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An automated shading system is expected to effectively prevent visual discomfort associated with glare while
providing adequate daylight penetration. However, the concept of visual comfort has not been well integrated
into existing commercial shading systems, leaving potential for visual discomfort and resulting in occupants’
dissatisfaction. Meanwhile, advanced methods in the academic literature are not always suitable for industrial
applications due to problems associated with intensive real-time computation or privacy concerns. This research
aims to address this gap by developing a simulation-assisted data-driven method for glare control with auto-
mated shades. The proposed strategy utilizes data from pre-simulated daylight analyses to develop glare pre-
dictive models using machine learning algorithms. With real-time solar irradiance measurements and the sun
position as the input variables to feed the predictive models, the control algorithm can predict the glare condition
and set the shades to an appropriate position that maximizes daylight ingress without causing glare. The pre-
sented method was verified using climate-based simulation to adjust the slat angle of automated venetian blinds
in an office building. Its performance was compared to that of the conventional cut-off angle control for glare
elimination, lighting use savings, and view access. The results showed that the proposed strategy was able to
prevent 86.5%-96.9% of the glare and potentially reduce lighting energy use by 80.8% while the cut-off control
only resulted in 28.9% glare elimination and 67.6% lighting energy savings. The presented method also allowed
for unobstructed view more frequently, outperforming the cut-off angle control in all the examined categories.

1. Introduction

Access to daylight has been shown to have significant benefits for
office workers’ health, productivity, well-being, and satisfaction [1,2].
In addition to health benefits, making use of daylight (daylight har-
vesting) can also reduce building electric lighting use and the overall
energy consumption. However, excessive and uncontrolled daylight
from windows can cause glare, thermal discomfort, and increased
building energy consumption. A balance between the benefits and
drawbacks of daylight ingress is required to create a more satisfying,
productive, and sustainable office environment. This balance can be
achieved by using effective automated shading systems.

In 2019, Katsifaraki suggested that the function of automated
shading control systems can be organized into three main categories [3]:
1) achieving visual comfort by providing sufficient daylight and view
access without causing glare; 2) achieving thermal comfort by rejecting
excessive solar penetration that could lead to overheating; 3) reducing
building energy consumption by utilizing sunlight to decrease electric

lighting use and heating energy demand. As discussed by Wymelenberg
[4], the potential of daylight utilization to save energy must be provided
in a manner that is acceptable to occupants, indicating the importance of
prioritizing occupants’ comfort for fenestration control. Meanwhile,
field studies have reported that minimizing glare and visual discomfort
is the major factor driving occupants to close blinds [5], further sug-
gesting that a “glare-free” environment should take priority over other
factors such as thermal comfort and energy saving when designing
automated shading control strategies in office buildings. Accordingly,
higher priority has been given to daylight and glare among existing
studies on dynamic shading control as expressed in a most recent review
paper [6].

Discomfort glare can be caused by excess brightness of the scene or
high luminance contrast. Glare indices, such as the Daylight Glare Index
(DGI) [7] and Daylight Glare Probability (DGP) [8], have been proposed
to estimate the likelihood of an observer experiencing visual discomfort.
In a 2019 study, Wienold et al. evaluated the performance and robust-
ness of 22 established glare indices using experimental datasets of
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daylight-dominant workplaces in different locations [9]. They found
that DGP outperformed the other indices in describing the glare scale
and distinguishing between disturbing and non-disturbing scenes. As
summarized in two review papers, DGP is one of the most widely used
metrics for solar radiation control, glare evaluation, and indoor visual
comfort assessment [6,10]. According to Wienold and Christoffersen
[81, DGP is a function of the vertical eye illuminance as well as of glare
source luminance:
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where Ey is eye-level vertical illuminance (lux), o; is the solid angle of
the glare source (sr), L; is the luminance level of the glare source (cd/
m?), and P; is the Guth position index expressing the occupants’ sensi-
tivity within their field of view. A simplified DGP (DGPs) was later
proposed which omits the influence of individual glare sources and
greatly simplifies the calculation of glare perception [11]. However, it
can only be applied if no direct sun or specular reflection from the
shades is within occupants’ field of view [12].

As reviewed by Katsifaraki [3], most existing commercial shading
systems implement relatively simple control strategies, such as acti-
vating shades based on time, the position of the sun, and work plane
illuminance. The concept of discomfort glare is not well integrated into
the control strategies of these systems, potentially compromising their
performance in satisfying occupants’ requirements for visual comfort.
For instance, a previous study reported that a typical automated vene-
tian blind system that was controlled based on the vertical illuminance
led to 45% of the control actions being overridden by occupants [13],
indicating its shortcoming to meet occupants’ expectations and satis-
faction. There have been several studies on dynamic shading control
that capture real-time glare using a High Dynamic Range (HDR) vision
sensor [14,15] or camera [16]. However, it is important to note here that
taking pictures of the workplace could cause privacy concerns among
occupants, especially in an open-plan office. Another method proposed
by researchers is to employ real-time daylight simulation to obtain glare
indices [17,18]. This method could be computationally intensive and
may lead to a slow response of the control system, and potentially
overload the controller of the Building Automation System (BAS).
Currently, there are limited daylight simulation tools that are fast and
user-friendly enough to be integrated into the control system [19].
Therefore, the real-time daylight simulation may be “a significant lim-
itation and obstacle for simulation assisted controls to become an in-
dustrial application” [19].

