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Abstract—In this paper we present Scaled Population Sub-
traction to fill a void in Scaled Population arithmetic. Scaled
population (SP) arithmetic is a scheme that is inspired by stochas-
tic computing (SC), a non-conventional approximate computing
method that is well known for its simplicity, area efficiency and
resilience to bit errors. SP arithmetic reduces the numerical
errors compared to SC and also solves the serialization limitation
of SC, since it is designed to have a O(1) gate delay. Previously, SP
was limited to only addition and multiplication and did not have
a way to perform subtraction. This paper introduces the basic SP
subtraction idea, followed by a detailed study of several ways that
the basic design can be improved to reduce the computational
error. Our best SP design significantly improves the error
compared to our basic SP subtraction idea (reducing it by 32.3%).
We also study the trade-off between design complexity of the
SP subtractor against output error. Also, our implementation of
the SP subtractor exhibits an improved delay, power and area
compared to fixed point realizations with the same size.

Index Terms—Approximate Arithmetic, Stochastic Computing,
Computer Arithmetic

I. INTRODUCTION

Approximate computing is an approach that trades off
accuracy against power, delay, area or reliability. Approximate
computing is often used in applications where approximate
results are tolerable. Examples of applications that are not
always sensitive to the occasional small errors include signal
processing [1]], machine learning [2], scientific computing [3]],
and real-time systems [4]. For example, in a perceptron, we
find a weighted sum and compare it with a threshold. Small
errors do not introduce any problems as long as they don’t
change the value of the weighted sum with respect to the
threshold. Voltage over-scaling [3]], precision scaling [6], and
inexact or faulty hardware [[7] are some popular approximate
computing techniques. Stochastic computing [8] is a non-
conventional arithmetic scheme for area-efficient implemen-
tation of approximate computing.
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In stochastic computing (SC), values are represented by
bit vectors, and the arithmetic operations are processed by
simple logic circuits, such as OR/AND gates for addition and
multiplication, respectively. In Figure [T} we see how an OR
gate can be used for addition. The numbers are represented as
a vector of Is and Os. If the length of the vector is II and the
number of ones is 7, the value the vector represents is 7 /IL.
The two bit vectors are fed to each of the two inputs of the OR
gate. The result is the bit vector at the output of the OR gate.
Assuming that the input bit vector is random with a uniform
distribution of 1s, the output bit vector will approximately have
as many ones as the sum of the two inputs. One can see that
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such an adder design is much simpler and therefore has much
lower circuit area compared to conventional adders. Moreover,
the impact of a single-bit error in SC is much less than that
of an MSB error in conventional binary numbers.

However, classical stochastic computing, which we will
refer to as SC in this paper, has its own limitations. First, the
accuracy of SC depends on the density and the randomness of
the 1’s in the binary bit vector. Second, the range of values that
can be represented by the bit vectors is limited to [0, 1]. Third,
SC has a runtime complexity of O(II), where II is the length
of the bit vector. These weaknesses limit the applicability of
SC in real world applications.

Scaled Population (SP) arithmetic [9] addresses the above
limitations and achieves fast, approximate computing with a
low area/power overhead and improved accuracy over SC.
SP arithmetic uses some of the basic ideas of SC, but with
following improvements:

« The inherent serialization of SC is avoided. A key design
goal of SP arithmetic is that each operation is computed
using O(1) gate delays (as opposed to clock cycles). SP
never allows any operation that requires a serial traversal
of the II bits of any operand. Therefore, The SP arithmetic
achieves a dramatic speedup over SC.

o The errors of SC are significantly reduced by providing a
scaling (exponent) term in SP arithmetic. SP arithmetic is
also more tolerant to bit errors than traditional fixed-point
or floating-point computation.

o The range of numbers that can be represented by SP is
much larger than what is possible in SC, due to the use
of an exponent field in SP.

While SP [9] results in a significant improvement over SC,
it does not provide a method for subtraction. For example, a
matrix inner product with positive as well as negative elements
cannot be realized using existing SP due to this limitation.

