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Abstract: To investigate the effect of infrastructure traits on resilience after an exploration, a blast case (West Fertilizer Plant in West, Texas,
2013) was studied, in which all the buildings’ damage data (damage pictures, damage scales, and building locations) and resilience infor-
mation (recovery decision, recovery time, and recovery cost) were collected by authors through site visits, interviews, and appraisal data
collections. The novel analysis methods and machine learning algorithms (logistical/linear regression, neural networks, k-nearest neighbor,
support vector machine, and gradient boosting) were applied to analyze the West Fertilizer Plant explosion resilience. This study is unique
because it implements a resilience analysis for an explosion hazard, although there are some reports discussing the resilience after natural
hazards, such as earthquakes, tsunamis, hurricanes, and tornados. Additionally, using machine learning for resilience analysis is also unique.
The results can assist decision-makers, civil engineers, and building designers in designing the most resilient structures and/or materials for
buildings. The findings in this study can help to develop the most resilient buildings, communities, and cities by considering the impact of
explosion hazards. DOI: 10.1061/(ASCE)CF.1943-5509.0001644. © 2021 American Society of Civil Engineers.

Author keywords: Explosion resilience; Explosion; Recovery decision; Recovery cost; Machine learning modeling.

Introduction

Accidents in the past have revealed that explosions would have
serious consequences for personnel, buildings, communities, soci-
ety, and environments, as well as economic systems. There were
many studies discussing explosion hazard risks. Risk is the pos-
sibility of something bad happening in the future, which could
be dangerous or have a bad result. There is a strong need for studies
to investigate the explosion hazard resilience, which expresses re-
covery capacities in infrastructures, social and economic systems,
and environments after disasters.

West Fertilizer Plant Explosion and Explosion
Hazard Risks

At the West Fertilizer Plant in West, Texas, an ammonium nitrate
explosion occurred on April 17, 2013. More than 150 buildings
were damaged or destroyed. This explosion caused approximately
$100 million in damages to homes, businesses, and schools near the
fertilizer plant (Reuters 2013). After the explosion, the damage
severities of 76 damaged buildings among the 150 practically dam-
aged buildings were examined by the authors (Huang et al. 2016).
There were some studies discussing the West Fertilizer Plant
Explosion to date in which the cause of the explosion and the
government regulations were mostly discussed. Yonekawa et al.
(2014) proposed some improvements for safety suggestions.

Jennings and Matthiessen (2015) reported that the West explosion
triggered efforts by the federal government to improve their co-
ordination with local governments and federal agencies to update
policies, regulations, and standards and pay attention to safe work
practices. Laboureur et al. (2016) identified gaps between the West
explosion and current regulations and then recommended emer-
gency response procedures and provided suggestions for modifying
the current regulations to prevent or minimize future losses.
Babrauskas (2016, 2017) and Davis et al. (2017) pointed out that
untrained fertilizer mill personnel caused this ammonium nitrate
(AN) explosion. The explosions of the AN fertilizer in storage
caused uncontrollable fires, suggesting the implementation of fer-
tilizer formulations to reduce uncontrolled fire possibilities and
adopt building safety measures against uncontrolled fires. Han et al.
(2016, 2017) indicated that the safer use of AN fertilizers is needed
to be reinforced. Huang et al. (2020) carried out the blast risk as-
sessment of wood residential buildings for the West explosion case.

There were some studies that discuss explosion hazard risks. For
example, Gorev and Medvedev (2017) investigated the parameters
of the blast wave passing through a screen placed in its path. It
was found that the degree of pressure reduction behind the barrier
depended on its permeability, the relative size of the obstacles, the
length of the positive phase of the wave, and the degree of removal
of waves from the source. It was concluded that such obstacles
could serve as effective explosion protection. Russo et al. (2019)
reported that the failure of high-pressure hydrogen gas pipelines
and subsequent explosion might induce heavy damage to buildings.
Damage to both types of structural components was evaluated,
and the maximum distance of blast damage was derived in several
environmental conditions, contributing to land-use planning and
performance-based design/assessment of pipelines and buildings.
After an explosion, the remaining capacity of a structure to resist
a progressive collapse was analyzed by Eskew and Jang (2020),
which can provide information for emergency operations and
decision-makers. A method to estimate the remaining elemental
structural capacity of a postblast structure involved using the
alternate path method to assess an updated numerical model,
which incorporated the buildings’ structural damage. The proposed
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method can be used to assess a structure’s potential for progressive
collapse after a blast, leading to safer emergency operations. Song
et al. (2021) developed a quantitative risk assessment methodology
for gas leakage and explosion accident consequences inside resi-
dential buildings, as well as proposed effective risk reduction
measures.

The preceding explosion hazard literature review revealed that
most studies about explosion hazards discussed the risks and causes
of the explosion-induced damages and relevant government regu-
lations; no report regarding the resilience of explosion hazards
and the application of machine learning in explosion hazards
has been found by the authors. There is a strong need for such stud-
ies. Therefore, after a few years of the West explosion, the recovery
information of damaged buildings was collected and documented
by the authors through revisiting the explosion site, examining the
rebuilt/repaired buildings, talking with the local government and
residents, and searching building appraisals. The 76 damaged
buildings, including 67 residential buildings, 5 medical buildings
(such as nursing homes and clinic office buildings), and 4 educa-
tional buildings (e.g., schools), were utilized to develop resilience
models using machine learning techniques in this study.

Resilience Analysis

Driven by the increased multihazard exposure and consequences
worldwide, hazard resilience has received arising interest in research.
Hazard resilience describes adaptive capacities in infrastructures,
social/economic systems, and environments after disasters (Jonkeren
et al. 2014; Kumaraswamy et al. 2015).

Recently, resilience has become the forefront topic; however,
implementation of resilience research in practice remains challeng-
ing. Bergstrand et al. (2015) measured municipal resilience and so-
cial vulnerability in counties across the US and found a correlation
between high vulnerability and low resilience. It was revealed that
counties in the West were most vulnerable while counties in the
Southeast were prone to low resilience. By considering both social
vulnerability and municipal resilience, it can map social risks for
attacks from hazards as well as their capacities for recovering from
the hazard aftermath. This finding can assist in emergency planning
and response, as well as be tailored toward reducing damages or
resilience from multihazards. Modica and Zoboli (2016) evaluated
socioeconomic losses after natural disasters using the developed
relationships among hazard, risk, damage, vulnerability, and resil-
ience, which can be used as a guideline for the assessment of the
socioeconomy.

Opdyke et al. (2017) reviewed 241 scientific papers from 1990
to 2015 for investigating resilience research trends, analysis meth-
ods, and recovery variables, as well as correlations between each of
these categories. Most published reports were carried out using
qualitative methods, focusing on infrastructure and community
units of analysis, and examining governance, infrastructure, and
economic dimensions. It was recommended that future work should
conduct deeper quantitative resilient investigations with mixed
methods to analyze infrastructure and community connectedly
and to measure environmental and social dimensions of resilience
quantitively. Liu et al. (2018) evaluated the county resilience of
moderate earthquakes with magnitudes ranging from 5.0 to 7.0
based on 102 moderate earthquakes that occurred during 2002–
2014. The results suggested that most counties in China exhibited
low efficiency and resilience capability after being attacked by
moderate earthquakes. Using the Tobit regression model, the insur-
ance intensity, hospital beds, government financial expenditure,
and disaster experience were analyzed, and strategies to improve
county resilience were proposed.

