Augmenting Deep Learning with Relational
Knowledge from Markov Logic Networks

1%* Mohammad Maminur Islam
University of Memphis
mislam3 @memphis.edu

Abstract—Neuro-symbolic learning, where deep networks are
combined with symbolic knowledge can help regularize the model
and control overfitting. In particular, for applications where data
instances are not independent, domain knowledge can be used
to specify relational dependencies which may be hard to infer
purely from the data. Symbolic AI models such as Markov
Logic networks (MLNs) which are based on first-order logic are
designed to represent and reason with uncertain background
knowledge. However learning and inference algorithms in such
models is known to be slow and inaccurate. In this paper, we
develop a novel model that combines the best of both worlds,
namely, the scalable learning capabilities of DNNs and symbolic
knowledge specified in MLNs. To do this, we infer symmetries in
the data based on the relational knowledge encoded in an MLN
knowledge base and train a Convolutional Neural Network (CNN)
to learn Kkernels combining symmetrical variables. However,
by doing this, we are forced to split the relational data into
independent instances for CNN training which may result is
a loss of relational dependencies adding noise/uncertainty to
the learned model. Therefore, instead of a single model, we
learn a distribution over the model parameters. Our experiments
illustrate that our model outperforms purely-MLN or purely-
DNN based models in several different problem domains.

Index Terms—Markov Logic Networks, Symbolic Models,
Relational Learning, Deep Networks

I. INTRODUCTION

Deep Neural Networks (DNNs) have had tremendous suc-
cesses in challenging domains such as computer vision and
natural language processing. Typically, DNNs learn latent
representations directly from data and do not incorporate
external domain knowledge. However, in many cases domain
knowledge greatly helps in learning more generalizable mod-
els. Specifically, consider the case of relational data, i.e.,
where instances have dependencies with other instances in
the dataset. In this case, it may be hard to infer all rela-
tionships from limited training data. For example, in social
networks, a common relational dependency is transitivity, i.e.,
Friends(z,y) A Friends(y,z) = Friends(z,z). To infer
this dependency directly a DNN may need a large number
of training examples that supports this relational dependency.

This research was sponsored by the National Science Foundation under the
awards The Learner Data Institute (award #1934745) and NSF IIS award #
2008812. The opinions, findings, and results are solely the authors’ and do
not reflect those of the funding agencies.

978-1-7281-6251-5/20/$31.00 ©2020 IEEE

27 Somdeb Sarkhel
Adobe Research
sarkhel @adobe.com

3" Deepak Venugopal
University of Memphis
dvngopal @memphis.edu

Thus, in general, purely relying on data may mean that we
ignore important relational dependencies in the learned model.
This may result in the DNN overfitting the data (particularly
if the dataset is limited) resulting in poor generalization.
Regularizing a DNN with domain knowledge helps us learn a
more generalizable model more efficiently when the data alone
cannot completely explain all the dependencies. In fact, for
specialized tasks such as object tracking, it has been shown
that external domain knowledge helps DNNs learn accurate
models even with very limited datasets [1].

In contrast to DNNs, models such as Markov Logic Net-
works (MLNs) [2] that are based on symbolic Al are specif-
ically focused on explicitly representing and reasoning with
uncertain background knowledge. MLNs in particular repre-
sent domain knowledge using first-order logic (FOL) formulas
and capture uncertainty by parameterizing the formulas with
weights. However, even though tremendous progress has been
made in learning and inference for MLNs and other statistical
relational models [3] over the last several years, in real-
world applications, they still lack accuracy and scalability
when compared to deep learning models. For instance, as
observed by Khot et al. [4] in the task of question answering,
simpler non-relational machine learning models that ignore
the relational structure of the problem perform far better than
MLNSs. One of the problems is that MLNs share a single
weight across groundings of a first-order formulas and this
sometimes leads to oversimplified models. Considering our
earlier social network example, we attach a single weight
to the transitive formula Friends(z,y) A Friends(y,z) =
Friends(z,z). Clearly, an MLN parameterized by a single
value is not rich-enough to accurately answer a meaningful
probabilistic query (e.g. what is the probability of Alice and
Bob being friends). While it is possible to define a unique
weight for each instantiation (using the “+” semantics) in
an MLN, learning with thousands of such formulas quickly
becomes infeasible. Other models comparable to MLNs such
as Probabilistic Soft Logic [5] allow functions instead of
weights but have similar scalability issues when the underlying
probabilistic model becomes large. In contrast, deep learning
methods can fit complex functions to the data in a much more
scalable manner. Therefore, to get the best of both worlds, in
this paper, we develop a novel Convolutional Neural Network
(CNN) based neuro-symbolic model where we use domain
knowledge specified in MLN formulas to learn the CNN

model.

While adding relational knowledge to deep learners have
been explored previously, they are typically restricted to
adding priors to the DNN [6] or regularizing the loss func-
tion with constraints [1]. However, these approaches do not
allow us to incorporate information from complex symbolic
knowledge bases into DNN learning. Our main contribution
in this paper is a novel, flexible approach where MLNs add
rich, task-specific background knowledge into the CNN model.
The key idea behind our model is to train the CNN based on
symmetries in the MLN. For example, in our aforementioned
social network example, suppose Alice and Bob have sym-
metrical social network structures, then the CNN can learn to
predict Alice’s friendship relations based on Bob’s friendship
relations. To do this, we learn an embedding for objects in
the MLN’s domain such that symmetrical objects are placed
close to each other in the embedding [7]. We then learn
a CNN where each kernel function in the CNN combines
object vectors that are approximately symmetrical to each
other. However, note that to learn the CNN, we need multiple
independent instances while MLN data is relational which
means that we have a single long interconnected instance.
Therefore, in learning the CNN, we implicitly make indepen-
dence assumptions in the relational data which can increase
the noise or uncertainty in the learned model. To reduce
this uncertainty, instead of learning a single parameterization,
we learn a distribution over the model parameters using a
Bayesian CNN [8] framework.

