitioned communication reduces
overall message volume by creating a buffer-sharing mechanism
between threads such that they can indicate when portions of a
communication buffer are available to be sent. Separation of the
control and data planes in MPI is enabled by allowing persistent
initialization and single occurrence message buffer matching from
the indication that the data is ready to be sent. This enables the usage

“Sandia National Laboratories is a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia LLC, a wholly owned
subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525. This research was
supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of the U.S.Department of Energy Office of Science and the National Nuclear Security
Administration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

ICPP Workshops "21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8441-4/21/08...$15.00
https://doi.org/10.1145/3458744.3474046

of underlying hardware primitives like triggered operations, where
commands (destination, size, etc.) can be set up prior to data buffer
readiness with readiness triggered by a simple doorbell/counter later.
This approach is useful for future development of MPI operations
in environments where traditional networking commands can have
performance challenges, like accelerators (GPUs, FPGAs).

In this paper, we detail the design and implementation of a layered
library (built on top of MPI-3.1) and an integrated Open MPI solution
that supports the new, MPI-4.0 partitioned communication feature
set. The library will enable applications to use currently released MPI
implementations and older legacy libraries to provide partitioned
communication support while also enabling further exploration of
this new communication model in new applications and use cases.
We will compare the designs of the library and native Open MPI
support, provide performance results and comparisons between the
two approaches, and lessons learned from the implementation of
partitioned communication in both library and native forms.

We find that the native implementation and library have simi-
lar performance with a percentage difference under 0.94% in mi-
crobenchmarks and performance within 5% for a partitioned com-
munication enabled proxy application.

ACM Reference Format:

Andrew Worley, Prema Soundararajan, Derek Schafer, Ryan E. Grant, Matthew
G.F. Dosanjh, Purushotham V. Bangalore, Anthony Skjellum, and Sheikh

Ghafoor. 2021. Design of a Portable Implementation of Partitioned Point-to-
Point Communication Primitives. In 50th International Conference on Parallel

Processing Workshop (ICPP Workshops 21), August 9-12, 2021, Lemont, IL, USA.

ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3458744.3474046

1 INTRODUCTION

The Message Passing Interface (MPI) is the de facto standard for
communicating between a large number of peer processes. The first
MPI standard was released in 1994 [10]. Thread support was subse-
quently added in MPI-2.0 [11]. The inclusion of thread support and an

https://doi.org/10.1145/3458744.3474046
https://doi.org/10.1145/3458744.3474046

ICPP Workshops ’21, August 9-12, 2021, Lemont, IL, USA

increasing availability of multicore processors added both the possi-
bility and necessity of hybrid programming with MPI (often denoted
by MPI+X, where X=Pthreads, OpenMP, GPU acceleration kernels,
etc). Supporting threaded programs well is complex and represents
a major investment of effort for an MPI implementation. In light of
this fact, the standard allows for different levels of thread reentrancy
support, and does not require all implementations to provide all
options. The thread support level indicates how much concurrent in-
teraction is allowed between application threads and the MP1 library.
All thread support levels except the highest, MPI_THREAD_MULTIPLE,
limit the interaction between threads and the MPI API, and thus each
form a unique programming model. There are always locking and
related overheads associated with supporting reentrancy in MPL

There have been attempts over the years to streamline the hy-
brid programming model by integrating features into implementa-
tions. The endpoints concept was one such attempt [1, 17], which
expanded the inter-process message addressing to include ’thread’ as
a unique label, thus allow directed communication between threads
controlled by different processes. Unfortunately, the proposed model
has foundered in the MPI Forum’s standardization process. While
endpoints supported thread ranks (in groups and communicators)
and thus addressability in point-to-point and collective communica-
tion, the proposal was not adopted because improvements could be
adopted in the MPI implementations transparently [19] and because
it was judged that the likely impacts on transport state and receive-
queue lengths would be unacceptable with large-count multicore
nodes in current and forthcoming scalable systems [2, 14].

The finepoints model [5, 7], introduced by Grant et al., is another
such model, now called partitioned point-to-point communication.
This model was designed to address the queuing concerns of end-
points. Further, partitioned communication was designed such that
it was possible to require only a portion of the library to function
with full thread support, easing some of the optimization costs [7].

Our motivation for the present work was to prototype and make
available a robust standalone MPI extension library that enables
this partitioned communication, and that works with any compli-
ant MPI-3.1 implementation (that is, via a layered implementation).
Since partitioned communication is new in MPI 4.0 [3, 12], the pub-
lic implementations currently available are new as well, including
the Open MPI one developed for this paper. We implemented par-
titioned communication in Open MPI, based in part on our layered
library approach, which uses low-level internal calls to enable par-
titioned communication. It is available in the development branch
of Open MPI and will be included in an upcoming official release.
Also, the MPICH implementation of MPI now supports partitioned
communication in a pre-release form [13].

Although we mention drawbacks of a layered library below, there
are also certain advantages to a library implementation that is in-
dependent of the underlying MPI implementation. First, the library
approach means that partitioned communication can be provided
in most or all MPI implementations immediately. In addition, the
library can be used with older MPI versions, allowing for backwards
compatibility for codes adapted to use partitioned communication.
Finally, availability of a full, portable extension library will enable
application adoption while providing a reference implementation for
MPI-library-specific realizations of this functionality that are likely
to be optimized over the next few months as MPI-4.0 becomes fully

Worley, Soundarajaran, et al.

standardized and supported [12]. Lastly, we note that the layered li-

brary provides a vehicle for exploring extensions such as partitioned

collective communication operations, due to be proposed in MPI-5.
This paper makes the following contributions:

e The first open-source portable library for partitioned communi-
cation.

e An MPI implementation agnostic platform for developing future
partitioned communication concepts and interfaces.

o One of the first native MPI library implementations of partitioned
communication.

o The first performance comparison between a partitioned commu-
nication library and a native MPI implementation.

Given these contributions, the audience for this paper are early
adopters of partitioned communication and MPI library writers who
seek to utilize a correct, exemplary baseline code for their efficient
implementations, as well as researchers (such as the authors of this
paper) who seek to extend partitioned communication in the near
future with proof-of-concept prototyping.

The remainder of the paper is organized as follows: Section 2 offers
motivations and briefly describes the new partitioned communica-
tion APIs introduced in MPI 4.0. Section 3 presents a high level view
of how the partition communication functions are implemented
in our library. This section also includes some commentary on the
variations and optimizations for specific scenarios, while Section 3.4
describes the limitations and restrictions of the library. Section 4
shows the results of the initial benchmark testing. Section 5 discusses
future work, including a discussion on GPU support. Lastly, Section 6
recapitulates our findings.

