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Building performance models (BPMs) have been used to simulate and analyze building performance during
design. While extensive research efforts have made to improve the performance of BPMs, little attention has
given to their robustness. Uncertainty is a crucial factor affecting the robustness of BPMs, in which such effect
needs to be quantified through a suitable approach. The paper offers a robustness analysis framework for BPMs
by using perturbation techniques to simulate uncertainty in input datasets. To investigate the efficacy of the
framework, a generative adversarial network (GAN)-based framework was selected as a case study to analyze
light switch usages in a single-occupancy office simulated using an immersive virtual environment (IVE). The
robustness of the GAN was analyzed by comparing differences between a baseline (i.e., a BPM obtained from the
GAN trained on a non-perturbed dataset) and BPMs obtained from the GAN trained on perturbed datasets.
Overall, the robustness of the GAN significantly reduced when the training datasets were perturbed by using
structured transformation techniques. The GAN remained relatively robust when the training datasets were
perturbed by using an additive perturbation. Additionally, the sensitivity of the GAN involves different magni-
tudes corresponding to different levels of perturbed input datasets. The study suggests that the perturbation
analysis is effective for investigating data uncertainty affecting the robustness of BPMs.

1. Introduction [7] to specific building systems (e.g., space heating [8], air quality [9],

light switches [10], blinds, windows, and thermostats [11]). Several

Energy used in buildings has been cited as a major source of carbon
emissions in many research studies [1-3]. Massive investments have put
in commercial and residential projects, which continuously shape sus-
tainability of future built environments (e.g., controlling carbon emis-
sions, energy uses, and occupant comfort). Sustainable building has
become one of the major contributions in building designs, involving
several assessments of building factors and occupants such as energy
system efficiency, material performance, lifecycle cost, and occupants’
satisfaction and health [4]. Building performance models (BPMs) are
decision-support tools that designers often use for understanding,
analyzing, and comparing different design options to satisfy building
goals and objectives [5,6]. A number of studies have developed BPMs for
enhancing building performance optimizations from whole buildings
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methods and algorithms have been used, which may be categorized in
two groups, namely expert-based and simulation-based optimizations
[12]. The expert-based optimization is based on a design of an experi-
mental approach to optimize building performance without creating
mathematical and/or statistical models [12]. The simulation-based
optimization is mainly an automated process relying on numerical and
mathematical optimizations. It has been widely accepted as the effective
approach to construct BPMs [12,13]. According to the simulation-based
optimization, BPMs are mostly embedded in computational processes,
where they take given inputs (e.g., occupancy schedules, environmental
conditions, and building materials) to analyze and estimate outputs (e.
g., building performance and usages of building components) [14]. Such
computations involve many sources of uncertainty such as input pa-
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rameters [15,16] and computational structures [17]. If the uncertainty
of input parameters is too large, the computations may not be robust and
generate uncertain, inaccurate, and unreliable outputs [18]. Further-
more, the computations may involve instability and faulty algorithm,
which can be another factor introducing uncertainty during computa-
tional processes [19]. The robustness analysis helps to understand im-
pacts of such uncertainty, thereby gaining more confidence in using the
computations for decision-making, and, optimally, improve perfor-
mance of building design and contributes to sustainable building [20].

Robustness analysis in this study is defined according to the robust
theorem as investigation whether the performance of a computation
remains robust and produces reliable outputs, when it is challenged by
uncertainty [21]. In general, uncertainty can be classified under two
heads, namely aleatory and epistemic uncertainties [22]. Aleatory un-
certainty occurs due to the naturally variability of a model system. It is
also known as irreducible uncertainty and is often ignored in robustness
analyses. Epistemic uncertainty arises due to absence of knowledge and
information in analyses. It can be reduced, if more information can be
acquired [23]. For example, it may occur due to uncertainty related to
the input parameters. Sources of such uncertainty may be data errors,
varying degree of reliability of data collection tools, and random nature
of participants. Accordingly, this work focuses on the robustness anal-
ysis of computations affected by the epistemic uncertainty.

Performing the robustness analysis requires knowledge of uncer-
tainty of input parameters. Traditionally, data uncertainty are quanti-
fied through variations of obtained data and the variations are acquired
by, for instance, repeating experiments [24]. However, many experi-
ments, particularly experiments associated with immersive virtual en-
vironments (IVEs), cannot be repeated because of limited resources,
such as times, costs, and humans [25]. Uncertainty estimations are
among common strategies to mitigate the limitation and have appeared
in various research fields, especially machine learnings. Two
outstanding approaches are widely used to simulate uncertainty, namely
Bayesian and non-Bayesian approaches [26,27]. The Bayesian approach
requires prior probability distributions over input datasets to estimate
posterior probability distributions through several alternative Bayesian
inferences (e.g., Laplace approximation [28], variational inference [29],
Markov Chain Monte Carlo [30], and Monte Carlo dropout [31]). Then,
the posterior probability distributions decompose uncertainty into
computational models. The approach involves approximations of prior
and posterior probability distributions, which may not be suitable for
computations included in BPMs, especially BPMs involving datasets
associated with human interactions. Since human interactions are
vulnerable to many factors and change from time to time, estimating
uncertainty corresponding to human interactions through probability
distributions may be inaccurate. On the other hand, the non-Bayesian
approach avoids estimations of probability distributions. Among
various methods, a perturbation method has been successfully used to
estimate uncertainty of input parameters for robustness analyses in
several studies, including image classifications [32,33], general classi-
fications [34], and speech recognitions [35,36]. There are many types of
perturbation techniques, such as adding data noise, replacing data with
random ones, and altering data. To analyze the robustness, computa-
tions run on perturbed input datasets, each of which represents a
different level of uncertainty. The robustness is assessed by comparing
baselines (e.g., outputs generated by using non-perturbed datasets) with
outputs generated by using perturbed input datasets.
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The study contributes to a robustness analysis corresponding to im-
pacts of uncertainty on computations, an important issue discussed in
previous studies [15-18]. Extending to those studies, the robustness
analysis for computations associated with BPMs and human-building
interactions in IVEs is provided, where, moreover, uncertainty arising
from such applications can be quantified. The authors experimented and
investigated performance of the robustness analysis through a case
study. The case study analyzed the robustness of a computation in a
framework for augmenting BPMs proposed by Chokwitthaya et al. [37],
in which it has been proven to appropriately construct BPMs during
design. It involves an IVE, an existing BPM, and a Generative Adversarial
Network (GAN), that consists of a pair of Artificial Neural Network
(ANN)s playing a game with each other. Chokwitthaya et al. [37] used
an IVE to simulate a new design and acquire context-aware design-specific
data through human-building interactions. The GAN used context-aware
design-specific data to bias an existing BPM (i.e., a BPM constructed by
using data of human-building interactions in an existing building) to-
ward a new design guided by a given performance target.