Many studies have proposed to use simple measures to replace glare
indices to quantify discomfort glare [20-28]. These metrics can be
categorized as illuminance- and luminance-based measures. Of the
illuminance-based measures, horizontal illuminance has been recom-
mended as an indicator of visual discomfort in the perimeter zones in
offices in several studies [4,20,21,29]. However, a study by Konis [22]
found that occupants sitting in the core zone of a side-lit office reported
visual discomfort even with very low horizontal illuminance. He sug-
gested that occupants’ perception of visual discomfort may be
context-specific, depending on their distance to the facade and the
interior surface reflections. Another experimental study also reported
that work plane illuminance and DGP were not well correlated [23].
Therefore, more studies are required to support the use of horizontal
illuminance to quantify glare with the context specified. Numerous
studies have investigated the correlation between vertical eye illumi-
nance and perceived visual discomfort by occupants, suggesting it is a
promising indicator of discomfort glare [4,23,24,30,31] Nevertheless,
there is a large variation in the proposed thresholds of visual discomfort,
ranging from 375 lux [24] to 3000 lux [31]. There is no consensus
among researchers regarding what threshold should be used. Some
newly proposed metrics like the cylindrical illuminance and vertical
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illuminance vector require more verification, especially experimental
validation [25]. Another major limitation of all illuminance-based
measures is that they are not adequate to represent contrast-based
glare. Therefore, they are not suitable for places where contrast is
dominant, such as those with large windows and specular monitor
screens. Recommended luminance-based metrics include maximum
luminance [24,32], luminance contrast ratio [22,31], and mean lumi-
nance [4], etc. They have similar limitations as glare indices when
applied in dynamic shading control, i.e, physical measurements may
cause privacy concerns and real-time simulation can be challenging.
Wienold proposed the simulation-based metric-enhanced simplified
DGP which separates the computation of the illuminance and luminance
contrast of DGP and uses a simplified image to derive it [33]. However,
the validation of this method indicates that it may not apply to scattering
or re-directing facade designs. To summarize, these simple measures are
not sufficient to fully replace glare indices given that each of them has
specific limitations in glare quantification.

To overcome the drawbacks of existing methods and integrate visual
comfort into automated shading systems in a practical manner, a
promising solution would be a data-driven approach [19]. As indicated
in a recent review paper, machine learning algorithms (MLAs) have been
widely used in existing studies to predict indoor daylighting conditions
[34]. It has gained much popularity in the building design community
due to its capability to surrogate complex daylight simulations. How-
ever, only a few studies can be found which have explored the use of
MLAs for dynamic shading control. Most studies on using MLAs to
predict daylighting focused on the estimation of illuminance or daylight
availability such as Spatial Daylight Autonomy (sDA) and Useful
Daylight Illuminance (UDI). As indicated in a recent review study on
MLAs to predict daylighting inside buildings by Ayoub [34], 53% of the
27 selected studies concentrated on the prediction of illuminance, and
the other 40% on daylight availability metrics. Only two studies on
predicting visual comfort were identified [35,36]. One suggested that
DGP prediction with MLAs did not show a satisfying result [36]. This
might be explained by the fact that glare is affected by additional factors
(such as view directions), making its prediction more complex compared
to illuminance or illuminance-based metrics. It should be noted that
both studies applied a regression model to predict DGP, which could
potentially compromise the model accuracy due to limited model inputs.
As indicated by Ayoub [34], the classification and clustering method
might be more appropriate for visual comfort prediction that entails
classifying daylight conditions. More research is required to investigate
the performance of predicting visual comfort using MLAs.

This study aims to propose a glare-based dynamic shading control
strategy that is applicable in complex real-world settings, especially in
open-plan offices. It investigated the feasibility of using machine
learning (ML) classification models developed from pre-simulated data
to predict glare in physical environments. Specifically, the models were
trained with pre-simulated data from daylight modeling using Typical
Meteorological Year (TMY) weather, with the position of the shades as a
variable. With real-time measured input variables such as solar irradi-
ance to feed the predictive models, the control algorithm set the shades
to the position that maximized daylight ingress without causing glare.
This application of the proposed strategy was demonstrated to control
the venetian blinds in a simulated open-plan office. Its effectiveness in
preventing glare while maximizing daylight and view access was vali-
dated with actual historical weather. Automated shading systems can be
generally divided into open-loop and closed-loop control systems [37].
The presented control method in this study is an open-loop strategy. Jain
and Garg reviewed open-loop control strategies for automated shading
and integrated lighting control that utilize real-time daylight prediction
and concluded that advanced open-loop control systems using calibrated
simulations are more advantageous than closed-loop systems in
reducing post-commissioning errors, easy monitoring, and predicting
daylight more extensively [19]. They also stated that few studies have
incorporated learning algorithms into the control process to replace
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physical daylight modeling. This study is an exploration to address this
gap.