2 PARTITIONED COMMUNICATION

Partitioned communication provides a thread-friendly interface to
MPI without introducing crosscutting changes to groups, process
numbering in groups and communications (loosely, ranks), and
mux/demux of messages. Rather, it enables applications to asso-
ciate multiple threads with buffer partitions on the and/or receiver.
Threads remain anonymous while buffer partitions become named
sub-entities addressable locally on the sender/receiver. The mes-
sage remains the end-to-end abstraction as in normal point-to-point
communication.

In particular, partitioned point-to-point operations provide a
thread-interface for message passing that supports pipelined and par-
allel message buffer filling and emptying, with the potential for over-
lapping buffer completion with transfer. This pipelining can have
significant benefits for hybrid programming, such as MPI+OpenMP
with fork-join assembly of messages in non-overlapping partitions
(send-side overlap of communication and computation) and/or par-
titioned completion of messages for overlapping receipt and work
as data is received (receive-side overlap of communication and com-
putation).

2.1 Partitioned Communication API

The status and progress of persistent communication operations
in the MPI 3.1 standard are controlled through functions called on
semi-permanent (reusable) request objects. Partitioned communica-
tions use a similar control methodology. The functions introduced as
part of partitioned point-to-point communication API with function

Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives

ICPP Workshops *21, August 9-12, 2021, Lemont, IL, USA

Table 1: MPI 4.0 and 4.1 Partitioned Point-to-Point Communication Application Programmer Interface (API) [12]

Approved MPI 4.0 Functions | C Language Binding

MPI_Psend_init

void *buf, int partitions, MPI_Count count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Info info, MPI_Request *request

MPI_Precv_init

void *buf, int partitions, MPI_Count count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Info info, MPI_Request *request

MPI_Pready

int partition, MPI_Request *request

MPI_Pready_range

int partition_low, int partition_high, MPI_Request *request

MPI_Pready_list

int length, int array_of_partitions[], MPI_Request *request

MPI_Parrived

MPI_Request *request, int partition, int xflag

Proposed MPI 4.1 Functions

MPI_Pbuf_prepare MPI_Request request

MPI_Pbuf_prepareall

int count, MPI_Request requests[]

prototypes can be seen in Table 1, and are described briefly below. In
addition to the functions listed in the 4.0 AP, there are two functions
that have not yet been implemented that are proposed for inclusion
in MPI4.1, as well as minor behavioral changes for when MPI_Start
is called on a partitioned request.

MPI_Psend_init tells the library to start preparing a partitioned
send operation. This function sets up the required plan for transfers
and synchronization that will be needed for executing the operation
later and is nonblocking (incomplete).

MPI_Precv_init operates analogously to MPI_Psend_init and
shares the same nonblocking requirement and needs to synchronize,
in general with its correspending MPI_Psend_init. This function
prepares the receive-side to support a partitioned receive.

MPI_Pready is alocal, nonblocking operation that tells the library
that the partition with the supplied ID is ready to be sent. Even
though the request must be started for a transfer to occur, indi-
vidual partitions will not be sent until they are marked as ready
with aMPI_Pready or its variants. MPI_Pready_range enables the
marking of a number of partitions in a request with an id between
partition_lowand partition_high inside a single function call
while MPI_Pready_list marks those partitions with ids that are
enumerated in the supplied array argument.

MPI_Parrived tests for the successful arrival of a particular par-
tition on the receive side and if it is available for use. This function
is nonblocking can return true before the entire partitioned send
request is complete as long as the tested partition is ready at the
receiver.

2.2 Partitioned Communication Operations

The syntax and semantics for partitioned communications is based
on persistent communication functions present in the MPI 3.1 stan-
dard, with extensions. Once the request object is initialized on each
side (in partitioned point-to-point, there is only one matching in-
stance between sender and receiver), the library waits for various
control functions shown in the previous section to be to be called
and reacts accordingly. The functions and progress flow for a simple
application using partitioned communication is shown in Figure 1.

The communication begins with the initialization of the request ob-
jects. This is accomplished by calling the init function on each side
of the request. Similar to other persistent MPI communication func-
tions, the MPI_Psend_init and MPI_Precv_init functions take a
pointer to a buffer, a source or destination, a communicator, a tag,

Sender Receiver

MPI_Psend_lInit : MPI_Precv_Init
a— 1 — (e — Ty
MPI_Start H

|
| |
| Para. € | H | Parallel
| Region | i | Region
| = IS
| =y | : g
H] FrER =
g A K L5l 3] 8
3 [s W : ST °
I H < H l= ! It
3 s &
| = e
-
| » S |
|
|
|
|

MPI_Request_Free MPI_Request_Free

Figure 1: Functional, user-level view of partitioned commu-
nication according to the MPI 4.0 standard

and a MPI_Request handle. The application data buffer is logically
divided into a number of equal-sized partitions given by the user.
While the partitions on each side do not have to be the same, the
total number of items on the receive size (type signature) must be
greater than or equal to the number of items sent. Additionally, the
partitions on each side do not prescribe how many messages are sent
over the network. The supplied number of partitions defines how
many external-facing partitions the buffer is split into on each side
of the communication. The currently approved scenario using a set
number of equal sized partitions causes behavior similar to existing
MPI collective operations in that elements in the buffer outside of the
range of count X partition are not sent. For example, if a buffer is fifty
integers long and the send request is set up to send four partitions
with ten integers, then the last ten integers will not be sent.

After the init functions complete, the resulting object is then
used to monitor and progress the request throughout its lifespan.
Once the request has been created, MPI_Start activates the object;
however, unlike a persistent request, no data is sent immediately.
The MPI_Start function in this case only switches the request state
to active. In order for the request to begin sending data, one or more
partitions must be marked as ready to send. This is accomplished
by calling MPI_Pready or a variant on that partition. Eventually,

ICPP Workshops ’21, August 9-12, 2021, Lemont, IL, USA

Worley, Soundarajaran, et al.

—_—] .

Sender Send Control Recv Control Receiver
Thread Thread
MPI_Psend_lInit MPI_Precv_Init
_ = ©) N5 e
E (1) Internal Partition (2)| (1)
R =1 Negotiation = -
I MPI_Start I ‘ | I
i | (42) (3) (ab) | I
| |
| Parallel | : Parallel |
| Region I I Region |
| | |
o |
I | 3 Partitions | o |
| < | % Created E | | o ! |5
g1 =2 a = R °
151 - o - o | FEi o |=
b} | 2 = | 8. | Partitions (5) | % 5| [| |
| = 2 (6a) & | Created s | i < i | E i
o | Send Partitions g | s el
1 IS 3 a = it b -
= 8 | (5) T I(sb) ‘I s |
E
: =l b I ! . I L= E
1 > |
= I (6a) | 7) ‘ | | (8b) I L2 |
: = | . — | s
| (6a) | (7) |
|
I |
'
'

MPI_Wait

MPI_Request_Free
(10)

MPI_Request_Free
(10)

Figure 2: Architectural overview of our portable library - Green arrows represent control variable signals and blue arrows

represent inter-process communication.

all partitions must be marked as ready for the send operation to
complete. AMPI_Wait is also required to follow the marking of all
partitions as ready, to ensure that the buffer is emptied, and that
another partition send can be initiated.