2. Robustness analysis
2.1. Introduction

The goal of the robustness analysis in this study is to determine
whether a computation of a BPM produces resilient outputs. If a
computation for particular assumptions about variability in inputs (e.g.,
uncertainty) produces similar outputs, it is considered robust for those
assumptions. That is, the robustness analysis framework (Fig. 1) iden-
tifies whether a computation remains robust, when input datasets are
uncertain. It determines differences between a baseline, an output
generated by a computation taking a non-perturbed input dataset (Apon-
perturbation), and an output generated by a computation taking a perturbed
input dataset (Apermrbation)- If Aperturbation is not significantly different from
Anon-perturbations the computation is considered robust. Accordingly, the
hypothesis was defined as follows:

Ho: Aperturbation is not significantly different from Anon.perturbation
Hi: Aperturbation s significantly different from Apon-perturbation

It has to be noted that, a baseline, in the framework, is information
that users provide as a base for determining robustness of a BPM. The
baseline may be obtained from both local and global analyses depended
on available and appropriate baseline used in a study. It can be provided
in various forms such as an average and a specific outcome of the BPM.
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Fig. 1. The robustness analysis framework.
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2.2. Perturbation

The general purpose of perturbations is to simulate variability of
input datasets. In this paper, the authors use perturbations to add un-
certainty to input distributions represented by their respective input
datasets [38]. Perturbations may be performed using several techniques
depended on types of input parameters and purposes of studies. In image
classification using machine learning, common perturbation techniques
include injecting noise to images [39], changing information of images
(e.g., watermarking, patching, and changing pixels) [40], and trans-
forming image geometry [41,42]. In speech recognition using machine
learning, perturbation techniques include adding noisy signal [43],
making speech reverberated [44], and adding background noise [45].
Other examples of perturbations are inserting sentences in question
answering systems [46] and using perturbation scale to alter data
[47,48].

Perturbation techniques may be categorized as an additive pertur-
bation (e.g., injecting noise to images, adding noisy signal, and adding
background noise) and a structured transformation (e.g., changing in-
formation of images, transforming image geometry, and making speech
reverberated) [49]. The former adds additional unrelated data such as
data noise to training datasets; whereas the latter replaces data in
training datasets with unrelated data or alters data in training datasets.
The two categories serve different purposes on simulating uncertainty
and are meaningful in investigating and analyzing robustness of a
computation.

In addition, selection of the perturbation techniques depends on
parameter types and circumstances that may introduce uncertainty to
parameters. For instance, IVE experiments cannot simulate or include all
possible scenarios occurring in the world. Excluded scenarios may
implicitly influence uncertainty of input datasets and impact robustness
of a computation. Adding data noise is an alternative to simulating
additional uncertainty caused by existence of excluded scenarios.
Furthermore, human decisions such as choices of switching a light on or
off may be subjective or even involve wrong decisions, causing uncer-
tainty in obtained datasets. Such uncertainty can be simulated by
replacing parts of input datasets with unrelated data. Another example is
that sensors used in experiments may involve uncertainty caused by
unreliable measurements, which can be simulated by altering datasets
associated with the measurements.

Determining which variables to perturb is among key factors in the
robustness analysis. It is possible that the analysis does not need to
consider all variables. Although there is no specific criterion to select
variables, the decision is mainly based on needs of a particular appli-
cation. For instance, categorical variables (e.g., names and labels) are
less likely to be subjected to uncertainty. Such variables may be
excluded from being perturbed.

Levels of perturbation are important factor in the robustness anal-
ysis. They help to investigate robustness of a computation responding to
different levels of uncertainty. Generally, there is no standard or rule to
define the levels. Most of previous studies defined the levels based on
assumed amounts of uncertainty in variables that are believed to have an
impact on their computations’ robustness. For instance, Haghnegahdar
and Raazavi [48] used perturbation scales (e.g., £1%, +5%, +10%, and
+ 20%) to distort datasets associated with input parameters and simu-
late uncertain input parameters for analyzing the robustness of earth
and environmental system models.
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2.2.1. Perturbation forms

2.2.1.1. Additive perturbation. An additive perturbation has been
widely involved in analyzing robustness of machine learning models
[50-53]. It maintains input data and adds additional unrelated data (e.
g., data noise) to datasets. Its main purpose is to allow investigations
whether models have ability to remain robust by maintaining the
knowledge of input datasets and adding different levels of perturbation
[54]. For instance, Rolnick et al. [55] investigated the robustness of their
deep neural network across different levels of added noise in the per-
turbed training datasets. They added noise up to 100 data for every
training datum in several experiments.