In this paper, we present an efficient technique for SP sub-
traction to fill this void in SP arithmetic. The key contributions
of our research are:

e We present a novel idea of how subtraction can be
performed using the SP arithmetic approach. We also
present several improvements to the basic SP subtraction
idea and present the best SP subtractor in terms of the
accuracy.

o We conduct a thorough study of the relationship between
design complexity and computational error.

e We further improve some of the computational units
previously presented in [9]. For example, we present
Skewed* addition, which is a more accurate version of
the Skewed addition method presented in [9]. We also
improve the density check units of [9]. These improve-
ments are tailored to give us better subtraction accuracy
and they are expected to lead to improved additional and
multiplication as well.



o We implement our approach in circuits of 45nm technol-
ogy, and show improved area, delay and power compared
to fixed-point arithmetic.

The rest of this paper is organized as follows: Section[II] pro-
vides background information on SC and SP. In Section [[IT] we
will describe the basic SP subtraction idea, and in Section
make several improvements to the basic idea. In Section
we present results for an ASIC implementation of the best SP
subtraction circuit from Section Finally, in Section we
will present our conclusions.

II. RELATED PREVIOUS WORK AND BACKGROUND

Stochastic Computing (SC) is a scheme for approximate
computing on fractional numbers. In SC, a number z is
represented by a II—bit vector w, where |7| < II bits are
randomly chosen to be 1, so that x = % € [0,1]. Here ||
is the number of bits of II that are 1. SC has been shown to
have a very low area cost for implementing common arithmetic
operations like multiplication. Circuit implementations of SC
can be found in [8]] and [[10]. The accuracy of the method
depends on the location of 1s and Os in the bit vectors. In
[1Q], the absolute value of subtraction is realized by using
MUX, but general subtraction is not handled. SC division is
described in [11]. The three major drawbacks of SC include:
(a) a performance bottleneck due to the serial transformation
from a binary number to its corresponding SC bit vector and a
serial computation of the result, (b) restricted operand range,
since numbers are constrained to be between 0 and 1, and (c)
a strong dependence of the error on operand values.

Scaled Population (SP) arithmetic is an approach designed
to handle a wider range of numbers and perform mathematical
operations in constant time [9], while reducing errors com-
pared to SC. SP uses a scaling term (exponent) that enables
the representation of numbers beyond the range [0, 1]. The SP
representation of a number z is an M-bit tuple z = {o, 7},
where o is a X-bit exponent term and 7 is a II-bit population
vector such that M = ¥ 4 II. The numerical value of a
number using the SP representation is given by the following
expression:
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In the above expression, |7| is the number of ones in
the SP representation of II and X, is a constant. For ex-
ample, the number 2.8 can be represented as {o,7} =
{110,1011110101}, assuming ¥ = 4. The SP representation
described above only handle non-negative numbers. However,
augmenting SP to handle signed computation can be easily
accomplished by adding a sign bit.

SP provides us an addition scheme called skewed addition,
which is illustrated in Figure 2] We use 2 II-bit masks m,, and
m,, where m, has the left % bits set to 1, and m,, has the right
Y bits set to 1. The result will be 7, = (m,&my)|(m,&m,),
with 0, = 0,+1 = o, +1. In skewed addition, it is guaranteed
that no matter what the density[] of the operands’ population
vectors is, the 1s in the two operands will never be aligned at
the same bit position. This avoids the main source of error in
SC addition.

SP also provides a method for approximate multiplication.
The authors of [9] provide a set of supporting operations that
they use in their SP addition and multiplication techniques. All
operations take constant time. Details for these operations are
presented in [9]. We utilize (and improve, as described) some
of these operations:

The density of a population vector 7 is defined as |r|.

Scaling
x=10111001 y=10111001 Term=01
mx=11110000 my=00001111
Increment
x & mx =10110000 y & my =00001010 Scaling
Term
(x & mx) | (y & my) ¢
1011_1010 New Scaling
Term=10

Fig. 2: SP-based Skewed Addition

o Generator: The generate operation converts a conventional
binary number to the SP format.

o Shuffle Unit: Provides a 2-level LFSR based shuffler that
can be used to permute the bits of the population vector.
This helps achieve a more random distribution of 1s in a
population vector. We improve the shuffler as described
in the sequel.

e Density Check Unit: This is used to determine the number
of ones in the population vector. We improve the Density
Check Unit as described in the sequel.

e Scaling Unit: This is used to adjust the density of the
population vector by modifying the exponent term.

