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Abstract

Short-lived radioactive nuclei (SLR) with mean lives below ∼100Myr provide us with unique insights into current
galactic nucleosynthetic events, as well as events that contributed to the material of our solar system more that
4.6 Gyr ago. Here we present a statistical analysis of the ratios of these radioactive nuclei at the time of the early
solar system (ESS) using both analytical derivations and Monte Carlo methods. We aim to understand the interplay
between the production frequency and the mean lives of these isotopes, and its impact on their theoretically
predicted ratios in the interstellar medium. We find that when the ratio of two SRLs, instead of the ratios of each
single SLR relative to its stable or long-lived isotope, is considered, not only are the uncertainties related to the
galactic chemical evolution of the stable isotope completely eliminated, but the statistical uncertainties are also
much lower. We identify four ratios, 247Cm/129I, 107Pd/182Hf, 97Tc/98Tc, and 53Mn/97Tc, that have the potential
to provide us with new insights into the r-, s-, and p-process nucleosynthesis at the time of the formation of the
Sun, and need to be studied using variable stellar yields. Additionally, the latter two ratios need to be better
determined in the ESS to allow us to fully exploit them to investigate the galactic sites of the p process.

Unified Astronomy Thesaurus concepts: Abundance ratios (11); Interstellar abundances (832); Meteorites (1038);
Solar system formation (1530)

1. Introduction

Short-lived radioactive nuclei (SLR) are unstable nuclei with
mean lives ≈0.1 to 100Myr. Their abundances can be measured
in a variety of locations, both live via γ-ray spectroscopy (Diehl
et al. 2010) and analysis of deep-sea sediments (Wallner et al.
2015), and extinct, as in the case of their early solar system (ESS)
abundances inferred through the excess of their daughter nuclei in
meteoritic samples (Dauphas & Chaussidon 2011). Because of
their short mean lives relative to the age of the Galaxy, these
nuclei represent the fingerprint of current nucleosynthesis, some of
them do not even live long enough to travel far away from their
site of origin, which results in the decoupling of their abundances
from galaxy-wide mixing processes (see, e.g., Diehl et al. 2010;
Fujimoto et al. 2018). When their evolution in the Galaxy is
considered, SLRs therefore probe the current galactic star
formation rate instead of the star formation history (Clayton 1984;
Meyer & Clayton 2000; Huss et al. 2009), and as such, they are
relatively unaffected by the processes that operate over the full
timescale of the Galaxy, such as galactic inflows and outflows
(e.g., Somerville & Davé 2015; Naab & Ostriker 2017; Tumlinson
et al. 2017), the buildup of the total stellar mass (e.g., Bland-
Hawthorn & Gerhard 2016), and the mixing and recycling
processes (e.g., Anglés-Alcázar et al. 2017). These sources of
uncertainty instead significantly affect the stable or long-lived
reference isotope used to measure the abundance of SLR nuclei in
the ESS. In Côté et al. (2019a), we considered the impact of these
sources of uncertainty on the determination of radioactive-to-
stable isotopic ratios in the Galaxy and derived that their impact
on the ratio results in a variation of a factor of 3.5 at most.

There are other sources of uncertainty, however, that must be
considered for the evolution of SLRs in the interstellar medium
(ISM). As mentioned above, due to their short mean life, SLRs
are not evenly distributed in the Galaxy (Fujimoto et al. 2018;
Pleintinger et al. 2019). In particular, the evolution of an SLR
at a specific location in the Galaxy directly depends on the ratio
of its mean life τ and the average time between enriching
events 〈δ〉, as well as on the specific statistical distribution of
these δ (see Côté et al. 2019b, henceforth Paper I). The reason
for this can be understood by analyzing two limiting cases:
τ? 〈δ〉 and τ= 〈δ〉. In the first case, the mean life is much
longer than the time between two enriching events. This allows
for the buildup of a memory5 of the SLR abundance up to a
steady-state (between production and decay) equilibrium value
equal to the yield of a single event multiplied by a factor τ/〈δ〉.
In the second case, the expected time between two enriching
events is instead far enough apart to allow for the complete
decay of the SLR before the next event, leaving almost no
memory. In this case, the average abundance therefore remains
below the value of the yield. In relation to investigations of the
ESS, the first case allows us to calculate the isolation time
(Tiso), defined as the time between the decoupling of the
material that ended up in the solar nebula from the Galactic
chemical enrichment processes (in other words, the birth of the
colder and denser molecular cloud) and the formation of the
first solids in the nebula. The second case instead allows us to
calculate the time from the last event (TLE), defined as the time
since the last nucleosynthesis event in the Galaxy that
contributed a particular SLR to the solar system matter (Lugaro
et al. 2014, 2018). If TLE can be calculated, then the SLR may
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4 NuGrid Collaboration,http://nugridstars.org.

5 Here we define memory as the SLR abundance remains, nondecayed, from
the enrichment events that occurred before the last event.
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also be used as constraints for the features of specific
nucleosynthetic events (see Côté et al. 2021).

In Paper I we analyzed the SLR abundance distribution
resulting from an uneven temporal distribution of a nucleosyn-
thetic source, and derived the uncertainties due to this temporal
granularity of the enriching events using a simple statistical
model of a given region in the Galaxy affected by several
enriching events via a Monte Carlo calculation. We concluded
that the interplay of the time between two enriching events and
the mean life of the SLR determines both the steady-state
equilibrium value and its uncertainty. The uncertainty calcu-
lated in Paper I does not affect the abundance of the stable
reference nucleus, which is well mixed within 100Myr (e.g., de
Avillez & Mac Low 2002), and can be simply composed with
the uncertainty due to the galactic chemical evolution (GCE)
studied by Côté et al. (2019a) to calculate the total uncertainty
in the SLR/stable isotopic ratio. This total uncertainty can then
be used to deduce information about the isolation time (see
Paper I, Section 5) or the time since the last enriching event
(see Côté et al. 2021).

