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A B S T R A C T   

Building performance models (BPMs) have been used to simulate and analyze building performance during 
design. While extensive research efforts have made to improve the performance of BPMs, little attention has 
given to their robustness. Uncertainty is a crucial factor affecting the robustness of BPMs, in which such effect 
needs to be quantified through a suitable approach. The paper offers a robustness analysis framework for BPMs 
by using perturbation techniques to simulate uncertainty in input datasets. To investigate the efficacy of the 
framework, a generative adversarial network (GAN)-based framework was selected as a case study to analyze 
light switch usages in a single-occupancy office simulated using an immersive virtual environment (IVE). The 
robustness of the GAN was analyzed by comparing differences between a baseline (i.e., a BPM obtained from the 
GAN trained on a non-perturbed dataset) and BPMs obtained from the GAN trained on perturbed datasets. 
Overall, the robustness of the GAN significantly reduced when the training datasets were perturbed by using 
structured transformation techniques. The GAN remained relatively robust when the training datasets were 
perturbed by using an additive perturbation. Additionally, the sensitivity of the GAN involves different magni
tudes corresponding to different levels of perturbed input datasets. The study suggests that the perturbation 
analysis is effective for investigating data uncertainty affecting the robustness of BPMs.   

1. Introduction 

Energy used in buildings has been cited as a major source of carbon 
emissions in many research studies [1–3]. Massive investments have put 
in commercial and residential projects, which continuously shape sus
tainability of future built environments (e.g., controlling carbon emis
sions, energy uses, and occupant comfort). Sustainable building has 
become one of the major contributions in building designs, involving 
several assessments of building factors and occupants such as energy 
system efficiency, material performance, lifecycle cost, and occupants’ 
satisfaction and health [4]. Building performance models (BPMs) are 
decision-support tools that designers often use for understanding, 
analyzing, and comparing different design options to satisfy building 
goals and objectives [5,6]. A number of studies have developed BPMs for 
enhancing building performance optimizations from whole buildings 

[7] to specific building systems (e.g., space heating [8], air quality [9], 
light switches [10], blinds, windows, and thermostats [11]). Several 
methods and algorithms have been used, which may be categorized in 
two groups, namely expert-based and simulation-based optimizations 
[12]. The expert-based optimization is based on a design of an experi
mental approach to optimize building performance without creating 
mathematical and/or statistical models [12]. The simulation-based 
optimization is mainly an automated process relying on numerical and 
mathematical optimizations. It has been widely accepted as the effective 
approach to construct BPMs [12,13]. According to the simulation-based 
optimization, BPMs are mostly embedded in computational processes, 
where they take given inputs (e.g., occupancy schedules, environmental 
conditions, and building materials) to analyze and estimate outputs (e. 
g., building performance and usages of building components) [14]. Such 
computations involve many sources of uncertainty such as input pa
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rameters [15,16] and computational structures [17]. If the uncertainty 
of input parameters is too large, the computations may not be robust and 
generate uncertain, inaccurate, and unreliable outputs [18]. Further
more, the computations may involve instability and faulty algorithm, 
which can be another factor introducing uncertainty during computa
tional processes [19]. The robustness analysis helps to understand im
pacts of such uncertainty, thereby gaining more confidence in using the 
computations for decision-making, and, optimally, improve perfor
mance of building design and contributes to sustainable building [20]. 

Robustness analysis in this study is defined according to the robust 
theorem as investigation whether the performance of a computation 
remains robust and produces reliable outputs, when it is challenged by 
uncertainty [21]. In general, uncertainty can be classified under two 
heads, namely aleatory and epistemic uncertainties [22]. Aleatory un
certainty occurs due to the naturally variability of a model system. It is 
also known as irreducible uncertainty and is often ignored in robustness 
analyses. Epistemic uncertainty arises due to absence of knowledge and 
information in analyses. It can be reduced, if more information can be 
acquired [23]. For example, it may occur due to uncertainty related to 
the input parameters. Sources of such uncertainty may be data errors, 
varying degree of reliability of data collection tools, and random nature 
of participants. Accordingly, this work focuses on the robustness anal
ysis of computations affected by the epistemic uncertainty. 

Performing the robustness analysis requires knowledge of uncer
tainty of input parameters. Traditionally, data uncertainty are quanti
fied through variations of obtained data and the variations are acquired 
by, for instance, repeating experiments [24]. However, many experi
ments, particularly experiments associated with immersive virtual en
vironments (IVEs), cannot be repeated because of limited resources, 
such as times, costs, and humans [25]. Uncertainty estimations are 
among common strategies to mitigate the limitation and have appeared 
in various research fields, especially machine learnings. Two 
outstanding approaches are widely used to simulate uncertainty, namely 
Bayesian and non-Bayesian approaches [26,27]. The Bayesian approach 
requires prior probability distributions over input datasets to estimate 
posterior probability distributions through several alternative Bayesian 
inferences (e.g., Laplace approximation [28], variational inference [29], 
Markov Chain Monte Carlo [30], and Monte Carlo dropout [31]). Then, 
the posterior probability distributions decompose uncertainty into 
computational models. The approach involves approximations of prior 
and posterior probability distributions, which may not be suitable for 
computations included in BPMs, especially BPMs involving datasets 
associated with human interactions. Since human interactions are 
vulnerable to many factors and change from time to time, estimating 
uncertainty corresponding to human interactions through probability 
distributions may be inaccurate. On the other hand, the non-Bayesian 
approach avoids estimations of probability distributions. Among 
various methods, a perturbation method has been successfully used to 
estimate uncertainty of input parameters for robustness analyses in 
several studies, including image classifications [32,33], general classi
fications [34], and speech recognitions [35,36]. There are many types of 
perturbation techniques, such as adding data noise, replacing data with 
random ones, and altering data. To analyze the robustness, computa
tions run on perturbed input datasets, each of which represents a 
different level of uncertainty. The robustness is assessed by comparing 
baselines (e.g., outputs generated by using non-perturbed datasets) with 
outputs generated by using perturbed input datasets. 