Adding data noise is a traditional technique of additive perturbation.
One of the common noise categories is additive white Gaussian noise
(AWGN), where data noise are drawn from a Gaussian (i.e., normal)
distribution, which has been applied to many experimental datasets
[56]. Furthermore, AWGN allows direct control over variance of noise.
Data noise is generated using Gaussian (i.e., normal) distribution ac-
cording to variances of input datasets, as a result, the data noise has
similar variances and comparable to the input datasets Therefore, add-
ing AWGNs is potentially an additive perturbation technique for
analyzing robustness of computations.

2.2.1.2. Structured transformation. A structured transformation (e.g., an
imperceptible perturbation) investigates the robustness of models by
reducing or distorting the knowledge of input datasets. It has been
applied in several robustness analyses. For example, Liu et al. [57]
generated perturbed input datasets of traffic signs by scrawling and
patching the signs to reduce knowledge gained from the original data-
sets of the signs. They re-trained the classification model to investigate
its accuracy. They found that the accuracy of the model decreased,
which explicitly revealed decrease of its robustness. Engstrom et al. [42]
distorted information of images by randomly rotating the images be-
tween —30 and +30 degree and transforming the images up to 10% of
image pixels. Their results suggested that small rotations and trans-
formations could significantly degrade accuracy and robustness of
classifier models. Accordingly, the structured transformation is taken as
one of the techniques to assist the robustness analysis in this work.

3. Case study

Fig. 2 shows the scheme and components of the GAN-based frame-
work attached with the robustness analysis. In the following, a summary
of the GAN-based framework and the IVE experiment are provided,
where the complete documentation of the framework has been pub-
lished in Chokwitthaya et al. [37]. Then, the robustness analysis is
discussed.

3.1. The GAN-based framework

The GAN-Based Framework was proposed by the authors for aug-
menting BPMs [37,58]. It uses a nonparametric approach to generate a
mixture model of an existing BPM and context-aware design-specific data.
The framework can automatically determine an appropriate mixture by
using a performance target as a guide. Its performance has been proven
and evaluated [37]. The framework contributes to assisting and
improving building performance estimations for non-existing buildings
(e.g., buildings under design). There are five major components
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Fig. 2. GAN-based framework attached with the robustness analysis.

involved in the GAN-based framework (the green boxes in Fig. 2)
including: (1) an existing BPM, (2) context-aware design-specific data, (3) a
performance target, (4) the GAN, and (5) an augmented BPM.

3.1.1. Existing building performance model

An existing BPM describes relationships of historical events (e.g.,
building environments and building characteristics) and observations
(e.g., human-building interactions). Traditionally, data used to
construct the existing BPM is acquired from human-building interactions
with embedded contexts of existing buildings. Consequently, the existing
BPM may not address important contextual factors influencing human-
building interactions in the context of a building under design. If the
existing BPM is used to estimate performance of a specific space (e.g.,
building under design), discrepancy between estimated and actual
building performance may arise.

3.1.2. Context-aware design-specific data

Context-aware design-specific data describes human-building in-
teractions influenced by contextual factors of a specific space (e.g., a
building under design). For example, the Hunt model [59] uses work
area illuminance as an independent variable to predict statuses of light
switch usages. However, other factors may also influence light switch
usages such as office tasks (e.g., reading, relaxing, meeting, and draft-
ing) and locations of a light switch (e.g., a switch is by a door and on a
desk). For the Hunt model, the office tasks and the locations of a light
switch are contextual factors, since they are not included in the model.
Immersive virtual environments (IVEs) can be used to acquire such
context-aware design-specific data [60-62].

3.1.3. Performance target

A performance target is a performance metric (e.g., energy intensity of
a space) defined to satisfy the objectives of a building design [37]. Such
performance metric is converted into operational measures for compu-
tational purposes. Nevertheless, the conversion method is still an open
topic requiring further attentions. The performance target is used to
guide the combination of an existing BPM and context-aware design-
specific data, so that the GAN can produce an augmented BPM, whose
analytic results are as close to the target as possible.

3.1.4. Computation
The generative adversarial network (GAN) [63] is implemented as
the computation method in the framework [37]. The GAN comprises a

generator and a discriminator. The generator employs ANN to learn
mixed probability distributions (i.e., mixture of an existing BPM and
context-aware design-specific data) and generate an augmented BPM that
follow a target distribution. The discriminator employs another ANN to
discriminate an augmented BPM and the target distribution. The GAN
uses the concept of a two-player minimax game to train the generator
and the discriminator.

3.2. Robustness analysis of the GAN

The analysis focused on understanding the robustness of the GAN
and testing the hypothesis. The estimations of light switch usages in a
single-occupancy office were used as an application case. It needs to be
noted that the case study reused data, and the application to obtain the
data was fully reported in Chokwitthaya et al. [37]. To avoid unnec-
essary repetition, this section only provides a brief introduction of the
major components, e.g., the existing BPM, the context-aware design-
specific data, the performance target, the computation, and the
augmented BPM. The training datasets associated with the existing BPM
and context-aware design-specific data were perturbed by using the
aforementioned perturbation techniques. Augmented BPMs generated by
the GAN trained on the perturbed training datasets were used to analyze
the robustness of the GAN.

3.2.1. Overview of the reused application

The light usage prediction model of Hunt [59] (Fig. 3) and Da Silva
et al. [64] (Fig. 4) were selected as the existing BPM and the performance
target, respectively. Both models described relationship between work
area illuminance as an independent variable and probability of
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Fig. 3. Hunt model.
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Fig. 4. Da Silva model.

Fig. 5. Top view of the virtual office.

Table 1

Variables and their values considered in the IVE experiment.