We evaluate our approach in several challenging real-world
problems including, fake review classification, review rating
classification, collective classification of webpages and image
segmentation. We compare our approach with both state-of-
the-art MLN learning methods and deep learning methods
where we do not specify background knowledge. Our results
show the accuracy and scalability of our approach clearly
validating that combining the strengths of MLNs (for back-
ground knowledge) and DNNs (for learning) outperforms both
purely-MLN and purely-DNN based models in several varied
problems.

II. RELATED WORK

While work on combining neural and symbolic learning has
a rich histrory [9]-[11], due to advances in deep learning,
there has been renewed effort along this direction under
the umbrella of neuro-symbolic learning [12] . Rocktaschel
and Riedel [13] developed sub-symbolic representations for
logical inference operators. Specifically, they developed vector
representations for logical symbols and used them for the-
orem proving in logic. Cohen [14] proposed TensorLog, a
deductive reasoning approach and Serafin and Garcez [15]
proposed logic tensor networks, an architecture for logical
reasoning with deep networks. Our work is also related to
knowledge graph embedding and link prediction methods,
which are more specialized prediction tasks than the ones
we consider in this work. Bordes et al. [16] proposed a
neural network architecture to embed knowledge graphs into

low dimension structural embeddings. Several approaches for
link prediction have been proposed using tensor factorization
methods such as ReScal [17], TransE [16] and ComplEx [18].
The idea here is to use factorization methods to predict links
in knowledge graphs. More recently Kazemi and Poole [19]
proposed a tensor factorization approach called SimplelE for
link prediction that learns embeddings and also allows us to
inject background knowledge. In terms of more recent neuro-
symbolic learning methods, Manhaeve et al. [20] recently
proposed DeepProbLog, that combines a neural network with
probabilistic logic. The idea here is to extend probabilistic
logic to handle neural predicates, i.e., outputs of the neural
network are encoded as a predicate. More recently Xu et
al. [21] proposed a semantic loss function to learn deep
models with symbolic knowledge. The idea is to encode the
constraint specified from logical rules within a differentiable
loss function for deep learners. Our approach is orthogonal
to this approach and we can use a modified loss function in
conjunction with our approach. Recently, Zhang et al. [22] pro-
posed to couple MLNs with GNNs to incorporate knowledge
from logic rules. In [7], an approach was proposed to to scale
up inference algorithms using neural embeddings, but unlike
the approach proposed here, it is not used to learn a model.
Our approach is also closely connected to deep symmetry
nets proposed by Gens and Domingos [23], where they used
a CNN that learns features over symmetry groups capturing
more broad invariances in object recognition tasks in computer
vision. However, our learning approach is more general since
it can learn CNNs that exploit symmetries for a given MLN
structure which can encode complex knowledge.

III. BACKGROUND
A. First-order Logic.

The language of first-order logic (cf. [24]) consists of quan-
tifiers (V and J), logical variables, constants, predicates, and
logical connectives (V, A, =, =, and <). We denote logical
variables by lower case letters (e.g., =, ¥, 2) and constants,
which model objects in the real-world domain, by strings that
begin with an uppercase letter (e.g., A, Ana, Bob). A predicate
is a relation that takes a specific number of arguments as
input and outputs either TRUE (synonymous with 1) or FALSE
(synonymous with 0). The arity of a predicate is the number
of its arguments. We assume that each logical variable = has
a finite domain of objects A, that it can be substituted with
(Herbrand semantics). A ground atom is a predicate where all
its variables have been substituted by a constant (we use the
terms constants and objects interchangeably) from its domain.
For example, Friends(Alice, Bob) is a ground atom obtained
by substituting the variables in Friends(x,y).

A first-order formula connects predicates using logical con-
nectives. For example, Friends(z,y) = Friends(y,z). A
grounding of a first order formula is one where all variables
in the formula have been substituted by constants. For ex-
ample, Friends(Alice, Bob) = Friends(Bob, Alice). Note
that a ground formula evaluates to either True or False. A
knowledge-base is a set of first-order formulas.

B. Markov Logic Networks

Markov logic networks (MLNSs) soften first-order logic us-
ing weights attached to each first-order formula. Each formula
in an MLN has a real-valued weight which is shared across
all groundings of that formula. For example, Friends(z,y)
= Friends(y,x) w. Weights are typically learned by maxi-
mizing the likelihood of a relational database [2]. The MLN
represents a probability distribution over possible worlds,
where a world is an assignment (of either 1 or 0) to every
ground atom in the MLN. The distribution is given by,

Pr(w) = %exp (Z wiNi(w)> (1)

where w; is the weight of formula f;, N;(w) is the number of
groundings of formula f; that evaluate to True given a world
w, and Z is the normalization constant.

C. Bayesian CNN

Regular CNNs are expressive models but prone to overfit-
ting. Bayesian CNNs [8], are more robust, yield uncertainty
estimates and can work well even with limited-sized datasets.
Specifically, in Bayesian CNNs, we learn a distribution over
the convolutional kernels. Inferring the posterior distribution
in a Bayesian CNN is a computationally hard problem. The
popular approach to learn a Bayesian CNN is to use variational
inference. That is, we assume a simple distribution family and
learn parameters that minimize the KL-divergence between the
approximate distribution and the true distribution. It can be
shown that using dropout training, we can perform variational
approximation [8]. Further, to make predictions, we can esti-
mate the probability of a query using Monte-Carlo estimates
from the learned CNN.