The study contributes to a robustness analysis corresponding to im
pacts of uncertainty on computations, an important issue discussed in 
previous studies [15–18]. Extending to those studies, the robustness 
analysis for computations associated with BPMs and human-building 
interactions in IVEs is provided, where, moreover, uncertainty arising 
from such applications can be quantified. The authors experimented and 
investigated performance of the robustness analysis through a case 
study. The case study analyzed the robustness of a computation in a 
framework for augmenting BPMs proposed by Chokwitthaya et al. [37], 
in which it has been proven to appropriately construct BPMs during 
design. It involves an IVE, an existing BPM, and a Generative Adversarial 
Network (GAN), that consists of a pair of Artificial Neural Network 
(ANN)s playing a game with each other. Chokwitthaya et al. [37] used 
an IVE to simulate a new design and acquire context-aware design-specific 
data through human-building interactions. The GAN used context-aware 
design-specific data to bias an existing BPM (i.e., a BPM constructed by 
using data of human-building interactions in an existing building) to
ward a new design guided by a given performance target. 

2. Robustness analysis 

2.1. Introduction 

The goal of the robustness analysis in this study is to determine 
whether a computation of a BPM produces resilient outputs. If a 
computation for particular assumptions about variability in inputs (e.g., 
uncertainty) produces similar outputs, it is considered robust for those 
assumptions. That is, the robustness analysis framework (Fig. 1) iden
tifies whether a computation remains robust, when input datasets are 
uncertain. It determines differences between a baseline, an output 
generated by a computation taking a non-perturbed input dataset (Anon- 

perturbation), and an output generated by a computation taking a perturbed 
input dataset (Aperturbation). If Aperturbation is not significantly different from 
Anon-perturbation, the computation is considered robust. Accordingly, the 
hypothesis was defined as follows: 

H0: Aperturbation is not significantly different from Anon-perturbation 
H1: Aperturbation is significantly different from Anon-perturbation 

It has to be noted that, a baseline, in the framework, is information 
that users provide as a base for determining robustness of a BPM. The 
baseline may be obtained from both local and global analyses depended 
on available and appropriate baseline used in a study. It can be provided 
in various forms such as an average and a specific outcome of the BPM. 

Fig. 1. The robustness analysis framework.  
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2.2. Perturbation 

The general purpose of perturbations is to simulate variability of 
input datasets. In this paper, the authors use perturbations to add un
certainty to input distributions represented by their respective input 
datasets [38]. Perturbations may be performed using several techniques 
depended on types of input parameters and purposes of studies. In image 
classification using machine learning, common perturbation techniques 
include injecting noise to images [39], changing information of images 
(e.g., watermarking, patching, and changing pixels) [40], and trans
forming image geometry [41,42]. In speech recognition using machine 
learning, perturbation techniques include adding noisy signal [43], 
making speech reverberated [44], and adding background noise [45]. 
Other examples of perturbations are inserting sentences in question 
answering systems [46] and using perturbation scale to alter data 
[47,48]. 

Perturbation techniques may be categorized as an additive pertur
bation (e.g., injecting noise to images, adding noisy signal, and adding 
background noise) and a structured transformation (e.g., changing in
formation of images, transforming image geometry, and making speech 
reverberated) [49]. The former adds additional unrelated data such as 
data noise to training datasets; whereas the latter replaces data in 
training datasets with unrelated data or alters data in training datasets. 
The two categories serve different purposes on simulating uncertainty 
and are meaningful in investigating and analyzing robustness of a 
computation. 

In addition, selection of the perturbation techniques depends on 
parameter types and circumstances that may introduce uncertainty to 
parameters. For instance, IVE experiments cannot simulate or include all 
possible scenarios occurring in the world. Excluded scenarios may 
implicitly influence uncertainty of input datasets and impact robustness 
of a computation. Adding data noise is an alternative to simulating 
additional uncertainty caused by existence of excluded scenarios. 
Furthermore, human decisions such as choices of switching a light on or 
off may be subjective or even involve wrong decisions, causing uncer
tainty in obtained datasets. Such uncertainty can be simulated by 
replacing parts of input datasets with unrelated data. Another example is 
that sensors used in experiments may involve uncertainty caused by 
unreliable measurements, which can be simulated by altering datasets 
associated with the measurements. 

Determining which variables to perturb is among key factors in the 
robustness analysis. It is possible that the analysis does not need to 
consider all variables. Although there is no specific criterion to select 
variables, the decision is mainly based on needs of a particular appli
cation. For instance, categorical variables (e.g., names and labels) are 
less likely to be subjected to uncertainty. Such variables may be 
excluded from being perturbed. 

Levels of perturbation are important factor in the robustness anal
ysis. They help to investigate robustness of a computation responding to 
different levels of uncertainty. Generally, there is no standard or rule to 
define the levels. Most of previous studies defined the levels based on 
assumed amounts of uncertainty in variables that are believed to have an 
impact on their computations’ robustness. For instance, Haghnegahdar 
and Raazavi [48] used perturbation scales (e.g., ±1%, ±5%, ±10%, and 
± 20%) to distort datasets associated with input parameters and simu
late uncertain input parameters for analyzing the robustness of earth 
and environmental system models. 

2.2.1. Perturbation forms 

2.2.1.1. Additive perturbation. An additive perturbation has been 
widely involved in analyzing robustness of machine learning models 
[50–53]. It maintains input data and adds additional unrelated data (e. 
g., data noise) to datasets. Its main purpose is to allow investigations 
whether models have ability to remain robust by maintaining the 
knowledge of input datasets and adding different levels of perturbation 
[54]. For instance, Rolnick et al. [55] investigated the robustness of their 
deep neural network across different levels of added noise in the per
turbed training datasets. They added noise up to 100 data for every 
training datum in several experiments. 