Contextual factor Independent variable Dependent variable

Office task Light switch Work area illuminance Probability of
location () switching on
Intensive By the door 50 Very unlikely
reading
Having abreak  On the desk 100 Not likely
Having a 150 Neutral
meeting
Drafting 200 Likely
350 Very likely
500
Total = 4 Total = 2 Total = 6 Total = 5
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switching on as a dependent variable. The datasets generated from the
Hunt and Da Silva model were called “the existing BPM dataset” and “the
performance target dataset”, respectively.

An immersive virtual environment (IVE) simulated a single-
occupancy office (Fig. 5) and acquire context-aware design-specific data
corresponding to contextual factors. The contextual factors considered
in the IVE experiment were office tasks (e.g., intensive reading, having a
break, having a meeting, and drafting) and light switch locations (e.g.,
by the door and on the desk). Similar to Hunt and Da Silva model, the
independent and dependent variables included in the IVE experiment
were the work area illuminance (Ix) and the probability of switching on,
respectively. Table 1 summarizes the contextual factors, independent,
and dependent variables considered in the IVE experiment along with
their values. Data corresponding to the contextual factors, independent,
and dependent variables were acquired from 30 students including 18
males and 12 females and called “the IVE dataset”. Fig. 6 illustrates the
virtual environment, when a participant was exploring the IVE and
selecting probability of switching on. As discussed by Chokwitthaya
etal. [25], the Gaussian mixture model (GMM) [65] was used to increase
the number of independent and identically distributed (IID) samples
based on the IVE data and generate a new dataset, called “the synthetic
IVE dataset”.

In data preprocessing, the existing BPM dataset, the synthetic IVE
dataset, and the performance target dataset were standardized. The
existing BPM dataset and the synthetic IVE dataset were split into training
datasets and testing datasets with a 70-30 split, namely the existing BPM
training dataset, the existing BPM testing dataset, the synthetic IVE training
dataset, and the synthetic IVE testing dataset.

The GAN comprised of a generator and a discriminator. The gener-
ator took the existing BPM training dataset and synthetic IVE training
dataset as the input datasets. Before training the GAN, the generator was
pre-trained on the combination of the existing BPM training dataset and
the synthetic IVE training dataset to initialize its weights and biases. In
every epoch, the generator gained knowledge by learning mixtures of
the existing BPM training dataset and synthetic IVE training dataset and
made a prediction. The prediction that was closest to the performance
target was considered as an augmented BPM. The discriminator deter-
mined differences between the prediction of the generator and the per-
formance target dataset. The discriminator sent a feedback to the
generator for improving its knowledge of mixtures and prediction in the
next epoch.

3.2.2. Perturbation
The GAN as the computation of the GAN-based framework acquired
its knowledge through training datasets associated with the input

Fig. 6. A participant exploring the IVE and selecting likelihood of switching on.
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Table 2
Summary of parameters and their corresponding components.

Advanced Engineering Informatics 50 (2021) 101401

Parameter Training dataset associated Variables in the training dataset Perturbation
with the parameter subject to uncertainty Additive Structured transformation
perturbation
Adding data Replacing probability of switching Altering work area
noise on with random data illuminance
Exiting BPM Existing BPM training dataset Probability of switching on Yes Yes No
Work area illuminance Yes No Yes
Context-aware design- Synthetic IVE training dataset Probability of switching on Yes Yes No
specific data Work area illuminance Yes No Yes
parameters. To analyze the robustness of the GAN, perturbations had to Tab,le 3 . . .
. . Ratios of adding AWGN to data in perturbed training datasets.
be executed on the training datasets to make them uncertain. The per-
formance target guided the mix of two input parameters of the GAN, Case Ratio of data in training datasets to AWGN
namely the existing BPM and the context-aware design-specific data. 1 10:1
Although the performance target could be perturbed in theory, there 2 10:3
was no practical meaning in the scope of this study. It was assumed that i 18;
the target was specific without uncertainty. 5 10:10

In the case study, the contextual factors (i.e., the office tasks and the
locations of the light switch) were categorical variables. Even if there
was uncertainty associated with them, the impact of uncertainty was
reflected through the dependent variable (i.e., the probability of
switching on). Therefore, they were not included in the perturbation. On
the other hand, the probability of switching on and the work area illu-
minance were subject to uncertainty. The former was subject to uncer-
tainty because its data were obtained from human-building interactions,
which tended to be sensitive to building contexts. The latter was subject
to uncertainty because it was measured using sensors for creating the
existing BPM and simulated using the IVE to generate the context-aware
design-specific data. Those experimental tools and simulations often
involved levels of uncertainty. Consequently, the authors perturbed data
of the work area illuminance and the probability of switching on in the
training datasets.

Using additive perturbation, the authors simultaneously perturbed
the data of the probability of switching on and work area illuminance by
adding data noise. It allowed the authors to investigate and compare
overall impacts of uncertain parameters, i.e., the existing BPM versus
context-aware design-specific data on the robustness of the GAN. Using
structured transformation, the authors perturbed the two variables
separately using two techniques, namely replacing the probability of
switching on with random data and altering the work area illuminance.
It allowed the authors to further investigate the impact of uncertainty of
individual variables on the robustness of the GAN under specific cir-
cumstances. Table 2 summarizes the parameters used in the case study
along with their corresponding training datasets, variables subject to
uncertainty, and the perturbation technique applied to each variable.
The perturbed training datasets were called “perturbed existing BPM
training datasets” and “perturbed synthetic IVE training datasets”, when the
existing BPM training dataset and the synthetic IVE training dataset were
perturbed, respectively. Here, a note is put to mention that the particular
design and administration of the perturbation are merely for under-
standing and demonstrating the impact of uncertain parameters and
variables in the case study. Other applications may implement different
designs and administrations depending on their purposes.