In the next section we will explore our SP based subtraction
scheme.

III. OVERVIEW OF SCALED POPULATION SUBTRACTION
II1.1. The Basic Subtraction Idea

Before describing the subtraction idea, we shall quickly
describe a few key supporting facts.

III.1.1. Scaling Prior to Subtraction: Given two numbers,
A and B, in SP representation, if the exponent terms (o)
are equal, we are free to manipulate the 7 terms in order to
compute A — B. SP uses a scaling unit to adjust the o and 7
terms for A and B without altering the value of the numbers.
The scaling unit can double (or halve) the value of 7 while
decrementing (or incrementing) o by 1, to keep the values
unchanged. We assume that the SP representation of A and B
are scaled so as to have the same exponent term o prior to
subtraction. Henceforth, A or B will refer to the population
vector w4 or mg of A or B, respectively (unless otherwise
specified).

II1.1.2. Complement of a Number: Given the SP population
vector of a number A, finding 1 — A is done by flipping
all the bits of A. This can easily be realized using a set of
inverters, where the number of inverters required is equal to
I1. The amount of time it takes to compute 1 — A is a constant
that depends on the delay of a single inverter. We use this to
perform SP subtraction.

I1.1.3. SP-based Subtraction: Given two SP numbers A
and B, our goal is to compute B — A. We can do this as
follows:

o First compute S1 = (1— B). This can be computed easily
using inverters as previously described.

o Next, compute S2 = A+ S1. This step can be computed
using the addition scheme in SP arithmetic.

« Finally, compute 1 — 52 to obtain the goal B — A. Effec-
tively, the above steps have performed the computation
1—(A+(1- B)), which is B — A. Thus SP subtraction
can basically be achieved using only complementation
and SP addition.

However, there are limitations to the basic SP subtraction
approach which need to be addressed.

I11.1.4. The Saturation Problem: Given SP numbers A and
B, if we follow the procedure described above to compute
B— A, we will run into a problem when A > B. As previously
stated, signed numbers in SP are handled using a signed



bit, and SP computation cannot naturally result in a negative
number. For example, assume that A = 4/10, represented by
a population vector of size 10, with four bits set to 1. Let
B = 1/10, represented by a population vector of size 10,
with one bit set to 1. Once the subtraction starts, we cannot
change the exponent term o of A or B until the end. The
first step in finding B — A is to find S1 = (1 — B) = 9/10.
Next, we find S2 = A+ S1 = 4/10+ 9/10 = 13/10. This
is clearly a problem, since 13/10 cannot be represented using
just the population vector in SP, and the maximum value that
the population vector can represent is 1. This is a situation
that we call saturation. If the resulting value of subtraction is
negative, then we are guaranteed that S2 will saturate and lead

to an incorrect result.

Input
AB
S=A+ S=B+
(1-B) )

(1-A)

Output S

Saturated?
L=1-S R=1-S
Output L Output R

IF Y: use Output L
| ELSE: use Output R

Fig. 3: Solving the Saturation Problem

However, there is a relatively easy fix for this problem,
shown in Figure[3] We use 2 paths of computation, to compute
both B — A (the left branch of Figure [3) as well as A — B
(the right branch of Figure [3). If B > A, the value Output
S computed on the right branch will saturate. We check if
the Output S has saturated (consists of all 1s). If it has, we
will use the subtraction result from the left branch (which is
guaranteed to be non-negative) and subsequently set the sign
bit of the result. If no saturation is detected, we use the output
of the right branch and the sign bit is not set. Therefore, we
can handle the saturation issue with additional logic without
affecting the delay of our SP subtractor, assuming that the left
and right branches execute in parallel. Alternately, serializing
the computation of the branches yields a smaller area at the
cost of delay.

The design in Figure [3]is the most basic SP subtractor idea.
Next we will describe the different ways in which this idea is
enhanced for improved error performance.