Adding data noise is a traditional technique of additive perturbation. 
One of the common noise categories is additive white Gaussian noise 
(AWGN), where data noise are drawn from a Gaussian (i.e., normal) 
distribution, which has been applied to many experimental datasets 
[56]. Furthermore, AWGN allows direct control over variance of noise. 
Data noise is generated using Gaussian (i.e., normal) distribution ac
cording to variances of input datasets, as a result, the data noise has 
similar variances and comparable to the input datasets Therefore, add
ing AWGNs is potentially an additive perturbation technique for 
analyzing robustness of computations. 

2.2.1.2. Structured transformation. A structured transformation (e.g., an 
imperceptible perturbation) investigates the robustness of models by 
reducing or distorting the knowledge of input datasets. It has been 
applied in several robustness analyses. For example, Liu et al. [57] 
generated perturbed input datasets of traffic signs by scrawling and 
patching the signs to reduce knowledge gained from the original data
sets of the signs. They re-trained the classification model to investigate 
its accuracy. They found that the accuracy of the model decreased, 
which explicitly revealed decrease of its robustness. Engstrom et al. [42] 
distorted information of images by randomly rotating the images be
tween −30 and +30 degree and transforming the images up to 10% of 
image pixels. Their results suggested that small rotations and trans
formations could significantly degrade accuracy and robustness of 
classifier models. Accordingly, the structured transformation is taken as 
one of the techniques to assist the robustness analysis in this work. 

3. Case study 

Fig. 2 shows the scheme and components of the GAN-based frame
work attached with the robustness analysis. In the following, a summary 
of the GAN-based framework and the IVE experiment are provided, 
where the complete documentation of the framework has been pub
lished in Chokwitthaya et al. [37]. Then, the robustness analysis is 
discussed. 

3.1. The GAN-based framework 

The GAN-Based Framework was proposed by the authors for aug
menting BPMs [37,58]. It uses a nonparametric approach to generate a 
mixture model of an existing BPM and context-aware design-specific data. 
The framework can automatically determine an appropriate mixture by 
using a performance target as a guide. Its performance has been proven 
and evaluated [37]. The framework contributes to assisting and 
improving building performance estimations for non-existing buildings 
(e.g., buildings under design). There are five major components 

C. Chokwitthaya et al.                                                                                                                                                                                                                         



Advanced Engineering Informatics 50 (2021) 101401

4

involved in the GAN-based framework (the green boxes in Fig. 2) 
including: (1) an existing BPM, (2) context-aware design-specific data, (3) a 
performance target, (4) the GAN, and (5) an augmented BPM. 

3.1.1. Existing building performance model 
An existing BPM describes relationships of historical events (e.g., 

building environments and building characteristics) and observations 
(e.g., human-building interactions). Traditionally, data used to 
construct the existing BPM is acquired from human-building interactions 
with embedded contexts of existing buildings. Consequently, the existing 
BPM may not address important contextual factors influencing human- 
building interactions in the context of a building under design. If the 
existing BPM is used to estimate performance of a specific space (e.g., 
building under design), discrepancy between estimated and actual 
building performance may arise. 

3.1.2. Context-aware design-specific data 
Context-aware design-specific data describes human-building in

teractions influenced by contextual factors of a specific space (e.g., a 
building under design). For example, the Hunt model [59] uses work 
area illuminance as an independent variable to predict statuses of light 
switch usages. However, other factors may also influence light switch 
usages such as office tasks (e.g., reading, relaxing, meeting, and draft
ing) and locations of a light switch (e.g., a switch is by a door and on a 
desk). For the Hunt model, the office tasks and the locations of a light 
switch are contextual factors, since they are not included in the model. 
Immersive virtual environments (IVEs) can be used to acquire such 
context-aware design-specific data [60–62]. 

3.1.3. Performance target 
A performance target is a performance metric (e.g., energy intensity of 

a space) defined to satisfy the objectives of a building design [37]. Such 
performance metric is converted into operational measures for compu
tational purposes. Nevertheless, the conversion method is still an open 
topic requiring further attentions. The performance target is used to 
guide the combination of an existing BPM and context-aware design- 
specific data, so that the GAN can produce an augmented BPM, whose 
analytic results are as close to the target as possible. 

3.1.4. Computation 
The generative adversarial network (GAN) [63] is implemented as 

the computation method in the framework [37]. The GAN comprises a 

generator and a discriminator. The generator employs ANN to learn 
mixed probability distributions (i.e., mixture of an existing BPM and 
context-aware design-specific data) and generate an augmented BPM that 
follow a target distribution. The discriminator employs another ANN to 
discriminate an augmented BPM and the target distribution. The GAN 
uses the concept of a two-player minimax game to train the generator 
and the discriminator. 

3.2. Robustness analysis of the GAN 

The analysis focused on understanding the robustness of the GAN 
and testing the hypothesis. The estimations of light switch usages in a 
single-occupancy office were used as an application case. It needs to be 
noted that the case study reused data, and the application to obtain the 
data was fully reported in Chokwitthaya et al. [37]. To avoid unnec
essary repetition, this section only provides a brief introduction of the 
major components, e.g., the existing BPM, the context-aware design- 
specific data, the performance target, the computation, and the 
augmented BPM. The training datasets associated with the existing BPM 
and context-aware design-specific data were perturbed by using the 
aforementioned perturbation techniques. Augmented BPMs generated by 
the GAN trained on the perturbed training datasets were used to analyze 
the robustness of the GAN. 