D. Skip-Gram Models

Skip-gram models are used to learn an embedding typically
over words based on the context in which they appear in the
training data (i.e., neighboring words). Word2vec [25] is a
popular model of this type, where we train a neural network
based on pairs of words seen in the training data. Specifically,
we use a sliding window of a fixed size, and generate all pairs
of words within that sliding window. For each pair of words,
we present one word of the pair as input, and the other word
as a target. That is, we learn to predict a word based on its
context or neighboring words. The inputs and output words
are encoded as one-hot vectors. The hidden layer typically
has a much smaller number of dimensions as compared to
the input/output layers. Thus, the hidden-layer learns a low-
dimensional embedding that is capable of mapping words to
their contexts. Typically the hidden-layer output is used as
features for other text processing tasks, as opposed to using
hand-crafted features. Word2vec models can typically scale
up to very large text corpora, and can take advantage of pre-
training.

IV. LEARNING MODEL

There are several strategies we can use to incorporate
domain knowledge to the deep learner. One approach that is
used quite often is to modify the loss function with constraints
that encode some prior knowledge. E.g. Xu et al. [21] proposed
a semantic loss function, Russel and Ermon [1] add physics
constraints into the loss function for object tracking, etc.
However, modifying the loss function for encoding complex
types of knowledge is not intuitive. Therefore, we use a more
general-purpose language, namely, MLNs using which we
can specify even complex domain knowledge quite succinctly.
Further, our approach also makes it relatively easy for a human
expert to both encode his/her expertise and also to interpret
the knowledge base.

Our main hypothesis is that to transfer domain knowledge to
the deep learner, we train the deep model based on symmetries
encoded in the MLN model. For example, suppose we wish to
predict if an individual say Alice needs to receive a treatment,
if through our domain expertise, we can find a cohort of
individuals similar to Alice, then their treatments can be used
to predict the treatment for Alice. In other words, we bias the
deep learner to learn from individuals similar to Alice. Further,
suppose we learn to make predictions within one cohort, we
can apply the same model to other cohorts. Of course, a deep
learner can try to and may very well succeed in inferring such
symmetries directly from data without any other information.
However, given the sparsity of labeled data, explicitly encod-
ing this symmetry information to the deep learner is likely
to make learning more efficient. Naturally, one can use the
same symmetries to directly learn a parameterization for the
MLN. However, as the size of the data grows the learned
distribution tends to be highly skewed [26] which is ineffective
in making accurate predictions. The main problem is that a
single weight in an MLN formula is learned for all groundings
of that formula which makes it hard to learn a complex model.
We exploit the expressiveness of deep models to learn more
accurate parameterizations for relational data.

A. Bayesian Learning Formulation

Let (X1,41) ... (Xn,yn) represent the relational training
data where X; is an atom and y; is its assignment. As with
MLN learning in general, we assume a closed world which
means in the training data we have an assignment to every
atom in the MLN. We want to estimate a function f that can
generate a world (assignment to all atoms). Thatis, Y = f(X)
where X represents the atoms and Y its assignments. We
follow the Bayesian approach where p(f) is a prior distribution
over the possible functions that can be used for this prediction.
The likelihood of predicting the world Y given that f is
the generating function is p(Y|X, f). If we can compute the
posterior probability p(f|X,Y), then we can integrate over
all functions (f*) to arrive at a prediction for the probability
of generating a new world Y* given a new set of atoms X*.

p(Y*[X*, Y, X) = / POV)p (X7, X, Y)df*

Further, if 6 represents the parameters of the function, we
can re-write the integral as,

p(Y*X*Y,X) =

/ (Y[F)p(f* X", 0)p(0]X, Y)df*db
2)

Since it is intractable to compute the true integral, a standard
approach is to use a variational approximation ¢(6) and find
parameters that minimizes K L(g(0)||0|X,Y). Minimizing
this KL divergence exactly is known to be computationally
hard, therefore, we sample parameters from the variational
approximation ¢ and obtain an unbiased estimator for the
ELBO (Evidence Lower Bound) loss given by minimizing the
following equation [8].

N

D UY, f(X D)) = KL(g(0D)[[p(67) 3

i=1

where 6 is the i-th sample from ¢(#), and
((Y, f(X,0®)) is the loss between the output generated by
the function f using parameters #(*) and the true output.

B. CNN Model

To optimize Eq. (3), we select f to be a function that
belongs to the CNN function family and ¢ to be the cross-
entropy loss. However, to minimize va Y, f(X,00)),
note that we have a single input and output instance which
makes it infeasible to learn f. That is, all atoms in X are
related to each other. Therefore, to make it feasible to learn
f, we decompose the loss over the atoms as,

N

N
UYL FX0) ~ YUY, £(XG,00))

=1 i=1

where #() is sampled from the variational approximation
q(6) (we expand on this in the next section). However, by
considering a single atom X; to predict Y;, the CNN function
f will not learn to relate different atoms which is essential
in relational learning. Therefore, we instead predict an as-
signment to an atom from a subset of other atoms. Note that
this formulation is very similar to the pseudo log-likelihood
learning (PLL) formulation for MLNs [2]. The decomposed
loss function is given by,

N
i=1

where X; C X that is chosen to predict the assignment to
X;.

Given an atom X; for which we want to predict its
assignment, we determine the optimal subset of atoms X;
from which the CNN makes its prediction. To do this, we
analyze the performance of our model using results in [27].
Specifically, suppose G ~ (f) represents the empirical Gaussian

complexity of function class f, we want to choose the training
examples to minimize this complexity. In our case, we choose
f to be the class of two-layer convolutional neural networks
with one convolutional layer and one fully-connected layer.
Here, G ~(f) measures the capacity of the function class and
is related to its ability to generalize. Smaller values of Gy (f)
indicate smaller capacity but better generalization when using
the function class f. Larger Gy (f) means that we can fit
any dataset due to large capacity, but we may overfit leading
to poor generalization. Li et al. [28] show that to minimize
G (f), we need to select the convolutional kernels judiciously.
Specifically, in our case, for each CNN f € f, we need select
a convolution kernel that minimizes

N
X)) — X (GD)112 5
[Jnax ;II () = X))l)
where X; Xy ... Xy are inputs to the CNN, each of

which corresponds to a subset of atoms. S denotes the shape
of the convolutional kernel. Specifically, given an input X,
the weights (w) are shared across regions specified by S, i.e.,
>jes WiX[j]. Thus, each element of S specifies the index
vector in the input where the convolution kernel is applied.
Therefore, from Eq. (5), we understand that to improve
generalization, we need to maximize the covariance between
(X;(j), X;(j"))- To do this, each subset X; used as input to
the CNN must correspond to atoms that are most “similar” to
each other, and the CNN learns kernels over these symmetric
groups of atoms. We next describe our approach to encode
inputs to the CNN based on similarity of atoms.