II1.1.5. Summary of Enhancements and Evaluation Method-
ology: We explored enhancing the SP subtractor design along
three independent axes:

o The first axis focused on the impact of different SP adders
on the proposed SP subtraction unit. We compared three
different types of adders: Regular, Skewed and Skewed*.

o The second axis involved enhancements to the population
vector doubler. We will describe the need for a doubler in
the sections that follow. Two doublers are explored: Ideal
Doubler and Enhanced Density Check Doubler.

e The third axis explored input rescaling. Again, we will
describe the need for input scaling later. Two SP subtrac-

tor designs are explored: Without-Rescaling and With-
Rescaling.

The sections that follow explore the different options of each
of the axis. The experimental data in each step will be used to
determine the best design and eliminate the lesser ones from
consideration in subsequent steps. In the next section, we will
describe our experimental setup.

1I1.2. Evaluation Setup

The comparisons of the various enhancements over the basic
SP subtraction framework are conducted using an experimental
evaluation framework, which is described below.

« Different designs of the SP subtractor were tested for
different sizes of population vectors II. In the discussion
that follows, we have used 3 different population vector
sizes, IT € {40,100, 200}.

e The experiment was performed using 10000 pairs of
values (A, B) randomly chosen such that |A — B| was a
fixed value. 10 values of |A — B| were chosen, such that
(|JA—BJ) € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}.

e From these resulting experimental runs, we report the
following metrics: The output value of every experiment
is denoted as §;, where ¢ ranges from 1 to N, N being the
number of experiments.

1) Actual result versus Exact result: For a given T' =
|A— B| value, let y = X0;/N. We plot 1 versus the
exact value for i, which is 7". This plot demonstrates
if and when the actual results converge to the exact
results.

2) RMSE: For a given T = |A — B| value, the Mean
Square Error (MSE) is defined as (6; — T)?/N.
The RMSE is VM SE. RMSE gives us an idea of
how far the actual result is from the exact result.

3) Error%: We compute the Error% across all exper-
iments for a given T = |A — B|. This metric
gives context to the error of the actual result in
relation to the exact result. We compute this as
Error% = ((u—T)/T) * 100.

IV. DETAILS OF PROPOSED SP SUBTRACTION
IV.1. Subtractor Design With Regular Addition

IV.1.1. Regular Addition: In this paper, Regular Addition
refers to the SC-based method of performing addition using
an OR gate. The only modification is that we perform this
operation on the entire population vector at once to ensure
a constant addition time (and not proportional to the size of
the population vector II). For example, consider 2 10-bit SP
population vectors A = 2/10 = 1000010000 and B = 2/10 =
0010000001. To find A + B, we simply perform the bitwise
OR of the 2 population vectors. In other words, A + B =
A|B = 1010010001 = 4/10. As expected, the errors in this
method occur when either A or B are densely packed with 1s,
and the 1s in the two operands start to align with each other.
More specifically, the error is equal to |T4&np|/II, where |- |
indicates the number of 1s in a bit vector. This fact is what
makes this technique approximate.

IV.1.2. SP Subtraction using Regular Addition: In Figure
we use the 2 Regular Adders, to compute S in the left
and right branches. The errors in computation are due to
the approximate nature of the Regular Adder result. Using
the experimental setup described previously, we generated the
RMSE (Figure fa), Actual v/s Exact Result (Figure #b) and
the Error% (Figure plots, for SP subtraction using Regular
Adders.

The average RMSE value across all experiments is 0.0723.
An interesting trend is that the errors are larger when the



0.25

RMSE v/s Exact Result

—— Population Size=40
---- Population Size=100

10

Actual Result v/s Exact Result

—— Population Size=40
---- Population Size=100

Error% v/s Exact Result

—— Population Size=40
---- Population Size=100

0.20 0.8+

—-— Population Size=200

©
-
w
o
o

[=}
=
o

Actual Result
o
'~

RMSE Value

0.05 0.2

—-— Population Size=200

150 —-— Population Size=200

00 01 02 03 04 05 06 07 08 09
Exact Result

(a) RMSE

R —— - R S
00 01 02 03 04 05 06 07 08 09 01 02 03
Exact Result

(b) Actual v/s Exact Value

04 05 06 07 08 09
Exact Result

(¢) Error%

Fig. 4: SP Subtraction with Regular Addition

exact result is small. We will address this issue later in the
paper. Next, we will look at SP subtraction using Skewed and
Skewed* addition.