2. Methodology
2.1. Overall workflow

The proposed shading control method aims to predict real-time
discomfort glare using data-driven models developed from daylight
simulations and control the shading devices accordingly. The workflow
to achieve this goal can be divided into three phases: the pre-simulation
phase, the ML model development phase, and the real-time control
phase. In the pre-simulation phase, a daylight simulation program was
required to generate the annual hourly glare profile for ML model
training. In the predictive model training phase, individual models for
different shading states were developed using the pre-simulated data.
Several common ML classification models, such as Random Forest were
used to predict visual comfort. The hyperparameters of each model were
optimized to select the model that gave the highest prediction perfor-
mance. In the real-time control phase, concurrent solar irradiance
measured by a pyranometer on the rooftop was used to feed the ML
models. At each time step, the shading control algorithm searched for
the state of the shades that allowed for maximum daylight ingress
without causing glare, and the system took that position as the control
command. Fig. 1 illustrates the application of the workflow to operate
multiple (groups of) shades facing different ordinal orientations, which
is common in open-plan offices.

2.2. Machine learning classification algorithm

Three classification algorithms were used for glare prediction,
including K-nearest neighbor (KNN) [38], Support Vector Machine
(SVM) [39], and Random Forest (RF) [40]. These methods were selected
for the following reasons: 1) they are simple and easy to implement; 2)
prediction with these models is quick, which would not cause compu-
tation burden in the controller for real-life applications; 3) they are the
most common and widely used classification algorithms in similar
research studies.

2.2.1. K-nearest neighbor

KNN is one of the simplest machine learning methods that has been
used since the early 1970s in statistical applications. It is a non-
parametric approach that does not require assumptions about how the
input variables are correlated to the output variable. The logic behind
this method is that it searches for a group of k samples that are nearest to
the unknown sample according to the distance between the known
sample and the new sample. The class of the new sample is usually
determined by the majority class of the k samples. Hence, k is the only
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tuning parameter that determines the predicting performance of this
classifier.

2.2.2. Support Vector Machine

SVM is a machine learning algorithm for two-group classification
problems. Fig. 2 illustrates an example of SVM classification with a
linear separation hyperplane. The main objective of this method is to
find a separation hyperplane that gives the greatest distance between
two classes using support vectors. It should be noted that by mapping the
input variables into a higher dimensional feature space, the hyperplane
can be nonlinear as well. Accordingly, the SVM classifier can have a
nonlinear kernel. In this study, a common radial basis function (RBF)
kernel was used. The regularization parameter (C) was specified in this
study.

2.2.3. Random Forest

Compared with KNN and SVM, RF is an ensemble method that grows
many decision trees in parallel with bootstrapping. Each decision tree
gives a classification, which is called the “votes” for that class by the
tree. The forest chooses the classification having the most votes (over all
the trees in the forest). Two parameters that greatly affect the perfor-
mance of an RF model were specified in this study, including the number
of trees (N) and the maximum depth of each tree (d). By limiting the
maximum depth of each tree, RF builds smaller trees to prevent over-
fitting. Hence, an RF classifier usually outperforms a decision tree
classifier.

Fig. 2. An example of SVM classification.

Eresimulafed data | __, ML model training
of glare !
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: N
Shading control logic Reaktimeisolax
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Shade (group) 1 Shade (group)2 | | - Shade (group) n

Fig. 1. The flowchart for the overall workflow to operate multiple shades. (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)
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2.3. Development of a case study

2.3.1. Description of the case building

The Intelligent Workplace (IW), an existing open-plan office at Car-
negie Mellon University, was used to validate the proposed control
strategy. It occupies the top floor of the Margret Morrison Hall that is
located in Pittsburgh, Pennsylvania, USA (latitude 40.4 N, longitude 80
W). The office is highly glazed, with a window-to-wall ratio that is close
to 70%. It is equipped with internal automatic venetian blinds that were
used to test the presented control strategy. The blinds can be adjusted by
changing the tilt angle of the slats. The slats are flat lamellae with a
width of 0.05 m that are spaced 0.05 m apart. They are purely specular
metal materials with a specularity of 0.8. The venetian blind system
allows the tilt angle to rotate from 0° (fully open) to 90° (fully closed) as
shown in Fig. 4, with an interval of 15°. One workstation facing the east
(marked as the blue rectangle in Fig. 3) was selected to demonstrate the
application of the control method. As indicated in Fig. 3, the green dot
represents the occupant’s sitting position (1.2 m above the finish floor)
and the red dot is the selected reference point to quantify the illumi-
nance on the work plan (0.8 m above the finish floor).

2.3.2. Glare simulation

The software Rhinoceros was used to construct the geometry of the
simulation model. Rhinoceros (Rhino) is a stand-alone, commercial
NURBS-based 3D modeling tool, developed by Robert McNeel and
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Fig. 4. Blind slat angle control range.

