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Non-native species have multiple abundance-impact curves
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Abstract
The abundance-impact curve is helpful for understanding and managing the im-
pacts of non-native species. Abundance-impact curves can have a wide range of

Correspondence shapes (e.g., linear, threshold, sigmoid), each with its own implications for scientific
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understanding and management. Sometimes, the abundance-impact curve has been
viewed as a property of the species, with a single curve for a species. | argue that
the abundance-impact curve is determined jointly by a non-native species and the
ecosystem it invades, so that a species may have multiple abundance-impact curves.
Models of the impacts of the invasive mussel Dreissena show how a single species
can have multiple, noninterchangeable abundance-impact curves. To the extent that
ecosystem characteristics determine the abundance-impact curve, abundance-im-
pact curves based on horizontal designs (space-for-time substitution) may be mis-
leading and should be used with great caution, it at all. It is important for scientists
and managers to correctly specify the abundance-impact curve when considering
the impacts of non-native species. Diverting attention from the invading species to
the invaded ecosystem, and especially to the interaction between species and eco-
system, could improve our understanding of how non-native species affect ecosys-
tems and reduce uncertainty around the effects of management of populations of

non-native species.
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1 | INTRODUCTION

impacts, many useful contributions about the impacts of specific
invaders (e.g., Higgins & Vander Zanden, 2010; Vila et al., 2011),

Non-native species are of concern because of theirimpacts. Whether
the invader affects biodiversity, ecosystem function and services,
human economies, or human health (e.g., Blackburn et al., 2014;
Gallardo, Clavero, Sanchez, & Vila, 2016; Lockwood, Hoopes, &
Marchetti, 2013; Ricciardi, Hoopes, Marchetti, & Lockwood, 2013),
it is the impacts of the invader, rather than the invader itself, that
usually is the primary concern. Despite the central importance of

and some general frameworks and empirical studies that apply
broadly across taxa (e.g., Blackburn et al., 2014; Crystal-Ornelas
& Lockwood, 2020; Dick et al., 2014; Parker et al., 1999; Pearse,
Sofaer, Zaya, & Spyreas, 2019), we are far from having satisfactory
understanding or predictive power about the impacts of non-na-
tive species (e.g., Crystal-Ornelas & Lockwood, 2020; Ricciardi
et al., 2013; Strayer, Solomon, Findlay, & Rosi, 2019).
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One useful general approach that links the invader with its im-
pacts is the abundance-impact curve (Figure 1) (=density-impact
function [DIF]; Norbury, Pech, Byrom, & Innes, 2015), in which
some measure of the abundance (e.g., population density, bio-
mass) of a non-native species is plotted against some measure of
its total impact (e.g., Sofaer, Jarnevich, & Pearse, 2018; Yokomizo,
Possingham, Thomas, & Buckley, 2009). The abundance-impact
curve represents a substantial advance over earlier approaches (e.g.,
Parker et al., 1999) because it accommodates nonlinear relationships
between abundance and impact, in which the marginal per capita
effect can vary with invader abundance. It therefore identifies a crit-
ical distinction between the average and marginal per capita effects
of an invader. The shape and parameters of this curve are highly
relevant to management, because they allow managers to estimate
the expected benefits of reducing the population of the invader by
a given amount, which can be weighed against the expected costs
of that reduction (e.g., Sofaer et al., 2018; Yokomizo et al., 2009).
Especially in the last decade, scientists have published abundance-
impact curves of problematic invaders (e.g., Benkwitt, 2015; Strayer,
Solomon, et al., 2019; Thiele, Kollmann, Markussen, & Otte, 2010),
as well as broad empirical analyses of the impacts of non-native
species that are based on abundance-impact curves (e.g., Bradley
et al., 2019; Norbury et al., 2015; Pearse et al., 2019). These studies
have provided insights into the basic ecology of species invasions, as
well as information that could be useful to managers.