Here, we use the same methodology as in Paper I to study
the effect of the presence of heterogeneities due to the temporal
granularity of their stellar sources on the behavior and
uncertainty of the ratio of two SLRs. This ratio can exhibit a
markedly different behavior to that of a SLR/stable isotope
ratio because its evolution also depends on the difference
between the two mean lives. We restrict ourselves to analyzing
the scenario of synchronous enrichment scenario. That is, the
situation in which both SLRs are always generated in the same
events. This means that the evolutions of the abundances of
both isotopes are correlated, and the uncertainty of their ratio
cannot be simply derived by adding the individual abundance
uncertainties on each isotope. We also assume that the
production ratio P of the two SLRs is always the same. The
extension to a more general framework in which different
events have different production ratios will not fundamentally
change our conclusions as long as both isotopes are always
created together. We do not analyze instead the complementary
asynchronous enrichment scenario, where at least one of the
SLRs is created in more than one type of event. This scenario is
more complex to analyze with our statistical method because it
is not possible to define a single production ratio for this case.
Furthermore, the possibility that the two SLR may have
different 〈δ〉 values from different sources complicates the
general analysis.

The outline of the paper is as follows. In Section 2 we
assume that δ is constant and present the analytical solutions to
quantify the abundance and uncertainty of any ratio involving
two SLRs for four different regimes. In Section 3 we extend
our analysis by accounting for a variable δ and run Monte Carlo
calculations to better quantify the uncertainty on SLR
abundance ratios. In Section 4 we apply our statistical
framework to radioactive isotopic ratios relevant for the ESS
and discuss the implication of our work on the derivation of
Tiso and TLE. The codes used in this work are publicly available
on GitHub.6

2. The Case of δ= δc=Constant

We start with the analysis of the simplest case, which
assumes that the time between enriching events δ is constant.

The steady-state abundance (in mass) of a single SLR with
mean life τ is

=
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where Mej is the ejected mass from a single event, δc is the
constant time between two successive enrichments, and
Δt< δc is the time since the last enrichment (see Lugaro
et al. 2018).
By taking Equation (1) for two isotopes M1 and M2 with

mean lives τ1 and τ2, respectively, the steady-state evolution of
their ratio can be described as
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where P is the production ratio at the stellar source, and τeq is
the equivalent mean life given by
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and representing the mean life of the ratio of the radioactive
isotopes. Note that τeq can be negative if τ1> τ2. Although we
generally consider the case where τeq is positive, we explain the
differences with the negative case wherever they exist.
The time-averaged value of Equation (2) is given by (see the

Appendix)
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and the difference between its maximum and minimum
(derived by taking Δ t= 0 and Δt= δc in Equation (2)) values
can be written as

m
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Equation (4) is remarkably similar to that derived in Lugaro
et al. (2018) for an SLR/stable isotopic ratio, with the main
difference being that the mean life of the radioactive isotope τ
is now substituted by the mean life of the ratio of the
radioactive isotopes τeq, and that now the multiplying
exponentials do not cancel out.7 The relative variation, that
is, the difference between the maximum and minimum value
divided by the average, is otherwise identical to the case of the
SLR/stable isotopic ratio, provided we substitute the SLR
mean life with the equivalent mean life. This means that
qualitatively, we can expect the uncertainty of the ratio between
two radioactive isotopes to behave like that of a single
radioactive isotope with a mean life given by τeq. However, the
fact that the average value contains three nonvanishing
exponentials means that depending on the relative values of
δc, τ1, τ2, and τeq, we face four qualitatively distinct regimes
for the evolution of the ratio itself. These regimes are
exemplified in Figure 1 and explained below.

2.1. Regime 1: δc? τeq, τ1, τ2

We study first the regime where δc? τeq, τ1, τ2. In this case,
represented by the example in the top left panel of Figure 1, the

6 https://github.com/AndresYague/Stochastic_RadioNuclides

7 When only one radioactive isotope at the numerator is considered, there is
no exponential with τ2 at the numerator, and τeq = τ1, leaving just τ/δc.
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average abundance ratio is
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Given that the ratio τeq/δc is low, we expect an average value
much lower than the production ratio P when τeq> 0. For a
case where τeq< 0, we have an exponential term of δc/|τeq|,
which will instead yield an average value much higher than P.
In addition, the ratio will vary between the production ratio P
and 0 (or P and d tP exp c eq( ∣ ∣)) for the case of positive
(negative) τeq.

The intuitive understanding of this regime is that the time
between enrichment events is longer than it takes for both
radioactive isotopes and their ratio to decay, which prevents
any memory buildup and results in a very large relative
uncertainty.

2.2. Regime 2: δc= τeq, τ1, τ2

In this regime, δc= τeq, τ1, τ2. This case, represented in the
top right panel of Figure 1, has an average equilibrium value of

m
t
t

= P . 71

2
( )

The evolution of the ratio of radioactive isotopes is marked
by relatively frequent events, and the time between them is
shorter than the mean life of any of the isotopes. This means
that the abundance of both isotopes retains the memory of the
previous events, and the ratio drifts from the production ratio P
to oscillate around the equilibrium average with a low relative
uncertainty, behaving in a similar fashion to the case of large
τ/δc studied in Lugaro et al. (2018).

2.3. Regime 3: δc= τeq and δc? τ1, τ2

In this regime, δc= τeq and δc? τ1, τ2. This case, represented
in the bottom left panel of Figure 1, has an average equilibrium

Figure 1. Examples of the behavior of the four regimes explored in this work when τeq > 0. The production ratio P is taken to be 1. The blue lines are the evolution for
constant delta δc, and the dashed black lines correspond to the maximum, average, and minimum values given by Equations (4) and (5), while the red lines are the
evolution when δ is a random variable. In the figure annotation, γ represents the time between the formation of two enrichment source progenitors instead of the time
between two actual successive enrichment events, exactly as defined in Paper I. As in that work, we find that γ = 〈δ〉. The larger uncertainty of the stochastic case
relative to the δc case is readily apparent for all of the regimes.
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value of

m = P. 8( )

Although the value for the average in this case can be
recovered from the formula of Regime 2 by using τ1≈ τ2, we
set this case apart because it represents the specific situation
when the equivalent mean life is much longer than δc, while the
individual mean lives of each isotope are not. This regime only
arises when the difference between the mean lives is small
enough to make τeq orders of magnitude longer than them (see
Equation (3)). Given the short mean life of the individual SLR,
it is likely that each SLR carries information from the last event
alone (see Paper I, Figure 9 and the related discussion). At the
same time, the variation on the value of the ratio is relatively
small because the equivalent mean life is too long for the ratio
to change significantly before the next enriching event.

2.4. Regime 4: δc? τeq, τ1; δc= τ2

In this regime, δc? τeq, τ1, but δc= τ2. The average value
in this case, shown in the bottom right panel of Figure 1, is
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Although the evolution resembles that of the first regime when
τeq> 0, the maximum value attained by the ratio of the
radioactive isotopes in the equilibrium becomes much lower
than P. The reason is that although the evolution ofM1 does not
retain the memory of the previous events, the evolution of M2

does. We note that in this regime, t t t» min ,eq 1 2( ).