Associates [41]. DIVA for Grasshopper was used to perform
point-in-time glare simulation to obtain hourly DGP. DIVA is an envi-
ronmental analysis plugin in both Rhino and Grasshopper. The DIVA
environment supports a series of performance evaluations by using
validated tools including Radiance and Daysim [42]. Perez All-Weather
Sky Model was applied for the simulation to better represent the actual
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Fig. 3. The Intelligent Workplace (a) and its floor plan (b) with the selected workstation.
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climatic situations and cover all possible sky conditions. The properties
of materials used in the simulation are listed in Table 1 and the Radiance
parameters for HDR rendering are summarized in Table 2. Both specu-
larity and roughness for the plastic materials are 0. The PC monitor was
modeled as glow material with luminance of 250 cd/m?. A Grasshopper
workflow was created to automatically run the simulation for the entire
year and record the simulation results. The hourly simulation was con-
ducted during occupied hours, resulting in a total of 4015 simulations in
a year. The annual simulation was repeated with blinds at varied slat
angles from 0° to 90°, with an interval of 15°. The simulation data with
TMY weather were used for ML model training and the data with the
year 2018 weather were used to verify the control strategy. The solar
irradiance data for the year 2018 were obtained from the National Solar
Radiation Data Base (NSRDB) created by the National Renewable En-
ergy Laboratory (NREL). The NSRDB is a publicly open dataset that
consists of solar radiation and meteorological data over the United
States as well as regions of the surrounding countries. It provides
half-hourly and hourly solar irradiance data at a 4-km horizontal reso-
lution from 1998 to 2019. The data were computed from multi-channel
measurements from geostationary satellites using the NREL Physical
Solar Model and have been validated using ground-based measurements
[43-45]. The most recent study shows that the mean percentage bias
was —2.6 to 4.0% for Global Horizontal Irradiance (GHI) and —2.7 to
15.9% for Direct Normal Irradiance (DNI) on an hourly basis, depending
on the location [43]. Given that the percentage bias for the GHI at the
surface sites is around 5% [45], the hourly NSRDB data can be used as an
acceptable substitute to station observations that might not be available.
It is recommended that the dataset be used for developing TMY data for
building design and comparison of solar system performance [45]. The
hourly solar irradiance data used in this study were downloaded using
the NSRDB Viewer (https://nsrdb.nrel.gov/nsrdb-viewer).

2.3.3. ML model development

Fig. 5 illustrates the ML process of developing glare predictive
models. It follows a standard machine learning pipeline, including data
processing, model selection, model training, and testing. Separate
models for each of the selected slat angles were trained. The process was
conducted using the machine learning module for Python (https://www
kite.com/python/docs/sklearn).

e Data processing - SMOTE for imbalanced dataset

According to Wienold and Christoffersen [8], glare is classified as
imperceptible, perceptible, disturbing, and intolerable glare. They pro-
posed the thresholds and later revised them in a cross-validation study
[9]. The validation data were collected within the human subject from
Argentina, Denmark, Germany, Japan, Israel, and the US. The updated
ranges are shown in Table 3. A threshold of 0.35 for DGP indicating
perceptible glare was used to label the outcome variable as “Glare” or
“No glare”. This value and slightly smaller values (such as 0.32 [16] and
0.3 [14]) have been commonly used in existing studies on glare-based

Table 1

Material descriptions for the daylight simulation model.
Opaque Material Red Green Blue
Material Type Reflectance Reflectance Reflectance
Ceiling Plastic 0.7 0.7 0.7
Wall Plastic 0.7 0.7 0.7
Floor Plastic 0.2 0.2 0.2
Blinds Metal 0.8 0.8 0.8
Desk Plastic 0.5 0.5 0.5
Partition Plastic 0.5 0.5 0.5
Glazing Red Green Blue

Material Transmissivity Transmissivity Transmissivity

Window Glass 0.87 0.87 0.87

glaze
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Table 2

Radiance parameters for the HDR renderings for DGP

simulation.
Parameter Value
Direct jitter (-dj) 0
Direct sampling (-ds) 0.5
Direct threshold (-dt) 0.5
Direct certainty (-dc) 0.25
Direct relays (-dr) 0
Direct pretest (-dp) 64
Specular threshold (-st) 0.85
Ambient bounce (-ab) 2
Ambient accuracy (-aa) 0.25
Ambient resolution (-ar) 16
Ambient divisions (-ad) 512
Ambient super-sample (-as) 128
Ray reflection limit (-Ir) 4
Ray weight limit (-lw) 0.05

shading control [14,16-18,46]. As a result, the obtained dataset was
imbalanced, with more glary cases than non-glary cases. The dataset
became more imbalanced as the slat angle of the blinds increased. ML
models trained using such a dataset would give a poor performance on
the minority class, i.e., cases with glare. To address this problem, the
technique of oversampling the minority class was applied. Specifically,
the simplest oversampling approach that duplicates examples in the
minority class was used. Although these examples did not add any new
information to the model, new examples can be synthesized from the
existing examples to balance the class distribution. This is a type of data
augmentation for the minority class that is referred to as the Synthetic
Minority Oversampling Technique or SMOTE for short. The ratio of the
number of samples in the minority class over the number of samples in
the majority class after resampling can be defined. In this study, a value
of 1 was used. Fig. 6 visualizes how the number of data points of the
minor class were increased using the SMOTE.

e Selection of model input variables

In this study, the sitting position and the view direction of the
occupant were predefined. For the given workstation, factors that can
have a significant impact on the glare condition include the intensity of
solar irradiance and the position of the sun. At a specific time, the po-
sition of the sun can be described by the azimuth angle and the altitude
angle, while the solar condition can be described with Diffuse Horizontal
Irradiance (DHI) and DNI. These four variables are widely used in
existing studies predicting daylight with MLAs [34], and they are also
easy to obtain for real-time shading control. Therefore, they were
selected as the model input.

e Model evaluation metrics

The confusion matrix, also known as the error matrix, is widely used
to describe the performance of a classification model (or a classifier).
The confusion matrix for the binary classifier in this research is shown in
Table 4. In this study, the consequence of False Negative, meaning the
model fails to predict the occurrence of actual glare, is more serious than
False Positive. Thus, the recall score, a measure of the correctly identi-
fied positive cases from all the actual positive cases, was used as the
model evaluation metric. Recall score can be calculated using Equation
(2).