Masoomi et al. (2018) investigated the risk and community
resilience of the wood-frame residential buildings under hurricanes
and tornados. It proposed methods for improving the wind perfor-
mance of roof coverings, roof sheathing nailing patterns, and roof-
to-wall connection types for wood-frame residential buildings. The
damage fragilities of the wood-frame building archetypes were
considered for four damage scales defined based on the perfor-
mance of the building envelope, including roof coverings, doors
and windows, roof sheathing, and roof-to-wall connections. Then,
it is also compared with the existing method amplifying wind pres-
sures in the wind standards to represent a tornado load. The fragility
curves provided in the study can be used to represent residential
buildings within a community for risk or resilience assessment/
mitigation under hurricane or tornado loadings.

Capozzo et al. (2019) combined fragility functions of earth-
quake intensity and tsunami inundation with regional hazard data
to estimate damages and economic losses of civil infrastructure for
the coastal city of Seaside, Oregon. It was found that the loss esti-
mation was tremendously increased when the earthquake and tsu-
nami were considered together. Dhulipala and Flint (2020) modeled
the resilience of civil infrastructure systems after being attacked by
multiple hazards using a semi-Markov model. The function recovery
of these systems was estimated by considering the interevent depend-
encies. The model was developed by considering many aspects, such
as a three-state system exposed to random occurrences of identical
hazard events and multihazard resilience of a building considering
seismic and wind hazards.

The relationship between building attributes and tornado vulner-
ability was developed using a Logistic regression model (Egnew
et al. 2018). The building attributes included the year built, loca-
tion, appraised cost, and stories. The effect of wind speed and
building attributes on the observed damage scales to residential
buildings was quantified using the multinomial logistic regression
model. It was found that newer homes and homes with a lower
value per unit living area increased the likelihood of tornado dam-
ages. The number of stories weakly correlated with the increasing
likelihood of higher levels of tornado damage. The information on
earthquake-induced building damages after an earthquake was col-
lected using multisource remote sensing images (Li et al. 2019).
The feature analysis was conducted based on the Rough set theory.
A logistic regression model was used to establish the relationship
between the occurrence and absence of destroyed buildings within
an individual object. The comparison with the survey results proved
that the detection accuracy of the proposed method was 94.2%.
This approach illustrated that multivariate logistic regression could
be used to compare different features for applications in the field of
damage detection.

Although the hazard resilience of infrastructures has been
placed high on the priority list of development of infrastructures,
there remain challenges in implementing resilience in practice. This
study proposed a novel explosion hazard resilience analysis method
to evaluate the resilience level in practice quantitively. Through the
literature review, it was discovered that some reports were discus-
sing resilience research after natural hazards, such as earthquakes,
tsunamis, hurricanes, and tornados. However, no report about the
resilience after explosion hazards was found by the authors. And
no study using advanced machine learning algorithms for the
resilience analysis, such as the artificial neural network (ANN),
k-nearest neighbor (kNN), support vector machine (SVM), and gra-
dient boosting, was found by the authors.

This study conducted explosion hazard resilience analysis using
machine learning algorithms, which is novel because it imple-
mented a resilience analysis for explosion hazards. The resilience
analysis for explosion hazards is as important as that for natural
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hazards. Natural hazards are considered recurrently happening and
cannot be controlled easily. Explosion hazards should be consid-
ered similarly because similar explosions happened regularly and
recurrently at similar communities, although maybe not at the exact
same location. According to the data in the Annual Explosives In-
cident Report of the US (USBDC 2019), the explosion incidents in
the US were 912 in 2014, 630 in 2015, 699 in 2016, 687 in 2017,
and 706 in 2018, which were caused similarly by ammonium ni-
trate, binary explosives, black powder, black powder substitutes,
chlorate/perchlorate mixtures, dry ice, flash powder/pyrotechnic
mixture, improvised/homemade explosives (HME)–fuel oxidizer
mixture, hexamethylene triperoxide diamine (HMTD), hydrogen
peroxide mixtures, ignitable gas, ignitable liquid, and others. The
total number of explosion incidents is much higher than that of an
earthquake or tsunami in the US. The annual number of explosion
incidents from 2014 to 2018 indicated that, like natural hazards,
similar explosion hazards cannot be controlled easily and happened
recurrently in similar communities, while maybe not in the exact
same community. Therefore, there is a need to explore the resil-
ience analysis for explosion hazards.

Another novelty of this study was that the analysis methods of
machine learning algorithms (ANN, kNN, SVM, and gradient
boosting) were applied to analyze the practical resilience after an
explosion hazard. A relationship between the resilience variables
(recovery decision, recovery time, and recovery cost) and nine in-
put predictor variables (building category, building structure, wall
surface material, roof surface material, building stories, blocked or
not, distance from the blast center, year built, and shockwave

overpressure) was established. As a result, it was reported that
the importance level of the individual predictor variable contributed
to each target variable. It is known that the social cost of strictly
controlling the risk in one or a few factories in a certain area could
be smaller than the cost for improving resistance to protect all-
around buildings from explosions; however, a resilience model can
provide a deeper understanding and more information on the resil-
ience than just social cost, such as if an explosion hazard already
happened and how long and how much should be expected for the
recovery of the community. Therefore, it is worth the time and effort
to conduct a resilience analysis for explosion hazards. The findings
of this research will help government decision-makers, architects,
civil engineers, and building designers choose the most resilient
structure design and/or materials for residential and commercial
buildings, as well as plan the most resilient buildings, towns, and
cities by taking explosion hazards into account.

Predictive Models Using Machine Learning
Techniques

The flowchart of the predictive modeling of blast hazard resilience
is presented in Fig. 1. The data of the West Fertilizer Plant explo-
sion damaged buildings, and their repair/rebuild information was
imported into the Machine Learning program as shown in the first
step (file import node) in Fig. 1. The input and target variables were
defined in this step. Four target variables (damage scale, recovery
decision, recovery time, and recovery cost) and nine input variables
(building category, building structure, wall surface material, roof

Fig. 1. Flowchart of predictive models of explosion hazard resilience.
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surface material, building stories, blocked or not, distance from
blast center, year built, and shockwave overpressure) were selected,
as listed in Table 1. A detailed description of these input and target
variables and the logic for the variable selection are described in the
“Input and Target Variables” section. Following the file import
node, the Chi-Square test (StatExplore Chi node) was used to ex-
amine the relative relationship between the target variable and each
independent input variable. The data partition node in Fig. 1 ran-
domly sorted the imported data into the training group (70%) and
the validation group (30%). After the data sorting, machine learning
nodes, including logistic regression, linear regression, k-nearest
neighbor, support vector machines, artificial neural networks,
and gradient boosting were performed (Fig. 1). Finally, these re-
sults of modeling and validation were compared, and the optimal
strategy that can make the lowest damage scale was achieved.