3. The Case of the Variable δ

The cases studied in the previous section for a constant δ
provide indicate how the ratio of two radioactive isotopes can
behave in general. However, this simple approach produces
deceptively small uncertainties relative to the more realistic
scenario of the variable δ. This situation has been explored in
Paper I for the case of the evolution of a single radioactive
isotope, and it is illustrated here in Figure 1 for the case of the
ratio of two radioactive isotopes as well. To gain a better
representation of SLR abundance variations in the ISM, we
turn to a Monte Carlo approach in which the enriching rate is
stochastic, as in Paper I.

The setup for the Monte Carlo experiments is the same as in
Paper I. A total of 1000 runs are calculated for 15 Gyr each. For
each run, the progenitors of the enriching events are generated
with a constant time interval of γ. The time between the birth of
the progenitor and the associated enriching event is sampled
from a source-specific delay-time distribution (DTD). The
enriching times are sorted and the random δ calculated from
their consecutive differences (see Figure 2 of Paper I). Because
the value for 〈δ〉 is approximately that of γ, we use the terms
interchangeably in this work.

The DTDs used here have an equal probability between
given initial and final times, and are the same as the “box”
DTD of Paper I. We have omitted the power-law DTD because
as we concluded in Paper I, the actual δ distribution is
approximately the same for both types of DTD for equal initial
and final times. As in Paper I, we refer to the uniform

distribution between 3 and 50Myr, 50Myr and 1 Gyr, and
50Myr and 10 Gyr as the “short,” “medium,” and “long” box
DTD, respectively. Each of these boxes can be associated with
a different type of progenitor for the enriching event, as
described in Paper I.
Because in the synchronous case, both radioisotopes are

generated in the same events, the ratios are computed at each
time step for the same run. To explore the different regimes,
each of the 1000 runs is repeated using different τ. We consider
1000 runs to be enough for the same reasons as in Paper I:
different temporal points of different runs are statistically
independent and can therefore be considered as different
experiments for the purposes of statistical derivation. For this
reason, we stack together all the values between 10 and 14 Gyr
to represent the final distribution of M1/M2. All the cases
studied here have τ1< τ2. This particular choice is arbitrary,
but cases with τ1> τ2 result in positive exponential behavior,
and the abundance ratio is no longer bounded and can diverge
toward infinity, which complicates the analysis without adding
any meaning.
In Figure 2 we show the relative uncertainty (68.2% of the

distribution around the median of the ratio) resulting from the
Monte Carlo experiments when τ1, τ2, and γ are varied. As the
figure shows, Regimes 1 and 4 have extremely large relative
uncertainties, mainly because M1 does not build up sufficient
memory. Therefore these regimes can only be treated as
additions of individual events, using statistical methods
different from that used here. This is similar to the case of
Regime II of Paper I (all the regimes of Paper I and their
connections to the present regimes are described in more detail
in Section 3.1). From now on, we therefore focus on the cases
where τeq 3〈δ〉, which excludes Regimes 1 and 4. The
exception is Regime 3, where although neither M1 norM2 build
up enough memory from previous events, the slowly decaying

Figure 2. Dependence of the relative spread around the median on τ1, τ2, and
〈δ〉. The four different regimes illustrated in Figure 1 cluster with different
regions in this plot. Regimes 1 (circles) and 4 (stars) are located in the upper
and lower left far corner, respectively, with a logarithmic relative spread values
above 2 dex (100%). Regime 2 (triangles) is located in the lower right far
corner, with a logarithmic relative spread values between 0 (1%) and 1.5 dex
(32%), and Regime 3 (inverted triangles) is located on the diagonal contained
in the τ1 ≈ τ2 plane, with a logarithmic relative spread lower than 1 dex. Cases
with the same τeq correspond to vertical lines with constant τ1 and τ2. Squares
represent combinations that do not fall neatly into any regime and often
correspond to a transition between two regimes.
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property of their ratio results in a stable value with a low
relative uncertainty. This makes Regime 3 an interesting case
where the uncertainty in the ratio of two SLR is as low or lower
than in Regime 2, with a high percentage of the ratio containing
only the abundances from the last event.

The uncertainties from the Monte Carlo calculations are
presented in Table 1 for τeq> 0 and τeq/γ> 3. When the
distribution is approximately symmetric (Regime 2), both an
upper and lower value are given, when the distribution piles up
on P (Regime 3), a lower limit for the ratio is given instead.
Table 1 allows us to calculate uncertainties for ratios of the
SLR due to the temporal stochasticity of enrichment events.
For any isotopic ratio, we can select the proper γ, which
depends on the source, the best-suited τ1/γ and τ2/γ, and
whether a short box (i.e., if the source is a core-collapse
supernovae) or a long box (i.e., if the source is an asymptotic
giant branch star or a neutron star merger) describes the source.
Afterward, the corresponding numbers in Column 5 or 6 should
be multiplied by the production ratio of the SLR ratio. If there
is no exact match to the numbers shown in Table 1, then
Equations (10) and (11) or (13) described below in Section 3.2
can be used instead. In Sections 3.3 and 3.4, we describe in
more detail the differences between the constant and random δ
cases in relation to Regimes 2 and 3, respectively.

3.1. Connections and Similarities with the Regimes Defined in
Paper I

In Paper I we analyzed a single SLR and found that three
different regimes can be applied depending on the relation
between τ and γ. Here we report a brief description of them and

and how they connect with the regimes in this work. For the
sake of clarity, the three regimes from Paper I are marked in
Roman numerals, while Arabic numerals refer to the four
regimes considered here.
Regime I refers to τ/γ> 2 and is similar to Regimes 2 or 3

in that statistics can be calculated because the spread is not
much larger than the median value. Regime I is associated with
the calculation of the isolation time, Tiso, because in this case,
the ISM will contain an equilibrium value from where there can
be an isolation period before the ESS abundances. In the
present work, Regime 2 is that associated with the calculation
of Tiso.
Regime III is a case that covers the region of τ/γ< 0.3. In

this regime, there is a high probability that the ISM abundance
that decayed into the ESS abundance originated from a single
event. Therefore this regime is associated with the calculation
of the time since the last event, TLE. Regime 3 of this work is
related to Regime III of Paper I in that both most likely carry
abundances from only the last event before the formation of the
solar system. The difference is that while Regime III allows us
to calculate TLE, Regime 3 also allows us to narrowly
determine the production ratio of the last event.
Regime II falls between two well-defined cases described

above. This regime has 0.3< τ/γ< 2, which does not allow
for meaningful statistics nor for a clean definition of a last event
to which the ISM abundance can be solely or mostly attributed.
This regime does not correspond to any of the regimes in this
work, and it may be similar to the region between Regime 2
and Regimes 1 and 4.