True Positive

Recall = 2
eed True Positive + False Negative 2

e Hyperparameter tuning

In machine learning, a model hyperparameter is a pre-defined
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Fig. 5. ML process for developing the glare predictive models.

Table 3
DGP and glare condition.

Daylight Glare Probability Glare condition

DGP <0.35 Imperceptible glare
0.35 < DGP <0.38 Perceptible glare
0.38 < DGP <0.45 Disturbing glare

>0.45 Intolerable glare

configuration to control the learning process. It is external to the model
and cannot be estimated from the traning data. The purpose of hyper-
parameter tuning is to optimize a single target evaluation metric. In this
study, the hyperparameters of each ML model were optimized with
recall score as the target. A grid search along a few selected parameters
of each classifier was conducted. Where additional parameters beyond
the ones considered exist, they were kept at the default values offered by
their respective implementations. The hyperparameters which gave the
highest recall score on the validation dataset were selected. The tuning
process was implemented using cross-validation, a procedure to eval-
uate the performance of ML models. It has a single parameter called k
that refers to the number of subgroups (folds) that a given dataset is to be
split into. Of the k subsamples, k-1 groups are used as the training data,
and the rest single subsample is retained as the validation data for
testing the model. This process is then repeated k times, with each of the
k subsamples used exactly once as the validation data. The k results from
each process can then be averaged and used to evaluate the performance
of the model. In this study, the common 10-Fold Cross-Validation was
used. The examined hyperparameters for each model as well as their
searching range are listed in Table 5.

2.3.4. Implementation of the proposed control framework using simulation

The overall workflow of the proposed control logic is shown in Fig. 7.
From the simulation, the minimal slat angle that can be used to fully
prevent glare at any time during the occupied hours is determined,
which is the maximum of the selected slat angles for real-time blind
control. With solar irradiance measurements (DHI and DNI) and calcu-
lated sun position (azimuth and altitude angle), the control logic aims to

find the smallest slat angle that can eliminate glare and set it as the tilt
angle at the current timestep. Specifically, the logic first predicts if there
is glare with a slat angle of 0°. If there is no glare, the slat angle is set as
0°. Otherwise, the control logic examines if there is glare with a slat
angle of the second smallest angle and repeats the previous decision-
making process.

3. Result
3.1. Comparisons between the TMY and historical weather data

The historical year 2018 weather was compared to the TMY weather
within the occupied time from different perspectives. Fig. 8 and Table 6
provide the statistics of the two weather datasets. Generally, the actual
weather had higher DNI and lower GHI and DHI compared to the TMY
weather. Notably, the standard deviation of DHI for the actual weather
was much smaller than that of the TMY weather. The sky condition was

Table 4
Confusion matrix for the binary classifier in this study.
Predicted
Actual Glare = Yes Glare = No
Glare = Yes True Positive (TP) False Negative (FN)
Glare = No False Positive (FP) True Negative (TN)

Table 5

The examined hyperparameters and the range of each model.
Model KNN SVM RF
Hyperparameters Number of Regularization The number of

and their
examined range

neighbors K € parameter C € [1, trees N and the
[10,47] with 20] with an maximum depth
an interval of interval of 1 of each treed, N €
1 [1,20] with an
interval of 1, d €
[1,6] with an

interval of 1

* Noglare
Glare

* Noglare

Glare

(b)

Fig. 6. Visualization of the training dataset: (a) original dataset; (b) the dataset after applying SMOTE.



J. Xie and A.O. Sawyer

Selected slat angle
BE {0° B1,
B2, B3...Amax}

Building and Environment 196 (2021) 107801

Machine learning
predictive model
Glare = f(solar radiation,
sun position, slat angle)

l

Real-time solar
radiation

J

Does glare

. No_p
occur if B = 0°? °

Set slat angle as
00

Yes

Does glare
occur if B = 317?

=
[+

Set slat angle as

Bl

Yes

Does glare
occur if B = 32?

4
o

Set slat angle as

B2

Set slat angle as
Bmax

Fig. 7. Overall workflow of the proposed control logic.

further analyzed to investigate the variation between the two weather. It
was determined based on a model proposed by Fakra et al. [48]:

DHI

R=——
8 GHI

3
where SR is the Sky Ratio. Three sky condition categories were defined
according to SR as proposed by Motamed et al. [49], which is listed in
Table 7. As illustrated in Fig. 9, the 2018 weather had slightly fewer
partially cloudy days and more clear and overcast days compared to the
TMY weather.

