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A B S T R A C T   

An automated shading system is expected to effectively prevent visual discomfort associated with glare while 
providing adequate daylight penetration. However, the concept of visual comfort has not been well integrated 
into existing commercial shading systems, leaving potential for visual discomfort and resulting in occupants’ 
dissatisfaction. Meanwhile, advanced methods in the academic literature are not always suitable for industrial 
applications due to problems associated with intensive real-time computation or privacy concerns. This research 
aims to address this gap by developing a simulation-assisted data-driven method for glare control with auto
mated shades. The proposed strategy utilizes data from pre-simulated daylight analyses to develop glare pre
dictive models using machine learning algorithms. With real-time solar irradiance measurements and the sun 
position as the input variables to feed the predictive models, the control algorithm can predict the glare condition 
and set the shades to an appropriate position that maximizes daylight ingress without causing glare. The pre
sented method was verified using climate-based simulation to adjust the slat angle of automated venetian blinds 
in an office building. Its performance was compared to that of the conventional cut-off angle control for glare 
elimination, lighting use savings, and view access. The results showed that the proposed strategy was able to 
prevent 86.5%–96.9% of the glare and potentially reduce lighting energy use by 80.8% while the cut-off control 
only resulted in 28.9% glare elimination and 67.6% lighting energy savings. The presented method also allowed 
for unobstructed view more frequently, outperforming the cut-off angle control in all the examined categories.   

1. Introduction 

Access to daylight has been shown to have significant benefits for 
office workers’ health, productivity, well-being, and satisfaction [1,2]. 
In addition to health benefits, making use of daylight (daylight har
vesting) can also reduce building electric lighting use and the overall 
energy consumption. However, excessive and uncontrolled daylight 
from windows can cause glare, thermal discomfort, and increased 
building energy consumption. A balance between the benefits and 
drawbacks of daylight ingress is required to create a more satisfying, 
productive, and sustainable office environment. This balance can be 
achieved by using effective automated shading systems. 

In 2019, Katsifaraki suggested that the function of automated 
shading control systems can be organized into three main categories [3]: 
1) achieving visual comfort by providing sufficient daylight and view 
access without causing glare; 2) achieving thermal comfort by rejecting 
excessive solar penetration that could lead to overheating; 3) reducing 
building energy consumption by utilizing sunlight to decrease electric 

lighting use and heating energy demand. As discussed by Wymelenberg 
[4], the potential of daylight utilization to save energy must be provided 
in a manner that is acceptable to occupants, indicating the importance of 
prioritizing occupants’ comfort for fenestration control. Meanwhile, 
field studies have reported that minimizing glare and visual discomfort 
is the major factor driving occupants to close blinds [5], further sug
gesting that a “glare-free” environment should take priority over other 
factors such as thermal comfort and energy saving when designing 
automated shading control strategies in office buildings. Accordingly, 
higher priority has been given to daylight and glare among existing 
studies on dynamic shading control as expressed in a most recent review 
paper [6]. 

Discomfort glare can be caused by excess brightness of the scene or 
high luminance contrast. Glare indices, such as the Daylight Glare Index 
(DGI) [7] and Daylight Glare Probability (DGP) [8], have been proposed 
to estimate the likelihood of an observer experiencing visual discomfort. 
In a 2019 study, Wienold et al. evaluated the performance and robust
ness of 22 established glare indices using experimental datasets of 
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daylight-dominant workplaces in different locations [9]. They found 
that DGP outperformed the other indices in describing the glare scale 
and distinguishing between disturbing and non-disturbing scenes. As 
summarized in two review papers, DGP is one of the most widely used 
metrics for solar radiation control, glare evaluation, and indoor visual 
comfort assessment [6,10]. According to Wienold and Christoffersen 
[8], DGP is a function of the vertical eye illuminance as well as of glare 
source luminance: 

DGP = 5.87 × 10−5 × Ev + 9.18 × 10−2 log

(

1 +
∑n

i=1

L2
i × ωi

E1.87
v × P2

i

)

+ 0.16

(1)  

where Ev is eye-level vertical illuminance (lux), ωi is the solid angle of 
the glare source (sr), Li is the luminance level of the glare source (cd/ 
m2), and Pi is the Guth position index expressing the occupants’ sensi
tivity within their field of view. A simplified DGP (DGPs) was later 
proposed which omits the influence of individual glare sources and 
greatly simplifies the calculation of glare perception [11]. However, it 
can only be applied if no direct sun or specular reflection from the 
shades is within occupants’ field of view [12]. 

As reviewed by Katsifaraki [3], most existing commercial shading 
systems implement relatively simple control strategies, such as acti
vating shades based on time, the position of the sun, and work plane 
illuminance. The concept of discomfort glare is not well integrated into 
the control strategies of these systems, potentially compromising their 
performance in satisfying occupants’ requirements for visual comfort. 
For instance, a previous study reported that a typical automated vene
tian blind system that was controlled based on the vertical illuminance 
led to 45% of the control actions being overridden by occupants [13], 
indicating its shortcoming to meet occupants’ expectations and satis
faction. There have been several studies on dynamic shading control 
that capture real-time glare using a High Dynamic Range (HDR) vision 
sensor [14,15] or camera [16]. However, it is important to note here that 
taking pictures of the workplace could cause privacy concerns among 
occupants, especially in an open-plan office. Another method proposed 
by researchers is to employ real-time daylight simulation to obtain glare 
indices [17,18]. This method could be computationally intensive and 
may lead to a slow response of the control system, and potentially 
overload the controller of the Building Automation System (BAS). 
Currently, there are limited daylight simulation tools that are fast and 
user-friendly enough to be integrated into the control system [19]. 
Therefore, the real-time daylight simulation may be “a significant lim
itation and obstacle for simulation assisted controls to become an in
dustrial application” [19]. 