Chi-Square for Comparison of Variable Importance

A Chi-square test is used to examine the importance of an indi-
vidual independent variable among many variables for contribut-
ing the target variable and to test the fitness of the observed data
distribution with the expected distribution. Categorical variables
can be analyzed successfully by a Chi-square test (Ahmadi et al.
2016). Numerical variables can be sorted into several bins and
treated as categorical variables for the Chi-square test. Chi-square
(χ2) can be calculated by squaring differences between the ob-
served and expected data frequencies, being divided by the ex-
pected frequency to normalize values, and then summed as shown
in Eq. (1)

χ2 ¼
Xn
i¼1

ðOi − EiÞ2
Ei

ð1Þ

where Oi = observed data frequency; and Ei = expected data fre-
quency. For example, for the block or not variable, the observed
data frequencies are 22 and 54 (Fig. 2), and the expected data
frequency is 38, which is the average of 22 and 54.

Logistic and Linear Regression Analysis

Because some target variables in this study (e.g., damage scale and
recovery decision) are not continuous, the traditional linear regres-
sion models’ response variable output is not appropriate in this
study due to the nominal nature of classifiers. Therefore, a multi-
nomial logistic regression model is used for nominal responses
(Egnew et al. 2018). Although logistic regression is similar to linear
regression, it is required to use the logit link function for solving the
problem of the nonnormal distribution of categorical target variables.
A link function is simply a function of the mean of the target variable
Y that is used as the target instead of Y itself. All that means is when

Y is categorical, the logit of Y is used as the target in a regression
equation instead of just Y (Parzen et al. 2011). The logit function is
the natural log of the odds that Y equals one of the categories. If P is
a probability, then P=ð1 − PÞ is the corresponding odds; the logit of
the probability is the logarithm of the odds as Eq. (2)

ln

�
PðY ≤ jÞ

1 − PðY ≤ jÞ
�

¼ ln

�
π1þ · · · þπj

πjþ1þ · · · þπJ

�

¼ αj þ β1X1þ · · · þβpXp ð2Þ
where Y = target category; j = index of the categories from 1; : : : ,
J − 1, with J being the total number of categories; π = probability of
a given target category; α = intercept of the model; and β = effect of
predictor X on the log odds of the target in category j or below. For J
categories, there are J − 1 equations, with the values of β constant
for each equation but with differing intercepts, α.

Automatic selections of multiple variables [X in Eq. (2)] have
three of the most common methods, which are backward elimina-
tion, forward selection, and stepwise selection (Austin and Tu
2004). In the backward elimination process (adopted in this study),
by beginning with a full model consisting of all candidate predictor
variables, variables are sequentially eliminated from the model un-
til a prespecified stopping rule is satisfied. At a given step of the
elimination process, the variable whose elimination would result in
the smallest decrease in a summary measure is eliminated. Possible
summary measures are deviance or R2. The most common stopping
rule is that all variables that remain in the model are significant at a
prespecified significance level.

As one of the most popular and simplest techniques for machine
learning predictive modeling, a multiple linear regression analysis,
is used to build a relationship between the numerical target and
input variables using a mathematical algorithm as follows (Tso
and Yau 2007)

y ¼ β0 þ β1x1 þ β2x2þ · · · þβpxp þ ε ð3Þ

where y = target variable; βi = regression coefficient (I ¼ 0; 1;
2, : : : , p); xi = input predictor variables (i ¼ 1; 2, : : : , p); and
ε = random error term.

In machine learning modeling, using the linear regression analy-
sis, the relationship between output target variables and input
known as features and numeric value categorized as predictors
can be mapped (Gujar and Vakharia 2019).

k-Nearest Neighbor

The essential theory of the k-nearest neighbor is a process for finding
a group of k samples that are nearest to unknown samples based on
distance functions in the calibration dataset (Noi and Kappas 2018).
From these k samples, the labels (class) of unknown samples are

Table 1. Description of input variables

No. Variables Abbreviation Variable description

1 Building category BC Residential, educational, and medical
2 Building structure — Masonry, steel, and wood
3 Wall surface material Swall Brick, brick/hardiprank, brick/metal, hardiplank, and stucco
4 Roof surface material — Asphalt shingles or metal
5 Building stories — One or two stories
6 Blocked or not B Unblocked or blocked
7 Distance from blast center D The damaged house to blast center (m)
8 Year built Y The year the house was built
9 Shockwave overpressure Ps The shockwave overpressure in kPa

© ASCE 04021062-4 J. Perform. Constr. Facil.
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determined by calculating the average of the response variables,
namely, the class attributes of the k nearest neighbor. As a result,
for this classifier, the k plays an important role in the performance
of the kNN, which is the key tuning parameter of kNN. Using a
bootstrap procedure, the parameter k was estimated. In this study,
k values were examined from 1 to 20 to identify the optimal k value
for all training sample sets.

Support Vector Machine

The support vector machine can handle nonseparable data, which
generalizes the optimal separating hyperplane as the solution to
minimize a cost function that expresses a combination of two cri-
teria: margin maximization and error minimization to penalize the
wrongly classified samples (Melgani and Bruzzone 2004). The cost
function can be expressed as follows

Fig. 2. Distributions of nine input variables: (a) building category; (b) building structure; (c) wall surface material; (d) roof surface material;
(e) building stories; (f) blocked or not; (g) distance from blast center; (h) year built; and (i) shockwave overpressure.
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Ψðw; ξÞ ¼ 1

2

����w
����2 þ C

Xn
w

ξi ð4Þ

where ξi = slack variables to account for the nonseparability of
data; and the constant C = regularization parameter that allows con-
trolling the penalty assigned to errors. The larger the C value, the
higher the penalty to misclassified samples. The minimization of
the cost function described in Eq. (4) is subject to the constraints
of Eq. (5)

yiðw·xiþbÞ≥1−ξi; i¼1;2; : : : ;N ð5Þ

ξi ≥ 0; i ¼ 1; 2; : : : ;N

Artificial Neural Network

The artificial neural network is one of the advanced machine learn-
ing algorithms based on the model of a human neuron, which works
like the way the human brain processes information. As one of the
most well-known and widely adopted machine learning methods,
the ANN model enables learning from a training dataset and stores
the pattern of the data simulating connections of neurons (Kumar
et al. 2011). After training, when new data is applied to the ANN
algorithm, it recognizes the pattern from the data and classifies it.
Finally, the algorithm gives results quickly and accurately. Fig. 4
shows a typical multilayer ANN structure. The ANN models con-
sist of three layers: input, hidden, and output. The input layer rep-
resents the input variables, while the output layer shows target
variables. The hidden layer, where the data are processed, is pre-
sented between the input and output layers. Moreover, the hidden
layer is essential for nonlinear data. Each layer includes an array of
artificial neurons. Therefore, each of the neurons is connected with
the succeeding or proceeding layers. This research adopts a multi-
layer perceptron (MLP) architecture of the ANNs with a weighted
linear combination function [Eq. (6)] and the hyperbolic tangent
activation function [Eq. (7)]. The most popular back-propagation
optimization method was adopted

Hj ¼
Xn
i¼1

ðwijxiÞ þ bj ð6Þ

yj ¼ tanhðβHjÞ ð7Þ

where xi = input of a neuron; b = bias; wi = weight coefficient;
β = constant coefficient; and y = output of the neuron.