A potential problem with impact theories in general, and with
abundance-impact curves in particular, is that impacts have been
regarded chiefly as a property of the invading species (e.g., Ricciardi
et al., 2013; Sofaer et al., 2018). Thus, it is common to see refer-
ence to the abundance-impact curve of a species, as if each species
had a single abundance-impact curve. If the invaded ecosystem has
been considered at all, it has been included implicitly (e.g., in the per

capita effect term of Parker et al’s [1999] equation), or treated as a

Impact
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FIGURE 1 A hypothetical abundance-impact curve (black
curve, based on black data points), which shows the total impact
of a population of an invader as a function of its abundance. The
slopes of the red and blue lines show average (dashed lines) and
marginal (solid lines) per capita effects at two values of invader
abundance

secondary modulator of impacts. | argue here that the invading spe-
cies and the invaded ecosystem are partners in determining impact
and that both must be considered explicitly in effective theories of
impacts. Furthermore, once we include the invaded ecosystem, we
see that there generally will not be a single abundance-impact curve
for a species, but multiple, noninterchangeable abundance-impact
curves, each of which applies over limited domains (types of ecosys-
tems, types of invaders, types of impacts). | will explore these ideas
using simple models of the expected impacts of Dreissena (zebra and
quagga mussels), ecologically and economically important invaders
that have been well studied (e.g., Crystal-Ornelas & Lockwood, 2020;
Gallardo et al., 2016; Higgins & Vander Zanden, 2010).

2 | ABUNDANCE-IMPACT CURVES OF
DREISSENA: TWO EXAMPLES

Dreissena species (Figure 2) are native to the Ponto-Caspian region
of southeastern Europe and southwestern Asia. Since the early 19th
century, they have been spread widely through Western Europe
and North America, chiefly through commercial shipping and rec-
reational boating (Benson et al., 2019; van der Velde, Rajagopal, &
bij de Vaate, 2010). They often form dense populations and have
large ecological and economic impacts (summarized by Connelly,
O'Neill, Knuth, & Brown, 2007; Higgins & Vander Zanden, 2010;
Ricciardi, 2003; Strayer, 2009) as a result of their suspension feed-
ing, shell building, and fouling. Dreissena has impacts that are broadly
similar to many other species of freshwater, estuarine, and coastal
marine bivalves that have been spread widely around the world by
humans (e.g., Corbicula, Limnoperna, Mytilopsis, Rangia, and various
species of oysters and mussels), and so represents an important class
of invaders.

FIGURE 2 Zebra mussels, Dreissena polymorpha, covering a
rock taken from the bottom of the Hudson River. Photograph by
Heather Malcom
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FIGURE 3 The amount of dead shell material that would
accumulate (at equilibrium) across a range of constant Dreissena
population sizes (expressed as shell production rates) in

three model ecosystems (black line = hardwater lake, red

line = moderately hardwater lake, blue line = moderately hardwater
river; see text for details). The ratios shown above the lines are the
ratio of equilibrial shell accumulation to annual production

2.1 | Example 1: shell accumulation

Dreissena plays many roles in ecosystems (e.g., Higgins & Vander
Zanden, 2010; Ricciardi, 2003); here, | will here explore two roles
that are simple and well understood enough to analyze with simple,
quantitative models. The first is the accumulation of empty shells
and shell fragments (“shell hash”) on the sediments. These empty
shells change the surface roughness, texture, porosity, permeability,
and chemistry of sediments, thereby affecting habitat for benthic
animals, interstitial biogeochemistry, near-bottom hydrodynam-
ics, and exchanges of materials between the water and sediments
(Gutiérrez, Jones, Strayer, & Iribarne, 2003; Ricciardi, 2003). Shell
production by Dreissena and other mollusks can be large, approach-
ing rates of wood production (in terms of mass) in temperate forests
(Gutiérrez et al., 2003).

The amount of shell hash that accumulates on sediments de-
pends on the rate at which empty shells are produced by dying an-
imals and the rate at which they are dissolved, buried, or washed
downstream by the ecosystem. For simplicity, | assume that burial
and export are negligible, so that the dynamics of shell hash are de-
termined by production and dissolution, as follows:

ds

prs =M-kS
where S is the standing stock of shell hash, M is the quantity of shell
material entering the spent shell pool through mortality of living an-
imals, and k is the instantaneous loss rate of spent shells. At steady
state, mortality is equal to the production of spent shells (P) and (dS/
dt = 0), so the quantity of shell hash will be P/k, where k depends on
water chemistry and currents (Strayer & Malcom, 2007).