3.2. Annual glare analysis with the training dataset

A total of 3820 data points for each annual simulation were obtained.
Table 8 lists the number of hours with and without glare as well as their
ratio at different slat angles. The original dataset was substantially
imbalanced, with most of the hours devoid of glare. The imbalance was
more significant with the increase of the slat angle. This indicates the
necessity of applying the SMOTE technique to address this problem to
improve the performance of the predictive models. Additionally, it is
important to highlight that there was no glare case in the training
dataset when the slat angle was 45° and above. Hence, only 0°, 15°, 30°,

and 45° were selected for the control of the blinds, and three individual
models were trained for glare prediction (for 0°, 15°, and 30°).

3.3. Performance of different ML models

Fig. 10 illustrates the recall score of different models with their tuned
hyperparameters. As shown in the figure, all three models had a high
recall score (0.92-0.98) with a slat tilt angle of 0°. The recall score for
the model with a slat angle of 15° was also satisfying for the SVM and RF
models. The performance of the KNN model was lower but still
acceptable. As the slat angle increased to 30°, both KNN and RF methods
had a significantly lower recall score than the 0° and 15° model while
the SVM maintained a good performance. Overall, the SVM algorithm
seemed to exhibit a robust and stable prediction ability for the glare
cases despite the imbalance of the original dataset before applying
SMOTE. In contrast, the performance of the other two algorithms was
more sensitive to the quality of the original training dataset, i.e, how
imbalanced it was, especially the KNN algorithm.

3.4. Evaluation of the proposed control strategy

The proposed control algorithm was compared with the conventional
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Fig. 8. Boxplots of the solar irradiance of the TMY weather and 2018 weather.

Table 6
Mean and standard error of the two weather datasets.

Table 8
Number of hours with glare and without glare with the TMY weather.

GHI (W/m?) DNI (W/m?) DHI (W/m?)

TMY 2018 TMY 2018 TMY 2018

Mean 354.7 294.5 283.2 322.8 180.4 103.8
Standard deviation 244.2 236.3 289.3 323.1 103.6 46.1

Table 7
Sky condition category and SR [49].
Sky Ratio Sky Condition
SR < 0.3 Clear
0.3<SR<0.8 Partially cloudy
SR > 0.8 Overcast
0.5 41 TMY I 2018
0.44
S 0.4 4 0.38
> 0.34
]
£ 03
>
[9)
c
g
o 0.2
1
L
0.1
0.0
Clear Partially cloudy Overcast

Fig. 9. The sky condition distribution of the two weather.

cut-off angle control, in relation to glare prevention, potential in
reducing lighting energy use, and view access. Cut-off control tilts the
blind slats to the angle beyond which no direct solar radiation can
penetrate. The cut-off angle can be calculated according to the solar
profile angle as proposed by Karlsen et al. [30].

Blind slat Glare No Glare: No Glare before Glare: No Glare after

angle Glare using SMOTE using SMOTE
0° 290 3530 1:12 1:1
15° 44 3776 1:86 1:1
30° 10 3810 1:381 1:1
45° 0 3820 - -
60° 0 3820 - -
75° 0 3820 - -
90° 0 3820 - -
[ Slatat0° [ Slatat15° Il Slatat 30°
104 1.00 0.98 1.00
’ 0.93 0.92 0.92
0.82
o 08 0.75
(o]
®
2 06 0.58
]
(&)
0]
o o4 -
0.2
0.0 T T T
KNN SVM RF

Fig. 10. The recall score of different models with the tuned hyperparameters.

Braw-op =sin”" (c0s(@) - >) —d @

Q= tan™" (tana / cosy) (5)

where Beyt.off is the cut-off angle (rad), Q is the solar profile angle (rad), s
is the spacing between the blind slats (m), w is the width of the slats (m),
a is the solar altitude angle (rad), and y is the solar surface azimuth angle
(rad).
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3.4.1. Annual glare analysis

In this study, “on-state-hit” and “off-state-missed” were defined to
evaluate the performance of the shading control strategy in preventing
glare. “On-state-hit” refers to cases where glare was detected, and the
automated shading system activated correctly to eliminate glare. “Off-
state-missed” refers to cases when glare occurred and the automated
shading system failed to activate or it activated but failed to prevent
glare. Table 9 shows an example for each of these two scenarios on April
10th with the SVM classifier. At 9 a.m., the ML model correctly predicted
the occurrence of glare with the blind slat at 0°. Then the control al-
gorithm proceeded to check the condition if the blind was rotated to 15°.
The SVM model accurately predicted there was no glare and the control
algorithm set this angle as the control command. As a result, glare was
successfully prevented. In contrast, at 10 a.m., the SVM classifier failed
to predict glare incidents with the blind slat at 0°. Accordingly, the al-
gorithm then set 0° as the command. In this case, glare was not
eliminated.

The percent of “on-state-hit” and ‘“off-state-missed” with cut-off
control and the proposed control based on different ML algorithms is
illustrated in Fig. 11. It is important to highlight that the cut-off angle
control performed poorly in eliminating glare, with an “on-state-hit”
percentage of 28.9%. The proposed control strategy significantly out-
performed the cut-off control despite the ML algorithm used. In partic-
ular, 96.9% of the glare was eliminated if RF-based predictive models
were used. The SVM- and KNN-based control algorithm also had a
satisfying performance, with an “on-state-hit” of 91.7% and 86.5%,
respectively. The result illustrates the excellent capability of the pro-
posed control strategy in preventing glare.