The receive side has an optional function to inquire about the
status of a particular partition, MPI_Parrived. The function re-
turns whether or not the provided partition has arrived. However, a
MPI_Wait or MPI_Test call must still be used to complete and final-
ize the receive-side request. The optional MPI_Parrived call is not
useful if there is only one receive-side partition, because the user
must still callMPI_Wait or MPI_Test.

An inactive or completed request may be restarted multiple times;
however, the size and buffer are fixed at the creation of the request.
MPI_Request_free must be called to free the resources associated
with the request on each side (and only when they are inactive, a
further difference from MPI persistent send and receive operations).

All the new functions used in the partitioned API are considered
nonblocking; however in order to ensure efficient operation between
both sides of the communication some synchronization method
is beneficial. The MPI_Pbuf_prepare and MPI_Pbuf_prepareall
functions are being developed by some of the authors of this paper
and others to fulfill this role [4]. For more details about the integra-
tion of MPI_Pbuf_prepare, see Section 5.

3 ARCHITECTURAL OVERVIEW

There were two key goals for the design of the library: fully imple-
ment the approved API while achieving maximize portability. These
goals led to the production of a layered form of the library that uses
the standard C language binding of an MPI implementation. This
allows the library to run on top of any MPI-3.1 compliant imple-
mentation. While a layered library supports portability, it limits
the use of opaque objects, in particular: MPI_Request, MPI_Status,

MPI_Datatype, and MPI_Comm. These limitations constrained the
design and resulted in some key observations. We considered the
various options for implementing the external library using the ex-
isting MPI point-to-point and one-sided APIs. Since the init calls
are local, we cannot use blocking or one-sided APIs to implement
them, leaving us with nonblocking and persistent point-to-point
APIs. We decided to use the persistent point-to-point APIs in this
library since they have a reasonable semantic match.

The operation of the library follows the basic protocol shown in
Figure 2. The partition communication operation begins with the
initialization of the MPI_Request object (arrow 1). After the object
is created, the library then needs to agree on the number of internal
partitions. Since the initialization functions are nonblocking, our
library spawns a short-lived control thread on each side (arrow 0) to
exchange information about the number of partitions and datatypes
(arrows 2 and 3). One control thread is spawned for each init func-
tion call and each thread performs a nonblocking send and a receive
operation and waits for the operation to complete. Having a sepa-
rate control thread allows the initialization functions on both the
send-side and receive-side to return immediately without waiting for
this information exchange. Once the control thread completes, the
corresponding send and receive operations, the agreed-on number
of internal requests are created.

User-level requests are inactive until MPI_Start is called on the
given request. On the send side, the request is marked active (ar-
row 4a) and execution continues. On the receive side, if the control
thread has completed, the library activates the partitions of the re-
quest (arrow 4b). Otherwise, it sets a flag to activate the partitions
after the control thread finishes the setup (arrow 5). The next stage

Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives

is sending the partitions as they are marked ready (arrow 6a). If the
send control thread has finished synchronization (arrows 3 and then
5), the underlying MPI implementation starts progressing the asso-
ciated partitions (arrow 7). Otherwise, the MPI_Pready call marks
the partition(s) as ready to be sent. When the send control thread
finishes synchronizing, it will send any marked partitions (arrow
7a). On the receive side, the status of each internal request can be
tested by MPI_Parrived (arrow 8b). The program can wait for the
communication to finish by calling MPI_Wait on both sides. After
all the internal partitions are successfully completed, the request
marks that MPI_Wait can return.

The objects and resources can be released by callingMPI_Request-
_free. This deallocates the partitioned request object and the per-
sistent internal requests, as well as terminating any existing control
threads (arrow 10).

3.1 MPIX_Request Object

In order to fulfill the needs of the API, the library has to track the
transmission status of each partition. The traditional MPI_Request
object lacks the capacity to keep track of multiple partially com-
pleted requests. Since the library is designed to be portable, we had
to create a framework that would allow us to observe and control
the transmission of each partition. For this purpose, we created a
new MPIX_Request object. The basic layout of the object is shown
in Listing 1.

Listing 1: The MPIX_Request object.
typedef struct _mpix_request

{

int state;

int size;

int side;

int sendparts;

int recvparts;

int readycount;

MPI_Request +request;

// Other thread information

} MPIX_Request;

The MPIX_Request object contains two major sections: status
metadata, and an internal array of normal MPI requests. The meta-
data includes the number and size of the partitions in the request
as well as status information on the request progress. Additional
information is used to map between the abstraction layers inside
the request. The internal array of requests enable us to leverage the
optimizations of the host implementation, and send each partition
individually and track each partition’s completion status.

As the MPIX_Request objects are replacing the MPI_Request ob-
jects, the various MPI functions that interact these objects had to be
adapted to accept the MPIX_Request object. These re-implemented
functions are listed in the first column of Table 1. The augmented
functions share the same prototype and behavior, except that all
instances of aMPI_Request instead require aMPIX_Request.MPIX_-
Request objects are functionally the same as MPI_Request objects,

ICPP Workshops *21, August 9-12, 2021, Lemont, IL, USA

but are not interchangeable (a side-effect of a the layered architec-
ture).

Because of the layered structure of the library, we have limited
access to the MPI_STATUS objects that are normally returned with
these functions, and internally all status objects have been replaced
with MPI_STATUS_IGNORE. This is further discussed in Section 3.4.

Table 2: List of Provided Functions

Partition Functions

Augmented functions

MPI_Psend_init MPI_Start
MPI_Precv_init MPI_Startall
MPI_Pready MPI_Wait

MPI_Waitall
MPI_Waitany
MPI_Waitsome
MPI_Test
MPI_Testall
MPI_Testany
MPI_Testsome
MPI_Request_free

MPI_Pready_range
MPI_Pready_list
MPI_Parrived
MPIX_Pbuf_prepare
MPIX_Pbuf_prepareallall

3.2 Internal Partitions

Since the library is designed on top of existing point-to-point com-
munications and uses an internal array of requests, the library must
comply with the semantics involved in those operations. This neces-
sitates that both sides have the same number of internal requests,
otherwise communication becomes unbalanced. A solution to this
is to communicate the number of internal requests between the
processes. While this can be avoided by having a preset number of
partitions assigned by an MPI_Info key, such a choice limits the op-
timizations that can be done internally and places the optimization
on the developer’s shoulders (contrary to the spirit of the design
goals of partitioned communication).