I will model shell accumulation in three ecosystems: a hardwater

lake in which shell dissolution is slow (k = -0.05/year; rates estimated

Year

FIGURE 4 The amount of dead shell accumulated in

three model ecosystems over time, assuming a constant shell
production rate of 1 kg/m2 year. Black line = hardwater lake, red
line = moderately hardwater lake, blue line = moderately hardwater
river

from Strayer & Malcom, 2007), a moderately hardwater lake in which
shell dissolution is moderately fast (k = -0.3/year), and moderately
hardwater river in which shell dissolution is fast (k = -2/year). | chose
these three systems because they cover most of the range of con-
ditions under which dense populations of Dreissena occur (Whittier,
Ringold, Herlihy, & Pearson, 2008). (Dreissena does live in waters
supersaturated in calcium carbonate, where even smaller absolute
values of k would be expected, but not in very soft waters, where
shell dissolution would very fast [k < -2/year].)

| begin by considering the amount of shell hash that would ac-
cumulate, at equilibrium, by Dreissena populations of different sizes
in each of these three hypothetical ecosystems. Again, the range of
Dreissena population sizes used roughly matches the range expected
in nature (Strayer & Malcom, 2007); note that population size is ex-
pressed here as the rate of shell production. In this first scenario, the
amount of shell hash that accumulates on the sediments depends
strongly on both the size of the Dreissena population and the char-
acteristics of the ecosystem, to a roughly equal extent (Figure 3).
In this example, the abundance-impact curve is always simple and
of the same form (linear) across different ecosystems, and the dif-
ference across ecosystems is easily understood and modeled as a
simple difference in slopes. The slopes depend on the shell disso-
lution rate, which can be estimated roughly from water chemistry
and movement, or more precisely from simple litter-bag studies
(Strayer & Malcom, 2007). Furthermore, because shell dissolution
rates are a function of shell size and thickness (llarri, Sousa, Amorim,
& Sousa, 2019; Strayer & Malcom, 2007), it would be possible to ex-
tend this simple framework to cover other species of shell producers.

However, the impacts of shell accumulation are cumulative,
not instantaneous, so this example has interesting temporal dy-
namics, which also depend on the characteristics of the ecosys-
tem. | will now relax the assumption of steady state and model the

temporal dynamics of shell accumulation in different ecosystems.
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In this second scenario, | assume a constant Dreissena population
and calculate the time course of shell accumulation in the three
model ecosystems (Figure 4). As we already saw, the equilibrial
amount of shell hash (the asymptotes in Figure 4) differs among
ecosystems. In addition, the rate at which that asymptote is ap-
proached differs among ecosystems; systems with high dissolu-
tion rates approach equilibrium rapidly (within ~5 years), whereas
systems with low dissolution rates take several decades to reach
equilibrium. Thus, the ecosystem affects the dynamics of impacts
as well as their long-term equilibria.

But of course Dreissena populations vary over time; in many
cases, year-to-year variation is approximately an order of magni-
tude (Strayer, Adamovich, et al., 2019). | next model the temporal
dynamics of shell hash accumulation in different ecosystems that
support temporally variable populations of Dreissena. Temporal
variability of shell production in these populations mimics the
year-to-year variation in Dreissena biomass in the Hudson River,
a population with moderately high interannual variation (Strayer,
Adamovich, et al., 2019). For simplicity, | modeled accumulation
of shell hash only for the ecosystems with the highest and lowest
rates of shell dissolution (i.e., the hardwater lake and the moder-
ately hardwater river).