Many studies have proposed to use simple measures to replace glare 
indices to quantify discomfort glare [20–28]. These metrics can be 
categorized as illuminance- and luminance-based measures. Of the 
illuminance-based measures, horizontal illuminance has been recom
mended as an indicator of visual discomfort in the perimeter zones in 
offices in several studies [4,20,21,29]. However, a study by Konis [22] 
found that occupants sitting in the core zone of a side-lit office reported 
visual discomfort even with very low horizontal illuminance. He sug
gested that occupants’ perception of visual discomfort may be 
context-specific, depending on their distance to the façade and the 
interior surface reflections. Another experimental study also reported 
that work plane illuminance and DGP were not well correlated [23]. 
Therefore, more studies are required to support the use of horizontal 
illuminance to quantify glare with the context specified. Numerous 
studies have investigated the correlation between vertical eye illumi
nance and perceived visual discomfort by occupants, suggesting it is a 
promising indicator of discomfort glare [4,23,24,30,31] Nevertheless, 
there is a large variation in the proposed thresholds of visual discomfort, 
ranging from 375 lux [24] to 3000 lux [31]. There is no consensus 
among researchers regarding what threshold should be used. Some 
newly proposed metrics like the cylindrical illuminance and vertical 

illuminance vector require more verification, especially experimental 
validation [25]. Another major limitation of all illuminance-based 
measures is that they are not adequate to represent contrast-based 
glare. Therefore, they are not suitable for places where contrast is 
dominant, such as those with large windows and specular monitor 
screens. Recommended luminance-based metrics include maximum 
luminance [24,32], luminance contrast ratio [22,31], and mean lumi
nance [4], etc. They have similar limitations as glare indices when 
applied in dynamic shading control, i.e, physical measurements may 
cause privacy concerns and real-time simulation can be challenging. 
Wienold proposed the simulation-based metric-enhanced simplified 
DGP which separates the computation of the illuminance and luminance 
contrast of DGP and uses a simplified image to derive it [33]. However, 
the validation of this method indicates that it may not apply to scattering 
or re-directing façade designs. To summarize, these simple measures are 
not sufficient to fully replace glare indices given that each of them has 
specific limitations in glare quantification. 

To overcome the drawbacks of existing methods and integrate visual 
comfort into automated shading systems in a practical manner, a 
promising solution would be a data-driven approach [19]. As indicated 
in a recent review paper, machine learning algorithms (MLAs) have been 
widely used in existing studies to predict indoor daylighting conditions 
[34]. It has gained much popularity in the building design community 
due to its capability to surrogate complex daylight simulations. How
ever, only a few studies can be found which have explored the use of 
MLAs for dynamic shading control. Most studies on using MLAs to 
predict daylighting focused on the estimation of illuminance or daylight 
availability such as Spatial Daylight Autonomy (sDA) and Useful 
Daylight Illuminance (UDI). As indicated in a recent review study on 
MLAs to predict daylighting inside buildings by Ayoub [34], 53% of the 
27 selected studies concentrated on the prediction of illuminance, and 
the other 40% on daylight availability metrics. Only two studies on 
predicting visual comfort were identified [35,36]. One suggested that 
DGP prediction with MLAs did not show a satisfying result [36]. This 
might be explained by the fact that glare is affected by additional factors 
(such as view directions), making its prediction more complex compared 
to illuminance or illuminance-based metrics. It should be noted that 
both studies applied a regression model to predict DGP, which could 
potentially compromise the model accuracy due to limited model inputs. 
As indicated by Ayoub [34], the classification and clustering method 
might be more appropriate for visual comfort prediction that entails 
classifying daylight conditions. More research is required to investigate 
the performance of predicting visual comfort using MLAs. 

This study aims to propose a glare-based dynamic shading control 
strategy that is applicable in complex real-world settings, especially in 
open-plan offices. It investigated the feasibility of using machine 
learning (ML) classification models developed from pre-simulated data 
to predict glare in physical environments. Specifically, the models were 
trained with pre-simulated data from daylight modeling using Typical 
Meteorological Year (TMY) weather, with the position of the shades as a 
variable. With real-time measured input variables such as solar irradi
ance to feed the predictive models, the control algorithm set the shades 
to the position that maximized daylight ingress without causing glare. 
This application of the proposed strategy was demonstrated to control 
the venetian blinds in a simulated open-plan office. Its effectiveness in 
preventing glare while maximizing daylight and view access was vali
dated with actual historical weather. Automated shading systems can be 
generally divided into open-loop and closed-loop control systems [37]. 
The presented control method in this study is an open-loop strategy. Jain 
and Garg reviewed open-loop control strategies for automated shading 
and integrated lighting control that utilize real-time daylight prediction 
and concluded that advanced open-loop control systems using calibrated 
simulations are more advantageous than closed-loop systems in 
reducing post-commissioning errors, easy monitoring, and predicting 
daylight more extensively [19]. They also stated that few studies have 
incorporated learning algorithms into the control process to replace 
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physical daylight modeling. This study is an exploration to address this 
gap. 