The initial communication is necessary and most implementations
have several internal features that could be used to resolve the issue.
Since the library is external, we do not have access to those features
and are forced to use the user-level point-to-point communication
functions. This forces the library to wait for the number of requests to
be decided before allocating the array of internal requests. Without
creating the internal requests, we cannot initiate any transfer. Hence,
this causes a dependency on the completion of the internal partition
negotiation. This conflicts with the approved API in the standard
as both init functions are defined as nonblocking calls. Thus we
needed a way to wait for the communication to complete without
blocking the return of the initialization (and/or starting) call(s).

To resolve this issue, we spawn a separate control thread to per-
form the necessary communication and synchronization and to
ensure nonblocking behavior for the initialization calls. The con-
trol thread waits on the completion of the send/receive operations
(shown by arrows 2 and 3 in Figure 2), while the initialization func-
tions can return immediately. The partition generation (arrow 5)
must be completed before data transfer can occur. It is possible that
the main thread will continue to the next MPI call and attempt to
progress the operation before the control thread completes. The
continued existence of the control thread signifies that the required
setup operations are not complete. As such, it is unsafe for the other

ICPP Workshops ’21, August 9-12, 2021, Lemont, IL, USA

threads to progress the library execution. Instead, the main thread
adds the task to the control threads task queue. Once the control
thread has completed the initialization tasks, it continues to process
tasks queued by other threads. If the control thread has completed
the initialization tasks before a call to MPI_Pready, then the library
calls the start function on the corresponding partition.

3.3 Optimization of Specific Cases

A key feature of the partitioned communication model is that it
supports a different number of partitions on each side of the transfer.
At each end of a send-receive pair, partitioning does not control the
remote semantics, only the local transfer semantics. Some of these
use cases are listed in Table 3. Here, the number of send-side and
receive-side partitions are represented by M and N respectively. The
fourth column shows the internal number of messages generated for
the given case. Cases 1 and 2 avoid additional communication during
initialization. Case 1 uses a fixed number of internal transfers while
Case 2 assumes an equal number of partitions on both sides. Cases
3 and 4 require additional communication during initialization to
negotiate the number of partitions. Cases 5 and 6 extend Cases 3 and
4 to include additional optimization by (dis)aggregating messages
based on the number of partitions. Lastly, Case 7 exploits the under-
lying architecture to choose appropriate partition sizes and provide
highly optimized communication.

Table 3: Design Cases for Partitioning: Here M (resp, N)
represents the number of partitions of the sender (resp,
receiver). The parameter k is a positive integer multiple and
X is an implementation-specific partition size.

Case Partitions No. of Transfers
Send | Recv
1 M N 1 (no init comm.)
2 M M M (no init comm.)
3 M N+M M (init comm.)
4 M N+M N (init comm.)
5 | M=kN N kN (init comm., aggregation)
6 M N=kM | kM (init comm., dis-aggregation)
7 M N#M | X (aggregation & optimization)

These multiple cases result in partitioned communication hav-
ing a large state space that makes general optimization difficult;
however, optimization for specific cases is fairly straightforward.
The MPI_Info object supplied to the init functions is designed to
inform the underlying implementation which case is applicable to
the request. This in turn enables the use of code optimized for that
case. Our library currently supports cases 1 through 3, while support
for the remaining cases remains under development.

Case 1:In this case, both sides have the different number of parti-
tions, and the internal number of partitions is set to a predetermined
number. Since both sides of the request are assumed to receive the
same MPI_Info object in the initialization function, this allows the
initial communication to be safely ignored. However, in the future,
there may be a small communication to confirm that both sides re-
ceived the same MPI_Info key. This case allows the library to skip
the thread spawning and negotiation process and immediately start
making the internal requests and progressing through the model.

Worley, Soundarajaran, et al.

This makes the communication represented by arrows 0, 2, 3, 5, and
7a (as well as the control thread) shown in Figure 2 unnecessary.

Case 2: This case has the same number of partitions on each side
as the number of internal partitions. This is similar to the previous
case in that the initial communication can be safely ignored, but also
allows a one-to-one mapping of partitions for each layer of abstrac-
tion. This greatly simplifies the abstraction process and removes the
need for any internal remapping.

Case 3: This case allows different partitions on each side; however,
the internal number of partitions is determined by the number of
external partitions on the send side. For example, a transfer might
have six send partitions and three receive partitions. Six internal
partitions will be created on each side. Further, this case allows arrow
3 from Figure 2 to be ignored since the sender already has all the
information needed for initialization.

3.4 Limitations of the Layered Model

As this library current exists on top of existing MPI implementations,
there are some limitations that are inherent to any layered libraries.
Currently, because we cannot access the library’s internals, we can-
not properly return a fully formed MPI_Status object. Instead, our
current implementation ignores any status objects passed to the
function, and similarly uses MPI_STATUS_IGNORE as arguments to
any function that requires a status object. In the future, we plan to
provide our own status object to fulfill these needs.

The current implementation only supports built-in and contigu-
ous datatypes. We intend to consider support for other user-defined
datatypes as part of future effort. Also, our current implementation
assumes that the datatypes on both the send-side and receive-side are
identical (rather than type signatures). Support for distinct datatypes
on sender and receiver is planned for future releases of the library. It
is anticipated that applications that use partitioned communication
will use multiple threads to achieve the best performance; that is,
fill or empty buffer partitions concurrently. In addition, our current
library has an extra thread to achieve some of the progress needed
to keep the partitioned communications moving. Our library de-
pends on the support of MPI_THREAD_SERIALIZED (or greater) by
the underlying MPI implementation and any application using our li-
brary must callMPI_Init_thread (with the aforementioned thread
support level or greater) instead of MPI_Init.

Also, since this library is not fully integrated with an underlying
MPI code base, we are limited in how we can optimize. However, we
are still aiming to achieve minimal extra overhead (if any) so as to
show users of potential performance benefits they might get from
using partitioned communications. Because the library uses persis-
tent point-to-point APIs, applications should at least experience the
performance benefits of persistent point-to-point APIs, if they are
optimized, and of pipelining of partitions, provided the underlying
MPT has strong progress and the partitions are sufficiently long.

The use of persistent point-to-point APIs to implement partitioned
communication APIs also limits the current implementation from
performing additional performance optimizations such as message
aggregation as the number of send and receive calls are decided
during the initialization calls.

In closing, it is worth noting that ROMIO [18] and LibNBC [9] both
started as layered libraries, and have been integrated into multiple

Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives

MPI implementations with acceptable performance and long-term
support. As such, the layered library approach can have extended
impact, even though initial versions emphasize functionality over
performance.