3.2.2.1. Additive perturbation. A major benefit of using the additive
perturbation is to investigate whether the GAN has ability to remain
robust, when the GAN maintains knowledge of training datasets asso-
ciated with the existing BPM and the context-aware design-specific data,

even if the perturbed training datasets contain different levels of the
additive perturbation. Another benefit of using the additive perturbation
is to explore whether the training datasets are sufficiently effective for
the GAN to remain robust. If the GAN becomes non-robust when the
training datasets involve a certain level of perturbation, revisions to the
training datasets may need to be considered such as acquiring more
knowledge by conducting additional experiments to enhance the effi-
cacy of the training datasets and robustness of the GAN.

To investigate the robustness of the GAN, additive white Gaussian
noise (AWGN) was added to the data of the probability of switching on
and work area illuminance in the existing BPM training dataset and the
synthetic IVE training dataset. The simulation of AWGN implemented the
Gaussian (i.e., normal) distribution with zero means and specified var-
iances (N(0, 62)) to randomly generate the noisy data. The case study
used the variances of the probability of switching on and the work area
illuminance as the variances of the Gaussian distribution, when adding
noise to their respective data. The authors added various amount of
AWGN to the training datasets as shown in Table 3. For instance, the
ratio of 10:1 denoted there were 10 actual datapoints to 1 AWGN in
every 11 datapoints of the perturbed datasets. The perturbation ratios
were defined by considering limited resources (e.g., computational
costs, and times) and purposes of the study. The application preserved
the actual data as the majority in the perturbed training datasets by
limiting the ratio of the actual data to AWGN at 1:1. In other applica-
tions, more perturbation ratios may be used in analyses. However, trade-
off between resources needed and levels of perturbation ratios should be
considered.

3.2.2.2. Structured transformation. The main contribution of structured
transformation is to inspect how reduced or distorted knowledge of
training datasets impacts the robustness of the GAN. It perturbs the
training datasets by using two techniques for different purposes. To
investigate the robustness due to the uncertain probability of switching
on, portions of the training datasets with respect to the probability of
switching on were replaced with random data. To analyze the robustness
on uncertain work area illuminance, the data with respect to the work
area illuminance in the training datasets were altered using perturbation
scales. In each perturbation technique, different levels of perturbation
were assigned.
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3.2.2.2.1. Replacing probability of switching on with random data.
Ideally, the selection of the perturbation technique reflects practical
circumstances causing uncertainty in the training datasets. For instance,
a participant has different preferences at different times when interacts
with a light switch even if the lighting conditions were the same. The
circumstance introduces uncertainty to the probability of switching on.
The structured transformation is appropriate to simulate such uncertain
preferences, because it replaces a portion of the probability of switching
on in the existing BPM training dataset and the synthetic IVE training
dataset with unrelated data. Thus, it reduces the knowledge of the
training datasets. tTe robustness of the GAN was investigated in terms of
the ability of the GAN to maintain robust, even though its knowledge of
the probability of switching on was reduced in the training datasets.

In the case study, the data respecting to the probability of switch on
in the training datasets were randomly replaced with random numbers
between 0 and 1, where the limit based on the nature of probability.
According to Table 4, three perturbation ratios (i.e., 9:1, 7:3, and 5:5)
were used to replace data of the probability of switching on in the
existing BPM training dataset and the synthetic IVE training dataset. For
instance, the ratio of 9:1 denoted there were 9 actual data points to 1
randomized data point in every 10 data points in the perturbed datasets.
The selection of perturbation ratios was dependent on mainly purposes
of the study and consideration of resource limitations (e.g., computa-
tional costs, and times). The purpose of using different ratios was to
assess the robustness of the GAN with respect to different amount of
knowledge about the probability of switching on in the training dataset.
The application preserved the actual data as the majority in the per-
turbed training dataset by limiting the ratio of the actual data to
replaced data at 1:1 (i.e., 5:5 in Table 4).

3.2.2.2.2. Altering work area illuminance. In general, work area
illuminance is subjected to uncertainty. Data of work area illuminance is
often obtained from experimental tools (e.g., illuminance sensors and
IVE simulations). The tools may involve uncertainty (e.g., £10% of
actual illuminance) and propagate the uncertainty to measured data.

In the case study, the IVE simulated illuminance levels according to
analysis from a lighting simulation software (e.g., 3D Max). A method to
access uncertainty of the IVE on lighting simulation has not existed. That
is, the specific uncertainty associated with lighting in IVE could not be
quantified. For lighting sensors used in the existing BPM, Hunt did not
report specifications of the particular sensors and their uncertainty.
Consequently, the authors did not have information about uncertainty of
the sensors, and did not quantify specific uncertainty of particular sen-
sors. Since the framework is generic, “what if” scenarios to assume such
uncertainty were applied to understand possibility of different levels of
uncertainty. To investigate the robustness of the GAN due to uncertainty
of the work area illuminance, the authors altered data of the work area
illuminance in the training datasets using perturbation scales. The
technique was based on the concept of the structured transformation
and adaption of previous perturbation techniques, namely transforming
image geometric in Engstrom et al. [42] and using perturbation scales in
Haghnegahdar and Raazavi [48]. Consequently, the perturbation scales
(i.e., £10%, +30%, and + 50%) were used to alter data of the work area
illuminance in the training datasets. The perturbations were performed

Table 4
Ratios of changing data of the probability of switching on to random
data in perturbed training datasets.

Case Ratio of actual data to changed data
1 9:1
2 7:3

3 5:5
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according to Equation (1). Even though, the scale of 50% may appear to
be impractical, it helps to assess the robustness of the GAN regarding
extreme conditions of data error. For instance, the illuminance sensors
were interrupted by external signals resulting in extreme errors in the
measurements. The application used a perturbation interval at 20% and
limited the perturbation at 50% because of resource limitations.