The number of inputs and number of hidden neurons of the
ANN models in this study were selected using the trial and error
method with the best misclassification rate (categorical target

Fig. 3. Distributions of four target variables: (a) damage level; (b) recovery decision; (c) recovery time; and (d) recovery cost.

Fig. 4. Tuning of k-nearest neighbor and artificial neural network for
damage scale.

© ASCE 04021062-6 J. Perform. Constr. Facil.

 J. Perform. Constr. Facil., 2021, 35(5): 04021062 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f N
or

th
 T

ex
as

 L
ib

 o
n 

09
/2

1/
21

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



variable) or smallest root mean squared errors (numerical target
variable). The trial models include the following: (1) with all var-
iables, (2) with significant variables based on Chi-square analysis,
and (3) with significant variables based on regression analysis.
During the calculation, 70% of the total data was used for the train-
ing process, and 30% of data was used for the validation process in
this study.

Gradient Boosting

As one subtechnique of decision trees, gradient boosting models
are a sequential assembly of different decision trees. According
to several subtrees, prediction makes these models more robust.
Gradient boosting involves three key elements as follows: a loss
function to be optimized, a weak learner (decision tree) used to
make predictions, and an additive model for adding weak learners
to minimize the loss function. The high complexity of gradient
boosting models provides the models with good prediction power,
which makes the models very useful for variable selections. How-
ever, the interpretability of the models is reduced because of the
high complexity (Yuan 2015).

Input and Target Variables

Input Variables

In this study, the input predictor variables and their descriptions
are listed in Table 1. Among these nine variables, six of them
(building category, building structure, wall surface material, roof
surface material, building stories, and year built) were selected
according to the FEMA published natural hazard analysis tool
HAZUS version 4.2 (FEMA 2011); the other three (distance from
the blast center, shockwave overpressure, and blocked or not)
were selected according to the explosion hazard risk analysis
by Huang et al. (2016).

A total of 76 damaged buildings onsite of the explosion was
documented and discussed in this study, including 67 residential
buildings, 5 medical buildings (such as a nursing home or clinic
office building), and four educational buildings (e.g., schools),
as shown in Fig. 2(a). Among the 76 buildings, there were 71
wooden structures, 3 masonry structures, and 2 steel structures
[Fig. 2(b)]; as for the building surface materials, there were 60
buildings with a brick wall surface, 9 buildings with hardiplank,
5 with brick/hardiplank, 1 with brick/metal, and 1 with stucco,
as shown in Fig. 2(c); as for roof surface material, there were
71 buildings with asphalt shingles and 5 with metal [Fig. 2(d)];
as for building stories, there were 68 single-story buildings and
8 two-story buildings [Fig. 2(e)]; there were 22 unblocked build-
ings and 54 blocked buildings, as shown in Fig. 2(f); the distribu-
tion of distance from the blast center ranged from 100 to 900 m as
shown in Fig. 2(g); the year of the house built ranged from 1915 to
2015, as shown in Fig. 2(h); and the distribution of shockwave
overpressure ranged from 0 to 40 kPa, as shown in Fig. 2(i).

Target Variables

In this study, there were four target variables, as listed in Table 2,
describing damage and resilience information, including the
(1) damage scale, (2) recovery decision, (3) recovery time, and
(4) recovery cost, as shown in Table 2 and Fig. 3. The damage
scales (DS) (Huang et al. 2016) were set as a target categorical var-
iable, in which four damage levels were sorted. For example, for the
wood residential buildings, the four levels are described as the fol-
lowing: minor damage (DS1), showing typical window glass break-
age, large and small windows shattered, occasional damage to
window frames, and minor damage to house surfaces; moderate
damage (DS2), showing moderate roof damage (i.e., small deflec-
tions, large size, or amount of shingle torn-offs), moderate brick
façade damage (i.e., small areas of collapse and cracks), and mod-
erate wall panels damage (i.e., small holes on the wood panel, metal
panel failure, and buckling); severe damage (DS3), showing severe
roof surface damage (i.e., holes and large deflections), severe wall
surface damage (i.e., a large area of façade collapse and large holes
on wood panels), and some structural member damage; and de-
struction (DS4), showing the collapse of roofs and walls and fail-
ures of structural members. See the study by Huang et al. (2016) for
a detailed description of the DS for other types of buildings. Among
the 76 buildings, 34 of them could be categorized in DS1 (minor
damage), 24 in DS2 (moderate damage), 13 in DS3 (severe dam-
age), and 5 in DS4 (destruction), as shown in Fig. 3(a).

In this study, the resilience information of the explosion-
damaged buildings (the three resilience target variables: recovery
decision, recovery time, and recovery cost) was collected by au-
thors through site visits, interviews, and online appraisal data col-
lections. As for the recovery decision, there were 17 demolished
buildings, 34 rebuilt buildings, 15 repaired buildings, and 9 com-
bined buildings (i.e., someone bought a neighbor’s yard and built a
larger building), as shown in Fig. 3(b). As for recovery time, there
were 27 buildings rebuilt within 1 year, 22 buildings rebuilt in
2–3 years, 10 rebuilt in 4–7 years, and 17 still not rebuilt yet after
7 years, as shown in Fig. 3(c). As for recovery cost, which is the
ratio of the appraisal price of the building after recovery and before
the building damage, there were 2 buildings’ cost ratios ≤0.5, 9
buildings’ cost ratio ranging from 0.5 to 1, 27 buildings’ ratios
ranging from 1 to 1.5, 13 buildings’ ratios ranging from 1.5 to
2, 7 buildings’ ratios higher than 2, and 18 damaged buildings still
being not repaired or not rebuilt (0 repairment/rebuild cost), as
shown in Fig. 3(d).

Because this study had four target variables, i.e., damage scale,
recovery decision, recovery time, and recovery cost, the machine
learning models were performed four times to achieve four optimal
machine learning models. The Stage 1 analysis sets the damage
scale as the target variable and the nine predictor variables (Table 1)
as inputs. The Stage 2 analysis sets the recovery decision as the
target variable and the nine predictor variables (Table 1) plus the
damage scale as inputs. The Stage 3 analysis sets the recovery time
as the target variable and the nine predictor variables (Table 1) plus
the damage scale and recovery decision as inputs. The Stage 4
analysis sets the recovery cost as the target variable and the nine

Table 2. Description of target variables

No. Variables Abbreviation (unit) Variable description

1 Damage scale DS Minor damage (DS1), moderate damage (DS2), severe damage (DS3), and destruction (DS4)
2 Recovery decision Drecovery Demolished, rebuilt, repaired, and combined
3 Recovery time trecovery Recovery time in years (years)
4 Recovery cost Crecovery The ratio of the appraisal price of the building after recovery and before the house damage.
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predictor variables (Table 1) plus the damage scale, recovery deci-
sion, and recovery time as inputs.

Results and Discussions

Damage Scale

When the damage scale was set as a target variable, the inputs were
nine independent variables, i.e., building category, building struc-
ture, wall surface material, roof surface material, building stories,
blocked or not, distance from the blast center, year built, and shock-
wave overpressure.