3.2.1. Overview of the reused application 
The light usage prediction model of Hunt [59] (Fig. 3) and Da Silva 

et al. [64] (Fig. 4) were selected as the existing BPM and the performance 
target, respectively. Both models described relationship between work 
area illuminance as an independent variable and probability of 

Fig. 2. GAN-based framework attached with the robustness analysis.  
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Fig. 3. Hunt model.  
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switching on as a dependent variable. The datasets generated from the 
Hunt and Da Silva model were called “the existing BPM dataset” and “the 
performance target dataset”, respectively. 

An immersive virtual environment (IVE) simulated a single- 
occupancy office (Fig. 5) and acquire context-aware design-specific data 
corresponding to contextual factors. The contextual factors considered 
in the IVE experiment were office tasks (e.g., intensive reading, having a 
break, having a meeting, and drafting) and light switch locations (e.g., 
by the door and on the desk). Similar to Hunt and Da Silva model, the 
independent and dependent variables included in the IVE experiment 
were the work area illuminance (lx) and the probability of switching on, 
respectively. Table 1 summarizes the contextual factors, independent, 
and dependent variables considered in the IVE experiment along with 
their values. Data corresponding to the contextual factors, independent, 
and dependent variables were acquired from 30 students including 18 
males and 12 females and called “the IVE dataset”. Fig. 6 illustrates the 
virtual environment, when a participant was exploring the IVE and 
selecting probability of switching on. As discussed by Chokwitthaya 
et al. [25], the Gaussian mixture model (GMM) [65] was used to increase 
the number of independent and identically distributed (IID) samples 
based on the IVE data and generate a new dataset, called “the synthetic 
IVE dataset”. 

In data preprocessing, the existing BPM dataset, the synthetic IVE 
dataset, and the performance target dataset were standardized. The 
existing BPM dataset and the synthetic IVE dataset were split into training 
datasets and testing datasets with a 70–30 split, namely the existing BPM 
training dataset, the existing BPM testing dataset, the synthetic IVE training 
dataset, and the synthetic IVE testing dataset. 

The GAN comprised of a generator and a discriminator. The gener
ator took the existing BPM training dataset and synthetic IVE training 
dataset as the input datasets. Before training the GAN, the generator was 
pre-trained on the combination of the existing BPM training dataset and 
the synthetic IVE training dataset to initialize its weights and biases. In 
every epoch, the generator gained knowledge by learning mixtures of 
the existing BPM training dataset and synthetic IVE training dataset and 
made a prediction. The prediction that was closest to the performance 
target was considered as an augmented BPM. The discriminator deter
mined differences between the prediction of the generator and the per
formance target dataset. The discriminator sent a feedback to the 
generator for improving its knowledge of mixtures and prediction in the 
next epoch. 

3.2.2. Perturbation 
The GAN as the computation of the GAN-based framework acquired 

its knowledge through training datasets associated with the input 

Table 1 
Variables and their values considered in the IVE experiment.  

Contextual factor Independent variable Dependent variable 

Office task Light switch 
location 

Work area illuminance 
(lx) 

Probability of 
switching on 

Intensive 
reading 

By the door 50 Very unlikely 

Having a break On the desk 100 Not likely 
Having a 

meeting  
150 Neutral 

Drafting 200 Likely  
350 Very likely 
500  

Total = 4 Total = 2 Total = 6 Total = 5  

Work area illuminance (lx)

Fig. 4. Da Silva model.  

Fig. 5. Top view of the virtual office.  

Fig. 6. A participant exploring the IVE and selecting likelihood of switching on.  
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parameters. To analyze the robustness of the GAN, perturbations had to 
be executed on the training datasets to make them uncertain. The per
formance target guided the mix of two input parameters of the GAN, 
namely the existing BPM and the context-aware design-specific data. 
Although the performance target could be perturbed in theory, there 
was no practical meaning in the scope of this study. It was assumed that 
the target was specific without uncertainty. 

In the case study, the contextual factors (i.e., the office tasks and the 
locations of the light switch) were categorical variables. Even if there 
was uncertainty associated with them, the impact of uncertainty was 
reflected through the dependent variable (i.e., the probability of 
switching on). Therefore, they were not included in the perturbation. On 
the other hand, the probability of switching on and the work area illu
minance were subject to uncertainty. The former was subject to uncer
tainty because its data were obtained from human-building interactions, 
which tended to be sensitive to building contexts. The latter was subject 
to uncertainty because it was measured using sensors for creating the 
existing BPM and simulated using the IVE to generate the context-aware 
design-specific data. Those experimental tools and simulations often 
involved levels of uncertainty. Consequently, the authors perturbed data 
of the work area illuminance and the probability of switching on in the 
training datasets. 

Using additive perturbation, the authors simultaneously perturbed 
the data of the probability of switching on and work area illuminance by 
adding data noise. It allowed the authors to investigate and compare 
overall impacts of uncertain parameters, i.e., the existing BPM versus 
context-aware design-specific data on the robustness of the GAN. Using 
structured transformation, the authors perturbed the two variables 
separately using two techniques, namely replacing the probability of 
switching on with random data and altering the work area illuminance. 
It allowed the authors to further investigate the impact of uncertainty of 
individual variables on the robustness of the GAN under specific cir
cumstances. Table 2 summarizes the parameters used in the case study 
along with their corresponding training datasets, variables subject to 
uncertainty, and the perturbation technique applied to each variable. 
The perturbed training datasets were called “perturbed existing BPM 
training datasets” and “perturbed synthetic IVE training datasets”, when the 
existing BPM training dataset and the synthetic IVE training dataset were 
perturbed, respectively. Here, a note is put to mention that the particular 
design and administration of the perturbation are merely for under
standing and demonstrating the impact of uncertain parameters and 
variables in the case study. Other applications may implement different 
designs and administrations depending on their purposes. 