Table 1
Median Values and 68% Confidence Interval for Cases Belonging to Regime 2 and Lower Limits Encompassing 84% of the Distribution for Cases Belonging to

Regime 3 from the Monte Carlo Experiment (for P = 1) for Different Values of γ, τ1/γ, τ2/γ, and τeq/γ for τeq/γ > 3

γ (Myr) τ1/γ τ2/γ τeq/γ Small Box Large Box Regime

1.00 0.10 0.10 10.10 >0.83 >0.83 3
1.00 1.00 1.01 101.00 >0.98 >0.98 3
1.00 1.00 1.10 11.00 >0.80 >0.80 3
1.00 1.00 1.50 3.00 -

+0.63 0.20
0.13

-
+0.63 0.20
0.13 −

1.00 10.00 10.10 1010.00 -
+0.99 0.00
0.00

-
+0.99 0.00
0.00 2

1.00 10.00 11.00 110.00 -
+0.91 0.01
0.01

-
+0.91 0.02
0.01 2

1.00 10.00 15.00 30.00 -
+0.66 0.04
0.03

-
+0.66 0.04
0.04 2

1.00 10.00 101.00 11.10 -
+0.10 0.02
0.02

-
+0.10 0.02
0.02 2

1.00 10.00 110.00 11.00 -
+0.09 0.01
0.02

-
+0.09 0.02
0.02 2

1.00 10.00 150.00 10.71 -
+0.07 0.01
0.01

-
+0.07 0.01
0.01 2

1.00 100.00 101.00 10100.00 -
+0.99 0.00
0.00

-
+0.99 0.00
0.00 2

1.00 100.00 110.00 1100.00 -
+0.91 0.00
0.00

-
+0.91 0.00
0.00 2

1.00 100.00 150.00 300.00 -
+0.67 0.01
0.01

-
+0.67 0.01
0.01 2

10.00 0.10 0.10 10.10 >0.86 >0.83 3
10.00 1.00 1.01 101.00 >0.98 >0.98 3
10.00 1.00 1.10 11.00 >0.83 >0.80 3
10.00 1.00 1.50 3.00 -

+0.64 0.17
0.12

-
+0.63 0.20
0.13 −

10.00 10.00 10.10 1010.00 -
+0.99 0.00
0.00

-
+0.99 0.00
0.00 2

10.00 10.00 11.00 110.00 -
+0.91 0.01
0.01

-
+0.91 0.01
0.01 2

10.00 10.00 15.00 30.00 -
+0.67 0.02
0.02

-
+0.66 0.04
0.04 2

100.00 0.10 0.10 10.10 -
+0.95 0.03
0.03 >0.83 3

100.00 1.00 1.01 101.00 -
+0.99 0.00
0.00 >0.98 3

100.00 1.00 1.10 11.00 -
+0.90 0.03
0.03 >0.80 3

100.00 1.00 1.50 3.00 -
+0.65 0.08
0.08

-
+0.63 0.20
0.13 −

Note. The results from the large box are identical to those from the medium box DTD. A dash in the Regime column means that the specific case does not fall neatly
into one of the regimes. These cases typically fall between Regimes 1 or 4 and Regime 3.
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3.2. Analytical Approach

We also investigated the possibility of calculating the
uncertainties using an analytical approach instead of the full
Monte Carlo simulations. The aim is to provide a better
understanding of the regimes and their uncertainties, as well as
give an alternative to calculating approximate numbers without
the need of a simulation. To do this, we use the expression for
the average given by

m
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- á ñ
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derived in the Appendix, and for the relative standard
deviation, we use
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where K= 1 unless t tmin ,1 2( ) is larger than the span of the
DTD, in which case, K= 0.5. In cases where t t d< á ñmin ,1 2( ) ,
then F= K.

This factor F was derived from the Monte Carlo experiments
and corrects some of the approximations made in the derivation of
A14 in the Appendix. With this correction factor, Equation (11)
becomes an accurate estimate of the results of the Monte Carlo
experiment.

If the full distribution of δ is unknown, a further
approximation to Equation (11) can be used instead, rendering
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with the advantage that only 〈δ〉 and σδ (the standard deviation
of the delta distribution) have to be known. This formula is
much easier to calculate because no sampling of the δ

distribution is needed.
The validity of Equations (11) and (13) can be tested by

comparing them to the 68.2% (1σ) confidence interval
calculated from the Monte Carlo experiments. This comparison
is presented in Figure 3. In the worst case, with the small-box
DTD, the relative difference between the analytical approxima-
tions, and the results from the numerical experiments are just
above 25%. These are valid for calculations related to Regime
2. For Regime 3, as seen in Table 1, the average instead
remains very close to P and introduces asymmetry in the
distribution. In this case, the theoretical σ is an average of the
lower and upper 1σ threshold. When this σ is such that
μ+ σ> P, it is better to calculate a lower limit for the
distribution with P− 2σ because in this case, the distribution
piles up at P, making any value between P and μ functionally
equiprobable.

3.3. Regime 2: δ= τeq, τ1, τ2

In this case, the abundances of both SLR nuclei retain
significant memory from past events. The average of their ratio,
according to Equation (10), is the same as the constant case for

the same regime, given by Equation (7). When the uncertainties
are compared, however, there is a significant difference
between the constant and the stochastic case. As a first-order
approximation, and taking σδ≈ 〈δ〉 (see Table 2 of Paper I), we
can write Equation (13) as
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which, when 〈δ〉 is substituted by δc and Equation (12) is divided
by Equation (5), reveals that the stochastic case has a larger
uncertainty relative to the constant case by a factor of 2F. This
factor can be shown to be in the range 2Fä [2.5, 35] when we
consider τeq/〈δ〉ä [3, 104] by using Equation (12) with K= 1 and
take t t t=min ,1 2 eq( ) . Therefore the time-stochastic nature of
enrichment events can increase the uncertainty by more than an
order of magnitude in this regime. The uncertainty on the ratio of
two SLR in Regime 2 is still relatively low. For example, for
the large box, with τ1= 10Myr, τ2= 15Myr, and γ= 1Myr,
Table 1 has a relative uncertainty of 12%. For a similar example
with τ= 10Myr and γ= 1Myr in Table 3 of Paper I, the relative
uncertainty is 45% for the large box. Even if we take the case of
τ= 31.6Myr and γ= 1Myr, we still have a relative uncertainty
of 25% for the SLR/stable isotopic ratio.