Firstly, a Chi-square analysis was carried out to explore the im-
portance of the nine input variables. The results of the Chi-square
analysis are presented in Table 3. In Table 3, the Chi-square (χ2)
is the calculated values according to Eq. (1), Df is the degrees of
freedom, which is related to the numbers of categories of the cat-
egorical variables analyzed, Prob (P-value) is the probability of
observing a sample statistic as extreme as the test statistic, and sig-
nificant indicates which input variables significantly affect the tar-
get variable of the damage scale. The results indicated that, among
the nine variables, three variables, i.e., shockwave overpressure
(P < 0.0001), distance from the blast center (P < 0.0001), and
blocked or not (P ¼ 0.0010), significantly affected the building
damage scale, as shown in Table 3.

Because the target variable of the building damage scale was
sorted into four levels, which is not a continuous variable, the linear
regression model is not appropriate in this study due to the nominal
nature of classifiers (Egnew et al. 2018). Thus, a multinomial lo-
gistic regression model is used to predict the building damage scale.
After inputting the nine independent variables into the logistic re-
gression model, the output results were summarized and are listed
in Table 4. Table 4 shows that the predictor variable of the shock-
wave overpressure was the only significant variable contributing to
the damage scale (P ¼ 0.0003 < 0.05 for DS3 and P ¼ 0.0037 <
0.05 for DS2). For DS4, it is not significant because of the small
amount of DS4 data (only five DS4 damages in the dataset).

Based on the results in Table 4, three logistic regression equa-
tions are presented as follows

logðOddsDS4=DS1Þ ¼ −152.2þ 8.0719 × Pso ð8Þ

logðOddsDS3=DS1Þ ¼ −18.6643þ 2.5998 × Pso ð9Þ

logðOddsDS2=DS1Þ ¼ −10.7914þ 1.9131 × Pso ð10Þ

where OddsDSi ¼ odds of two damage scales; and Pso = shock-
wave overpressure at the building location (m). Eqs. (8)–(10) depict
that the higher the blast load, the higher probability of the higher
damage scale is expected. This finding is consistent with the pre-
vious report by Huang et al. (2020). The set of equations has
McFadden’s pseudo R2 of 0.762. The P-value for the Chi-square
of the log-likelihood is smaller than 0.0001, which indicated good
performance.

In addition to the regression model, the kNN, ANN, and gra-
dient boosting machine learning models were created for the dam-
age scale. Misclassification rates were used in this study to tune and
compare different machine learning models for categorical target
variables. When the selection of property is not suitable for clas-
sification, misclassification occurs. When all classes or categories
of a variable have the same error rate or probability of being mis-
classified, it can be defined as misclassification.

Based on the description in the “k-Nearest Neighbor” section,
kNN models were created with the standardized input variables
with all input variables and the three significant input variables
(shockwave overpressure, distance, and blocked), respectively.
Fig. 4 presents the tuning procedure to optimize the k value based
on the misclassification rate, which shows that when k ¼ 3, the
model provided a low average misclassification rate with a low
variation.

Based on the method discussed in the “Artificial Neural Net-
work” section, ANN models were created using the MLP architec-
ture and backpropagation optimization with all input variables and
the three significant input variables (shockwave overpressure, dis-
tance, and blocked), respectively. Based on the tuning procedure
shown in Fig. 4, an ANN model with the three significant input
variables and four hidden layer neurons in Fig. 5 were selected,

Table 3. Chi-square test results for damage scale s

Input Chi-square Df Prob Significant

Overpressure_kPa 129.0837 12 <0.0001 Yes
Distances_m 79.9185 12 <0.0001 Yes
Blocked 16.1982 3 0.0010 Yes
Year_built 13. 9963 12 0.3009 —
Wall_surface 12.4740 12 0.4084 —
Building_structure 5.5445 6 0.4761 —
Roof_surface 2.6635 3 0.4465 —
Building_category 2.4496 6 0.8741 —
Stories 0.7652 3 0.8578 —

Table 4. Results of logistic regression for damage scale as the target variable

Parameter Damage_lv Df Estimate Standard error Wald Chi-square Pr > ChiSq Significant

Intercept DS4 1 −152.2 1,569.3 0.01 0.9228 —
Intercept DS3 1 −18.6643 4.8269 14.95 0.0001 Yes
Intercept DS2 1 −10.7914 3.6920 8.54 0.0035 Yes
Overpressure_kPa DS4 1 8.0719 64.2179 0.02 0.9000 —
Overpressure_kPa DS3 1 2.5998 0.7239 12.90 0.0003 Yes
Overpressure_kPa DS2 1 1.9131 0.6585 8.44 0.0037 Yes

Fig. 5. ANN architecture for damage level.
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which provided a low average misclassification rate with low
variation.

Based on the description in the “Gradient Boosting” section, a
gradient boosting model was created with the maximum iterations
(number of trees) equal to 200, the learning rate (shrinkage) equal
to 0.1, and the maximum branch and depth of each tree equal to 2
and 2.

The comparison of misclassification rates among the logistic re-
gression, kNN, ANN, and gradient boosting models for the damage
scale as the target variable is shown in Table 5. It is illustrated that
the biases of different models were low (0.07–0.08) and close to
each other, which are acceptable. The gradient boosting model per-
formed the best among the four models, which has the lowest
model bias. However, the gradient boosting model varied more than
the regression and ANN models.

Recovery Decision

When the recovery decision was set as a target variable, the inputs
were 10 independent variables, i.e., damage scale, building category,
building structure, wall surface material, roof surface material, build-
ing stories, blocked or not, distance from blast center, year built, and
shockwave overpressure.

The target variable recovery decision had four selections (values),
namely, demolished, rebuilt, repaired, or combined (with a neigh-
bor’s yard). The results of the Chi-square analysis are presented
in Table 6. The results indicated that, among the 10 predictor var-
iables, 3 variables, i.e., distance from the blast center (P ¼ 0.0022 <
0.05), wall surface material (P ¼ 0.0067 < 0.05), and damage scale
(P ¼ 0.0053 < 0.05) significantly affected the recovery decision, as
shown in Table 6. Besides, the predictor variable of the year built had
a P value of 0.0726 < 0.1, which can also be considered a signifi-
cantly contributed variable to the recovery decision (Table 6).

However, when the test of the misclassification rates was ap-
plied to examine the misclassification rates for the machine learn-
ing models, it was found that none of them was a reliable model.
For example, the misclassification rates of the logistic regression
model were larger than 40% for both training and validation data

groups, while the misclassification rates of the ANN model were
22% for the training group and 34.6% for the validation group.
Therefore, the recovery decision variable was redefined as a binary
variable for further analysis.

According to the test results of misclassification rates, the target
variable recovery decision with four variables cannot produce ef-
fective models to predict the recovery decision. Thus, the recovery
decision variable was redefined as a binary variable, which had two
values only, i.e., C1 = repaired and C2 = reconstructed, including
rebuilt, demolished, and combined.