3.5 Integrated Model

To address some of the above-mentioned limitations, we also de-
signed and implemented partitioned communication over persistent
communication integrated into Open MPI. There are a few modifica-
tions that were made to make the library work with Open MPI. Many
of these were primarily software engineering issues, such as creat-
ing C and FORTRAN bindings for the new functions, implementing
a new partitioned module in Open MPI’s Module Component Ar-
chitecture (MCA), and adding partitioned communication support
to the request structures. However, there are a few concerns that
required a different behavior from our implementation.

First, many of augmented functions required different designs to
support the calls. MPI_Start, MPI_Start_all, and MPI_Request_Free
are directly invoked via function pointer in the request call. More
significantly, MPI_Wait* and MPI_Test" rely on Open MPI’s progress
engine signaling requests as complete. This required us to imple-
ment and register a progress function that iterates over all active
partitioned requests and checks for completeness.

Second, since Open MPI is used in a larger production environ-
ment, minimizing erroneous message matching collisions is an im-
portant consideration. To this end, we use two extra communicators
that are duplicates of MPI_COMM_WORLD to isolate the commu-
nication. On the communicator specified in the MPI_Psend_init and
MPI_Precv_init the origin sends a message internal partitions, ranks
with respect to the dedicated partitioned communicators, and which
tags to use on the dedicated communicators to avoid conflicts. Once
the target has received this message, it sends a message back con-
taining its rank on the dedicated communicators. This message is
on a dedicated set-up communicator, using the unique tag specified
in the previous message. Lastly, all the persistent communication
requests are set up on the second dedicated communicator to ensure
no conflicts arise with other MPI operations.

Finally, because we have a dedicated progress function, no ad-
ditional threads are created during setup. Instead, as the progress
function iterates through requests, it attempts to progress the set-up
process if a request is not currently set up.

4 EVALUATION OF THE PORTABLE LIBRARY

The primary goal of our evaluation effort was to check the func-
tionality, correctness, and portability of our library. We used two
MPI library implementations: Open MPI 4.0.1 built with GCC-8.3.0-
2.32 and Intel(R) MPI Library for Linux OS, Version 2017 Update 1
Build 20161016 to test our partitioned library implementation. For
evaluating the performance of the library, we first focused on com-
paring the execution time of the partitioned APIs against existing
blocking, nonblocking, and persistent point-to-point APIs. These
tests were performed on a cluster in which each node of the cluster
consists of two 2.4GHz Intel Xeon E5-2680 v4 (total of 28 cores per
node) with 256GB RAM and EDR InfiniBand Mellanox ConnectX-5
interconnect. Since the library implements a form of point-to-point
communications, only two nodes were needed for testing.

ICPP Workshops *21, August 9-12, 2021, Lemont, IL, USA

4.1 Comparison
to Existing Communication Procedures

The first test is a comparison between the library and the existing
blocking, nonblocking, and persistent point-to-point operations
common to any MPI-3.1 implementation. The goal of this test is to es-
tablish a baseline for comparing the performance of the library with
other point-to-point APIs. This test consisted of measuring the local
shared memory (intranode) execution timing for different point-to-
point APIs while increasing the message size. For this test, the library
was run with a single partition, and each operation performed one
hundred times. We performed this test with both the Open MPI and
Intel MPI implementations and we notice similar patterns as shown
in Figures 3 and 4. Because of the difference in the eager limits used
by the two implementations, we observed that the four different
APIs performance converge at different message sizes. In both cases,
as expected, the execution times of the partitioned API are similar to
the performance of the persistent API as the message size increases.

We tested the three cases (see Section 3.3) with the partitioned
point-to-point APIs to compare the performance of the three cases
and the results show that each case did not add any significant over-
head compared to the persistent point-to-point operations using
internode communication. We compared the performance of the
partitioned point-to-point API when the number of send and receive
partitions and datatypes are the same by increasing the number of
partitions for different buffer sizes. We performed the initialization
once and tested the starting and completion of the corresponding
send and receives for 100 iterations. In the rest of this section, we
present only the performance results with the Intel MPI library since
the results with the Open MPI library were similar.

1.00E-02
@ Blocking + Nonblocking A Persistent X Partitioned

1.00E-03

=
B
H =
8
2 1.00E-04 x
£ -
P
£ x "
IS
°
H x
,g 1.00E-05
3 x X e
£ %
& X
X °
1.00E-06 o
°
x X
x x x x X x X °
PO

a &)
100e07 * % 4 # L

1 8 64 512 4096 32768 262144 2097152
Message Size (in integers)

Figure 3: Comparison of different point-to-point APIs with
OpenMPI

The execution time for four different buffer sizes (when the num-
ber of partitions are increased for Case 1) is presented in Figure 5a.
As expected, the number of partitions does not have any impact on
the execution time for a given buffer size since a fixed number of mes-
sages are sent and received irrespective of the number of partitions.
We also observe that the execution time increases correspondingly
when the buffer size is increased.

We repeated the above experiment by using Case 2 of the library
implementation. The execution time for four different buffer sizes

ICPP Workshops ’21, August 9-12, 2021, Lemont, IL, USA

1.00E-02
® Blocking + Nonblocking A Persistent X Partitioned

1.00E-03

)
B
g
o
8
9 1.00E-04 x
£ x
o x
E
B L
<
S 1.00E-05 m
5
g &
& ¥

1.00E-06 x?

.00E- x §

Plxagkiuie
& o 0 0 0
1.00E-07
1 8 64 512 4096 32768 262144 2097152

Message Size (in integers)
Figure 4: Comparison of different point-to-point APIs with
Intel MPI

(when the number of partitions are increased for Case 2: the number
of send and receive partitions are equal and the number of internal
sends and receives are equal to the number of partitions) is shown in
Figure 5a. As the number of partitions are increased, since the buffer
size is fixed, the number of elements in each partition decreases. As a
result, the library performs fewer send/receive calls on larger buffer
sizes when the number of partitions are small.

Figure 5¢ shows the performance when the number of send-side
partitions are mapped to be equal to the number of receive-side
partitions. Since equal number of partitions were used for both send
and receive partitions the performance is similar to that of Case 2.

Next, we tested the library by varying the message size of each
partition as the number of partitions is increased. We tested for in-
dividual buffer sizes from 1KB to 4MB and varied the number of
partitions from one to 28. In similarity to the earlier tests, we per-
formed the initialization once and tested the starting and completion
of the corresponding send and receives for 100 iterations. The exe-
cution time for different partition buffer sizes when the number of
partitions are increased is shown in Figure 6.