3.4. Regime 3: δ= τeq, δ? τ1, τ2

As discussed in the constant δc scenario, this regime shows a
low variation around the average P while retaining no memory of
previous events. The difference between the constant and
stochastic case is similar to that in Regime 2 (because
Equation (13) only depends on 〈δ〉 and τeq), that is, a factor of
2F. The factor F=K is a constant here (when t t d< á ñmin ,1 2( ) ),
equal either to 0.5 or to 1, which means that the relation between
the uncertainties in the constant and stochastic cases is a factor of
two at most. Additionally, the stochastic case results in a
nonsymmetric distribution around the median. The reason is that
the ratio is always bounded between 0 and the production factor P
(when τ2> τ1): when the enriching events are more frequent than
average, the ratio will remain at P, while when the enriching

Figure 3. Prediction of Equations (11) and (13) of the relative to the median
68.2% confidence interval calculated from the Monte Carlo experiments (large
black squares) for the small-box DTD. The equations themselves calculate just
the 34.1% interval, which is why twice their value is used.
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events are less frequent than average, the ratio decays away from
this average. In any case, the characteristic of Regime 3 is that the
average ratio always remains very close to P.

4. Discussion

We apply our general theoretical approach to the specific ratios
of two SLRs that are either in Regime 2 or Regime 3. Starting
from Table 2 of Lugaro et al. (2018), which lists all the SLRs
known to have been present in the ESS, we select SLRs with
potentially the same origin (for the synchronous scenario) and
with mean lives close enough such that the τeq of their ratio is
potentially longer than the probable γ of their source. We find four
cases of such ratios of isotopes and present them in Table 2, along
with the specific Monte Carlo experiments that reproduce the
conditions under which they evolve in the Galaxy, assuming a
production ratio P= 1. This table categorizes the regime of the
selected SLR ratios, realizes the difference with regard to the
uncertainties between considering the single SLR/stable (or long-
lived) reference isotope ratio (Columns SLR1 and SLR2), and
quantifies the ratio of the two SLRs (Column SLR1/SLR2). In
general, the uncertainties significantly decrease when ratios of
SLRs with similar mean lives are considered compared to when
their ratio to a stable or long-lived isotope is considered (compare
the last column of Monte Carlo values to the other two columns of
Monte Carlo values). It is worth mentioning that in this
comparison we assume that the stable isotope carries no
uncertainty at all from GCE processes, which by itself can be a
factor of up to 5.7/1.6= 3.6 (Côté et al. 2019a). In addition, the
predicted ISM abundances are much closer to the production
ratios when the ratios of two SLRs are considered.

Table 3 shows the subsequent calculations of the isolation
time, Tiso (in roman), and the time since the last event, TLE (in
italics), for the selected isotopic ratios for which the ESS ratio
is available. These correspond to only three out of the four
ratios discussed in Table 2. We excluded 97Tc/98Tc because
only upper limits are available for the corresponding radio-
active-to-stable ratios, which means that it is not possible to
derive any ESS value for their ratio. The other ESS ratios are
calculated using the values for the radioactive-to-stable ratios
reported in Table 2 of Lugaro et al. (2018) and the solar
abundances of the reference isotopes from Lodders (2010; see
also Côté et al. 2021). Furthermore, the selected values for γ
were limited to those most likely to occur in the Milky Way for
the corresponding production sites.

4.1. The Ratio of the r-process 247Cm and 129I

These two isotopes are made by the rapid neutron-capture (r)
process, and typical estimates for the time interval at which
r-process nucleosynthetic events that are believed to enrich a
parcel of gas in the Galaxy range between 200 and 500Myr
(Hotokezaka et al. 2015; Tsujimoto et al. 2017; Bartos &
Marka 2019; Côté et al. 2021). Therefore the case of 247Cm/129I
is the best example of Regime 3 because τeq= 5085Myr
(Table 2) is much longer than γ, while each τ (;22.5 and
22.6Myr, respectively) is much shorter than γ. The ratios to the
long-lived or stable references isotopes, 247Cm/235U and 129I/127I,
allow us to derive a TLE, for example, for the specific γ value of
316Myr considered in Table 3, and derive typical production
ratios of 1.35 for 129I/127I and 0.3 for 247Cm/235U. While our TLE
values are not perfectly compatible with each other, the more

Table 2
Regimes and Values of the Ratios from the Monte Carlo (MC) Experiments Applied to the Specific Cases of Ratios of Two SLRs (Column SRL1/SRL2) and of the
SLRs and Their Corresponding Stable or Long-lived Reference Isotopes (Columns SRL1/stable and SRL2/stable, See the Main Text for the List of Reference

Isotopes)