2. Methodology 

2.1. Overall workflow 

The proposed shading control method aims to predict real-time 
discomfort glare using data-driven models developed from daylight 
simulations and control the shading devices accordingly. The workflow 
to achieve this goal can be divided into three phases: the pre-simulation 
phase, the ML model development phase, and the real-time control 
phase. In the pre-simulation phase, a daylight simulation program was 
required to generate the annual hourly glare profile for ML model 
training. In the predictive model training phase, individual models for 
different shading states were developed using the pre-simulated data. 
Several common ML classification models, such as Random Forest were 
used to predict visual comfort. The hyperparameters of each model were 
optimized to select the model that gave the highest prediction perfor
mance. In the real-time control phase, concurrent solar irradiance 
measured by a pyranometer on the rooftop was used to feed the ML 
models. At each time step, the shading control algorithm searched for 
the state of the shades that allowed for maximum daylight ingress 
without causing glare, and the system took that position as the control 
command. Fig. 1 illustrates the application of the workflow to operate 
multiple (groups of) shades facing different ordinal orientations, which 
is common in open-plan offices. 

2.2. Machine learning classification algorithm 

Three classification algorithms were used for glare prediction, 
including K-nearest neighbor (KNN) [38], Support Vector Machine 
(SVM) [39], and Random Forest (RF) [40]. These methods were selected 
for the following reasons: 1) they are simple and easy to implement; 2) 
prediction with these models is quick, which would not cause compu
tation burden in the controller for real-life applications; 3) they are the 
most common and widely used classification algorithms in similar 
research studies. 

2.2.1. K-nearest neighbor 
KNN is one of the simplest machine learning methods that has been 

used since the early 1970s in statistical applications. It is a non- 
parametric approach that does not require assumptions about how the 
input variables are correlated to the output variable. The logic behind 
this method is that it searches for a group of k samples that are nearest to 
the unknown sample according to the distance between the known 
sample and the new sample. The class of the new sample is usually 
determined by the majority class of the k samples. Hence, k is the only 

tuning parameter that determines the predicting performance of this 
classifier. 

2.2.2. Support Vector Machine 
SVM is a machine learning algorithm for two-group classification 

problems. Fig. 2 illustrates an example of SVM classification with a 
linear separation hyperplane. The main objective of this method is to 
find a separation hyperplane that gives the greatest distance between 
two classes using support vectors. It should be noted that by mapping the 
input variables into a higher dimensional feature space, the hyperplane 
can be nonlinear as well. Accordingly, the SVM classifier can have a 
nonlinear kernel. In this study, a common radial basis function (RBF) 
kernel was used. The regularization parameter (C) was specified in this 
study. 

2.2.3. Random Forest 
Compared with KNN and SVM, RF is an ensemble method that grows 

many decision trees in parallel with bootstrapping. Each decision tree 
gives a classification, which is called the “votes” for that class by the 
tree. The forest chooses the classification having the most votes (over all 
the trees in the forest). Two parameters that greatly affect the perfor
mance of an RF model were specified in this study, including the number 
of trees (N) and the maximum depth of each tree (d). By limiting the 
maximum depth of each tree, RF builds smaller trees to prevent over
fitting. Hence, an RF classifier usually outperforms a decision tree 
classifier. 

Fig. 1. The flowchart for the overall workflow to operate multiple shades. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Fig. 2. An example of SVM classification.  
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2.3. Development of a case study 

2.3.1. Description of the case building 
The Intelligent Workplace (IW), an existing open-plan office at Car

negie Mellon University, was used to validate the proposed control 
strategy. It occupies the top floor of the Margret Morrison Hall that is 
located in Pittsburgh, Pennsylvania, USA (latitude 40.4 N, longitude 80 
W). The office is highly glazed, with a window-to-wall ratio that is close 
to 70%. It is equipped with internal automatic venetian blinds that were 
used to test the presented control strategy. The blinds can be adjusted by 
changing the tilt angle of the slats. The slats are flat lamellae with a 
width of 0.05 m that are spaced 0.05 m apart. They are purely specular 
metal materials with a specularity of 0.8. The venetian blind system 
allows the tilt angle to rotate from 0◦ (fully open) to 90◦ (fully closed) as 
shown in Fig. 4, with an interval of 15◦. One workstation facing the east 
(marked as the blue rectangle in Fig. 3) was selected to demonstrate the 
application of the control method. As indicated in Fig. 3, the green dot 
represents the occupant’s sitting position (1.2 m above the finish floor) 
and the red dot is the selected reference point to quantify the illumi
nance on the work plan (0.8 m above the finish floor). 

2.3.2. Glare simulation 
The software Rhinoceros was used to construct the geometry of the 

simulation model. Rhinoceros (Rhino) is a stand-alone, commercial 
NURBS-based 3D modeling tool, developed by Robert McNeel and 

Associates [41]. DIVA for Grasshopper was used to perform 
point-in-time glare simulation to obtain hourly DGP. DIVA is an envi
ronmental analysis plugin in both Rhino and Grasshopper. The DIVA 
environment supports a series of performance evaluations by using 
validated tools including Radiance and Daysim [42]. Perez All-Weather 
Sky Model was applied for the simulation to better represent the actual 

Fig. 3. The Intelligent Workplace (a) and its floor plan (b) with the selected workstation.  