4.2 Comparing
Against The Open MPI Integrated Version

The Open MPI integrated version was built using its development
repository. To compare our external library and internal implementa-
tion fairly, we used the fork of the Open MPI development repository
with our internal implementation for all of the comparison tests. The
integrated partitioned communication implementation for these
experiments is publicly available in the development repository of
Open MPL

The system used for these test has 2 24-core Intel Skylake pro-
cessors per node, connected via an first generation Intel Omnipath
network. Open MPI was compiled with GCC 9.2.0. Each test was run
for a total of 100 iterations and was averaged across three runs on
different allocations.

Figures 7 and 8 show the micro-benchmark results. Unsurpris-
ingly, there is not much difference performance-wise between the
two implementations, with all of the tests showing less than 1%
difference in performance between implementations. The average
difference is 0.32% with the external implementation showing better
performance. While it difficult to make any specific conclusions

Worley, Soundarajaran, et al.

with this data, the behavior may indicate that the indirect nature of
completion in the integrated Open MPI implementation is causing
a bit of extra overhead. In particular, as completion is done in the
progress engine, there may be a delay between the completion of the
underlying persistent requests and the completion of the partitioned
request, while the MPIX_Wait of our external library can directly
wait/test the underlying persistent requests. Additionally, since our
external library has information on which call is being issued, it can
take advantage of multi-completion calls, such asMPI_Waitall.

4.3 Proxy Application Evaluation

We modified MiniFE [8], a finite elements proxy application, to test
the different implementations. In particular, we replaced the halo
exchange communication with calls into our external library, the
integrated Open MPI, and a multi-send version that uses the MPT’s
existing point-to-point interfaces. For these tests, we ran on the
system described in Section 4.2. These runs were performed three
times, using eight nodes, a single process per node, a 1283 problem
size per processes, and a variable number of threads which defined
the number of partitions. It is important to note that this version of
MiniFE still follows a bulk synchronous application pattern, where
the communication happens in a different application phase from
computation. Thus, while we test the performance of the commu-
nication subsystem, these tests don’t allow for any early-bird com-
munication (communication of partition(s) that commences before
the final partition is completed on the send side).

Figure 9 shows the results for the conjugate gradient solver in
MiniFE, and Figure 10 further breaks this out to just the maximum
communication time (the maximum time a process spent doing point
to point communication). These results show that both the external
library and the integrated version perform similarly to Open MPT’s
highly optimized multi-threaded point-to-point implementation.
With the exception of the two-threads case, both measurements show
results that could be within expected noise, neither getting above
1.46% of solve time, with no distinguishing pattern to which method
ismore performant for communication. The notable exception here is
two threads, where we measure significant communication overhead
of 24% for using either partitioned implementation over multi-send.
We observe extra overhead once an application start using threads,
that gets quickly amortized out as the number of threads increase and
this overhead seems to be greater for partitioned communication.

These results match expectations since both the integrated im-
plementation and the external library are still using a form of MPI
point-to-point to implement partitioned communication. These re-
sults highlight the fact that these initial implementations are viable
development platforms until highly optimized implementations are
released. It should also be noted that the miniFE benchmark does not
allow for early-bird communication because of the minimal modifica-
tions to the bulk synchronous data exchange for these experiments,
thereby mitigating the performance benefit that partitioned com-
munication would otherwise have over a traditional point-to-point
solution.

Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives

ICPP Workshops *21, August 9-12, 2021, Lemont, IL, USA

1441440 W2882880 W S5765760 11531520 §1441440 w2882880 W 5765760 11531520 1441440 W2882880 W5765760 m 11531520
0.0085 0.004 0.0045
g o004 ‘gwogs g o004
§o:2;: g 0003 gu.oaas
<o (;ozs £ 00055 < oou;z::
2 0 1 o O
0.002
E o0.002 £ E 0002
5 0.0015 g 0:0015 5 0.0015
3 o0.001 £ oo 3 0.001
£ 0.0005 £ 0.0005 £ 0.0005
0 0 0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28 2 4 6 8 10 12 14 16 18 20 22 24 26 28
No. of Partitions No. of Partitions No. of Partitions
(a) Case 1 (b) Case 2 (c) Case 3

Figure 5: Performance of partitioned point-to-point operations for different number of partitions and buffer sizes

0.012
* 256 512 1024 2048 * 4096
* 8192 - 16384 32768 * 65536 » 131072
001 ° 262144 * 524288 1048576
=
2 0.008
g
3
£
£ 0.006
5 .ot
g 0.004 —
. * ° .
0.002 —t see et
. ° . * ° o o *
« * R o o o °
. M . N o« o ° LI o o o o o o ¢
] : [EEEEEE
oli!!!!- AT T T T T T I A]
0 4 8 12 16 20 24 28

No. of Partitions
Figure 6: Performance of partitioned point-to-point opera-

tions when the size of the partition buffer is constant as the
number of partitions are increased

P

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
No. of Partitions

Execution Time (in seconds)

Buffer Size in Integers

W 1441440 - MPIPCL m 1441440 - OMPI 2882880 - MPIPCL m 2882880 - OMPI
Figure 7: Comparison Between Our External Library and

OMPI Integrated - Small Sizes
5 ENABLING
NEXT GENERATION DEVELOPMENT

The library described here enables a convenient environment for
the development and assessment of future extensions to MPI. We
have identified three main categories of enhancements to future MPI
standards that are promising avenues for future improvements and
research: improving the layered library for greater performance at
current functionality, expanding functionality to support more com-
plex architectures, and speculative functionality not yet proposed or
adopted in MPI-Next (versions beyond MPI-4.0). Note: both MPI-4.1
APIs shown in Table 1 and all cases enumerated in Table 3 are in
scope for such enhancements.

Beyond these enhancements, generalizations of the partitioned
point-to-point operations (e.g., late-binding, variable length parti-
tions), combining partitioning with persistent collective operations,

[=]

e
o

o
N

I

0
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
No. of Partitions

Execution Time (in seconds)
o
=y

Buffer Size in Integers

m 5765760 - MPIPCL m 5765760 - OMPI 11531520 - MPIPCL m 11531520 - OMPI
Figure 8: Comparison Between Our External Library and
OMPI Integrated - Large Sizes

25

20
0
1 2 4 8 16 32 48

THREADS

SECONDS
= =
15 @

mIntegrated ®mMPIPCL m Multi-send

Figure 9: Comparison of MiniFE CG Solve Time
25

2
15
1
) l I I I
0
1 2 4 8 16 32 48

THREADS

SECONDS

mintegrated mMPIPCL m Multi-send
Figure 10: Comparison of MiniFE Max Comm Time

and demonstration of effective offload to GPUs and FPGAs are among
the most promising future work we expect to undertake, together
with other collaborators. Additionally, we expect to use the library to
create a fully optimized, implementation-integrated version of parti-
tioned communication in the near future (such as a more advanced
version of the Open MPI work described in this paper).