1V.2. SP Subtraction with Skewed and Skewed* Adders

In order to perform SP subtraction with a Skewed or
Skewed* Adder, we need a population vector doubler. In this
section we first discuss the need for this circuit, and compare
the different variants of this circuit. Finally we use the best
variant in the SP subtraction design with the Skewed and
Skewed* Adders.

IV.2.1. Population Vector Doubler: To improve the error
performance of SP subtraction with Regular Addition we will
explore the Skewed Addition scheme (see Figure [2). Skewed
Addition concatenates the left half of one vector with the
right half of the other. This eliminates the errors due to 1s
in the same position of both operands in Regular Addition. A
consequence of using Skewed Addition is that the value of the
result is half the exact value. One way to resolve this issue is by
incrementing the exponent by 1 (effectively doubling the value
of the Skewed Addition result). However, when we use Skewed
Addition for SP subtraction, we cannot change this exponent
term until the end of the subtraction procedure because a
complementation operation follows the generation of Output S
on both branches of Figure |3} The correct way to double the
result of Skewed Addition (i.e. Output S in both branches of
Figure [3) is to double the number of ones in the population
vector Output S of the adder result (see Figure [0). The unit
that performs this operation is a Population Vector Doubler.
We henceforth refer to this unit as doubler for convenience.
Next we will see different types of doublers and their effect on
the error performance. The doubler is applied only for numbers
no greater than 0.5.

1V.2.1.1. Ideal Doubler: The Ideal Doubler is a tool that
helps us understand the error behavior of the SP subtractors
better. It is not a design that can be realized in practice with
a constant delay, but is used to compare the performance of
our doubler candidates. When the input to the Ideal Doubler
is less than 0.5, the output is twice the input. The output
population vector consists of twice as many ones as the input.
If the input is 0.5 or greater, the output population vector is a
vector of all 1s (because that is the maximum value that can
be represented).

IV.2.1.2. SP Doubler: SP uses a population vector dou-
bler for some of its operations [9]. This is a doubler that
can actually be realized with a constant gate delay. The bit
operations used by this doubler ar

2Here Sh(x) refers to the shuffle operation, | refers to bit-wise OR and &
refers to bit-wise AND.
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Fig. 5: The SP Doubler

o X = Sh(Input)

o A= Input|X

e B = Input&X

o Output = A|Sh(B)
The performance of this doubler can be seen in Figure [5| The
dotted line is the response of the Ideal Doubler that we desire.
Next, we will look at the Density Check Doubler, an attempt
to get a more ideal input-output curve.

P>0.57
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Population
Vector of All 1s
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Fig. 6: The Density Check Doubler - Design

1V.2.1.3. Density Check Doubler: Figure [0 shows the
design of the Density Check Doubler (DCD). The ideal doubler
outputs a vector of all 1s when the input is greater than or equal
to 0.5. SP provides us with a practical method to check if the
value of the input is greater than or equal to 0.5. This unit is
represented by the decision block in the figure (this block is the
density check). Therefore, the density check doubler will select
one of two outputs: A vector of all 1s when the input is greater
than or equal to 0.5, otherwise it will select the output of the SP
doubler. The input-output graph for the density check doubler
is shown in Figure [/} As we can see from the graph, there
is only marginal improvement compared to the SP doubler.
Next, we will see an improved version of the Density Check
Doubler.
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Fig. 7: The Density Check Doubler

IV.2.1.4. Enhanced Density Check Doubler: Observe
the curve of the DCD in Figure|[/| For input values greater than
0.5, our experiments show that the DCD curve is below the
expected ideal line. This suggests that the density check in the
design is not working as expected. It fails to accurately detect
when an input value is greater than 0.5. Another observation
from our experiment is that the deviation of the DCD output
from the ideal output is one-sided. The density check is more
likely to conclude that a number is less than 0.5. We now try
to correct this inaccuracy.