The results of the Chi-square analysis are presented in Table 7.
The results indicated that, among the 10 predictor variables, four
variables, i.e., distance from the blast center (P < 0.0001), damage
scale (P¼0.0002<0.05), wall surface material (P¼0.0079<0.05),
and shockwave overpressure (P ¼ 0.0140 < 0.05), significantly af-
fected the recovery decision, as shown in Table 7.

Because the target variable of the recovery decision was defined
as a binary target variable (C1 = repaired or C2 = reconstructed),
which were not numerical variables, the linear regression model
cannot be utilized. Thus, a multinomial logistic regression model
was used to predict the recovery decision. After inputting 10 pre-
dictor variables into the logistic regression model, the output results
were summarized and are listed in Table 8. Table 8 shows that the
predictor variable of distance from the blast center was the only
significant variable contributing to the recovery decision (P ¼
0.0032 < 0.05).

Based on the results in Table 8, a logistic regression equation
was obtained and are presented as follows

log

�
PC2

PC1

�
¼ 7.791 − 0.0153 ×D ð11Þ

where PCi = probability of the recovery decision (C1 = repaired
or C2 = reconstructed); and D = distance from the blast center
in meters. The equation has McFadden’s pseudo R2 of 0.384. The
P-value for the Chi-square of log-likelihood is smaller than 0.0001,
which indicated good performance. However, Eq. (11) only works
for the condition of an explosion with a 15,000–20,000 kg equiv-
alent TNT. For a more general explosion, the following equation
could be used

log

�
PC2

PC1

�
¼ −2.4495þ 0.7578 × Ps ð12Þ

where Ps = shockwave overpressure in kPa. Eqs. (11) and (12) de-
pict that, when the building was closer to the blast center and/or the
blast load was higher, the probability of reconstructions instead of
repairs was higher. This finding is consistent with common sense.

Table 5. Comparison of misclassification rates between logistic regression
and ANN models for damage scale as the target variable

Model Train data
Validation

data
Model
bias

Model
variation

Logistic regression 0.077 0.083 0.080 0.006
kNN k ¼ 3 0.115 0.042 0.079 0.073
ANN n ¼ 4 0.077 0.083 0.080 0.006
Gradient boosting i ¼ 60 0.058 0.083 0.070 0.025

Table 6. Chi-square analysis results for recovery decision as the target
variable

Input Chi-square Df Prob Significant

Distances_m 30.7073 12 0.0022 Yes
Wall_surface 27.4244 12 0.0067 Yes
Damage_sc 23.4347 9 0.0053 Yes
Year_built 19.7175 12 0.0726 —
Overpressure_kPa 18.1125 12 0.1123 —
Stories 5.7752 3 0.1231 —
Blocked 3.6288 3 0.3044 —
Building_structure 5.2734 6 0.5093 —
Building_category 2.6396 6 0.8525 —
Roof_surface 0.9287 3 0.8185 —

Table 7. Chi-square analysis results for recovery decision as a binary target
variable

Input Chi-square Df Prob Significant

Distances_m 25.2383 4 <0.0001 Yes
Damage_sc 19.8002 3 0.0002 Yes
Wall_surface 13.8278 4 0.0079 Yes
Overpressure_kPa 12.5050 4 0.0140 Yes
Year_built 7.6885 4 0.1037 —
Building_structure 1.4272 2 0.4899 —
Blocked 1.0246 1 0.3114 —
Stories 0.3935 1 0.5305 —
Building_category 0.0418 2 0.9793 —
Roof_surface 0.0036 1 0.9524 —
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Similar to the models discussed in the “Damage Scale” section,
the kNN, ANN, and gradient boosting models for predicting
the recovery decision were created and tuned, as shown in Fig. 6.
A kNN model with k ¼ 4 and four significant input variables

(shockwave overpressure, distance, damage level, and wall sur-
face), an ANN model with 6 hidden layer neurons and all input
variables (as shown in Fig. 7), and a gradient boosting model with
iteration = 150 were selected. In addition, an SVM model was cre-
ated based on the “Support Vector Machine” section. The compari-
son of misclassification rates among the five machine learning
models for the recovery decision is shown in Table 9. Table 9 shows
that all models’ biases were acceptable (4%–11%). The ANN and
gradient boosting models provided better prediction accuracy com-
pared to other models. However, the gradient boosting model varies
more than the ANN model.

Recovery Time

When recovery time was set as a target variable, the inputs were 11
predictor variables, i.e., recovery decision, damage scale, building
category, building structure, wall surface material, roof surface
material, building stories, blocked or not, distance from the blast
center, year built, and shockwave overpressure.

The results of the Chi-square analysis are presented in Table 10.
The results indicated that, among the 11 predictor variables, 2 var-
iables, i.e., recovery decision (P < 0.0001) and blocked or not
(P ¼ 0.0175 < 0.05), significantly affected the recovery time, as
shown in Table 10.

As a type of statistical process, a multivariate linear regression
model can be used to construct a relationship between the predictor
and target variables when the target variable is a numerical value.
As for regression analysis, the relationship between the input
known as features and the numeric value categorized as a predictor
can be mapped (Gujar and Vakharia 2019).

In this study, the relationship between the 11 input variables and
the target variable (recovery time) was developed, and the results
are presented in Table 11. Table 11 presents the coefficients of var-
iables significantly contributing to the target variable (P < 0.05),
plus intercept, in the developed regression equation. As shown
in Table 11, three variables (blocked or not, damage scale, and

Table 8. Logistic regression modeling results for recovery decision as a binary target variable

Parameter Recovery_decision_binary Df Estimate Standard error Chi-square Pr > ChiSq Significant

Intercept C2 1 7.791 2.343 11.06 0.0009 Yes
Distances_m C2 1 −0.0153 0.00521 8.69 0.0032 Yes

Fig. 6. Tuning of k-nearest neighbor and artificial neural network for
recovery decision.

Fig. 7. ANN architecture for recovery decision.
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overpressure) out of 11 input variables significantly affected the
target variable (recovery time).

The multivariate linear regression result for the recovery time as
the target variable is presented as Eq. (13)

trecovery ¼ 3.3301 − 1.5916DSþ 0.2327Ps þ B ð13Þ

R2 ¼ 0.3717; AdjR2 ¼ 0.3221; F ¼ 7.49;

P-value ¼ 0.0005

where trecovery = recovery time in years; DS = damage scale from
DS = 1 to DS = 4; Ps = shockwave overpressure in kPa; and B ¼
block coefficient, which is equal to 0.6074 for the unblocked case
and 0 for the blocked case. Based on Eq. (13), the following ob-
servations can be obtained: (1) the damage scale negatively affected
the recovery time, indicating that the higher damage scale could
result in a sooner rebuild or repair; (2) the higher shockwave over-
pressure made the longer recovery time; and (3) the block protec-
tion for a building can lower the recovery time. All the preceding
observations are consistent with common sense.

Based on the descriptions in the “Support Vector Machine,” “Ar-
tificial Neural Network,” and “Gradient Boosting” sections, the
kNN, ANN, gradient boosting models for predicting the recovery
time were created and tuned, as shown in Fig. 8. The kNN model
with k ¼ 3 and three significant input variables (shockwave over-
pressure, damage level, and blocked), the ANN model with three

hidden layer neurons and three significant input variables (as shown
in Fig. 9), and the gradient boosting model with iteration = 200 were
selected.