3.2.2.1. Additive perturbation. A major benefit of using the additive 
perturbation is to investigate whether the GAN has ability to remain 
robust, when the GAN maintains knowledge of training datasets asso
ciated with the existing BPM and the context-aware design-specific data, 

even if the perturbed training datasets contain different levels of the 
additive perturbation. Another benefit of using the additive perturbation 
is to explore whether the training datasets are sufficiently effective for 
the GAN to remain robust. If the GAN becomes non-robust when the 
training datasets involve a certain level of perturbation, revisions to the 
training datasets may need to be considered such as acquiring more 
knowledge by conducting additional experiments to enhance the effi
cacy of the training datasets and robustness of the GAN. 

To investigate the robustness of the GAN, additive white Gaussian 
noise (AWGN) was added to the data of the probability of switching on 
and work area illuminance in the existing BPM training dataset and the 
synthetic IVE training dataset. The simulation of AWGN implemented the 
Gaussian (i.e., normal) distribution with zero means and specified var
iances (N(0, σ2)) to randomly generate the noisy data. The case study 
used the variances of the probability of switching on and the work area 
illuminance as the variances of the Gaussian distribution, when adding 
noise to their respective data. The authors added various amount of 
AWGN to the training datasets as shown in Table 3. For instance, the 
ratio of 10:1 denoted there were 10 actual datapoints to 1 AWGN in 
every 11 datapoints of the perturbed datasets. The perturbation ratios 
were defined by considering limited resources (e.g., computational 
costs, and times) and purposes of the study. The application preserved 
the actual data as the majority in the perturbed training datasets by 
limiting the ratio of the actual data to AWGN at 1:1. In other applica
tions, more perturbation ratios may be used in analyses. However, trade- 
off between resources needed and levels of perturbation ratios should be 
considered. 

3.2.2.2. Structured transformation. The main contribution of structured 
transformation is to inspect how reduced or distorted knowledge of 
training datasets impacts the robustness of the GAN. It perturbs the 
training datasets by using two techniques for different purposes. To 
investigate the robustness due to the uncertain probability of switching 
on, portions of the training datasets with respect to the probability of 
switching on were replaced with random data. To analyze the robustness 
on uncertain work area illuminance, the data with respect to the work 
area illuminance in the training datasets were altered using perturbation 
scales. In each perturbation technique, different levels of perturbation 
were assigned. 

Table 2 
Summary of parameters and their corresponding components.  

Parameter Training dataset associated 
with the parameter 

Variables in the training dataset 
subject to uncertainty 

Perturbation 

Additive 
perturbation 

Structured transformation 

Adding data 
noise 

Replacing probability of switching 
on with random data 

Altering work area 
illuminance 

Exiting BPM Existing BPM training dataset Probability of switching on Yes Yes No 
Work area illuminance Yes No Yes 

Context-aware design- 
specific data 

Synthetic IVE training dataset Probability of switching on Yes Yes No 
Work area illuminance Yes No Yes  

Table 3 
Ratios of adding AWGN to data in perturbed training datasets.  

Case Ratio of data in training datasets to AWGN 

1 10:1 
2 10:3 
3 10:5 
4 10:7 
5 10:10  
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3.2.2.2.1. Replacing probability of switching on with random data. 
Ideally, the selection of the perturbation technique reflects practical 
circumstances causing uncertainty in the training datasets. For instance, 
a participant has different preferences at different times when interacts 
with a light switch even if the lighting conditions were the same. The 
circumstance introduces uncertainty to the probability of switching on. 
The structured transformation is appropriate to simulate such uncertain 
preferences, because it replaces a portion of the probability of switching 
on in the existing BPM training dataset and the synthetic IVE training 
dataset with unrelated data. Thus, it reduces the knowledge of the 
training datasets. tTe robustness of the GAN was investigated in terms of 
the ability of the GAN to maintain robust, even though its knowledge of 
the probability of switching on was reduced in the training datasets. 

In the case study, the data respecting to the probability of switch on 
in the training datasets were randomly replaced with random numbers 
between 0 and 1, where the limit based on the nature of probability. 
According to Table 4, three perturbation ratios (i.e., 9:1, 7:3, and 5:5) 
were used to replace data of the probability of switching on in the 
existing BPM training dataset and the synthetic IVE training dataset. For 
instance, the ratio of 9:1 denoted there were 9 actual data points to 1 
randomized data point in every 10 data points in the perturbed datasets. 
The selection of perturbation ratios was dependent on mainly purposes 
of the study and consideration of resource limitations (e.g., computa
tional costs, and times). The purpose of using different ratios was to 
assess the robustness of the GAN with respect to different amount of 
knowledge about the probability of switching on in the training dataset. 
The application preserved the actual data as the majority in the per
turbed training dataset by limiting the ratio of the actual data to 
replaced data at 1:1 (i.e., 5:5 in Table 4). 

3.2.2.2.2. Altering work area illuminance. In general, work area 
illuminance is subjected to uncertainty. Data of work area illuminance is 
often obtained from experimental tools (e.g., illuminance sensors and 
IVE simulations). The tools may involve uncertainty (e.g., ±10% of 
actual illuminance) and propagate the uncertainty to measured data. 

In the case study, the IVE simulated illuminance levels according to 
analysis from a lighting simulation software (e.g., 3D Max). A method to 
access uncertainty of the IVE on lighting simulation has not existed. That 
is, the specific uncertainty associated with lighting in IVE could not be 
quantified. For lighting sensors used in the existing BPM, Hunt did not 
report specifications of the particular sensors and their uncertainty. 
Consequently, the authors did not have information about uncertainty of 
the sensors, and did not quantify specific uncertainty of particular sen
sors. Since the framework is generic, “what if” scenarios to assume such 
uncertainty were applied to understand possibility of different levels of 
uncertainty. To investigate the robustness of the GAN due to uncertainty 
of the work area illuminance, the authors altered data of the work area 
illuminance in the training datasets using perturbation scales. The 
technique was based on the concept of the structured transformation 
and adaption of previous perturbation techniques, namely transforming 
image geometric in Engstrom et al. [42] and using perturbation scales in 
Haghnegahdar and Raazavi [48]. Consequently, the perturbation scales 
(i.e., ±10%, ±30%, and ± 50%) were used to alter data of the work area 
illuminance in the training datasets. The perturbations were performed 

according to Equation (1). Even though, the scale of 50% may appear to 
be impractical, it helps to assess the robustness of the GAN regarding 
extreme conditions of data error. For instance, the illuminance sensors 
were interrupted by external signals resulting in extreme errors in the 
measurements. The application used a perturbation interval at 20% and 
limited the perturbation at 50% because of resource limitations. 