In the river with high dissolution rates, shell accumulation
equilibrates rapidly with shell production, shell accumulation
closely tracks shell production (Figure 5, left), and impact mea-
sured in any year is still a clear linear function of current Dreissena
population size (Figure 5, right). However, when rates of shell dis-
solution are lower, the ecosystem equilibrates slowly with inputs,
shell accumulation is not closely coupled with instantaneous rates
of shell production (Figure 5, left), and there is no apparent rela-
tionship between the current impact and Dreissena population size
(Figure 5, right). For a cumulative impact such as shell accumula-
tion, impact at any time t will be a weighted function of invader

population size over some temporal window preceding that time.
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Because the ecosystem determines the dynamics of the impact,
the width of that window and the appropriate weighting function
are determined by the characteristics of the ecosystem and will

differ across ecosystems.

2.2 | Example 2: provision of macrophyte habitat

The second example of Dreissena impact is the increase in the
area of the photic zone available for colonization by submersed
macrophytes. Dreissena typically increases water clarity by re-
moving phytoplankton and other particles from the water col-
umn (Higgins & Vander Zanden, 2010; Higgins, Vander Zanden,
Joppa, & Vadeboncouer, 2011). This can increase the area of lake
or river bottom colonized by rooted plants and benthic algae
(Zhu, Fitzgerald, Mayer, Rudstam, & Mills, 2006), which in turn
can have large and far-reaching effects on the food web, provi-
sion of habitat for fish and invertebrates, and biogeochemical pro-
cesses and exchanges between the sediment and water column
(Carpenter & Lodge, 1986; Jeppesen, Sgndergaard, Sgndergaard,
& Christoffersen, 1998).

Three pieces of information are needed to connect Dreissena
abundance with the increase in area available for submersed macro-
phytes (Figure 6): (i) the relationship between Dreissena abundance
(now expressed as aggregate filtration rate of the population) and
phytoplankton biomass (as concentration of chlorophyll a); (ii) the re-
lationship between phytoplankton biomass and water clarity; and (iii)
the bathymetric map (technically the hypsographic curve) of a body of
water. The relationship between Dreissena population filtration rate
and phytoplankton biomass is known only approximately. For the pur-
poses of this exercise, | assumed that phytoplankton biomass declines
exponentially with Dreissena filtration rate as (Figure 6, left) follows:

chlyog =0.2chl . +0.8chl, e(-003470FR)

pre
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FIGURE 5 Left. Temporal dynamics of shell production (thin gray line, nearly obscured by blue line) and shell accumulation in two
model ecosystems (black line = hardwater lake, blue line = moderately hardwater river). Right. Relationship between measured annual
shell production and current shell accumulation in each year of study, for two model ecosystems (black circles = hardwater lake, blue

circles = moderately hardwater river)
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3. Lake bathymetry

FIGURE 6 The three pieces of information needed to estimate the relationship between Dreissena population size and the area available

for colonization by submersed macrophytes
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FIGURE 7 Expected increase in area of lake bottom suitable for submersed vegetation, as a function of Dreissena population size in
different ecosystems. Black lines = deep, conical lake basin, gray lines = shallow, conical lake basin, red line = lake basin with a shelf. Note the
difference in y-axis scaling between the two panels. In the right panel, the black and gray lines have been shifted slightly for visibility (they

actually lie on top of one another)

where chIpre and chIp are the chlorophyll concentrations before and

ost
after the Dreissena invasion and DFR is the Dreissena filtration rate (as
% of the water column/day). This equation is consistent with previous
analyses and data (Caraco, Cole, & Strayer, 2006; Higgins & Vander
Zanden, 2010; Strayer, Solomon, et al., 2019). The relationship be-
tween phytoplankton biomass and water clarity was well explored in
the classical eutrophication literature; | used the relationship of Rast

and Lee (1978) and shown in Figure 6 (center):

log, Secchidepth=-0.473 log;o chl+0.803

where Secchi depth is in m and chlorophyll (chl) is in pg/L. For bathym-
etry, | will use three contrasting model lakes: (i) a conical basin with
a maximum depth of 5 m (“shallow”); (ii) a conical basin with a maxi-
mum depth of 50 m (“deep”); (iii) a lake of intermediate depth (max-

imum = 15 m), but with a pronounced shelf between 2.5 m and 3 m

(“shelf”; such shelves are common in lakes). | ran this model for an un-
productive lake (preinvasion chlorophyll concentration of 3 pg/L) and
a productive lake (preinvasion chlorophyll concentration of 30 pg/L).
| further assumed that the light extinction coefficient () was equal to
the Secchi depth/1.7 (Wetzel, 2001) and that submersed macrophytes
could survive to the depth reached by 5% of surface light (Moss, 2010).