τ1 τ2 τeq γ
SLR1/stable SLR2/stable SLR1/SLR2

Regime MC Values Regime MC Values Regime MC Values

247Cm/129I 22.5 22.6 5085 1 I -
+22.37 3.22
3.45 I -

+22.47 3.23
3.46 2 -

+1.00 0.00
0.00

3.16 I -
+7.01 1.77
1.98 I -

+7.04 1.77
1.99 2 -

+1.00 0.00
0.00

10 II <3.29 II <3.30 3 -
+1.00 0.00
0.00

31.6 II <1.29 II <1.29 3 >0.99
100 III <0.54 III <0.54 3 >0.96
316 III <0.08 III <0.08 3 >0.89

107Pd/182Hf 9.4 12.8 35.4 1 I -
+9.28 2.05
2.27 I -

+12.68 2.41
2.63 2 -

+0.73 0.04
0.03

3.16 I -
+2.86 1.10
1.32 I -

+3.94 1.31
1.53 2 -

+0.73 0.08
0.06

10 II <1.62 II <2.06 3 -
+0.70 0.19
0.12

31.6 III <0.69 III <0.86 − -
+0.50 0.32
0.30

53Mn/97Tc 5.4 5.94 59.4 1 I -
+5.29 1.53
1.75 I -

+5.83 1.61
1.83 2 -

+0.91 0.02
0.02

3.16 II <2.63 II <2.84 3 -
+0.90 0.05
0.03

10 II <1.04 II <1.12 3 -
+0.86 0.15
0.08

31.6 III <0.41 III <0.45 − -
+0.68 0.31
0.22

97Tc/98Tc 5.94 6.1 226 1 I -
+5.83 1.61
1.83 I -

+5.99 1.63
1.85 2 -

+0.97 0.01
0.00

3.16 II <2.84 II <2.91 3 -
+0.97 0.02
0.01

10 II <1.12 II <1.14 3 -
+0.96 0.05
0.02

31.6 III <0.45 III <0.47 3 -
+0.90 0.13
0.07

100 III <0.05 III <0.06 − -
+0.73 0.29
0.19

Note. Production ratios are always 1. Also indicated are τ1, τ2, τeq, and the adopted γ, all in Myr. The values of γ are selected such that it is possible to remain within
Regimes 2 or 3, for which cases we can model the uncertainties. The Roman numerals correspond to the regimes of Paper I (SRL1,2/stable), while the Arabic numerals
correspond to the regimes described in this work. The dashes correspond to cases that do not fit neatly in any of the regimes.
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detailed analysis shown by Côté et al. (2021) demonstrates that
there is compatibility for TLE in the range between 100–200Myr,
depending on the exact choice of the K parameter (Côté et al.
2019a), γ, and the production ratios. The short mean lives of
247Cm and 129I ensure that there is no memory from previous
events, while the long τeq of

247Cm/129I instead ensures that this
ratio did not change significantly during TLE and has a high
probability to be within the 10% of the production ratio. Therefore
the production ratio of the last r-process event that polluted the
ESS material can be accurately determined directly from the ESS
ratio. If we assume that the last event produced a 247Cm/232Th
ratio similar to the average predicted by Goriely & Janka (2016)
and assume a solar ratio for 127I/232Th, then we find an
inconsistency between the numbers in the last two columns of
Table 3. The back-decayed value is more than five times lower
than the assumed production ratio, which indicates a weaker
production of the actinides from this last event with respect to the
production ratios that we are using here. The number in the last
column therefore represents a unique constraint on the nature of the
astrophysical sites of the r process in the Galaxy at the time of the
formation of the Sun and needs to be compared directly to different
possible astrophysical and nuclear models (Côté et al. 2021).

4.2. The Ratio of the s-process 107Pd and 182Hf

If TLE for the last r-process event is longer than 100Myr, as
discussed in the previous section, the presence of these two
SLRs in the ESS should primarily be attributed to the slow
neutron-capture (s) process in asymptotic giant branch (AGB)
stars, which are a much more frequent event due to the low
mass of their progenitors because their r-process contribution
would have decayed for a time of about 10 times their mean
lives (Lugaro et al. 2014). Experimental results on the SLRs
107Pd (τ= 9.8 Myr) and 182Hf (τ= 12.8 Myr) are reported with
respect to the stable reference isotopes 108Pd and 180Hf,
respectively. The ISM ratios reported in Table 3 are calculated
using production ratios of 0.14, 0.15, and 3.28 for 107Pd/108Pd,
182Hf/180Hf, and 107Pd/182Hf, respectively, derived from the
3 Me model of Lugaro et al. (2014). For the short γ values

considered in Table 3 (1 and 3.16Myr), the SLR1,2/Stable
ratios belong to Regime I and the SLR1/SLR2 ratio belongs to
Regime 2. Therefore we can calculate Tiso from all the ratios.
As shown in Table 2, the ratios relative to the stable reference
isotopes have larger uncertainties (40% or 85% depending on
γ, and assuming no uncertainty on the stable isotope
abundance) compared to the ratio of the two SLRs (less than
20%). However, when the actual ISM ratios are considered, the
uncertainties on the evaluation of Tiso become comparable
because they are relative uncertainties and the ratio of the two
SLRs and the equivalent mean life have a much higher absolute
value than the other two ratios. While the Tiso values derived
from the SLR1,2/stable ratios are consistent with each other, the
value calculated from SLR1/SLR2 would need to be much
shorter. In the last column of Table 3 we report the back-
decayed ratio as the ISM ratio that is required to obtain a self-
consistent solution.
The discrepancy between the ISM and back-decayed values

may be due to problems with the stellar production of these
isotopes: a main caveat to consider here is that while the
107Pd/108Pd ratio produced by the s process is relatively
constant because it only depends on the inverse of the ratio of
the neutron-capture cross sections of the two isotopes, both the
182Hf/180Hf and 107Pd/182Hf production ratios can vary
significantly between different AGB star sources. The
182Hf/180Hf ratio is particularly sensitive to the stellar mass
(Lugaro et al. 2014) due to the probability of activating the
181Hf branching point, which increases with the neutron density
produced by the 22Ne(α, n)25Mg neutron source reaction,
which in turn increases with temperature and therefore stellar
mass. The 107Pd/182Hf involves two isotopes belonging to the
mass region before (107Pd) and after (182Hf) the magic neutron
number of 82 at Ba, La, and Ce. This means that this ratio will
also be affected by the total number of neutrons released by the
main neutron source 13C(α, n)16O in AGB stars, which has a
strong metallicity dependence (see, e.g., Gallino et al. 1998;
Cseh et al. 2018). This means that a proper analysis of these s-
process isotopes can only be carried out in the framework of
full GCE models, where the stellar yields are varied with mass

Table 3
Timescales Derived by Decaying the Reported ISM Ratios to the ESS Ratios in Column 2 for a Subset of Ratios and γ Values Considered in Table 2 to Represent

Possible Realistic Values in the Galaxy for the Corresponding Production Event

ESS Ratio τeq γ
SLR1/stable SLR2/stable SLR1/SLR2

ISM Ratio Time ISM Ratio Time ISM Ratio Back-decayed Ratio

247Cm/129I 2.28 × 10−3 5085 316 9.63 × 10− 2 171 1.15 × 10− 1 153 1.22 × 10− 2a 2.35 × 10− 3

107Pd/182Hf 4.25 35.4 1 3.56 × 10−4
-
+16 3
2 5.20 × 10−4

-
+21 3
2 2.41 7.17

3.16 -
+16 6
4

-
+21 6
4

31.6 1.20 × 10− 3 27 1.28 × 10− 3 32 3.28 9.78

53Mn/97Tc >1.70 × 105 59.4 1 1.58 × 10−4
-
+17 2
2 3.84 × 10−5 >7 1.65 × 106 >2.26 × 105