3.4.2. The potential in reducing lighting energy use

The potential of the proposed strategy and the cut-off shading control
in lighting energy savings was estimated based on the reduction of the
number of hours that require artificial lighting use. For each of the
strategies, it was assumed that electric lights are switched off when the
illuminance on the work plane is above 500 lux. The default setting is an
on/off lighting control that is toggled based on office hours, i.e. all
lighting devices are switched on during office hours (8 a.m.-6 p.m.). As
indicated in Table 10, lighting energy saving rates of 80.8% can be
achieved with the proposed shading control strategy, despite the ML
algorithm used. The difference in lighting energy use reduction due to
the classification algorithm was negligible. The cut-off control strategy
also had a substantial potential in reducing lighting energy use, yet
notably lower than the proposed control method.

3.4.3. View access

The distribution of annual blind slat tilt angle with the proposed and
cut-off shading control strategy is illustrated in Fig. 12. The cut-off angle
was rounded to the nearest multiple of 15° and the negative angle was
replaced with 0°. With cut-off angel control, the blind was kept fully
open for 60% of the occupied time. This percentage was 86%-90% with
the proposed control strategy, suggesting a significant improvement in
view access for the occupants, which could improve their satisfaction
with the proposed control strategy in real-life applications.

3.5. Validating the proposed method with a different climate

As discussed in Section 2.3.3, the performance of the ML predictive

Table 9
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Fig. 11. The percentage of “on-state-hit”.
Table 10

The potential in lighting energy use reduction.

ML algorithm Lighting energy use reduction

The proposed control strategy KNN 80.8%
SVM 80.8%
RF 80.8%
Cut-off control - 67.6%

model depends on the quality of the training dataset. A more balanced
dataset would result in a model with a higher recall score, further
improving the capability of the proposed shading control strategy to
avoid glare. In this study, the dataset was generated from daylight
simulation with a cloudy climate, resulting in fewer samples with glare
than without glare. Thus, it is hypothesized that the proposed control
algorithm will have better performance if validated with a sunny
climate. To test this hypothesis, we selected Phoenix, Arizona for further
verification. All the building and model settings were kept the same for
the new climate.

As shown in Fig. 13, the performance of the proposed control algo-
rithm improved when it was validated with a sunny climate. Specif-
ically, the “on-state-hit” percent increased to 93.5% for KNN model-
based control, 95.6% for SVM, and 98.6% for RF. The result
confirmed our hypothesis, suggesting that the proposed control strategy
is more advantageous if applied in locations with a sunny climate.

4. Discussion

This study proposed a data-driven method to integrate the concept of
visual comfort into the control of automated shading systems, seeking a
feasible glare control solution for real-life applications. The presented
strategy replaced intensive real-time daylight simulation in conven-
tional model-based control with simple ML predictive models developed
from pre-simulated data. Meanwhile, it eliminates the use of indoor
physical sensors that could cause various concerns such as privacy,
sensor placement, and aesthetics. The control strategy was validated in
an existing office building using simulation with actual historical
weather data, illustrating the capability of ML algorithms in preventing
up to 96.9% of the glare, thus, greatly outperforming the conventional
cut-off angle control. It also improved view access and potential in

An example of “On-state-hit” and “Off-state-missed” with the SVM algorithm (1 - with glare; 0 - without glare).

Time Glare with the slat at 0° Glare with the slat at 15° Glare with the slat at 30° Control outcome
Predicted True Predicted True Predicted True

Apr 10th, 9 a.m. 1 1 0 0 0 0 “On-state-hit”

Apr 10th, 10 a.m. 0 1 0 0 0 0 “Off-state-missed”
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Fig. 13. The percentage of “on-state-hit” with the proposed control strategy
with a sunny climate and a cloudy climate.

reducing lighting energy use compared to the cut-off control. The result
suggests that the presented control strategy is a promising solution to
balance the benefits and drawbacks of daylight ingress in real-life office
environments.