The comparison of the root mean squared errors (RMSE) be-
tween the results of the linear regression and machine learning
models for the recovery time as the target variable is listed in
Table 12, which includes training data, validation data, averages,
and variations. The RMSE [Eq. (14)] assumed that the model errors
of n samples are calculated as (ei, i ¼ 1; 2, : : : , n), which does not

Table 9. Comparison of misclassification rates between logistic regression
and ANN models for recovery decision as a binary target variable

Model
Train
data

Validation
data

Model
bias

Model
variation

Logistic regression 0.098 0.12 0.109 0.022
kNN k ¼ 4 0.098 0.12 0.109 0.022
SVM 0.098 0.12 0.109 0.022
ANN n ¼ 6 0.039 0.04 0.040 0.001
Gradient boosting i ¼ 150 0.000 0.08 0.040 0.080

Table 10. Chi-square analysis results for recovery time as the target
variable

Input Chi-square Df Prob Significant

Recovery_decision 82.946 9 <0.0001 Yes
Blocked 10.1305 3 0.0175 Yes
Distances_m 17.519 12 0.1311 —
Year_built 15.9772 12 0.1923 —
Wall_surface 15.5592 12 0.2123 —
Overpressure_kPa 12.0001 12 0.4457 —
Roof_surface 2.8637 3 0.4131 —
Building_category 5.4695 6 0.4851 —
Stories 2.705 3 0.4394 —
Damage_sc 7.3688 9 0.5988 —
Building_structure 4.2511 6 0.6427 —

Table 11. Multivariate linear regression modeling results for recovery time as the target variable

Parameter Category DF Estimate Error t value Pr >jtj Significant

Intercept — 1 3.3301 0.6712 4.96 <0.0001 Yes
Blocked 0 1 0.6074 0.2691 2.26 0.0298 Yes
Damage_sc_num — 1 −1.5916 0.6448 −2.47 0.0182 Yes
Overpressure_kPa — 1 0.2327 0.0793 2.93 0.0057 Yes

Fig. 8. Tuning of k-nearest neighbor and artificial neural network for
recovery time.

Fig. 9. ANN architecture for recovery time.
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consider the uncertainties brought in by observation errors or the
method used to compare modeling and observation results (Chai
and Draxler 2014). Besides, it is assumed that the error sample
set is unbiased. The RMSE is described

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

e2i

s
ð14Þ

The comparison of RMSE among the four machine learning
models for the recovery time is shown in Table 12. Table 12 shows
that all models’ biases are acceptable (0.75–1.20 years). The gra-
dient boosting model had the best prediction accuracy among the
four models. However, the gradient boosting model varied more
than other models.

Recovery Cost

When recovery cost was set as a target variable, the inputs were
12 independent variables, i.e., recovery time, recovery decision,
damage scale, building category, building structure, wall surface
material, roof surface material, building stories, blocked or not, dis-
tance from blast center, year built, and shockwave overpressure.

A Chi-square analysis was used to analyze the impact of 12
input variables on the target variable (recovery cost). The results
of the Chi-square analysis are presented in Table 13. The results
indicated that, among the 12 predictor variables, four variables,
i.e., recovery time (P < 0.0001), recovery decision (P < 0.0001),
wall surface material (P ¼ 0.0002 < 0.05), and building category
(P ¼ 0.0444 < 0.05) significantly affected recovery cost, as shown
in Table 13.

The linear relationship between 12 input variables and the target
variable (recovery cost) was developed, and the results are pre-
sented as Eq. (15). Table 14 presents the coefficients of variables
significantly contributing to the target variable (P < 0.05), plus in-
tercept, in the developed regression equation. As shown in Table 14,
four variables, i.e., building category (medical: P ¼ 0.0038),
recovery decision (C1 = repair: P ¼ 0.0391), recovery time
(P ¼ 0.0171), wall surface material (brick: P ¼ 0.0012, brick/
hardi: P < 0.0001, brick/metal: P ¼ 0.0104, and hardiplank:
P ¼ 0.0118), out of 12 input variables significantly affected the
target variable (recovery cost).

The developed multivariate linear regression equation is given
as Eq. (15)

Crecovery ¼ 1.1014þ BCþDrecery þ 0.1196trecovery þ Swall ð15Þ

R2 ¼ 0.6140; and adjustedR2 ¼ 0.5204;

F ¼ 6.56; P-value < 0.0001

where Crecovery = recovery cost, which is the ratio of the appraisal
price of the building after recovery to the price before damage;
BC = building category coefficient, which is 0 for residential,
0.0873 for educational, and 0.8801 for medical;Drecovery = recovery
decision, which is −0.2141 for repair and 0 for reconstruction;
trecovery = recovery time in years; and Swall = coefficient of wall
surface material, which is 0.7133 for brick walls, 1.2584 for brick
walls with hardiplank, −1.3678 for brick walls with metal plates,
and 0.9124 for hardiplank walls. Based on Eq. (15), the following
findings were observed: (1) building category affected recovery
cost, indicating that the medical buildings needed the highest
recovery costs, educational buildings needed medium costs, and
residential buildings needed lowest costs; (2) recovery decision af-
fected recovery cost, in which, reconstruction needed higher costs
than repair; (3) recovery time positively affected recovery cost: the
longer the time, the more expensive; and (4) wall surface material
affected recovery cost, in which the cost was ranked from high to
low in the following order: brick walls with hardiplank > hardi-
plank walls > brick walls > stucco > brick walls with metal plates.

Based on the description in the “Support Vector Machine,”
“Artificial Neural Network,” and “Gradient Boosting” sections,
the kNN, ANN, and gradient boosting models for predicting
the recovery cost were created and tuned, as shown in Fig. 10.

Table 12. Comparison of RMSEs between regression and machine
learning models for recovery time

Model
Train
data

Validation
data

Model
bias

Model
variation

Linear regression 1.2861 0.8443 1.0652 0.4418
kNN k ¼ 3 1.2193 1.1771 1.198 0.0422
ANN n ¼ 3 1.0474 0.8399 0.944 0.2075
Gradient boosting i ¼ 200 0.3456 1.1507 0.74815 0.8051

Table 13. Chi-square analysis results for recovery cost as the target
variable

Input Chi-square Df Prob Significant

Recovery_time_nom_yr 93.1191 15 <0.0001 Yes
Recovery_decision 86.3217 15 <0.0001 Yes
Wall_surface 50.4708 20 0.0002 Yes
Building_category 18.6858 10 0.0444 Yes
Blocked 7.3657 5 0.1948 —
Year_built 25.8707 20 0.1701 —
Distances_m 24.9563 20 0.2031 —
Damage_lv 18.6737 15 0.2289 —
Overpressure_kPa 21.8187 20 0.3504 —
Stories 3.055 5 0.6915 —

Table 14. Multivariate linear regression analysis results for recovery cost as the target variable

Parameter Category DF Estimate Error t value Pr >jtj Significant

Intercept — 1 1.1014 0.2001 5.5 <0.0001 Yes
Building_category Educational 1 0.0873 0.3442 0.25 0.8014 —
Building_category Medical 1 0.8801 0.2822 3.12 0.0038 Yes
Recovery_decision C1 1 −0.2141 0.0997 −2.15 0.0391 Yes
Recovery_time_yr — 1 0.1196 0.0476 2.51 0.0171 Yes
Wall_surface Brick 1 0.7133 0.2004 3.56 0.0012 Yes
Wall_surface Brick/hardi 1 1.2584 0.2763 4.55 <0.0001 Yes
Wall_surface Brick/metal 1 −1.3678 0.5036 −2.72 0.0104 Yes
Wall_surface Hardiplank 1 0.9124 0.3424 2.66 0.0118 Yes
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The kNN model with k ¼ 4 and four significant input variables
(building category, recovery decision, recovery time, and wall sur-
face), the ANN model with 6 hidden layer neurons and the four
significant input variables (as shown in Fig. 11), and the gradient
boosting model with iteration = 200 were selected in the resilience
analyses.