Altered illuminance = illuminance ± (illuminance x perturbation scale)

(1)  

3.2.3. Criteria of robustness analysis, hypothesis testing, and sensitivity 
investigation 

The one-at-a-time (OAT) technique [66,67] was applied to train the 
GAN using one perturbed training dataset a time. A total of 23 augmented 
BPMs (i.e., non-perturbation + (5 cases of adding data noise + 3 cases of 
Replacing Probability of Switching on with Random Data + 3 cases of 
Altering Work Area Illuminance) * 2 input parameters) were generated. 

The two-sample Kolmogorov-Smirnov test (K-S test) [68], a statistical 
test measuring a distance of two empirical distributions, was applied to 
test the hypothesis. A level of significant at α = 0.05 was applied to 
investigate the statistically significant difference between a baseline, an 
augmented BPM generated by the GAN taking a non-perturbed input 
dataset (Anon-perturbation), and an augmented BPM generated by the GAN 
taking a perturbed input dataset (Aperturbation). On one hand, P-values ≤
0.05 indicated significant difference between Anon-perturbation and Apertur

bation and, as a result, the GAN became non-robust. On the other hand, P- 
values > 0.05 indicated no significant difference between Anon-perturbation 
and Aperturbation and, therefore, the GAN remained robust. 

Additionally, the K-S statistic obtained from the K-S test was used to 
assess sensitivity of the GAN. To determine the sensitivity of the GAN, 
pairwise comparisons of the K-S statistic across Aperturbation generated 
from the GAN trained on the perturbed existing BPM training dataset and 
the perturbed synthetic IVE training dataset within the same level of 
perturbation were analyzed. For instance, if the K-S statistic associated 
with Aperturbation generated from the GAN trained on the perturbed existing 
BPM training dataset and the synthetic IVE training dataset at 10:1 
perturbation ratio was lower than that from the GAN trained on the 
existing BPM training dataset and the perturbed synthetic IVE training 
dataset, the GAN was less sensitive to the existing BPM than the context- 
aware design-specific data. 

4. Results and discussions 

Results and discussions are organized in three sections, 1) non- 

Table 4 
Ratios of changing data of the probability of switching on to random 
data in perturbed training datasets.  

Case Ratio of actual data to changed data 

1 9:1 
2 7:3 
3 5:5  
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Fig. 7. An Augmented BPM corresponding to non-perturbed training dataset.  
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Fig. 8. Augmented BPMs corresponding to adding data noise.  
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perturbations, 2) additive perturbation performed by adding data noise, 
and 3) structured transformation performed by replacing the probability 
of switching on with random data and altering the work area 
illuminance. 

Fig. 7 illustrates the Anon-perturbation, the existing BPM training dataset, 
the performance target dataset, as well as means and standard deviations 
of the synthetic IVE training dataset through a plot of the probability of 
switching on versus their corresponding work area illuminance. Figs. 8, 
10, and 12 demonstrate comparisons between Anon-perturbation and Aper

turbation corresponding to each perturbation and its levels. In Figs. 7, 8, 
10, and 12, boxplots are used to demonstrate the variances representing 
the uncertainty of Anon-perturbation and Aperturbation. Tables 5–7 summarize 
the p-values used to statistically evaluate the robustness of the GAN. 
Figs. 9, 11, and 13 show plots of K-S statistic associated with the levels of 
perturbation in each perturbation case for assessing the sensitivity of the 
GAN. 

4.1. Non-perturbation 

Fig. 7 shows the efficacy of the GAN for generating an augmented 
BPM (i.e., Anon-perturbation) that reach the performance target. According 
to the boxplots, uncertainty existed in Anon-perturbation, even though the 
input parameters were not perturbed. The finding agreed with the fact 
that uncertainty always exists in building performance models 
mentioned in literatures [20,69]. Several factors may contribute to the 
occurrence of uncertainty such as the nature of the GAN (i.e., aleatory 
uncertainty), the structure of the GAN, and the completeness of the input 
parameters. Such factors may need attention in future research. Addi
tionally, the Anon-perturbation was used as a baseline in the robustness 
analysis throughout the case study. 

4.2. The additive perturbation 

4.2.1. Adding data noise 
Fig. 8 illustrates comparisons of Anon-perturbation and Aperturbation with 

respect to adding data noise to the probability of switching on and the 
work area illuminance. AWGN was added according to the perturbation 
ratios described in Table 3, i.e., 10:1, 10:3, 10:5, 10:7, and 10:10. Fig. 8 
reveals that the uncertainty of Aperturbation is slightly higher than that of 
Anon-perturbation, since variances in the boxplots associated with Aperturbation 
are larger than those associated with Anon-perturbation. The results suggest 
adding noise marginally influenced the uncertainty of Aperturbation. Add
ing noise to the existing BPM seems to cause less uncertainty to Apertur

bation than adding noise to the synthetic IVE training dataset. 
The influences of adding noise do not significantly impact the 

robustness of the GAN since p-values are greater than 0.05 in all cases as 
shown in Table 5. Therefore, the GAN remained robust, when the 
training datasets were perturbed by adding data noise at all perturbation 
ratios and in both cases (i.e., the perturbed existing BPM training datasets 

and the perturbed synthetic IVE training datasets). The results suggest that 
as long as the original knowledge of the training datasets was intact in 
the training datasets, the GAN was able to remain robust, even if the 
level of noise was increased to 100%. 