It is worth noting that there have been some recent studies on
daylighting control using a simplified predictive model [46,50,47].
These methods are also capable of minimizing the use of indoor sensors
and eliminating real-time daylight simulation. The main idea is to use
pre-defined correlations between the control variable and another
physical measure that is easier to obtain. For instance, work plane
illuminance can be controlled within 500-2000 lux according to the
real-time measurement or simulation of exterior window illuminance. It
should be noted that the main problem with these methods is that the
pre-obtained correlation varies with the data used to derive it. The
pre-derived equation might not work when it is implemented in the
control system, due to the variation in the weather condition. Further-
more, it also varies with the day of the year and time of the day, as well
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as the states of the shading devices. Hence, one or several fixed equa-
tions might not be representative or sufficient to describe the underlying
correlation. Thereby, the performance of the control strategy that de-
pends on the pre-determined equations can be compromised. On the
contrary, the control method proposed in this study takes advantage of
the learning and predictive feature of MLAs to respond to new data to
achieve better predictive capabilities. As revealed by the result, the
model trained from simulation data with TMY weather had a good
performance when it was used to predict glare using actual weather.
Under the assumption that the daylight simulation model is well-
calibrated, this research showed that ML predictive models developed
from pre-simulated data can be used for real-time shading control. In
practice, the system will also be commissioned before it is installed, to
further ensure the accuracy of the predictive model. Thereby, physical
measurements to collect data for developing the ML models can be
eliminated. The ML models used in this study are simple, allowing for
very fast computation. Thus, it is possible to account for multiple view
directions for more accurate glare evaluation and customize the shading
control strategy in private offices. Additionally, the proposed method
can be used to control shading groups facing different orientations in
open-plan offices. It is also applicable to control other types of shades.
Despite the strengths, several challenges need to be addressed in
future studies. The primary challenge is how to minimize the dataset
required to develop a reliable predictive model. This is especially
important if the proposed method is used to control multiple shades in
open-plan offices or multiple view directions are considered for effective
glare control. Sensitivity analysis in training dataset size and model ML
model performance should be conducted to answer this question. It is
further suggested that an analysis of the spatial distribution of glare
should be conducted to apply this method to control multiple shades in
the open-plan office. Advances in daylight simulation tools that allow
for fast and concurrent glare computation at multiple sitting positions
with multiple view directions will be of great use for such analysis. The
newly developed tool ClimateStudio by Solemma LLC is an excellent
example of these advanced tools (https://www.solemma.com/Climat
eStudio.html). It performs daylight simulation using Radiance as the
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engine. However, it implements Radiance in a progressive path tracing
mode that traces few paths at a time and updates the result as the
simulation progresses instead of tracing all possible light paths before
computing a result. Combined with the use of GPU to handle mathe-
matical operations, it allows for fast daylight modeling, even faster than
cloud-based tools. Nevertheless, its up-to-date version computes DGPs
instead of full DGP for the annual glare simulation. Its daylight simu-
lation has not been integrated with Grasshopper. Therefore, running the
annual point-in-time DGP simulation is not practical. In this study, we
used a lower rendering quality (ab = 2, ad = 512) for glare simulation
using DIVA for Grasshopper to expedite the process. Spot check with a
medium rendering quality (ab = 3, ad = 1024) on four representative
days (equinox and solstice days, from 9 a.m. to 4 p.m.) shows that the
average difference is 7%. The difference for most data points (82.5%) is
within 10%, indicating the lower quality rendering is an acceptable
setting. However, we do realize this is one major limitation of this study.
Future research is required to verify the proposed method using higher
quality simulation parameters. Another shortcoming of this study is that
the simulation model was not validated, with materials selected from the
DIVA library. Experimental studies with a well-calibrated and validated
daylight simulation model are needed to address this limitation.

The proposed control strategy highlights human comfort by using
glare index as the direct control target. However, like most existing
methods, it does not include occupants in the control logic, which could
frustrate users as they don’t have full control over the shading system
[51,52]. As a result, the automated shading system might be overridden
by occupants in real-life applications. To improve occupants’ acceptance
and satisfaction with the automated shading system, future studies
should consider including them in the control loop. Additionally, the
control algorithm is expected to learn and adapt to occupants’ prefer-
ences after implementation. For instance, this control goal could be
achieved by constantly adjusting the visual comfort setpoint (the
threshold for DGP in this study) based on occupants’ interactions with
the shading devices.

5. Conclusion

To incorporate the concept of visual comfort into the control of
automated shading systems, this paper presented a simulation-assisted
data-driven method to predict and prevent glare with dynamic shades.
Different from existing methods in the literature, the proposed strategy
eliminates the use of indoor sensors that can be costly and cause privacy
concerns, and intensive real-time daylight simulation that can overload
the controller. Specifically, it uses pre-simulated data to develop glare
predictive models based on simple MLAs. With solar radiation mea-
surements and the position of the sun as the real-time inputs to feed the
predictive models, the control algorithm sets the shading devices to the
state that prevents glare and maximizes daylight ingress based on the
predicted glare condition at each time step.

The proposed control strategy was verified using climate-based
simulation in an existing office building, to control the slat tilt angle
of automated internal venetian blinds. Glare predictive models were
derived using three common machine learning classification algorithms,
including K-nearest neighbor, Support Vector Machine, and Random
Forest. Pre-simulated glare data with TMY weather were used to train
the models. Simulations with a year’s historical weather were used to
validate the performance of the control method regarding effectiveness
in glare prevention and potential in lighting use reduction as well as
view access. It was found that the conventional cut-off angle control only
managed to avoid 28.9% of the glare, while the proposed control algo-
rithm successfully prevented 86.5%-96.9% of the glare with better view
access. If integrated with lighting control, it could reduce lighting en-
ergy use by 80.8% compared to that of default on/off control. Conclu-
sively, it significantly outperformed the cut-off angle control in
preventing glare, while exhibiting greater potential in lighting energy
savings and providing more view access.
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With the elimination of indoor sensors and real-time daylight
simulation, as well as the need to collect physically measured data for
ML model training, the presented control algorithm can be applied to
control window shades on different orientations in open-plan offices. It
can also be used in private offices for more customized glare control by
accounting for multiple view directions. Moreover, it applies to various
shading types, not limited to the venetian blinds in this study. It is
promising to act as a feasible glare control solution for real-life appli-
cations to provide a comfortable and satisfying indoor luminous envi-
ronment for the occupants. Experimental studies in the future involving
occupants are needed to further verify its validity.
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