Fig. 4. Blind slat angle control range.  
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climatic situations and cover all possible sky conditions. The properties 
of materials used in the simulation are listed in Table 1 and the Radiance 
parameters for HDR rendering are summarized in Table 2. Both specu
larity and roughness for the plastic materials are 0. The PC monitor was 
modeled as glow material with luminance of 250 cd/m2. A Grasshopper 
workflow was created to automatically run the simulation for the entire 
year and record the simulation results. The hourly simulation was con
ducted during occupied hours, resulting in a total of 4015 simulations in 
a year. The annual simulation was repeated with blinds at varied slat 
angles from 0◦ to 90◦, with an interval of 15◦. The simulation data with 
TMY weather were used for ML model training and the data with the 
year 2018 weather were used to verify the control strategy. The solar 
irradiance data for the year 2018 were obtained from the National Solar 
Radiation Data Base (NSRDB) created by the National Renewable En
ergy Laboratory (NREL). The NSRDB is a publicly open dataset that 
consists of solar radiation and meteorological data over the United 
States as well as regions of the surrounding countries. It provides 
half-hourly and hourly solar irradiance data at a 4-km horizontal reso
lution from 1998 to 2019. The data were computed from multi-channel 
measurements from geostationary satellites using the NREL Physical 
Solar Model and have been validated using ground-based measurements 
[43–45]. The most recent study shows that the mean percentage bias 
was −2.6 to 4.0% for Global Horizontal Irradiance (GHI) and −2.7 to 
15.9% for Direct Normal Irradiance (DNI) on an hourly basis, depending 
on the location [43]. Given that the percentage bias for the GHI at the 
surface sites is around 5% [45], the hourly NSRDB data can be used as an 
acceptable substitute to station observations that might not be available. 
It is recommended that the dataset be used for developing TMY data for 
building design and comparison of solar system performance [45]. The 
hourly solar irradiance data used in this study were downloaded using 
the NSRDB Viewer (https://nsrdb.nrel.gov/nsrdb-viewer). 

2.3.3. ML model development 
Fig. 5 illustrates the ML process of developing glare predictive 

models. It follows a standard machine learning pipeline, including data 
processing, model selection, model training, and testing. Separate 
models for each of the selected slat angles were trained. The process was 
conducted using the machine learning module for Python (https://www 
.kite.com/python/docs/sklearn).  

• Data processing - SMOTE for imbalanced dataset 

According to Wienold and Christoffersen [8], glare is classified as 
imperceptible, perceptible, disturbing, and intolerable glare. They pro
posed the thresholds and later revised them in a cross-validation study 
[9]. The validation data were collected within the human subject from 
Argentina, Denmark, Germany, Japan, Israel, and the US. The updated 
ranges are shown in Table 3. A threshold of 0.35 for DGP indicating 
perceptible glare was used to label the outcome variable as “Glare” or 
“No glare”. This value and slightly smaller values (such as 0.32 [16] and 
0.3 [14]) have been commonly used in existing studies on glare-based 

shading control [14,16–18,46]. As a result, the obtained dataset was 
imbalanced, with more glary cases than non-glary cases. The dataset 
became more imbalanced as the slat angle of the blinds increased. ML 
models trained using such a dataset would give a poor performance on 
the minority class, i.e., cases with glare. To address this problem, the 
technique of oversampling the minority class was applied. Specifically, 
the simplest oversampling approach that duplicates examples in the 
minority class was used. Although these examples did not add any new 
information to the model, new examples can be synthesized from the 
existing examples to balance the class distribution. This is a type of data 
augmentation for the minority class that is referred to as the Synthetic 
Minority Oversampling Technique or SMOTE for short. The ratio of the 
number of samples in the minority class over the number of samples in 
the majority class after resampling can be defined. In this study, a value 
of 1 was used. Fig. 6 visualizes how the number of data points of the 
minor class were increased using the SMOTE.  

• Selection of model input variables 

In this study, the sitting position and the view direction of the 
occupant were predefined. For the given workstation, factors that can 
have a significant impact on the glare condition include the intensity of 
solar irradiance and the position of the sun. At a specific time, the po
sition of the sun can be described by the azimuth angle and the altitude 
angle, while the solar condition can be described with Diffuse Horizontal 
Irradiance (DHI) and DNI. These four variables are widely used in 
existing studies predicting daylight with MLAs [34], and they are also 
easy to obtain for real-time shading control. Therefore, they were 
selected as the model input.  

• Model evaluation metrics 

The confusion matrix, also known as the error matrix, is widely used 
to describe the performance of a classification model (or a classifier). 
The confusion matrix for the binary classifier in this research is shown in 
Table 4. In this study, the consequence of False Negative, meaning the 
model fails to predict the occurrence of actual glare, is more serious than 
False Positive. Thus, the recall score, a measure of the correctly identi
fied positive cases from all the actual positive cases, was used as the 
model evaluation metric. Recall score can be calculated using Equation 
(2). 

Recall =
True ​ Positive

True ​ Positive + ​ False ​ Negative
(2)    

• Hyperparameter tuning 

In machine learning, a model hyperparameter is a pre-defined 

Table 1 
Material descriptions for the daylight simulation model.  