31.6 9.23 × 10− 4 26 2.04 × 10− 4 >17 1.82 × 10 6 <2.63 × 105

Notes. Time and τeq are in Myr. The ISM SLR1,2/stable ratios in Roman are calculated using the steady-state formula from Côté et al. (2019a) and K = 2.3. These are
cases within Regime I and can provide Tiso (also in roman). The ISM SLR1,2/stable ratios in italics are calculated instead using the last-event formula, i.e., Equations
(3) (with K = 2.3) and 4 (with K = 1.2) of Côté et al. (2021) and the selected value of γ = δ. These are cases within Regime III and can provide TLE (also in italics).
The ISM SLR1/SLR2 values are calculated as = P(τ1/τ2) (Equation (7)) for roman values and as = P (Equation (8)) for italic values. The production ratios used in all
the formulas are reported in the text in each subsection. The “back-decayed” ratios are calculated by decaying the ESS ratio back by the average of Tiso, or TLE, from
both SLR1,2/stable ratios, except for the case of 53Mn/97Tc, where only the times derived from 53Mn were used. Differences between the values in the last two
columns highlight the problems discussed in the text.
a We calculated this possible r-process production using the average 247Cm/232Th ratio from Goriely & Janka (2016) and assuming the solar ratio 127I/232Th of 31
from Asplund et al. (2009). This is to avoid using 235U, which decays much faster than 232Th (with a mean life of roughly 1 Gyr instead of 20 Gyr) and would
complicate the assumption that the produced 127I/235U was solar.
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and metallicity. This work is submitted (Trueman et al. 2021,
submitted), and the uncertainties calculated here will be
included in this complete analysis.

For long γ values, such as 31.6 Myr considered in Table 3,
the 107Pd/108Pd and 182Hf/180Hf ratios would likely mostly
reflect their production in one event only (Regime III). In this
case, we derive an TLE. Because 107Pd/182Hf is between
Regimes 1 and 3, this isotopic ratio changes more significantly
during the time interval TLE than in the case of the r-process
isotopes discussed in the previous section. In Table 3 we report
the production value predicted by decaying the ESS ratio back
by TLE. As in the case of the r-process isotopes, in this regime,
this number can be used to determine the stellar yields of the
last AGB star to have contributed to the s-process elements
present in the ESS (Trueman et al. 2021, submitted).

4.3. The Ratio of the p-process 97Tc and 98Tc

These two SLRs are next to each other in mass and are both
p-only isotopes, i.e., they are nuclei of higher mass than Fe that
can only be produced by charged-particle reactions or the
disintegration (γ) process. While the origin of p-only isotopes
is currently not well established especially for those in the
light-mass region, and the main sites may be both core-collapse
and Type Ia supernova, recent work has shown that the main
site of production of the SLRs considered here is probably
Chandrasekhar-mass Type Ia supernova (see, e.g., Travaglio
et al. 2014; Lugaro et al. 2016; Travaglio et al. 2018). Because
their mean lives are remarkably similar (τ= 5.94 and 6.1 Myr,
respectively, for 97Tc and 98Tc), their τeq= 226Myr and as
shown in Table 2, the theoretical uncertainties related to their
ratio are very low for values γ up to 31.6 Myr.

The full GCE of these isotopes was investigated by Travaglio
et al. (2014). Expanding on that work, in combination with the
present results, could provide us with a strong opportunity to
investigate both the origin of these p-nuclei and the environment
of the birth of the Sun. There are many scenarios that might be
investigated. If the γ value of the origin site of the Type Ia
supernova was around 1Myr, then we could derive a Tiso from all
the different ratios and check for self-consistency. If the γ value of
the origin site was above 30Myr, we would instead be in a similar
case as the r-process isotopes discussed above, and the 97Tc/98Tc
would give us directly the production ratio in the original site, to
be checked against nucleosynthesis predictions. For γ values in
between, the 97Tc/98Tc ratio would still provide us with the
opportunity to calculate Tiso. Unfortunately, we only have upper
limits for the ESS ratio of these two nuclei, relative to their
experimental reference isotope 98Ru, which means that an ESS
value for their ratio cannot be given and a detailed analysis needs
to be postponed until these data become available.

4.4. The Ratio of 97Tc and 53Mn, also Potentially of
Chandrasekhar-mass Type Ia Supernova Origin

From a chemical evolution perspective, the origin of Mn
(and therefore 53Mn) is still unclear (Seitenzahl et al. 2013;
Cescutti & Kobayashi 2017; Eitner et al. 2020; Kobayashi et al.
2020; Lach et al. 2020). Nevertheless, the 53Mn/97Tc ratio can
be assumed to be synchronous as there are indications that the
main site of origin of 53Mn is the same as that of 97Tc8 (see,
e.g., Lugaro et al. 2016). Table 2 shows that the uncertainty for

the ratio of the two SLRs is below 30% for most cases (and as
low as 5% when γ= 1Myr), while for each one of the
individual isotopes it is larger than 60%. Similar to the
97Tc/98Tc ratio discussed above, the 53Mn/97Tc ratio can also
provide the opportunity to investigate Tiso for γ values up to
2Myr because even if τeq= 59.4Myr, the shorter mean lives of
each SLR do not allow to built a memory, making this a case of
Regime 3, which cannot be treated here. The ISM values
reported in Table 3 were calculated with a production ratio
of 2.39× 10−2 for 97Tc/98Ru, 0.108 for 53Mn/55Mn, and
1.82× 106 for 53Mn/97Tc (Travaglio et al. 2011; Lugaro et al.
2016).
We obtain potential self-consistent isolation times, mostly

determined by the accurate ESS value of 53Mn/55Mn.
Consistency between the last two columns of the table, which
could inform us on the relative production of nuclei from
nuclear statistical equilibrium (such as 53Mn) and nuclei from
γ-process in Chandrasekhar-mass Type Ia supernova (such as
97Tc), could be found only if the 97Tc/98Ru ratio in the ESS
was 7.3 times lower than the current upper limit.
Similarly to the s-process case described above, for high

values of γ (e.g., 31.6 and 100Myr shown in Table 3), the
53Mn/55Mn and 97Tc/98Ru ratios would record one event only
(Regime III) and the derived TLE are consistent with each other.
The value from 53Mn/55Mn can then be used to decay the ESS
ratio of the 53Mn/97Tc back and derive a direct constraint for
the last p-process event that polluted the solar material. Overall,
a more precise 97Tc ESS abundance would allow us to take
advantage of the low theoretical uncertainties and give a more
accurate prediction of the ISM ratio or the production ratio at
the site.