Altered illuminance = illuminance + (illuminance x perturbation scale)

@

3.2.3. Criteria of robustness analysis, hypothesis testing, and sensitivity
investigation

The one-at-a-time (OAT) technique [66,67] was applied to train the
GAN using one perturbed training dataset a time. A total of 23 augmented
BPMs (i.e., non-perturbation + (5 cases of adding data noise + 3 cases of
Replacing Probability of Switching on with Random Data + 3 cases of
Altering Work Area Illuminance) * 2 input parameters) were generated.

The two-sample Kolmogorov-Smirnov test (K-S test) [68], a statistical
test measuring a distance of two empirical distributions, was applied to
test the hypothesis. A level of significant at @ = 0.05 was applied to
investigate the statistically significant difference between a baseline, an
augmented BPM generated by the GAN taking a non-perturbed input
dataset (Anon-perturbation), and an augmented BPM generated by the GAN
taking a perturbed input dataset (Aperturbation)- On one hand, P-values <
0.05 indicated significant difference between Anonperturbation and Apertur-
bation and, as a result, the GAN became non-robust. On the other hand, P-
values > 0.05 indicated no significant difference between Apon perturbation
and Aperwrpation and, therefore, the GAN remained robust.

Additionally, the K-S statistic obtained from the K-S test was used to
assess sensitivity of the GAN. To determine the sensitivity of the GAN,
pairwise comparisons of the K-S statistic across Aperqurbation generated
from the GAN trained on the perturbed existing BPM training dataset and
the perturbed synthetic IVE training dataset within the same level of
perturbation were analyzed. For instance, if the K-S statistic associated
with Aperaurparion generated from the GAN trained on the perturbed existing
BPM training dataset and the synthetic IVE training dataset at 10:1
perturbation ratio was lower than that from the GAN trained on the
existing BPM training dataset and the perturbed synthetic IVE training
dataset, the GAN was less sensitive to the existing BPM than the context-
aware design-specific data.

4. Results and discussions

Results and discussions are organized in three sections, 1) non-

100
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Fig. 7. An Augmented BPM corresponding to non-perturbed training dataset.
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perturbations, 2) additive perturbation performed by adding data noise,
and 3) structured transformation performed by replacing the probability
of switching on with random data and altering the work area
illuminance.

Fig. 7 illustrates the Anon-perturbation, the existing BPM training dataset,
the performance target dataset, as well as means and standard deviations
of the synthetic IVE training dataset through a plot of the probability of
switching on versus their corresponding work area illuminance. Figs. 8,
10, and 12 demonstrate comparisons between Apon_perturbation and Aper.
turbation corresponding to each perturbation and its levels. In Figs. 7, 8,
10, and 12, boxplots are used to demonstrate the variances representing
the uncertainty of Anon-perturbation and Aperturbation- Tables 5-7 summarize
the p-values used to statistically evaluate the robustness of the GAN.
Figs. 9, 11, and 13 show plots of K-S statistic associated with the levels of
perturbation in each perturbation case for assessing the sensitivity of the
GAN.

4.1. Non-perturbation

Fig. 7 shows the efficacy of the GAN for generating an augmented
BPM (i.e., Anon-perturbation) that reach the performance target. According
to the boxplots, uncertainty existed in Anon.perwurbation, €ven though the
input parameters were not perturbed. The finding agreed with the fact
that uncertainty always exists in building performance models
mentioned in literatures [20,69]. Several factors may contribute to the
occurrence of uncertainty such as the nature of the GAN (i.e., aleatory
uncertainty), the structure of the GAN, and the completeness of the input
parameters. Such factors may need attention in future research. Addi-
tionally, the Aponperturbation Was used as a baseline in the robustness
analysis throughout the case study.

4.2. The additive perturbation

4.2.1. Adding data noise

Fig. 8 illustrates comparisons of Apnon-perturbation aNd Apernurbation With
respect to adding data noise to the probability of switching on and the
work area illuminance. AWGN was added according to the perturbation
ratios described in Table 3, i.e., 10:1, 10:3, 10:5, 10:7, and 10:10. Fig. 8
reveals that the uncertainty of Aperturbation is slightly higher than that of
Anon-perturbation» Since variances in the boxplots associated with Aperwrpation
are larger than those associated with Apon-permurbation- The results suggest
adding noise marginally influenced the uncertainty of Aperurbation. Add-
ing noise to the existing BPM seems to cause less uncertainty to Apereyr-
bation than adding noise to the synthetic IVE training dataset.

The influences of adding noise do not significantly impact the
robustness of the GAN since p-values are greater than 0.05 in all cases as
shown in Table 5. Therefore, the GAN remained robust, when the
training datasets were perturbed by adding data noise at all perturbation
ratios and in both cases (i.e., the perturbed existing BPM training datasets

Table 5
P-values corresponding to adding data noise.

Perturbation ratio Existing BPM training dataset Synthetic IVE training dataset

P-yalue P-yalue
10:1 0.793 0.532
10:3 0.221 0.628
10:5 0.545 0.362
10:7 0.545 0.059
10:10 0.112 0.180

Advanced Engineering Informatics 50 (2021) 101401

0.25
—o-Existing BPM training dataset
0.2 [
=&—Synthetic IVE training dataset
L <
2 015 0.153
3
>
“2 0.1
X
0.05 0.065
0

10:1 10:3 10:5 10:7
Perturbation ratio

10:10

Fig. 9. K-S statistics corresponding to adding data noise.

and the perturbed synthetic IVE training datasets). The results suggest that
as long as the original knowledge of the training datasets was intact in
the training datasets, the GAN was able to remain robust, even if the
level of noise was increased to 100%.