Opaque 
Material 

Material 
Type 

Red 
Reflectance 

Green 
Reflectance 

Blue 
Reflectance 

Ceiling Plastic 0.7 0.7 0.7 
Wall Plastic 0.7 0.7 0.7 
Floor Plastic 0.2 0.2 0.2 
Blinds Metal 0.8 0.8 0.8 
Desk Plastic 0.5 0.5 0.5 
Partition Plastic 0.5 0.5 0.5 
Glazing 

Material  
Red 
Transmissivity 

Green 
Transmissivity 

Blue 
Transmissivity 

Window 
glaze 

Glass 0.87 0.87 0.87  

Table 2 
Radiance parameters for the HDR renderings for DGP 
simulation.  

Parameter Value 

Direct jitter (-dj) 0 
Direct sampling (-ds) 0.5 
Direct threshold (-dt) 0.5 
Direct certainty (-dc) 0.25 
Direct relays (-dr) 0 
Direct pretest (-dp) 64 
Specular threshold (-st) 0.85 
Ambient bounce (-ab) 2 
Ambient accuracy (-aa) 0.25 
Ambient resolution (-ar) 16 
Ambient divisions (-ad) 512 
Ambient super-sample (-as) 128 
Ray reflection limit (-lr) 4 
Ray weight limit (-lw) 0.05  
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configuration to control the learning process. It is external to the model 
and cannot be estimated from the traning data. The purpose of hyper
parameter tuning is to optimize a single target evaluation metric. In this 
study, the hyperparameters of each ML model were optimized with 
recall score as the target. A grid search along a few selected parameters 
of each classifier was conducted. Where additional parameters beyond 
the ones considered exist, they were kept at the default values offered by 
their respective implementations. The hyperparameters which gave the 
highest recall score on the validation dataset were selected. The tuning 
process was implemented using cross-validation, a procedure to eval
uate the performance of ML models. It has a single parameter called k 
that refers to the number of subgroups (folds) that a given dataset is to be 
split into. Of the k subsamples, k-1 groups are used as the training data, 
and the rest single subsample is retained as the validation data for 
testing the model. This process is then repeated k times, with each of the 
k subsamples used exactly once as the validation data. The k results from 
each process can then be averaged and used to evaluate the performance 
of the model. In this study, the common 10-Fold Cross-Validation was 
used. The examined hyperparameters for each model as well as their 
searching range are listed in Table 5. 

2.3.4. Implementation of the proposed control framework using simulation 
The overall workflow of the proposed control logic is shown in Fig. 7. 

From the simulation, the minimal slat angle that can be used to fully 
prevent glare at any time during the occupied hours is determined, 
which is the maximum of the selected slat angles for real-time blind 
control. With solar irradiance measurements (DHI and DNI) and calcu
lated sun position (azimuth and altitude angle), the control logic aims to 

find the smallest slat angle that can eliminate glare and set it as the tilt 
angle at the current timestep. Specifically, the logic first predicts if there 
is glare with a slat angle of 0◦. If there is no glare, the slat angle is set as 
0◦. Otherwise, the control logic examines if there is glare with a slat 
angle of the second smallest angle and repeats the previous decision- 
making process. 

3. Result 

3.1. Comparisons between the TMY and historical weather data 

The historical year 2018 weather was compared to the TMY weather 
within the occupied time from different perspectives. Fig. 8 and Table 6 
provide the statistics of the two weather datasets. Generally, the actual 
weather had higher DNI and lower GHI and DHI compared to the TMY 
weather. Notably, the standard deviation of DHI for the actual weather 
was much smaller than that of the TMY weather. The sky condition was 

Fig. 5. ML process for developing the glare predictive models.  

Table 3 
DGP and glare condition.  

Daylight Glare Probability Glare condition 

DGP <0.35 Imperceptible glare 
0.35 ≤ DGP ≤0.38 Perceptible glare 
0.38 < DGP ≤0.45 Disturbing glare 
>0.45 Intolerable glare  

Fig. 6. Visualization of the training dataset: (a) original dataset; (b) the dataset after applying SMOTE.  

Table 4 
Confusion matrix for the binary classifier in this study.   

Predicted 

Actual  Glare = Yes Glare = No 
Glare = Yes True Positive (TP) False Negative (FN) 
Glare = No False Positive (FP) True Negative (TN)  

Table 5 
The examined hyperparameters and the range of each model.  

Model KNN SVM RF 

Hyperparameters 
and their 
examined range 

Number of 
neighbors K ∈
[10,47] with 
an interval of 
1 

Regularization 
parameter C ∈ [1, 
20] with an 
interval of 1 

The number of 
trees N and the 
maximum depth 
of each tree d, N ∈
[1,20] with an 
interval of 1, d ∈
[1,6] with an 
interval of 1  
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further analyzed to investigate the variation between the two weather. It 
was determined based on a model proposed by Fakra et al. [48]: 

SR =
DHI
GHI

(3)  

where SR is the Sky Ratio. Three sky condition categories were defined 
according to SR as proposed by Motamed et al. [49], which is listed in 
Table 7. As illustrated in Fig. 9, the 2018 weather had slightly fewer 
partially cloudy days and more clear and overcast days compared to the 
TMY weather. 

3.2. Annual glare analysis with the training dataset 

A total of 3820 data points for each annual simulation were obtained. 
Table 8 lists the number of hours with and without glare as well as their 
ratio at different slat angles. The original dataset was substantially 
imbalanced, with most of the hours devoid of glare. The imbalance was 
more significant with the increase of the slat angle. This indicates the 
necessity of applying the SMOTE technique to address this problem to 
improve the performance of the predictive models. Additionally, it is 
important to highlight that there was no glare case in the training 
dataset when the slat angle was 45◦ and above. Hence, only 0◦, 15◦, 30◦, 

and 45◦ were selected for the control of the blinds, and three individual 
models were trained for glare prediction (for 0◦, 15◦, and 30◦). 