4.5. 60Fe/26Al

Finally, we consider the case for 60Fe/26Al. This ratio is of
great interest in the literature because both isotopes are
produced by core-collapse supernovae (Limongi & Chieffi
2006), and they can be observed with γ-rays (Wang et al. 2007)
as well as in the ESS (Trappitsch et al. 2018). There are strong
discrepancies between core-collapse supernova yields and
observations as the yields typically produce a 60Fe/26Al ratio
at least three times higher than the γ-ray observations (e.g.,
Sukhbold et al. 2016), and orders of magnitude higher than the
ESS ratio (see the discussion in Lugaro et al. 2018).
We cannot apply our analysis to interpret the γ-ray ration

because it is derived by measuring first the total abundance of
60Fe and 26Al separatedly, and then dividing them. In this case,
the average abundance ratio is given simply by the ratio of the
averages, mixing the 60Fe and 26Al productions from several
different events, which do not correspond to our synchronous
framework.
When the ESS abundance is considered, however, we can

apply our methods because the ESS ratio represents the
abundance at one time and place in the ISM, generated by a
synchronous set of events. In this case, τ1= 3.78Myr (for
60Fe) and τ2= 1.035Myr (for 26Al) results in τeq=−1.45Myr. If
we consider a γ= 1Myr for the core-collapse supernova-
enriching events, we fall somewhere between Regime 2 and 4,
with 60Fe and 26Al building memory and almost no memory,
respectively, between successive events. As a consequence, when
we consider our statistical analysis, the average ISM value given
by Equation (10) predicted for the 60Fe/26Al ratio is a factor of 3.9
of the production ratio. This is 7% higher than the traditional

8 And 98Tc, but we prefer to consider 97Tc here because both its mean life and
its yields are closer to that of 53Mn.

9

The Astrophysical Journal, 915:128 (11pp), 2021 July 10 Yagüe López, Côté, & Lugaro



continuous enrichment steady-state formula Pτ1/τ2 (i.e., the limit
of Equation (2) when δc, Δt→ 0) used in the literature (see, e.g.,
Sukhbold et al. 2016) because that gives a factor of 3.65 of the
production ratio instead. In conclusion, our analysis does not help
to solve the problem that core-collapse supernova yields produce
much more 60Fe relative to 26Al than is observed in the ESS.

5. Conclusions and Future Work

We presented a statistical framework to study the uncertain-
ties of ratios of SLRs that were present at the formation time of
the solar system. We show that this statistical framework is
advantageous because

1. it removes the GCE uncertainties associated with the
stable reference isotopes that are often used for ESS ratios
(i.e., the value of the parameter K investigated by Côté
et al. 2019a);

2. it reduces the stochastic uncertainties, i.e., for ratios of
two SLRs, these uncertainties are typically much lower
than those of SLR/stable isotopic ratios for equivalent
regimes.

3. It allows us to define a Regime 3 for the ratio of two
SLRs, which is qualitatively different to the regimes
described in Paper I for SLR/stable ratios, and represents
the case where each mean life is much shorter than γ,
while the equivalent mean life of the ratio of the two
SLRs is much longer than γ. In this case, the ratios of the
two SLRs allow us to constrain the nucleosynthesis inside
the last nucleosynthetic events that contributed the solar
system matter.

We have identified four ratios: 247Cm/129I (from the r
process), 107Pd/182Hf (from the s process), 97Tc/98Tc (from the
p process), and 53Mn/97Tc (potentially from Type Ia super-
novae), which can be used effectively to either reduce the
uncertainty in the Tiso calculation (for relatively low values of
γ) or to accurately predict the production ratio for the last event
that enriched the ESS (for relatively high values of γ). In
particular, the inconsistencies we found (see Table 3) between
the production and the ESS ratios both for the 247Cm/129I and
the 107Pd/182Hf ratios can be used to constrain the events in the
Galaxy that produced the r-process isotopes (Côté et al. 2021)
and the elements belonging to the first s-process peak (Trueman
et al. 2021, submitted) at the time of the formation of the Sun.

While here we have only investigated the simpler synchronous
enrichment scenario in which the two SLRs are assumed to
originate from the same events, in the future, we could also
investigate the asynchronous enrichment scenario for particular
cases such as the 146Sm/244Pu ratio. For example, 146Sm is a p
nucleus and 244Pu is produced by the r process, therefore γ for the
production events of the two isotopes is probably very different.
The mean life of 244Pu is 115Myr, while for 146Sm, two different
mean lives are reported: 98Myr (Kinoshita et al. 2012) and
149Myr (Marks et al. 2014), for which τeq= 663Myr and
τeq= 504Myr, respectively. Because these values are extremely
high, the 146Sm/244Pu ratio may provide an opportunity to predict
its value with an uncertainty much lower than when the individual
isotopes are considered. Another interesting ratio may be
135Cs/60Fe, with a τeq= 26Myr (from mean lives of 3.3 and
3.78Myr, respectively). For a frequent enrichment rate
(γ∼ 1Myr), the relative uncertainty on the predicted abundance
ratio in a synchronous scenario is 4.5%. However, 135Cs is a
product of both the s and the r processes, while 60Fe is ejected

mostly by core-collapse supernovae, which would require a
complex asynchronous scenario. Furthermore, only an upper limit
for the ESS abundance for 135Cs is available.
In general, improvements in ESS data for any of the SLRs

considered here will help us to constrain the stellar nucleo-
synthesis models. Particularly, these improvements are strongly
needed for the p-process isotopes 97Tc and 98Tc, for which we
currently only have upper limits for their ESS abundances.
Together with the well-known 53Mn, these SLRs could provide
unique constrains on both galactic p-process nucleosynthesis
and the origin of solar system matter.
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Appendix
Calculation of M1/M2 Average and Standard Deviation for

the Case when δ Is not a Constant

We can define the value of M1/M2 by parts as a function of
time with
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By using Equation (A3) with P= 1, the expression for the
average value of M1/M2 is simply
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From the definition of Ci, we can rewrite the average as
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Alternatively, by taking the averages,
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In order to calculate the standard deviation, we have to
obtain the expression for the average of M M1 2
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similar steps as before, we find that
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From Equations (A7) and (A11), we can calculate the exact
standard deviation as
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