The realization of the density check is straightforward.
Given an input population vector P, it first computes the
intermediate population vector X.

X = P|(P <<< 1)|(P <<< 2) (D

Here “<<< k” represents a k-bit circular shift. If X is a
vector of all 1s, then the input is deemed to have been greater
than 0.5 [9]. Clearly our experiments (see Figure [7) suggest
that the above bit operations are not populating all 1s in X
when they should be. Therefore, we explored several different
methods of generating X, inspired by the above equation. For
each method, we re-generated the input-output graph of the
DCD to determine the best approach. We found that the best
way to generate X is to use the following bit operations, where
Sh(A) represents shuffled version of population vector A (the
shuffles breaks a long sequence of 1s or Os (or “run”) in the
population vector, giving a more uniform distribution):

X = P|Sh(P)|Sh(P <<< 1)|Sh(P <<<2) (2)
|Sh(P <<< 3)|Sh(P <<< 4)

We call the DCD that uses this new density check as Enhanced
Density Check Doubler (or E-DCD). The input-output relation
for the E-DCD is shown in Figure [8| The error in the output
of this doubler is dependent on the probability of runs of Is or
Os in the input population vector. Longer bit vectors will have
a larger likelihood of containing a run of 1s or 0s. Therefore
E-DCD performs better for a population size of 40 compared
to a population size of 200. The performance of this E-DCD is
better than any of the previous methods. Therefore, this is the
design that we choose in practice. Next, we will present SP
subtraction design using Skewed Addition (and the E-DCD).

1V.2.2. SP Subtraction using Skewed Addition: Having de-
signed the doubler, we study the use of Skewed Addition
for SP subtraction. In Figure 0] we use Skewed Addition to
compute S in the left and right branches of the design in
Figure 0] In the right branch, Skewed Addition will be used to
first compute S = B+ (1—A). Similarly, in the left branch we
compute S = A + (1 — B). Recall that, the result of Skewed
Addition is half its true value. To correct this we need to double
the result of Skewed Addition. The output of the doubler is
indicated as Output S in the Figure 0] In this section we will
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Fig. 9: SP Subtraction and Doublers

look first at the results using the Ideal Doubler followed by
results using the E-DCD.

IV.2.2.1. SP Subtraction using Skewed Addition with
Ideal Doubler: In this section we present the results for SP
Subtraction using Skewed Adders with the Ideal Doubler. Us-
ing the experimental setup described previously, we generated
the RMSE (Figure [I10a), Actual v/s Exact Result (Figure [T0b)
and the Error% (Figure [T0c) plots. Similar to Regular addition,
the errors for small exact differences are larger than those
for exact differences. However, since we are using an ideal
doubler, the results look a lot more promising than those of
the Regular Adder design (see Figures fal [Ab] and [Ac).

In the RMSE plot, notice that the curves have a “hump”.
This behavior is related to the ideal doubler’s output. When the
input to the doubler is greater than 0.5, the output is always
one, in other words, the doubler saturates. When the doubler
saturates, the result of SP subtraction is always 0. Figure
shows how often the doubler saturated during our experiments.
The doubler saturates most often when the exact result is O.
However this is does not lead to an error since the actual result
is 0 anyway. For other small but non-zero exact results (eg: 0.1,
0.2), saturation leads to an increasing error, because the actual
result is 0 while the exact result is non-zero. As the value
of the exact result increases further saturation is no longer
an issue and the error reduces. This error behavior manifests
as the humps in the RMSE plot. Also, the larger the size
of the population vector, the lesser the saturation frequency
(see Figure [TT). This is also reflected in the RMSE plot in
Figure where the larger populations have a flatter curve
and lower RMSE values. In a subsequent section we will see
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how to eliminate this saturation problem altogether. Next, we
present the results for SP subtraction using Skewed Addition
and an E-DCD.
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1V.2.2.2. SP Subtraction using Skewed Addition with E-
DCD: 1In this section we report the results for SP Subtraction
using Skewed Adder with the E-DCD. Using the experimental
setup described previously, we generated the RMSE (Figure
[[2a), Actual v/s Exact Result (Figure [I2b) and the Error%
(Figure[T2¢) plots. From the plots we can see that the “humps”
are still an issue in the RMSE plot. In addition, the E-DCD
doubler introduces some additional errors due to its non-ideal
nature. The average RMSE value across all experiments is
0.0848. This is 1.17x the RMSE error of SP subtraction with
Regular Addition. However, note that the Actual v/s Exact
Result and Error% (Figures [I2b] and are much better than
those for Regular Addition (Figures [4b| and [Ac).