C. Composing the Inputs

To compose inputs for CNN learning, we need to convert
atoms in the MLN to vectors. We do this by learning an
embedding for the objects in the MLN using Obj2Vec [7] and
then combine object embeddings into atom embeddings.
Object Embedding. Obj2Vec is a distributed representation
for objects in the MLN based on symmetries in the MLN
structure. Specifically, very similar to skip-gram models for
words, the idea here is to train a neural network that predicts
one object in the MLN from other objects in its context. Given
a relational training dataset, i.e., (X1,y1) ... (Xn,yn) which
is an assignment to each atom in the MLN, the context of
an object is the set of objects that appears with it in ground
formulas that are satisfied (having truth value equal to 1) by
the assignments to atoms in the training data. For example,
suppose we have a satisfied ground formula, Friends(A, B)
A Friends(B,(C) = Friends(C, A), then B, C are objects
in the context of A and similarly, A, B is in the context of C
and C, A is in the context of B. The neural network represents
each object using a one-hot encoding and then predicts one
object from its context. For example, predict A from B and
C in the above example. The hidden layer of the neural
network learns to represent each object using a dense vector
such that objects having similar contexts have similar hidden
layer representations which is also called as the embedding

for the object. Two objects are approximately symmetrical (or
approximately exchangeable) in the MLN if they have similar
embeddings.

Atom Embeddings. Note that Obj2Vec generates object em-
beddings. However, for Eq. (4), we require atoms as input.
Therefore, we construct a matrix of atom embeddings using
additive compositions of object embeddings as follows. Sup-
pose our atom has k objects, corresponding to each object o,
we sample a set of objects from the embedding-space such
that the object is sampled with probability proportional to its
distance to o. That is, objects that are close to o are sampled
with high probability. We then compose an atom embedding
as an additive composition of embeddings corresponding to
the sampled objects. Suppose v,,, Vo, - .. Vo, are the vectors
sampled corresponding to objects within atom X;, > ; Yoy
encodes a row in the input matrix for X;. We can show that,

Proposition 1. Let 0y ...
. 0, respectively, then

k k
Z o, o log H P(0}]o;)
=1 j=1

Proof. Using the softmax objective function of the basic skip-
gram model, we have, P(0}o;) o exp(v, v,,). Therefore,

or, be objects in the context of o}

we have the following, log P(09|0j) X Uy Vo - Thus, v,,
represents a distribution over its context object 0;-. We can
now sum over the vectors to obtain,
k E
Zv(,j x ZZOQP(OHOJ') = logHP(0;-|oj)
j=1 j=1 i=1

O

Thus, from the above proposition, the additive composition
of the object vectors produces a vector that encodes the
product of their context distributions. This means that suppose
we compose a vector from atom X, this vector encodes an
atom whose objects are symmetrical with objects in X;. Thus,
we use this atom as an input to predict the assignment to Xj.
To generate the input embedding-matrix for atom X; denoted
by M[X;] from which we predict Y;, we sample the neigh-
borhood of objects in X; k times and generate k composed
vectors where each vector is a row in M[X;]. The additive
composition approach is similar to the ones used by popular
knowledge graph embeddings such as TransE [29]. Note that
In principle, other non-additive knowledge graph embedding
methods can be adopted for composing the embeddings in-
cluding multiplicative approaches such as Distmult [30] or
RESCAL [17].

D. Uncertainty

From Eq. 4, we see that we sample () from ¢(6). To do
this, we need to choose a suitable variational approximation
from which it is easy to sample and optimize the objective
specified in Eq. (3). Gal and Gharmani [8] show that if we
choose ¢(f) to be a Bernoulli distribution then the dropout

objective exactly corresponds to the objective in specified
Eq. (3). Thus, by simply adding a dropout layer after a
convolutional layer, we can optimize Eq. (3).

Thus, to optimize Eq. 4, we independently sample the
kernels that will be active after each convolutional layer.
This means that for each input instance, the structure of
the CNN changes and we are essentially learning multiple
CNNs which are then averaged together for the final model.
This is particularly important for relational learning since
the decomposed loss function in Eq. (4) splits the relational
data which introduces uncertainty into the learned model. By
averaging over multiple models, we are learning a distribution
over the kernels of the CNN which helps us quantify this
uncertainty. For example, if the prediction for the atoms can
be performed accurately over the entire distribution of the
kernels, this means that the subsets of atoms that we have
chosen for predicting each atom have important dependencies
which we are able to learn using the kernel functions much
like an MLN formula that connects atoms that have a logical
connection together.

To make predictions over the learned CNN, since it is
infeasible to perform integration over the full distribution of
kernels in the CNN, we approximate this using MC-dropout.
Specifically, as during learning, using the dropout layer after
the convolution layer is equivalent to sampling kernel pa-
rameters using the Bernoulli variational approximation ¢(6).
We sum over the predicted values corresponding to different
samples from ¢(6) to get a Monte Carlo estimate of the
predicted probability. queciﬁcally, we predict the probability
of an atom X; as & >, p(ye|M[X;],01)), where M[X;] is
the embedding matrix for the atom X; and y; is the predicted
assignment to X; in iteration t.