According to the K-S statistics reported in Fig. 9, the pattern of K-S
statistics is not consistent across the perturbation ratios. Hence, it was
unclear whether the GAN was more sensitive to the existing BPM training
dataset or the synthetic IVE training dataset. Consequently, the GAN was
not more sensitive to the existing BPM or the context-aware design-specific
data when the training datasets were perturbed by adding data noise.

Overall, the results indicate that the GAN was able to recognize and
capture underlying knowledge of the input parameters contributing to
generating the augmented BPMs that met the performance target. The
finding greatly agrees with previous studies regarding to the robustness
analysis by adding data noise. For instance, Hosseini et al. [51] found
that the application programming interface (API) remained robust,
whose outputs for restored images largely matched that for actual ones
without the need for improving the image analysis algorithm, even when
noise were applied to the images. The finding, as well, agrees with Munir
[70]. Munir analyzed the robustness of the selective image encryption
algorithm, where adding data noise was one of the case studies. He
stated that the algorithm could decrypt images effectively, when images
were corrupted with various noise categories (e.g., Gaussian noise,
Poisson noise, salt and pepper noise, and speckle noise).

4.3. The structured transformation

4.3.1. Replacing the probabilities of switching on with random data

The comparisons of Anon-perturbation and Aperwurbation With respect to
replacing the probability of switching on with random data between
0 and 1 are illustrated in Fig. 10, where the perturbation ratios (i.e., 9:1,
7:3, and 5:5) indicated the levels of perturbation.

Fig. 10 shows that variances increase when the perturbation ratio
increases, indicating increases of uncertainty of Aperturbation- The obser-
vation implied that changing the probability of switching on in the
training datasets with random data obviously contributed to the in-
creases of uncertainty of Apermrbarion in all perturbation ratios and the
training datasets. Uncertainty of Aperwrbation tended to increase in parallel
with increasing the perturbation ratiosand perturbing the synthetic IVE
training dataset appeared to be more influence on the uncertainty of
Aperturbation than perturbing the existing BPM training dataset.

Results of the hypothesis testing presented in Table 6 unveil that
when the perturbation ratio increases, the rejected cases of the null
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Table 6
P-values corresponding to replacing probability of switching on with random
data.

Perturbation ratio Existing BPM training dataset Synthetic IVE training dataset

P-value P-value
9:1 0.394 0.177
7:3 0.270 <0.05
5:5 <0.05 <0.05

hypothesis (p-value < 0.05) increase. They suggested replacing data in
the training datasets with random number reduced the level of knowl-
edge in the GAN about the training datasets, and, thus, reduced the
performance of the GAN, leading to decreases of its robustness. Ac-
cording to Table 6, when the probability of switching on in the existing
BPM training dataset was perturbed, the null hypothesis was rejected in
one case where the perturbation ratio was set to 5:5. However, the null
hypothesis was rejected in two cases, when perturbing the same variable
in the synthetic IVE training dataset. In other words, even though the
increases of perturbation ratios reduce the robustness, perturbing the
probability of switching on in the existing BPM training dataset has less
contribution to the reduction of the robustness than perturbing that in
the synthetic IVE training dataset.

According to Fig. 11, the K-S statistics associated with the perturbed
existing BPM training datasets are lower than those associated with the
perturbed synthetic IVE training datasets in all perturbation ratios. It
implied that the GAN was less sensitive to the existing BPM than the
context-aware design-specific data when the data of the probability of
switching on were replaced by random data.

According to the results, meaningful discussions can be made in the
following:

e When the perturbation ratio increased, the robustness of the GAN
decreased and uncertainty of Aperurbaion increased. The situation
occurs because replacing data in the datasets with random number
contributed to reductions of actual data in the datasets. As a result,
underlying knowledge of the datasets used to train the GAN was
decreased. Accordingly, training the GAN by using reduced knowl-
edge datasets reduced performance of the GAN, leading to decreases
of the robustness and increases of uncertainty of Apermrbations-

0.25
~o-Existing BPM training dataset
0.200
0.2 : - )
=& Synthetic IVE training dataset
0.185
2
2 015
3
> 0.1
@ 01
i .
X 0.090 0.100
0.05
0

9:1 73

Perturbation ratio

Fig. 11. K-S statistic corresponding to replacing probability of switching on
with random data.
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e The investigations of the sensitivity suggested that users should
highly pay attention to human-building interactions especially in
new design to enhance the robustness the GAN.

e Replacing the probabilities of switching on with random data was
comparable with imperceptible perturbations such as patching im-
ages, which parts of original training datasets were replaced with
random data. According to studies related to such perturbations
[40,57], robustness of algorithms depended on characteristics and
amount of random data replacing data in original datasets. If the
random data (e.g., patches) lied slightly close to original datasets or
too small, the random data may not impact the algorithms. Meaning
the algorithms remained robust. However, if the opposite situations
occurred, the algorithms may misidentify distributions of the orig-
inal data (e.g., misclassifying images), causing the algorithms non-
robust. The mentioned statement was relatively corresponding to
the finding in the case study. In addition, types of random data
played a role in influencing the robustness, which was proven by
Jefferso and Marrero [71]. Nonetheless, the case study did not take
the types of random data into account, where such issue may be
considered in the future work.

4.3.2. Altering work area illuminance

According to the boxplots associated with Apermrbation in Fig. 12, in-
creases of the perturbation scales for altering the work area illuminance
in both existing BPM training dataset and synthetic IVE training dataset
increase uncertainty of Aperrpation. Uncertainty of Aperwrbation Was
notably associated with the perturbation scale. Similar to the previous
case, perturbing the synthetic IVE training dataset have more influence on
the uncertainty of Aperturbation than perturbing the existing BPM training
dataset.