Next we introduce Skewed* Addition in SP Subtraction and
compare it with the Regular and Skewed approaches.
IV.2.3. SP Subtraction using Skewed* Addition:

1V.2.3.1. Skewed* Addition: Skewed* Addition is modi-
fication to the Skewed Addition method, specifically designed
to prevent doubler overflow during SP subtraction. The doubler
will never saturate as long as the input is less than 0.5.
In Skewed* Addition, to add X to Y, we take the entire
population vector of X and concatenate it with the entire
population vector of Y. The length of the result is twice
as long as any one of its inputs. An example is shown in
Figure Since the result is twice as long, the result of
Skewed* Addition is half the true sum, and hence requires
a doubler just like Skewed Addition. Increasing the number of
bits in the result also ensures that the addition step in Skewed*
Addition introduces no errors due to 1s appearing in the same
bit positions of the two inputs.

Given two SP population vectors A and B, where B > A,
we have the following relation:A— B < 0, A+(1—-B) < 11If

we use Skewed* Addition for this step, we have A+ (1—B) <
0.5, because the result will be half the true value. This forms
the input to the doubler, which will ideally never saturate since
its input never exceeds 0.5.

For subsequent SP operations on the result of SP subtraction
with Skewed* Addition, the vector will be decimated back to
1T bits.

1V.2.3.2. SP Subtraction using Skewed* Addition with
E-DCD: We next show the results for Skewed* Adder with the
E-DCD. Using the experimental setup described previously,
we generated the RMSE (Figure [I4a)), Actual v/s Exact Result
(Figure and the Error% (Figure plots. The average
RMSE across all experiments is 0.0576. This is 0.67x the
RMSE of the SP Subtraction with Skewed Addition with E-
DCD, and 0.79x the RMSE of SP Subtraction with Regular
Addition. Additionally, if we compare the plots for SP Sub-
traction with Skewed* Addition and E-DCD (Figures [[4a]
with the plots for SP Subtraction using Skewed Addition
and E-DCD (Figures [12b), we see that the use
of Skewed* Addition has solved the “humps” in the RMSE
graphs. Similarly, comparing Figures [I4a] [[4b] and with
the plots for SP Subtractor with Regular Addition (Figures [4a]
and [Ad) we observe a better RMSE as well as Error% for
SP Subtraction with Skewed* Addition and E-DCD, and so we
conclude that it is the preferred method among all the methods
we have developed. All schemes exhibit the trend where the
errors are larger for smaller exact differences. We will try and
resolve this issue in the next section.

1V.3. Input Rescaling

In the previous sections we have observed that smaller exact
differences yield larger errors. Figure [15] shows one approach
to curb this trend. The basic idea is that if we multiply
or rescale the inputs prior to subtraction, then the exact
difference is also rescaled by the same amount. A larger exact
difference would mean smaller RMSE errors. SP subtraction
with rescaling works as follows:

e Given 2 SP numbers A and B, perform SP subtraction
using Skewed* Addition and E-DCD.

o If the result of the subtraction is less than some threshold
D, double the values of A and B and repeat SP subtrac-
tion. Track the number of rescale operations, call it E.

o Repeat this process until the result exceeds the threshold,
D or one of the inputs to the SP subtractor exceed 0.5.

o At the end of the subtraction process, subtract E from the
exponent o.