According to the K-S statistics reported in Fig. 9, the pattern of K-S 
statistics is not consistent across the perturbation ratios. Hence, it was 
unclear whether the GAN was more sensitive to the existing BPM training 
dataset or the synthetic IVE training dataset. Consequently, the GAN was 
not more sensitive to the existing BPM or the context-aware design-specific 
data when the training datasets were perturbed by adding data noise. 

Overall, the results indicate that the GAN was able to recognize and 
capture underlying knowledge of the input parameters contributing to 
generating the augmented BPMs that met the performance target. The 
finding greatly agrees with previous studies regarding to the robustness 
analysis by adding data noise. For instance, Hosseini et al. [51] found 
that the application programming interface (API) remained robust, 
whose outputs for restored images largely matched that for actual ones 
without the need for improving the image analysis algorithm, even when 
noise were applied to the images. The finding, as well, agrees with Munir 
[70]. Munir analyzed the robustness of the selective image encryption 
algorithm, where adding data noise was one of the case studies. He 
stated that the algorithm could decrypt images effectively, when images 
were corrupted with various noise categories (e.g., Gaussian noise, 
Poisson noise, salt and pepper noise, and speckle noise). 

4.3. The structured transformation 

4.3.1. Replacing the probabilities of switching on with random data 
The comparisons of Anon-perturbation and Aperturbation with respect to 

replacing the probability of switching on with random data between 
0 and 1 are illustrated in Fig. 10, where the perturbation ratios (i.e., 9:1, 
7:3, and 5:5) indicated the levels of perturbation. 

Fig. 10 shows that variances increase when the perturbation ratio 
increases, indicating increases of uncertainty of Aperturbation. The obser
vation implied that changing the probability of switching on in the 
training datasets with random data obviously contributed to the in
creases of uncertainty of Aperturbation in all perturbation ratios and the 
training datasets. Uncertainty of Aperturbation tended to increase in parallel 
with increasing the perturbation ratiosand perturbing the synthetic IVE 
training dataset appeared to be more influence on the uncertainty of 
Aperturbation than perturbing the existing BPM training dataset. 

Results of the hypothesis testing presented in Table 6 unveil that 
when the perturbation ratio increases, the rejected cases of the null 
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Fig. 9. K-S statistics corresponding to adding data noise.  

Table 5 
P-values corresponding to adding data noise.  

Perturbation ratio Existing BPM training dataset Synthetic IVE training dataset 

P-value P-value 

10:1 0.793 0.532 
10:3 0.221 0.628 
10:5 0.545 0.362 
10:7 0.545 0.059 
10:10 0.112 0.180  
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Fig. 10. Augmented BPMs corresponding to replacing probability of switching on with random data.  
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hypothesis (p-value < 0.05) increase. They suggested replacing data in 
the training datasets with random number reduced the level of knowl
edge in the GAN about the training datasets, and, thus, reduced the 
performance of the GAN, leading to decreases of its robustness. Ac
cording to Table 6, when the probability of switching on in the existing 
BPM training dataset was perturbed, the null hypothesis was rejected in 
one case where the perturbation ratio was set to 5:5. However, the null 
hypothesis was rejected in two cases, when perturbing the same variable 
in the synthetic IVE training dataset. In other words, even though the 
increases of perturbation ratios reduce the robustness, perturbing the 
probability of switching on in the existing BPM training dataset has less 
contribution to the reduction of the robustness than perturbing that in 
the synthetic IVE training dataset. 

According to Fig. 11, the K-S statistics associated with the perturbed 
existing BPM training datasets are lower than those associated with the 
perturbed synthetic IVE training datasets in all perturbation ratios. It 
implied that the GAN was less sensitive to the existing BPM than the 
context-aware design-specific data when the data of the probability of 
switching on were replaced by random data. 

According to the results, meaningful discussions can be made in the 
following:  

• When the perturbation ratio increased, the robustness of the GAN 
decreased and uncertainty of Aperturbation increased. The situation 
occurs because replacing data in the datasets with random number 
contributed to reductions of actual data in the datasets. As a result, 
underlying knowledge of the datasets used to train the GAN was 
decreased. Accordingly, training the GAN by using reduced knowl
edge datasets reduced performance of the GAN, leading to decreases 
of the robustness and increases of uncertainty of Aperturbations.  

• The investigations of the sensitivity suggested that users should 
highly pay attention to human-building interactions especially in 
new design to enhance the robustness the GAN.  

• Replacing the probabilities of switching on with random data was 
comparable with imperceptible perturbations such as patching im
ages, which parts of original training datasets were replaced with 
random data. According to studies related to such perturbations 
[40,57], robustness of algorithms depended on characteristics and 
amount of random data replacing data in original datasets. If the 
random data (e.g., patches) lied slightly close to original datasets or 
too small, the random data may not impact the algorithms. Meaning 
the algorithms remained robust. However, if the opposite situations 
occurred, the algorithms may misidentify distributions of the orig
inal data (e.g., misclassifying images), causing the algorithms non- 
robust. The mentioned statement was relatively corresponding to 
the finding in the case study. In addition, types of random data 
played a role in influencing the robustness, which was proven by 
Jefferso and Marrero [71]. Nonetheless, the case study did not take 
the types of random data into account, where such issue may be 
considered in the future work. 

4.3.2. Altering work area illuminance 
According to the boxplots associated with Aperturbation in Fig. 12, in

creases of the perturbation scales for altering the work area illuminance 
in both existing BPM training dataset and synthetic IVE training dataset 
increase uncertainty of Aperturbation. Uncertainty of Aperturbation was 
notably associated with the perturbation scale. Similar to the previous 
case, perturbing the synthetic IVE training dataset have more influence on 
the uncertainty of Aperturbation than perturbing the existing BPM training 
dataset. 