3.3. Performance of different ML models 

Fig. 10 illustrates the recall score of different models with their tuned 
hyperparameters. As shown in the figure, all three models had a high 
recall score (0.92–0.98) with a slat tilt angle of 0◦. The recall score for 
the model with a slat angle of 15◦ was also satisfying for the SVM and RF 
models. The performance of the KNN model was lower but still 
acceptable. As the slat angle increased to 30◦, both KNN and RF methods 
had a significantly lower recall score than the 0◦ and 15◦ model while 
the SVM maintained a good performance. Overall, the SVM algorithm 
seemed to exhibit a robust and stable prediction ability for the glare 
cases despite the imbalance of the original dataset before applying 
SMOTE. In contrast, the performance of the other two algorithms was 
more sensitive to the quality of the original training dataset, i.e, how 
imbalanced it was, especially the KNN algorithm. 

3.4. Evaluation of the proposed control strategy 

The proposed control algorithm was compared with the conventional 

Fig. 7. Overall workflow of the proposed control logic.  
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cut-off angle control, in relation to glare prevention, potential in 
reducing lighting energy use, and view access. Cut-off control tilts the 
blind slats to the angle beyond which no direct solar radiation can 
penetrate. The cut-off angle can be calculated according to the solar 
profile angle as proposed by Karlsen et al. [30]. 

βcut−off = sin−1
(

cos(Ω) ⋅
s
w

)
− d (4)  

Ω = tan−1(tanα / cosγ) (5)  

where βcut-off is the cut-off angle (rad), Ω is the solar profile angle (rad), s 
is the spacing between the blind slats (m), w is the width of the slats (m), 
α is the solar altitude angle (rad), and γ is the solar surface azimuth angle 
(rad). 

Fig. 8. Boxplots of the solar irradiance of the TMY weather and 2018 weather.  

Table 6 
Mean and standard error of the two weather datasets.   

GHI (W/m2) DNI (W/m2) DHI (W/m2) 

TMY 2018 TMY 2018 TMY 2018 

Mean 354.7 294.5 283.2 322.8 180.4 103.8 
Standard deviation 244.2 236.3 289.3 323.1 103.6 46.1  

Table 7 
Sky condition category and SR [49].  

Sky Ratio Sky Condition 

SR < 0.3 Clear 
0.3 ≤ SR < 0.8 Partially cloudy 
SR ≥ 0.8 Overcast  

Fig. 9. The sky condition distribution of the two weather.  

Table 8 
Number of hours with glare and without glare with the TMY weather.  

Blind slat 
angle 

Glare No 
Glare 

Glare: No Glare before 
using SMOTE 

Glare: No Glare after 
using SMOTE 

0◦ 290 3530 1:12 1:1 
15◦ 44 3776 1:86 1:1 
30◦ 10 3810 1:381 1:1 
45◦ 0 3820 – – 
60◦ 0 3820 – – 
75◦ 0 3820 – – 
90◦ 0 3820 – –  

Fig. 10. The recall score of different models with the tuned hyperparameters.  
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3.4.1. Annual glare analysis 
In this study, “on-state-hit” and “off-state-missed” were defined to 

evaluate the performance of the shading control strategy in preventing 
glare. “On-state-hit” refers to cases where glare was detected, and the 
automated shading system activated correctly to eliminate glare. “Off- 
state-missed” refers to cases when glare occurred and the automated 
shading system failed to activate or it activated but failed to prevent 
glare. Table 9 shows an example for each of these two scenarios on April 
10th with the SVM classifier. At 9 a.m., the ML model correctly predicted 
the occurrence of glare with the blind slat at 0◦. Then the control al
gorithm proceeded to check the condition if the blind was rotated to 15◦. 
The SVM model accurately predicted there was no glare and the control 
algorithm set this angle as the control command. As a result, glare was 
successfully prevented. In contrast, at 10 a.m., the SVM classifier failed 
to predict glare incidents with the blind slat at 0◦. Accordingly, the al
gorithm then set 0◦ as the command. In this case, glare was not 
eliminated. 

The percent of “on-state-hit” and “off-state-missed” with cut-off 
control and the proposed control based on different ML algorithms is 
illustrated in Fig. 11. It is important to highlight that the cut-off angle 
control performed poorly in eliminating glare, with an “on-state-hit” 
percentage of 28.9%. The proposed control strategy significantly out
performed the cut-off control despite the ML algorithm used. In partic
ular, 96.9% of the glare was eliminated if RF-based predictive models 
were used. The SVM- and KNN-based control algorithm also had a 
satisfying performance, with an “on-state-hit” of 91.7% and 86.5%, 
respectively. The result illustrates the excellent capability of the pro
posed control strategy in preventing glare. 

3.4.2. The potential in reducing lighting energy use 
The potential of the proposed strategy and the cut-off shading control 

in lighting energy savings was estimated based on the reduction of the 
number of hours that require artificial lighting use. For each of the 
strategies, it was assumed that electric lights are switched off when the 
illuminance on the work plane is above 500 lux. The default setting is an 
on/off lighting control that is toggled based on office hours, i.e. all 
lighting devices are switched on during office hours (8 a.m.–6 p.m.). As 
indicated in Table 10, lighting energy saving rates of 80.8% can be 
achieved with the proposed shading control strategy, despite the ML 
algorithm used. The difference in lighting energy use reduction due to 
the classification algorithm was negligible. The cut-off control strategy 
also had a substantial potential in reducing lighting energy use, yet 
notably lower than the proposed control method. 