The p-values in Table 7 are less than 0.05 in 5 out of 6 cases, which
shows that Aperaurbation and Anon-perturbation are significantly different in
most cases. The result suggested that altering the work area illuminance
significantly impact the robustness of the GAN. Additionally, altering
work area illuminance in the existing BPM training dataset had less in-
fluence on reductions of the robustness than altering that in the synthetic
IVE training dataset. The null hypothesis was rejected in two cases, where
the perturbation scale was 30% and 50%, when the work area illumi-
nance in the existing BPM training dataset was altered. However, the null
hypothesis was rejected in all cases associated with the other training
dataset. The finding was reasonably corresponding to what stated by
Engstrom et al. [42]. They found that altering training data (e.g.,
rotating and translating image) significantly degraded their classifier
robustness. Tramer and Boneh [72] found similar outcomes, which were
considered as the robustness trade-off.

According to Fig. 13, the K-S statistics associated with the perturbed
existing BPM datasets are lower than those associated with the perturbed
synthetic IVE datasets throughout the perturbation scales. The result
suggested that the GAN was less sensitive to the existing BPM than the
context-aware design-specific data.

The results of the hypothesis testing may be implicit to the significant
impacts of uncertain experimental tools on the robustness and uncer-
tainty of the GAN. The results can be the evidence for encouraging users
to emphasize the importance and influence of experimental tools before
conducting experiments. In practice, users are recommended to include
procedures of calibrating experimental tools in experiments to reduce
uncertainty that may occur in outcomes of BPMs.
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Table 7
P-values corresponding to altering work area illuminance.

Perturbation scale Existing BPM training dataset Synthetic IVE training dataset
P-value P-value
10% 0.628 < 0.05
30% < 0.05 < 0.05
50% < 0.05 < 0.05
0.25
~e—Existing BPM training dataset
0.210
0.2 o _
~o-Synthetic [VE training dataset
E 0.180
~
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(%
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0
10% 30% 50%

Perturbation scale

Fig. 13. K-S statistic corresponding to altering work area illuminance.

5. Limitations of the study

Major limitations of the study include:

The case study only investigated the robustness of the GAN regarding
the input parameters (i.e., the existing BPM and the context-aware
design-specific data). The robustness associated with other compo-
nents such as structure of the computation was excluded in the case
study. Research attention on the robustness analysis of other com-
ponents is needed in the future.

The case study limited the robustness analysis with three perturba-
tion techniques. Other techniques that may have impacts on the
robustness should be investigated to be able to draw comprehensive
discussions.

More perturbation levels and smaller intervals should be considered
to investigate the robustness. Due to limitations of resources (e.g.,
computational costs and times) and purposes of the case study, the
perturbation was limited to large intervals between low and high
perturbation levels.

The uncertainty results were quantitatively explained. To better
understand and use model uncertainty in the future, the uncertainty
should be modeled deterministically. Unfortunately, the modeling
approach was not taken into an account in this work. To enhance
performance of the framework, such approach needs attention in the
future research.

6. Conclusions and future work

The robustness analysis using perturbation techniques has effectively
identified the robustness, uncertainty, and sensitivity related to the
problem in the case study. The hypothesis tests have shown that the
proposed approach allowed the investigation and comprehension of
factors influencing uncertainty that impacts robustness of the GAN.
Several techniques were applied to observe the influence of the
perturbation and assess the robustness including adding noise, replacing
data with noise, and altering data. According to the case study, adding
noise relatively impacted the robustness of the GAN but not in any
statistically significant manner. In addition, it marginally increased the
uncertainty of the augmented BPMs. Replacing data in the training
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datasets with noise and altering data in the training datasets caused
significant reduction in the robustness of the GAN and increased the
uncertainty of the augmented BPMs. The findings agreed with previous
studies mentioning that impacts of perturbations reduced the robustness
of machine learning models [49,73]. Furthermore, the GAN was more
sensitive to the context-aware design-specific data than the existing BPM.
Such findings may be used as a guide to create procedures of pertur-
bations in future applications. However, other applications may give
different outcomes. Applying the robustness analysis needs insight to
determine which perturbation techniques and ratios should be applied
along with balancing between resources, and quality of results needed.

The main purpose of the case study was to prove the effectiveness of
the framework through the illustrative case study. In this paper, the
authors used a lighting application for the case study, since lighting is a
common case in building analysis and one of the most studied features of
IVE simulations. In fact, the framework is generic, which can be applied
to not only lighting studies, but other studies related to human-building
interactions (e.g., thermal and acoustical comfort studies) and different
BPMs. Additionally, the robustness, uncertainty, and sensitivity are
dependent on several factors such as input parameters, a computational
structure, and nature of a computation. This study only investigated the
robustness of the computation relative to input parameters. Therefore,
future research is needed to investigate other factors that may signifi-
cantly impact the robustness and evaluate the framework on other
applications.

In practice, designers and engineers use BPMs to estimate building
performance. During the analysis, many assumptions may be made with
respect to input parameters. The assumed values may differ from the
actual one obtained from actual measurements. Although designers and
engineers may not know the exact difference, perturbation allows them
to assume potential levels of such difference. Thus, they can infer the
potential impact of uncertainty associated with input parameters. In this
way, robustness analysis is crucial for quantitatively understanding the
uncertainty of input parameters and understanding its influence on
BPMs. Designers and engineers can better understand whether BPMs are
reliable and produce accurate outcomes. As a result, they gain confi-
dence on using BPMs to assist decision-making, avoid design failures,
and enhance design optimizations. Future work will address the
robustness of other machine learning approaches [74-78] when applied
to building performance modeling.
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