The p-values in Table 7 are less than 0.05 in 5 out of 6 cases, which 
shows that Aperturbation and Anon-perturbation are significantly different in 
most cases. The result suggested that altering the work area illuminance 
significantly impact the robustness of the GAN. Additionally, altering 
work area illuminance in the existing BPM training dataset had less in
fluence on reductions of the robustness than altering that in the synthetic 
IVE training dataset. The null hypothesis was rejected in two cases, where 
the perturbation scale was 30% and 50%, when the work area illumi
nance in the existing BPM training dataset was altered. However, the null 
hypothesis was rejected in all cases associated with the other training 
dataset. The finding was reasonably corresponding to what stated by 
Engstrom et al. [42]. They found that altering training data (e.g., 
rotating and translating image) significantly degraded their classifier 
robustness. Tramèr and Boneh [72] found similar outcomes, which were 
considered as the robustness trade-off. 

According to Fig. 13, the K-S statistics associated with the perturbed 
existing BPM datasets are lower than those associated with the perturbed 
synthetic IVE datasets throughout the perturbation scales. The result 
suggested that the GAN was less sensitive to the existing BPM than the 
context-aware design-specific data. 

The results of the hypothesis testing may be implicit to the significant 
impacts of uncertain experimental tools on the robustness and uncer
tainty of the GAN. The results can be the evidence for encouraging users 
to emphasize the importance and influence of experimental tools before 
conducting experiments. In practice, users are recommended to include 
procedures of calibrating experimental tools in experiments to reduce 
uncertainty that may occur in outcomes of BPMs. 

K
-S

 st
at

is
tic

Perturbation ratio 

Fig. 11. K-S statistic corresponding to replacing probability of switching on 
with random data. 

Table 6 
P-values corresponding to replacing probability of switching on with random 
data.  

Perturbation ratio Existing BPM training dataset Synthetic IVE training dataset 

P-value P-value 

9:1 0.394 0.177 
7:3 0.270 <0.05 
5:5 <0.05 <0.05  
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Fig. 12. Augmented BPMs corresponding to altering work area illuminance.  
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5. Limitations of the study 

Major limitations of the study include:  

• The case study only investigated the robustness of the GAN regarding 
the input parameters (i.e., the existing BPM and the context-aware 
design-specific data). The robustness associated with other compo
nents such as structure of the computation was excluded in the case 
study. Research attention on the robustness analysis of other com
ponents is needed in the future. 

• The case study limited the robustness analysis with three perturba
tion techniques. Other techniques that may have impacts on the 
robustness should be investigated to be able to draw comprehensive 
discussions.  

• More perturbation levels and smaller intervals should be considered 
to investigate the robustness. Due to limitations of resources (e.g., 
computational costs and times) and purposes of the case study, the 
perturbation was limited to large intervals between low and high 
perturbation levels.  

• The uncertainty results were quantitatively explained. To better 
understand and use model uncertainty in the future, the uncertainty 
should be modeled deterministically. Unfortunately, the modeling 
approach was not taken into an account in this work. To enhance 
performance of the framework, such approach needs attention in the 
future research. 

6. Conclusions and future work 

The robustness analysis using perturbation techniques has effectively 
identified the robustness, uncertainty, and sensitivity related to the 
problem in the case study. The hypothesis tests have shown that the 
proposed approach allowed the investigation and comprehension of 
factors influencing uncertainty that impacts robustness of the GAN. 
Several techniques were applied to observe the influence of the 
perturbation and assess the robustness including adding noise, replacing 
data with noise, and altering data. According to the case study, adding 
noise relatively impacted the robustness of the GAN but not in any 
statistically significant manner. In addition, it marginally increased the 
uncertainty of the augmented BPMs. Replacing data in the training 

datasets with noise and altering data in the training datasets caused 
significant reduction in the robustness of the GAN and increased the 
uncertainty of the augmented BPMs. The findings agreed with previous 
studies mentioning that impacts of perturbations reduced the robustness 
of machine learning models [49,73]. Furthermore, the GAN was more 
sensitive to the context-aware design-specific data than the existing BPM. 
Such findings may be used as a guide to create procedures of pertur
bations in future applications. However, other applications may give 
different outcomes. Applying the robustness analysis needs insight to 
determine which perturbation techniques and ratios should be applied 
along with balancing between resources, and quality of results needed. 

The main purpose of the case study was to prove the effectiveness of 
the framework through the illustrative case study. In this paper, the 
authors used a lighting application for the case study, since lighting is a 
common case in building analysis and one of the most studied features of 
IVE simulations. In fact, the framework is generic, which can be applied 
to not only lighting studies, but other studies related to human-building 
interactions (e.g., thermal and acoustical comfort studies) and different 
BPMs. Additionally, the robustness, uncertainty, and sensitivity are 
dependent on several factors such as input parameters, a computational 
structure, and nature of a computation. This study only investigated the 
robustness of the computation relative to input parameters. Therefore, 
future research is needed to investigate other factors that may signifi
cantly impact the robustness and evaluate the framework on other 
applications. 

In practice, designers and engineers use BPMs to estimate building 
performance. During the analysis, many assumptions may be made with 
respect to input parameters. The assumed values may differ from the 
actual one obtained from actual measurements. Although designers and 
engineers may not know the exact difference, perturbation allows them 
to assume potential levels of such difference. Thus, they can infer the 
potential impact of uncertainty associated with input parameters. In this 
way, robustness analysis is crucial for quantitatively understanding the 
uncertainty of input parameters and understanding its influence on 
BPMs. Designers and engineers can better understand whether BPMs are 
reliable and produce accurate outcomes. As a result, they gain confi
dence on using BPMs to assist decision-making, avoid design failures, 
and enhance design optimizations. Future work will address the 
robustness of other machine learning approaches [74–78] when applied 
to building performance modeling. 
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