The comparison of RMSEs between the results of regression
and machine learning models for recovery cost as the target vari-
able is listed in Table 15. The comparison results showed that all
models’ biases are acceptable (0.34–0.48), except for the kNN
model. The gradient boosting and ANN models had better predic-
tion accuracy compared to other models.

Conclusions and Limitations

In this study, the relationship between the target resilience variables
(recovery decision, recovery time, and recovery cost), and the nine
input predictor variables (building category, building structure, wall
surface material, roof surface material, building stories, blocked or
not, distance from the blast center, year built, and shockwave over-
pressure) was established. The following conclusions were drawn:
• For the target variable of the damage scale, shockwave over-

pressure, distance, and blocked were the significant input var-
iables. The logistic regression in Eqs. (8)–(10) could be used for
simple applications of future prediction, which depict that the
higher the blast load, the higher probability of the higher dam-
age scale is expected. The logistic regression and all the ma-
chine learning models (kNN, ANN, and gradient boosting)
can provide good predictive performance with acceptable accu-
racy. The model bias (average misclassification rate) in this case
study was in the range of 0.07–0.08. The gradient boosting
model performed better than others, which has the lowest model
bias. However, the model varied more than the regression and
ANN models.

• For the target variable of recovery decision (reconstruction or
repair), shockwave overpressure, distance, damage level, and
wall surface were the significant input variables. The logistic
regression of Eqs. (11) and (12) could be used for simple ap-
plications of future prediction. When buildings were closer to
the blast center and/or the blast load was higher, the probability
of reconstruction was higher than the repair. The logistic regres-
sion and all the machine learning models (kNN, SVM, ANN,
and gradient boosting) can provide good predictive models with
acceptable accuracy. The model bias (average misclassification
rate) in this case study was in the range of 0.04–0.11. The ANN
and gradient boosting models provided better prediction accu-
racy compared to other models. However, the gradient boosting
model varied more than the ANN model.

• For the target variable of recovery time, shockwave overpres-
sure, damage level, and blocked were the significant input var-
iables. The linear regression of Eq. (13) was proposed for simple
applications of prediction, which showed that the damage scale
negatively affected recovery time, indicating that a higher dam-
age scale could result in a sooner rebuild or repair, the higher
overpressure made for a longer recovery time, and the block
protection for buildings can lower the recovery time. The linear
regression and all the machine learning models (kNN, ANN,
and gradient boosting) can provide good predictive models with
acceptable accuracy. The model bias (average RMSE) in this
case study was in the range of 0.75–1.20 years. The gradient
boosting model can provide better prediction accuracy com-
pared to other models. However, the gradient boosting model
varied more than other models.

• For the target variable of recovery cost, building category, re-
covery decision, recovery time, and wall surface were the sig-
nificant input variables. The linear regression in Eq. (15) was
proposed for simple applications of prediction, which showed
that (1) the building category affected recovery cost, indicating
that the medical buildings needed the highest recovery costs,

Fig. 10. Tuning of k-nearest neighbor and artificial neural network for
recovery cost.

Fig. 11. ANN architecture for recovery cost.

Table 15. Comparison of RMSEs between regression and machine
learning models for recovery cost

Model
Train
data

Validation
data

Model
bias

Model
variation

Linear regression 0.4224 0.5203 0.4713 0.0979
kNN k ¼ 4 0.6045 0.829 0.717 0.2245
ANN n ¼ 6 0.289 0.3861 0.338 0.0971
Gradient boosting i ¼ 200 0.4118 0.4953 0.4535 0.0835
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educational buildings needed medium costs, and residential
buildings needed the lowest costs; (2) the recovery decision af-
fected recovery cost, in which reconstruction needed higher costs
than repair; (3) recovery time positively affected recovery cost;
and (4) wall surface material affected recovery cost, in which
the cost was ranked from high to low in the following order: brick
walls with hardiplank > hardiplank walls > brick walls > stucco >
brick walls with metal plates. The linear regression and all the
machine learning models (kNN, ANN, and gradient boosting)
can provide good predictive models with acceptable accuracy.
The model bias (average RMSE) in this case study was in the
range of 0.34–0.48. The gradient boosting and ANN model
can better predict accuracy compared to other models.

• Overall, for all target variables, the gradient boosting model out-
performed all other models. However, it varied more among dif-
ferent data samples.
The results of this study can be used to assist government

decision-makers, architects, civil engineers, and building designers
in selecting the most resilient structure design and/or materials for a
residential or commercial building and planning the most resilient
buildings, communities, and cities by considering the impact of
blast hazards. For example, Chi-square test results and ML models
showed that the input variable of blocked significantly influences
the target variable of damage scale and recovery time. Furthermore,
the target variable of recovery cost is indirectly affected by blocked
because recovery cost is significantly affected by recovery time,
while recovery time is significantly affected by the variable of
blocked. In this case study, blocked means the building was
blocked from the explosion by trees, other buildings, and so forth.
The Chi-square test and ML models indicated that the blocked sig-
nificantly reduced damage scale, recovery time, and recovery cost.
Gorev and Medvedev (2017) proposed that a screen be placed in its
explosion wave path to protect houses from explosions. The experi-
ments provided grounds to conclude that such obstacles can serve
as effective explosion protection. The results of this study verified
the idea of using protection screens to protect buildings from ex-
plosion damages and improve their resilience.

However, because the machine learning models created in this
study were based on a single explosion case, there exist many lim-
itations for applying the results of this study. For example, (1) the
West explosion was caused by an ammonium nitrate (AN) explo-
sion, so it may not be applicable for other explosion cases; (2) the
West site condition had a flat ground surface, so the slope ground
surface case may not be applicable; and (3) only 76 observations
were documented and used for the ML modeling, so the data size is
relatively small. The parameters obtained in this study may be sen-
sitive to different cases. Therefore, the authors recommend that
users adopt the proposed ML framework to create their own models
instead of using the proposed equations/coefficients directly. The
ML framework of this study could be adjusted and used for natural
hazard resilience analysis as well.

Data Availability Statement

Some or all data, models, or codes that support the findings of this
study are available from the corresponding author upon reasonable
request.
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