E. Exchangeability

Each row in the input matrix M [X;] represents an atom that
is similar to X;. The ordering of these rows is not important.
This is different from typical CNN applications that process
images since in the case of images changing the ordering of
rows of pixels results in a completely different image. In our
case, we learn the CNN such that it is invariant to exchanges
in the input rows. One approach is to present all possible
exchanges or permutations of the input rows with the same
output and let the CNN learn a function that is invariant to
the ordering of the rows. However, this results in a much larger
input space since we need to permute the rows in each input.
Instead, we use an approach where we use a permutation-
invariant, symmetric function to force the CNN to output
the same features regardless of the ordering. Specifically, this
function aggregates the information along the columns thus
removing the spatial information along the columns. In our
case, after the convolutional layers, we use the mean of each
column as the permutation-invariant function. Note that other
similar functions based on aggregate statistics can be used for
this function as well [31]. We then connect the output of the
permutation-invariant layer to the dense layers of the CNN.

An illustration of our complete model is shown in Fig. 1.
Our learning approach is summarized in Algorithm 1.

Algorithm 1: CNN Learning

Input: MLN M, relational training data E
Output: Learned CNN Model
// Compose Inputs for the CNN
1 Learn Obj2Vec embedding O for the objects in M
for Each atom X; with assignment Y; in E do
// Compose the Embedding-Matrix
for each object o in X; do
fort =11t k do
V1 ... Uy = Sampled neighborhood of o in O
L Add Y77 v as arow in M[X,]

(5]

LY I)

7 C = Train CNN in Fig. 1 with (M[X;], V)

8 return C'

V. EXPERIMENTS
A. Setup

We compared our approach (which we refer to as Markov
Logic CNN MLCNN) with i) purely MLN-based models that
do not use the inference and learning capabilities of DNNss,
ii) purely DNN-based models that do not use background
knowledge when learning the model and iii) embedding-based
models that uses embeddings from the MLN but not the
learning approach of MLCNN.

We evaluated our approach with four different tasks which
we refer to as WebKB, Yelp, Segmentation and Movielens. The
WebKB task and dataset is defined in Alchemy [32] where we
classify webpages according to a topic. For Yelp, the task is
to classify if a review is fake or not and the associated dataset
is available in anomaly detection repository [33]. For Seg-
mentation, we use the TU Darmstadt database of images [34]
to perform image segmentation into foreground/background
pixels. We used the set of images corresponding to side-views
of cows. For the Movielens application, we predict movie
ratings and the associated dataset is publicly available at [35].
MLN-based Models. For the MLN based methods, we used
two well-known learning and inference systems, Tuffy [36]
and Magician [37]. In Tuffy, we perform learning us-
ing max-likelihood estimation and for inference, we use
MaxWalkSat for MAP inference (where instead of a prob-
ability, we predict a joint assignment to all non-evidence
atoms) and MCSAT for marginal inference. In Magician, the
learning is performed using max-likelihood estimation but with
approximate counting methods [38] for improved scalability.
Marginal Inference in Magician is implemented using Gibbs
sampling [39] once again with special approximate counters
for improved scalability.

DNN-based Models. For each of our applications, we im-
plemented a task-specific DNN. For the WebKB, Yelp and
Movielens applications we implemented a CNN for text clas-
sification based on the well-known architecture specified in
[40]. Specifically, in our case, we learn word embeddings from
the text and for each instance, we learn kernels over the word

embeddings to derive feature maps for the classification task.
We refer to this as CNN. For the Segmentation task, we used
U-Net [41] which is a state-of-the-art CNN-based approach
to segment images. U-Net is a CNN architecture that learns
feature maps for the images and then expands these feature
maps to get a segmentation for the image.
Embedding-based Model. We implemented an approach
where we directly use the atom embeddings within a clas-
sifier to predict its assignment without using its symmetry
neighborhood. Specifically, we add the embeddings for the
objects in the atom and use this vector for predicting the
assignment to the atom using logistic regression. Thus, unlike
MLCNN, this model does not learn higher-level functions over
the embeddings using this approach. We refer to this as EC
(Embedding-based classifier).

B. MLCNN Implementation

To learn the Obj2Vec embeddings, we used the Gensim [42]
implementation of word2vec with the skip-gram model. We
implemented the CNN learning using Tensorflow. The param-
eter settings for our CNN are as follows. We set the filter-size
of 5 x b, typically, we do not want a very large filter since
we want to learn the kernel over highly correlated variables.
We used a neighborhood of size 25, i.e., each input to the
CNN has 25 rows. The architecture of our CNN is as follows.
We have 4 convolutional layers and 4 max-pooling layers with
ReLU units, and one fully connected layer with the softmax
output. We present results by varying these parameters in the
next section. We tried varied dropout probabilities between .1
to .7 and found best results with dropout probability 0.5. Also,
typically, word2vec architectures use a dimension of 300, but
from our observation, such a large embedding works well for
word embeddings since the corpora is quite large. In our case,
we would require significantly more data since the number
of weights in the CNN would be very large. Therefore, we
varied the embedding dimensions between 10 and 50, and set
the number of dimensions to 30 after which the performance
did not change significantly. We ran all our experiments on a
laptop with 8 GB ram and Intel core i-7 processor.

C. MLN Structure

WebKB. The task in Webkb is to predict the topic of a
webpage. We have formulas connecting words to a topic
predicate (similar to unigram features used in the bag of words
model). We also have formulas to encode the rule that linked
webpages have same topics. The set of formulas for this are
available in Alchemy [32].

Yelp. The task here is to predict if a review has been
labeled as fake or not by Yelp. We once again connect words
in our vocabulary to the query predicate that specifies if a
review is fake. We also add formulas that connect reviews
that are written by the same user. Specifically, it encodes the
homophily property of the form Writes(uy,71) A Fake(r;)
A Writes(ui,r2) = Fake(rs). That is, a user writes reviews
of the same type (fake or not fake). We also add formulas
that connect the rating for a review to the query predicate and

Exchangeable
Variables

Fully-Connected
Layers

f Y '

Dropout kernels

Permutation Invariant

Convolutional Layer Pooling Layer Layer

Fig. 1: Illustrating our architecture.