3.4.3. View access 
The distribution of annual blind slat tilt angle with the proposed and 

cut-off shading control strategy is illustrated in Fig. 12. The cut-off angle 
was rounded to the nearest multiple of 15◦ and the negative angle was 
replaced with 0◦. With cut-off angel control, the blind was kept fully 
open for 60% of the occupied time. This percentage was 86%–90% with 
the proposed control strategy, suggesting a significant improvement in 
view access for the occupants, which could improve their satisfaction 
with the proposed control strategy in real-life applications. 

3.5. Validating the proposed method with a different climate 

As discussed in Section 2.3.3, the performance of the ML predictive 

model depends on the quality of the training dataset. A more balanced 
dataset would result in a model with a higher recall score, further 
improving the capability of the proposed shading control strategy to 
avoid glare. In this study, the dataset was generated from daylight 
simulation with a cloudy climate, resulting in fewer samples with glare 
than without glare. Thus, it is hypothesized that the proposed control 
algorithm will have better performance if validated with a sunny 
climate. To test this hypothesis, we selected Phoenix, Arizona for further 
verification. All the building and model settings were kept the same for 
the new climate. 

As shown in Fig. 13, the performance of the proposed control algo
rithm improved when it was validated with a sunny climate. Specif
ically, the “on-state-hit” percent increased to 93.5% for KNN model- 
based control, 95.6% for SVM, and 98.6% for RF. The result 
confirmed our hypothesis, suggesting that the proposed control strategy 
is more advantageous if applied in locations with a sunny climate. 

4. Discussion 

This study proposed a data-driven method to integrate the concept of 
visual comfort into the control of automated shading systems, seeking a 
feasible glare control solution for real-life applications. The presented 
strategy replaced intensive real-time daylight simulation in conven
tional model-based control with simple ML predictive models developed 
from pre-simulated data. Meanwhile, it eliminates the use of indoor 
physical sensors that could cause various concerns such as privacy, 
sensor placement, and aesthetics. The control strategy was validated in 
an existing office building using simulation with actual historical 
weather data, illustrating the capability of ML algorithms in preventing 
up to 96.9% of the glare, thus, greatly outperforming the conventional 
cut-off angle control. It also improved view access and potential in 

Table 9 
An example of “On-state-hit” and “Off-state-missed” with the SVM algorithm (1 - with glare; 0 - without glare).  

Time Glare with the slat at 0◦ Glare with the slat at 15◦ Glare with the slat at 30◦ Control outcome 

Predicted True Predicted True Predicted True 

Apr 10th, 9 a.m. 1 1 0 0 0 0 “On-state-hit” 
Apr 10th, 10 a.m. 0 1 0 0 0 0 “Off-state-missed”  

Fig. 11. The percentage of “on-state-hit”.  

Table 10 
The potential in lighting energy use reduction.   

ML algorithm Lighting energy use reduction 

The proposed control strategy KNN 80.8% 
SVM 80.8% 
RF 80.8% 

Cut-off control – 67.6%  

J. Xie and A.O. Sawyer                                                                                                                                                                                                                        



Building and Environment 196 (2021) 107801

10

reducing lighting energy use compared to the cut-off control. The result 
suggests that the presented control strategy is a promising solution to 
balance the benefits and drawbacks of daylight ingress in real-life office 
environments. 

It is worth noting that there have been some recent studies on 
daylighting control using a simplified predictive model [46,50,47]. 
These methods are also capable of minimizing the use of indoor sensors 
and eliminating real-time daylight simulation. The main idea is to use 
pre-defined correlations between the control variable and another 
physical measure that is easier to obtain. For instance, work plane 
illuminance can be controlled within 500–2000 lux according to the 
real-time measurement or simulation of exterior window illuminance. It 
should be noted that the main problem with these methods is that the 
pre-obtained correlation varies with the data used to derive it. The 
pre-derived equation might not work when it is implemented in the 
control system, due to the variation in the weather condition. Further
more, it also varies with the day of the year and time of the day, as well 

as the states of the shading devices. Hence, one or several fixed equa
tions might not be representative or sufficient to describe the underlying 
correlation. Thereby, the performance of the control strategy that de
pends on the pre-determined equations can be compromised. On the 
contrary, the control method proposed in this study takes advantage of 
the learning and predictive feature of MLAs to respond to new data to 
achieve better predictive capabilities. As revealed by the result, the 
model trained from simulation data with TMY weather had a good 
performance when it was used to predict glare using actual weather. 

Under the assumption that the daylight simulation model is well- 
calibrated, this research showed that ML predictive models developed 
from pre-simulated data can be used for real-time shading control. In 
practice, the system will also be commissioned before it is installed, to 
further ensure the accuracy of the predictive model. Thereby, physical 
measurements to collect data for developing the ML models can be 
eliminated. The ML models used in this study are simple, allowing for 
very fast computation. Thus, it is possible to account for multiple view 
directions for more accurate glare evaluation and customize the shading 
control strategy in private offices. Additionally, the proposed method 
can be used to control shading groups facing different orientations in 
open-plan offices. It is also applicable to control other types of shades. 