5.1 Enhanced Structure and Assertion Handling

The optimizations for user assertions discussed at the end of Sec-
tion 3 are currently implemented in separate versions of the library.

ICPP Workshops ’21, August 9-12, 2021, Lemont, IL, USA

Moving forward, these various cases are going to be integrated and
communicable at runtime to the library by the MPI_Info object
provided to the init functions. From this, the library will call the
relevant internal functions to execute the operation using code op-
timized for the particular assertion(s). Current planned assertions
include side-driven (send or receive),and hard coded. The side-driven
optimization allow for either side to drive the number of internal
partitions based on the decision of the user. This simplifies the code
so that the control thread is only needed on the non-driver side of
the operation. Hard-coded mode allows both sides to complete the
initialization process using a number of internal partitions chosen
by the user. This allows the synchronization step to be omitted and
removes the need to spawn a control thread.

5.2 Other Planned CPU Extensions

In future work, we will address limitations discussed above in Sec-
tion 3.4. Many of these limitations could be addressed with a deeper
integration with one or more MPI implementations (for instance,
ExaMPI [16]). Such integration(s) are likely to reveal insights about
partitioned communication because specific high-performance net-
works have different low-level capabilities and features. One such
contribution found by the authors is the usefulness of adding an
MPI_Info argument to the partitioned communication init func-
tions [15].

5.3 GPU Support

One of the primary architectures in exascale systems is multicore
servers combined with accelerators, which are either GPUs or FP-
GAs currently. Today, GPUs dominate this landscape. Supporting
effective integration of partitioned communication with GPU offload
is an important optimization for our library, even though layered on
top of MPI implementations at present. And, partitioned point-to-
point communication can be applied in general to high concurrency
code execution environments, both highly threaded CPU code as
well as massively threaded data parallel architectures like GPUs and
programmable solutions like FPGAs. However, architectures such
as GPUs are not well suited for traditional, high-performance MPI
communication semantics, and even partitioned communication is
not a perfect match for GPUs in its current form (MPI-4.0). Efforts are
currently underway to introduce new partitioned communication
functions in MPI-4.1 that help to optimize the performance of MPI
when used in conjunction with GPUs [4]. Therefore, it is useful to
have highly modifiable partitioned communication libraries, such as
the one described in this paper, that can be used to prototype future
functions and evaluate performance.

MPI_Pbuf_prepare is a prototype function in the library that is
being used to explore the benefits of knowing the state of readiness
of the receive-side buffer prior to calling MPI_Pready for the first
time in a given point-to-point start/ready/wait iteration [4, 6]. Using
the library, we are able to explore the benefits of such solutions
by building a robust request-response exchange. In the future, this
functionality will be integrated into MPI_Pbuf_prepare (currently
a NOP). Knowing that the remote buffer is ready to receive data
can allow us to reduce the code path complexity significantly. For
example, if the remote buffer is always ready, there is no need to keep

Worley, Soundarajaran, et al.

state on the buffer readiness, nor is there any reason to have to hold
the partition locally (at sender or receiver) to ensure buffer readiness.

There are legitimate reasons as to why an implementation may
want to aggregate multiple partitions to send them efficiently on a
network, but for GPUs this may not be advantageous. In the case of a
GPU, we want a simple code path for best performance, with as few
branches and pointer-chasing lookups as possible. This is because of
the data-centric designs of GPUs, where the processing pipeline has
data delivered for threads as they need it. If the data is speculative
(branch) or the data is a pointer to another memory location, then
this slows the entire thread group in the GPU pipeline.

GPUs are not well-suited for creating commands and sending
them to the network interface card (NIC) either. Assembling data
in an I/O Vector (iovec) fashion and performing multiple pointer
chasing lookups is not ideal in performance terms for a GPU. In
addition, all of the information needed to insert a new entry into the
command queue of the NIC is needed at the GPU, while much of this
information resides in data structures on the CPU, or in the operating
system memory space, which is expensive and difficult to access from
the GPU. GPUs are, however, well suited for lightweight doorbell
notifications since there is limited data needed to ring a doorbell
on another PCle attached device. Therefore, a solution that allows
remote buffer readiness to always be guaranteed and allows a CPU to
fill a NIC’s command queue with doorbell-triggered send/write oper-
ations before launching a GPU kernel provides the best performance
throughout to the system. The CPU no longer has to wait for the GPU
to complete its kernel to send data, and the GPU can trigger transfer
operations without requiring branch operations or creating NIC
commands. Each component does the jobs for which it is best suited
while still allowing data transfers to occur as soon as they are ready.

5.4 Partitioned Collective Communication

The merger of persistent collective operations [12] and partitioned
concepts from partitioned point-to-point operations yields the ex-
tended operational set of persistent, partitioned collective operations.
Partitioning extends logically to many of the collective operations de-
fined by MPI, both in intra- and inter-communicator modes, such as
Bcast,Allreduce, and Neighbor_alltoall[v|w]. We plan to pro-
totype the syntax and semantics, explore fully non-blocking (local)
init functions, and study the utility of both send- and receive-side
partitioning for all the operations (or lack thereof).

6 CONCLUSIONS

The focus of this paper was the design and prototyping of a layered li-
brary to add the MPI-4 partitioned communication API to an MPI-3.1
library, as well as a native MPI-4 partitioned communication imple-
mentation. Initial experience in designing these implementations
along with preliminary performance results were presented. The
partitioned functionality is complete and baseline performance is
acceptable, although actual performance gains were not the key goal
at this time. MPI applications can now be modified to use partitioned
point-to-point communication while production MPI implemen-
tations optimize the performance of these new features with and
without accelerator offload.

Our partitioned communication library provides an effective
framework for future explorations of the partitioned communication

Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives

interface, which was designed to be able to support high concur-
rency for both traditional CPUs as well as accelerator devices (GPUs,
FPGAs). As such, the interface will have further enhancements pro-
posed for future MPI standard versions to optimize communication
performance for accelerator architectures. This partitioned com-
munication library offers a solid foundation to build such proto-
types, then evaluate their performance and programmability im-
provements.

ACKNOWLEDGMENTS

This work was performed with partial support from the National
Science Foundation under Grants Nos. CCF-1562306, CCF-1822191,
CCF-1821431, OAC-1923980, OAC-1549812, and OAC-1925603, the
U.S. Department of Energy’s National Nuclear Security Adminis-
tration (NNSA) under the Predictive Science Academic Alliance
Program (PSAAP-III), Award DE-NA0003966, the University of Al-
abama at Birmingham, and the Alabama Innovation Fund.

Sandia National Laboratories is a multi-mission laboratory man-
aged and operated by National Technology and Engineering So-
lutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy’s National Nu-
clear Security Administration under contract DE-NA0003525. This
research was supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S.Department of Energy Office
of Science and the National Nuclear Security Administration.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation, the U.S.
Department of Energy’s National Nuclear Security Administration,
or the Sandia National Laboratories.