TABLE I: Comparison of MLCNN with other MLN-based models, DNN-based models and embedding-based model (EC). The
DNNs for WebKB, Yelp and Movielens is implemented using the CNN text classification approach. The DNN for Segmentation
is U-Net, a CNN-based architecture for image segmentation. We show the ROC-AUC scores when the output of the evaluated
method is continuous (e.g. marginal inference) and F1-score when the output of the evaluated method is discrete (e.g. MAP

inference).
Application | MLCNN | DNN Models MLN Models EC
CNN/U-Net | Tuffy MCSAT |Magician Gibbs | Tuffy MaxWalkSAT
WebKB 92 73 61 64 54 71
Yelp 88 69 56 53 53 61
Segmentation 97 90 67 65 67 77
Movielens 87 70 46 51 48 76

the restaurant for which the review was written to the query

predicate.

Segmentation. The task here is to classify each pixel
in an image as a foreground or background pixel. We
define regions in which the pixel lies along both the
z-axis and the y-axis and add formulas of the form
Region(z1,y1,7) A Foreground(zy,y1) A Region(za, yo,)
= Foreground(zs, y2) where (z1, y1) and (22, y2) are pixel-
coordinates. This rule encodes our knowledge that if two pixels
are in the same region, they are likely to be of the same
type (foreground/background). We add formulas with a similar
structure to connect the average pixel intensities (for R, G and
B channels) across 5-pixel neighborhoods along 4 orientations
(top, right, bottom, left) to the Foreground predicate. The
pixel intensities are discretized to 10 levels since MLNs cannot

represent continuous values.

Movielens. The task here is to predict the review rating
based on the text in the review. For this task, we used formulas
similar to those in the Yelp application, except here, our query

atom specifies the rating of a review.

D. Results

We compared the performance of the approaches using five-
fold cross validation. We compared classification performance
on the query predicates for each dataset. For algorithms
that output continuous values (e.g. marginal inference), we
report the ROC-AUC score. For discrete outputs (e.g. MAP
inference), we present the F1 score. We had a balanced
dataset, i.e., for each possible class, the total number of query
variables were roughly equal. We summarize the results of our

evaluation in Table. 1.

WebKB. As shown in Table. I, MLCNN has significantly
better accuracy as compared to all the other approaches on all
applications. CNN was the next best performer but the signifi-
cant gap between the performance of CNN and that of MLCNN
clearly illustrates the value of incorporating domain knowledge
within DNN learning. Further, the poor performance of MLN-
based models also clearly show the advantage of leveraging
DNN algorithms for relational learning.

Yelp. For the Yelp application, the MLN models do not scale
up to the full dataset. Specifically, Tuffy computes a ground
Markov network for the MLN and this becomes too large when
we consider all the reviews in the dataset. Magician does not
ground the full MLN but due to the large number of atoms, the
sampling-space is too large for Gibbs sampling to converge.
MLCNN and CNN on the other hand can easily process the full
dataset which illustrates the scalability of DNN-based learners.
Therefore, for Tuffy and Magician, the results are reported for
a sub-sampled dataset with 100 reviews. Once again, MLCNN
clearly outperforms the other approaches in this task. CNN
is again the second-best performer but its performance is
significantly behind MLCNN.

Segmentation. For this task, note that we need to classify
pixels as foreground/background pixels. In our results, we
compute the average accuracy of this classification over 50
images. We can control the number of atoms in this dataset
by controlling the number of regions we discretize the image
into. Therefore, we were able to run Tuffy and Magician
on this dataset. In this task, MLCNN outperforms the other
approaches but note that U-Net also yields comparably good
performance on this task. For tasks involving natural images,
we can think of CNN-based models as implicitly encoding

ROC-AUC

benchmarks
Segmentation
WebKB
Movielens
Yelp

50 100 150 200 250 300
Number of atoms(x1000)
Fig. 2: ROC-AUC scores of MLCNN for varying number of
atoms in the datasets.

domain knowledge (for e.g., correlations between neighboring
pixels) which helps it learn more generalizable models.

Movielens. For the Movielens tasks, just as in the Yelp task,

for MLN models, we were only able to run it with 200 reviews
since the models could not scale up effectively. MLCNN and
CNN on the other hand could easily scale up to process all
reviews in this dataset. The accuracy results are very similar
to other tasks and the accuracy of MLCNN is again significantly
higher than the other approaches.
Scalability. Table II shows the training time for MLCNN as
we increase the number of ground atoms in our dataset. We
compute the total training time by adding the time required
for composing the embedding-matrices for the dataset and the
time taken to train the CNN. As we see from the table, the
proposed approach scales up well for large datasets, and even
when the number of atoms is 300K, we are able to process
this within a few minutes. Existing MLN-based learners are
incapable of scaling up to such datasets. On the other hand,
none of the existing MLN-based methods could scale up to the
full Yelp or Movielens datasets. Further, on the Segmentation
task, the MLN models failed to scale when the discretized
image resulted in more than SOK atoms. Thus, the scalability
of MLCNN is significantly better than existing MLN-based
relational learning methods.

Fig. 2 shows the accuracy of MLCNN as we increase the
number of ground atoms in the data. With increasing number
of atoms, the learned kernel parameters can generalize better
since the number of symmetry neighborhoods that are consid-
ered during training typically increase. This is observed across
all our tasks as seen in Fig. 2.