The rescaling, or doubling of A and B can be easily achieved
using the population vector doublers that we have previously
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1V.3.1. SP subtraction with Skewed* Addition, E-DCD and
Input Rescaling: In this section we explore SP Subtraction
with Skewed* Addition with E-DCD and Input Rescaling. The
optimal threshold for rescaling was previously determined to
be 0.5. Using the experimental setup described previously, we
generated the RMSE (Figure [T6a), Actual v/s Exact Result
(Figure [T6b) and the Error% (Figure plots. The average
RMSE across all experiments is 0.0489. This is 0.85x the
RMSE of SP Subtraction using Skewed* Addition with E-
DCD but no Input Rescaling. In addition, the Actual v/s
Exact Result and the Error% plots exhibit better results as
well. Therefore, we can conclude that SP subtraction using
Skewed* Addition with E-DCD and Input Rescaling is the
best performing design.

We have examined 4 practically realizable SP subtractor
designs:

o SP Subtractor with Regular Addition (method RA).
o SP Subtractor with Skewed Addition using E-DCD
(method SK).
e SP Subtractor with Skewed* Addition using E-DCD
(method SK*).
e SP Subtractor with Skewed* Addition using E-DCD and
input rescaling (method SK*I).
The bar chart in Figure [I7] shows a comparison of the RMSE
values for each of methods mentioned above. As we can
see, the best method (smaller RMSE) is method SK*I, which
reduces RMSE by 32.3% compared to RA. Although SK has
worse errors than RA, it is an important intermediate step for
developing SK* and SK*I.

1IV4. Error Comparison Summary
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Fig. 17: RMSE v/s Designs
V. CIRCUIT IMPLEMENTATION

SK*I

Our most accurate method SK*I (SP subtraction using
Skewed* Addition with the E-DCD and Input Rescaling) was
realized using synopsys DC in 45nm Nangate technology [12].
The circuit area, power and performance are compared with
conventional fixed point subtractors for binary numbers. SC
does not have a complete solution to subtraction and therefore
cannot be compared. The conventional fixed point subtractor
implemented in this experiment uses a Carry Look Ahead
(CLA) adder.

In the SK*I design according to Figure [I3] there are two
parallel computational paths which compute both A — B and
B — A at the same time. We implement only one of them
in the circuit, thereby serializing the design. The A — B
path is implemented, and if during the process we detect that
A < B, we will repeat the process with the operands swapped.
The delay estimate assumes the situation where the circuit
is executed thrice, which accounts for one Input Rescaling
operation. SP subtraction is designed to be part of an SP
arithmetic module [9], where units like the doubler already
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Fig. 16: SP Subtraction with Skewed* Addition, E-DCD Doubler and Input Rescaling

exist. Therefore, the area of these units are not counted again
in our subtractor area estimation.

TABLE I: Circuit characteristics of different subtractor imple-
mentations.

Design | Bitwidth | Area(um?) | Delay(ns) | Power(uW)
Fixed 32 425 0.82 820
Fixed 64 782 0.94 1563
SK*I 32 183 0.47 261
SK*I 64 358 0.47 503
SK*I 128 713 0.47 995

The results are shown in Table [l We note that the delay
for our proposed SP subtractor (SK*I) is always less than the
delay of the fixed point subtractor. We can confirm that as
was theoretically stated, the delay through the SP subtractor
is independent of the size of the operands. As the width
of the SP subtractor increases, the area grows because we
have to realize a larger number of gates. The 32 and 64-
bit wide SP subtractors also have a better area footprint
and power performance when compared to the fixed point
designs. However, the precision of the 32 and 64-bit wide SP
subtractors is lower than that of the fixed point designs of the
same bitwidth.

VI. CONCLUSION

In this paper we presented a technique to perform SP sub-
traction, an arithmetic operation that was previously missing
in SP. Experimental results show that our best subtractor has
0.67x the RMSE error compared to the basic SP subtractor
design. Our SP subtractor design can be simplified by elimi-
nating rescaling, or using a simpler population vector doubler,
at the cost of computational error. We also demonstrate that our

best SP subtractor design has reduced area, delay and power
as compared with a traditional fixed-point binary subtractor of
the same width, with improved tolerance to bit errors in the
operands. Our design allows SP arithmetic to now be used in
applications that require subtraction operations.
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