REFERENCES

[1] James Dinan, Ryan E Grant, Pavan Balaji, David Goodell, Douglas Miller, Marc
Snir, and Rajeev Thakur. 2014. Enabling communication concurrency through
flexible MPI endpoints. The International Journal of High Performance Computing
Applications 28, 4 (2014), 390-405.

[2] Matthew G. F. Dosanjh, Ryan E. Grant, Whit Schonbein, and Patrick G. Bridges.
2020. Tail queues: A multi-threaded matching architecture. Concurr. Comput.
Pract. Exp. 32,3 (2020). https://doi.org/10.1002/cpe.5158

[3] Ryan Grant. 2019. Partitioned Point-to-Point Communication.
//github.com/mpi-forum/mpi-issues/issues/136. Accessed: 08.13.2020.

[4] Ryan Grant. 2020. Synchronization on Partitioned Communication for Accelerator
Optimization. https://github.com/mpi-forum/mpi-issues/issues/302. Accessed:
08.13.2020.

[5] Ryan Grant, Anthony Skjellum, and Purushotham V Bangalore. 2015. Lightweight

threading with MPI using Persistent Communications Semantics. Technical Report.

Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Ryan E Grant. 2020. MPI Partitioned Communication. Sandia National Laboratories.

Technical Report SAND2020-10163C, includes MPI_Psync.

Ryan E. Grant, Matthew G. F. Dosanjh, Michael J. Levenhagen, Ron Brightwell,

and Anthony Skjellum. 2019. Finepoints: Partitioned Multithreaded MPI

Communication. In High Performance Computing - 34th International Conference,

ISC High Performance 2019, Frankfurt/Main, Germany, June 16-20, 2019, Proceedings

(Lecture Notes in Computer Science, Vol. 11501), Michéle Weiland, Guido Juckeland,

Carsten Trinitis, and Ponnuswamy Sadayappan (Eds.). Springer, 330-350.

https://doi.org/10.1007/978-3-030-20656-7_17

Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Willenbring,

H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R. Keiter, Heidi K. Thorn-

quist, and Robert W. Numrich. 2009. Improving Performance via Mini-applications.

Sandia National Laboratories. Technical Report SAND2009-5574.

Torsten Hoefler and Andrew Lumsdaine. 2006. Design, Implementation, and

Usage of LIbNBC. Open Systems Lab, Indiana University, Tech. Rep 8 (2006).

MPI Forum. 1994. MPI: A Message-Passing Interface Standard. Version 1.0. Technical

Report. Univ. of Tennessee, Knoxville, TN, USA.

https:

= =

=

=

[10]

[11

[12

[13

[14

[15

[16

(17

(18

[19

]
]

]

ICPP Workshops *21, August 9-12, 2021, Lemont, IL, USA

MPIForum. 1997. MPI: A Message-Passing Interface Standard. Version 2.0. Technical
Report. Univ. of Tennessee, Knoxville, TN, USA.

MPI Forum. 2020. MPI: A Message-Passing Interface Standard. 2020 Draft
Specification. Technical Report. Univ. of Tennessee, Knoxville, TN, USA. Note:
This is a MPI-4 Draft Specification.

MPICH 2021. MPICH version 4.0a1 release. https://github.com/pmodels/mpich/
releases/tag/v4.0al. Accessed: 4.22.2021.

Whit Schonbein, Matthew G. F. Dosanjh, Ryan E. Grant, and Patrick G. Bridges.
2018. Measuring Multithreaded Message Matching Misery. In Euro-Par 2018:
Parallel Processing - 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11014), Marco Aldinucci, Luca Padovani, and Massimo Torquati (Eds.).
Springer, 480-491. https://doi.org/10.1007/978-3-319-96983-1_34

Anthony Skjellum and Ryan E Grant. 2020. Add MPI_INFO argument to
PSEND_INIT/PRECV_INIT calls for Partitioned Communication Chapter.
https://github.com/mpi-forum/mpi-issues/issues/308. Accessed: 12.8.2020.
Anthony Skjellum, Martin Rifenacht, Nawrin Sultana, Derek Schafer, Ignacio La-
guna, and Kathryn Mohror. 2019. ExaMPI: A Modern Design and Implementation
to Accelerate Message Passing Interface Innovation. In High Performance Comput-
ing - 6th Latin American Conference, CARLA 2019, Turrialba, Costa Rica, September
25-27, 2019, Revised Selected Papers (Communications in Computer and Information
Science, Vol. 1087), Juan Luis Crespo-Marifio and Esteban Meneses-Rojas (Eds.).
Springer, 153-169. https://doi.org/10.1007/978-3-030-41005-6_11

S. Sridharan, J. Dinan, and D. D. Kalamkar. 2014. Enabling Efficient Multithreaded
MPI Communication through a Library-Based Implementation of MPI Endpoints.
In SC ’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 487-498.

RThakur, ELusk, and W Gropp. 1997. Users guide for ROMIO: A high-performance,
portable MPI-IO implementation. (10 1997). https://doi.org/10.2172/564273
Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji. 2020. How I
Learned to Stop Worrying About User-Visible Endpoints and Love MPL. arXiv
preprint arXiv:2005.00263 (2020).

https://doi.org/10.1002/cpe.5158
https://github.com/mpi-forum/mpi-issues/issues/136
https://github.com/mpi-forum/mpi-issues/issues/136
https://github.com/mpi-forum/mpi-issues/issues/302
https://doi.org/10.1007/978-3-030-20656-7_17
https://github.com/pmodels/mpich/releases/tag/v4.0a1
https://github.com/pmodels/mpich/releases/tag/v4.0a1
https://doi.org/10.1007/978-3-319-96983-1_34
https://github.com/mpi-forum/mpi-issues/issues/308
https://doi.org/10.1007/978-3-030-41005-6_11
https://doi.org/10.2172/564273

	Abstract
	1 Introduction
	2 Partitioned Communication
	2.1 Partitioned Communication API
	2.2 Partitioned Communication Operations

	3 Architectural Overview
	3.1 MPIX_Request Object
	3.2 Internal Partitions
	3.3 Optimization of Specific Cases
	3.4 Limitations of the Layered Model
	3.5 Integrated Model

	4 Evaluation of the Portable Library
	4.1 Comparison to Existing Communication Procedures
	4.2 Comparing Against The Open MPI Integrated Version
	4.3 Proxy Application Evaluation

	5 Enabling Next Generation Development
	5.1 Enhanced Structure and Assertion Handling
	5.2 Other Planned CPU Extensions
	5.3 GPU Support
	5.4 Partitioned Collective Communication

	6 Conclusions
	Acknowledgments
	References