Fig. 3 illustrates the effect of domain knowledge in MLCNN.
Specifically, we consider the Yelp dataset (since this has
maximum number of predicates). We add MLN formulas in-
crementally with the constraint that the formula only contains a
subset of predicates. We learn MLCNN with increasingly larger
subsets of MLN formulas and show the accuracy results in
Fig. 3. As we observe in the figure, increasing the number of
predicates that are considered in the MLN which implies that
we inject more domain knowledge into MLCNN, progressively

of predicates: 6
ROC_AUC: 88
of predicates: 5
ROC_AUC: 86

of predicates: 4
ROC_AUC: 82

of predicates: 3
ROC_AUC: 75
of predicates: 2
ROC_AUC: 71

Fig. 3: Illustrating the effect of increasing domain knowledge
in the Yelp application. We consider subsets of MLN formulas
that contain a subset of predicates and learn MLCNN with
these formulas. Results are shown for progressively increasing
number of predicates considered in the MLN.

TABLE II: Training time for MLCNN (in seconds) for varying
number of ground atoms.

Number of atoms
Task 20Kk | 50k | 100k | 200k | 300k
WebKB 22128] 35] 68 | 80
Segmentation | 45 | 86 | 98 | 114 | 122
Yelp 56 | 78 | 134 | 195 | 280
Movielens | 32 | 45 | 65 80 | 127

improves accuracy of our model.

Robustness. One of the advantages of our approach is that we
learn a distribution over the CNN kernels which reduces uncer-
tainty in the learned model. Here, we evaluate the robustness
of our approach to noisy relations in the dataset. Specifically,
we introduce random embedding-matrices into our training
dataset to simulate the presence of noisy atoms in the data
and evaluate our approach in the presence of noise. Fig. 4
shows our results for varying degrees of noise and dropout.
We control these using variables « (to control percentage of
noise) and 3 (to control percentage of dropout). We consider
3 different cases. « = 1, 8 = 0 indicates the case that we
increase noise with the % indicated by the x-axis but do not use
any dropout which is equivalent to learning a single function.
a = 0, B =1 is the case where we do not introduce noise
but still learn a distribution over the CNN where the dropout
percentage is indicated by the x-axis. Finally, a =1, 8 = 1 is
the case where we increase noise as indicated by the % in the
x-axis and at the same time increase dropout by the same %.
As Fig. 4 shows, as noise increases, the performance of the
CNN that learns a single function degrades much faster than
the performance of our approach where we learn to combine
multiple CNN parameterizations. Further, even when there is
no noise, learning a distribution over the CNN parameters does
not hurt performance severely as we see from the case where
a = 0, B = 1. These results are consistent across all 4 of our
benchmarks clearly illustrating the robustness of our approach
in the presence of uncertainty.

Exchangeability. We evaluated if the performance of our
approach degrades when we use the permutation-invariant

0% 20% 50% 70% 80%
Percentage

(a)

ROC-AUC
~ ~ @ @
S o 3 &

@
a

0% 20% 50% 70% 80%
Percentage

(©

ROC-AUC

0% 20% 50% 70% 80%
Percentage

(b)

ROC-AUC

0% 20% 50% 70% 80%
Percentage

(d

Fig. 4: ROC-AUC scores for MLCNN with varying dropout and noise for (a) WebKB (b) Segmentation (c) Yelp (d) Movielens.

= with exchangeability == without exchangeability

100

80

60

ROC-AUC

40

20

WebKB Yelp Segmentation Movielens

Fig. 5: Tllustrating the effect of enforcing permutation invari-
ance in MLCNN.

layer. Specifically, we make the rows in the CNN input order-
invariant since each row represents an atom and these atoms
can be exchanged with other atoms within the input since
they are approximately symmetrical to each other. Fig. 5
shows our results. We can observe from our results over all
benchmarks that the performance does not degrade or degrades
very slightly when we assume exchangeability of the rows.
This result indicates that the atoms that we choose to relate
together in the CNN can be truly exchanged which validates
the symmetries that we have specified to the CNN.

Hyperparameters. Fig. 6 shows the accuracy of MLNCNN for
different hyperparameter settings. Specifically, we show the
accuracy results for varying number of convolutional layers,
kernel sizes, activation functions and number of kernels. The

results are fairly stable across different settings for convolu-
tional layers, kernel sizes and activation functions. For the
number of kernels, the optimal setting seemed to be between 4
and 6. At an abstract level, we can think of these as first-order
or higher-order formulas since they combine atom embeddings
in our model.

VI. CONCLUSION

We developed a learning approach that trains a CNN based
on relational knowledge specified in an MLN and incorpo-
rated domain knowledge into the CNN. Specifically, we learn
embeddings from the MLN and learn an CNN that combines
approximately symmetrical embeddings into higher-order fea-
tures. To reduce uncertainty in our learned model, we learn
a distribution over the parameters of the CNN. Our results
show that compared to methods that are based only on MLNs
or methods based only on DNNSs, our proposed approach has
superior performance in varied real-world applications. Future
work in this direction includes developing generative learning
models using our approach.

REFERENCES

[1] R. Stewart and S. Ermon, “Label-free supervision of neural networks
with physics and domain knowledge,” in Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence. AAAI Press, 2017,
pp- 2576-2582.

[2] P. Domingos and D. Lowd, Markov Logic: An Interface Layer for
Artificial Intelligence. San Rafael, CA: Morgan & Claypool, 2009.

[3] L. Getoor and B. Taskar, Eds., Introduction to Statistical Relational
Learning. MIT Press, 2007.

[4] T. Khot, N. Balasubramanian, E. Gribkoff, A. Sabharwal, P. Clark, and
O. Etzioni, “Exploring markov logic networks for question answering,”
in EMNLP, 2015, pp. 685-694.

— =3 = 100 - mm g mm mms

m—gmold N rels W lnear mEm tanh

100 - w4 = mms

Webke Yelp Webks Yelp.