Despite the strengths, several challenges need to be addressed in 
future studies. The primary challenge is how to minimize the dataset 
required to develop a reliable predictive model. This is especially 
important if the proposed method is used to control multiple shades in 
open-plan offices or multiple view directions are considered for effective 
glare control. Sensitivity analysis in training dataset size and model ML 
model performance should be conducted to answer this question. It is 
further suggested that an analysis of the spatial distribution of glare 
should be conducted to apply this method to control multiple shades in 
the open-plan office. Advances in daylight simulation tools that allow 
for fast and concurrent glare computation at multiple sitting positions 
with multiple view directions will be of great use for such analysis. The 
newly developed tool ClimateStudio by Solemma LLC is an excellent 
example of these advanced tools (https://www.solemma.com/Climat 
eStudio.html). It performs daylight simulation using Radiance as the 

Fig. 12. The distribution of blind slat tilt angle: a) cut-off control; b) KNN model-based control c) SVM model-based control d) RF model-based control.  

Fig. 13. The percentage of “on-state-hit” with the proposed control strategy 
with a sunny climate and a cloudy climate. 

J. Xie and A.O. Sawyer                                                                                                                                                                                                                        

https://www.solemma.com/
https://www.solemma.com/ClimateStudio.html
https://www.solemma.com/ClimateStudio.html


Building and Environment 196 (2021) 107801

11

engine. However, it implements Radiance in a progressive path tracing 
mode that traces few paths at a time and updates the result as the 
simulation progresses instead of tracing all possible light paths before 
computing a result. Combined with the use of GPU to handle mathe
matical operations, it allows for fast daylight modeling, even faster than 
cloud-based tools. Nevertheless, its up-to-date version computes DGPs 
instead of full DGP for the annual glare simulation. Its daylight simu
lation has not been integrated with Grasshopper. Therefore, running the 
annual point-in-time DGP simulation is not practical. In this study, we 
used a lower rendering quality (ab = 2, ad = 512) for glare simulation 
using DIVA for Grasshopper to expedite the process. Spot check with a 
medium rendering quality (ab = 3, ad = 1024) on four representative 
days (equinox and solstice days, from 9 a.m. to 4 p.m.) shows that the 
average difference is 7%. The difference for most data points (82.5%) is 
within 10%, indicating the lower quality rendering is an acceptable 
setting. However, we do realize this is one major limitation of this study. 
Future research is required to verify the proposed method using higher 
quality simulation parameters. Another shortcoming of this study is that 
the simulation model was not validated, with materials selected from the 
DIVA library. Experimental studies with a well-calibrated and validated 
daylight simulation model are needed to address this limitation. 

The proposed control strategy highlights human comfort by using 
glare index as the direct control target. However, like most existing 
methods, it does not include occupants in the control logic, which could 
frustrate users as they don’t have full control over the shading system 
[51,52]. As a result, the automated shading system might be overridden 
by occupants in real-life applications. To improve occupants’ acceptance 
and satisfaction with the automated shading system, future studies 
should consider including them in the control loop. Additionally, the 
control algorithm is expected to learn and adapt to occupants’ prefer
ences after implementation. For instance, this control goal could be 
achieved by constantly adjusting the visual comfort setpoint (the 
threshold for DGP in this study) based on occupants’ interactions with 
the shading devices. 

5. Conclusion 

To incorporate the concept of visual comfort into the control of 
automated shading systems, this paper presented a simulation-assisted 
data-driven method to predict and prevent glare with dynamic shades. 
Different from existing methods in the literature, the proposed strategy 
eliminates the use of indoor sensors that can be costly and cause privacy 
concerns, and intensive real-time daylight simulation that can overload 
the controller. Specifically, it uses pre-simulated data to develop glare 
predictive models based on simple MLAs. With solar radiation mea
surements and the position of the sun as the real-time inputs to feed the 
predictive models, the control algorithm sets the shading devices to the 
state that prevents glare and maximizes daylight ingress based on the 
predicted glare condition at each time step. 

The proposed control strategy was verified using climate-based 
simulation in an existing office building, to control the slat tilt angle 
of automated internal venetian blinds. Glare predictive models were 
derived using three common machine learning classification algorithms, 
including K-nearest neighbor, Support Vector Machine, and Random 
Forest. Pre-simulated glare data with TMY weather were used to train 
the models. Simulations with a year’s historical weather were used to 
validate the performance of the control method regarding effectiveness 
in glare prevention and potential in lighting use reduction as well as 
view access. It was found that the conventional cut-off angle control only 
managed to avoid 28.9% of the glare, while the proposed control algo
rithm successfully prevented 86.5%–96.9% of the glare with better view 
access. If integrated with lighting control, it could reduce lighting en
ergy use by 80.8% compared to that of default on/off control. Conclu
sively, it significantly outperformed the cut-off angle control in 
preventing glare, while exhibiting greater potential in lighting energy 
savings and providing more view access. 

With the elimination of indoor sensors and real-time daylight 
simulation, as well as the need to collect physically measured data for 
ML model training, the presented control algorithm can be applied to 
control window shades on different orientations in open-plan offices. It 
can also be used in private offices for more customized glare control by 
accounting for multiple view directions. Moreover, it applies to various 
shading types, not limited to the venetian blinds in this study. It is 
promising to act as a feasible glare control solution for real-life appli
cations to provide a comfortable and satisfying indoor luminous envi
ronment for the occupants. Experimental studies in the future involving 
occupants are needed to further verify its validity. 
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