(b)

Webke Yelp

(d

WebkS Yelp Segmentation Segmentation Movielens

Fig. 6: ROC-AUC scores for varying hyper-parameters in MLCNN (a) Varying number of convolution layers (b) Varying kernel
size (figure shows different widths w x w) (c) Varying activation function (d) Varying number of kernels

[51

[6]

[71
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. H. Bach, M. Broecheler, B. Huang, and L. Getoor, “Hinge-loss
markov random fields and probabilistic soft logic,” J. Mach. Learn. Res.,
vol. 18, no. 1, pp. 3846-3912, Jan. 2017.

H. Wang and H. Poon, “Deep probabilistic logic: A unifying framework
for indirect supervision,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018. Association for Computational
Linguistics, 2018, pp. 1891-1902.

M. M. Islam, S. Sarkhel, and D. Venugopal, “On lifted inference using
neural embeddings,” in AAAI 2019, pp. 7916-7923.

Y. Gal and Z. Ghahramani, “Bayesian convolutional neural networks
with Bernoulli approximate variational inference,” in /CLR workshop
track, 2016.

P. Smolensky, “Tensor product variable binding and the representation
of symbolic structures in connectionist systems,” Artif. Intell., vol. 46,
no. 1-2, pp. 159-216, Nov. 1990.

J. W. Shavlik and G. G. Towell, “An approach to combining explanation-
based and neural learning algorithms,” Connection Science, vol. 1, no. 3,
pp. 231-253, 1989.

G. G. Towell and J. W. Shavlik, “Knowledge-Based Artificial Neural
Networks,” Artificial Intelligence, vol. 70, pp. 119-165, 1994.

J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences
from natural supervision,” in 7th International Conference on Learning
Representations, ICLR, 2019.

T. Rocktischel and S. Riedel, “End-to-end differentiable proving,” in
NIPS, 2017, pp. 3791-3803.

Ww. W. Cohen, “Tensorlog: A differentiable deductive
database,” CoRR, vol. abs/1605.06523, 2016. [Online]. Available:
http://arxiv.org/abs/1605.06523

L. Serafini and A. S. d’Avila Garcez, “Logic tensor networks:
Deep learning and logical reasoning from data and knowledge,” in
NeSy@HLAI, ser. CEUR Workshop Proceedings, vol. 1768, 2016.

A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning structured
embeddings of knowledge bases,” in AAAI, 2011, pp. 301-306.

M. Nickel, V. Tresp, and H. Kriegel, “Factorizing YAGO: scalable
machine learning for linked data,” in WWW, 2012, pp. 271-280.

T. Trouillon, J. Welbl, S. Riedel, E. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in ICML, 2016, pp.
2071-2080.

S. M. Kazemi and D. Poole, “Simple embedding for link prediction in
knowledge graphs,” in Neural Information Processing Systems, 2018,
pp. 4289-4300.

R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester,
and L. D. Raedt, “Deepproblog: Neural probabilistic logic
programming,” CoRR, vol. abs/1805.10872, 2018. [Online]. Available:
http://arxiv.org/abs/1805.10872

J. Xu, Z. Zhang, T. Friedman, Y. Liang, and G. V. den Broeck, “A
semantic loss function for deep learning with symbolic knowledge,” in
ICML, 2018, pp. 5498-5507.

Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi, and L. Song,
“Efficient probabilistic logic reasoning with graph neural networks,” in
8th International Conference on Learning Representations, ICLR, 2020.
R. Gens and P. M. Domingos, “Deep symmetry networks,” in Neural
Information Processing Systems, 2014, pp. 2537-2545.

M. R. Genesereth and E. Kao, Introduction to Logic, Second Edition.
Morgan & Claypool Publishers, 2013.

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, pp. 3111-3119.

H. Mittal, A. Bhardwaj, V. Gogate, and P. Singla, “Domain-size aware
markov logic networks,” in AISTATS, 2019, pp. 3216-3224.

P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexi-
ties: Risk bounds and structural results,” J. Mach. Learn. Res., vol. 3,
pp. 463482, 2003.

X. Li, E Li, X. Z. Fern, and R. Raich, “Filter shaping for convolutional
neural networks,” in ICLR, 2017.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in NIPS,
2013, pp. 2787-2795.

B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” CoRR, vol.
abs/1412.6575, 2014.

J. Chan, V. Perrone, J. Spence, P. Jenkins, S. Mathieson, and Y. Song,
“A likelihood-free inference framework for population genetic data
using exchangeable neural networks,” in Neural Information Processing
Systems, 2018, pp. 8594-8605.

S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, and P. Domin-
gos, “The Alchemy System for Statistical Relational AI,” Department of
Computer Science and Engineering, University of Washington, Seattle,
WA, Tech. Rep., 2006, http://alchemy.cs.washington.edu.

S. Rayana and L. Akoglu, “Yelp Dataset for Anomalous Reviews,” Stony
Brook University, Tech. Rep., 2015, http://odds.cs.stonybrook.edu.

B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” in Proceedings of the
Workshop on Statistical Learning in Computer Vision, Prague, Czech
Republic, May 2004.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1-19:19,
2016.

F. Niu, C. Ré, A. Doan, and J. W. Shavlik, “Tuffy: Scaling up statistical
inference in markov logic networks using an rdbms,” PVLDB, vol. 4,
no. 6, pp. 373-384, 2011.

D. Venugopal, S.Sarkhel, and V. Gogate, “Magician: Scalable Inference
and Learning in Markov logic using Approximate Symmetries,” The
University of Memphis, Tech. Rep., 2016, https://github.com/dvngp/CD-
Learn.

S. Sarkhel, D. Venugopal, T. A. Pham, P. Singla, and V. Gogate, “Scal-
able training of markov logic networks using approximate counting,” in
AAAL 2016, pp. 1067-1073.

S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions,
and the Bayesian Restoration of Images,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.

Y. Kim, “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for Computational
Linguistics, 2014, pp. 1746-1751.

O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351, 2015,
pp. 234-241.

R. Rehtifek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks, 2010, pp. 45-50.