This model produced several notable results (Figure 7). In some
ecosystems, the relationship between Dreissena population size and
area available for submersed macrophytes was positive and asymp-
totic, simply with differences in slope among the different lakes.
However, other ecosystem types showed fundamentally differ-
ent relationships. For the shallow, unproductive lake, the arrival of
Dreissena had no effect on the area available for submersed macro-
phytes, regardless of the density of Dreissena, because the entire lake
bottom was well lighted enough for submersed macrophytes before

Dreissena arrived. The abundance-impact curve for the productive
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“shelf” lake was highly nonlinear, with steep increases in macrophyte
habitat at Dreissena filtration rates of 10%-30% of the water column/
day contrasting with much lower rates over other parts of the range.
Such idiosyncratic responses would occur in the many lakes that
have nonlinear hypsographic curves (i.e., nonconical basins).

This second example again shows that impacts are a joint prop-
erty of the Dreissena population and the ecosystem and that a wide
range of abundance-impact curves are possible (both in terms of
parameters and shapes). Despite this complication, impacts are pre-
dictable if we explicitly consider both the invader and the ecosys-
tem. As in the first example, it seems likely that this analysis could
be extended to accommodate the activities of other non-native spe-
cies in the same functional group as Dreissena (suspension feeders
in this second example), if we express their population sizes in terms
of filtration rates. In contrast to the shell accumulation example, the
impacts here are more or less instantaneous (the light environment
should closely follow changes in filtration rates, even though there
may be some lags in the responses of macrophytes), so that the his-
tory of the invasion is less likely to be critical.

These two examples show that the characteristics of the eco-
system can be fundamentally important in defining the abun-
dance-impact curve and must be explicitly considered if we hope
to understand that curve. As others (e.g., Pearse et al., 2019;
Ricciardi, 2003; Ricciardi et al., 2013) have noted, there are different
curves for different impacts of a single invader (i.e., shell accumu-
lation vs. water clarification). These differences may be especially
marked between instantaneous and slow, cumulative impacts.
Furthermore, very different attributes of the ecosystem are import-
ant for these different impacts—water chemistry and movement for
shell accumulation versus lake bathymetry and productivity for pro-
vision of submersed macrophyte habitat. Likewise, the abundance of
the invader may best be expressed in different ways (e.g., population
density, biomass, shell production rate, filtration rate) depending on

the impact being considered.

3 | IMPLICATIONS OF ECOSYSTEM
SENSITIVITY FOR HORIZONTAL STUDIES
(SPACE-FOR-TIME SUBSTITUTION) IN
INVASION ECOLOGY

Up until now, | have not been explicit about what the points in the
abundance-impact curve (Figure 1) represent. In fact, there are at
least three distinct versions of the abundance-impact curve, de-
pending on what the points represent. These three versions will gen-
erally not be interchangeable in terms of their shapes, parameters,
or applications. All three curves have the abundance of the invader
on the x-axis and one of its impacts on the y-axis (as in Figure 1). In
the first formulation (“within system”), the points on the graph come
from a single ecosystem. This could be either a single ecosystem in
nature sampled over different times, each with a different abundance
of the invader, or experimentally manipulated to produce different

abundances, or from an experiment using different abundances of

the non-native species in replicates of the same ecosystem. In the
second formulation (“cross-system snapshot”), the points are snap-
shots, each representing a single sample from different ecosystems.
In the third formulation (“cross-system, long-term”), the points are
long-term means from different ecosystems.

To see the difference among these three abundance-impact
curves, consider a very simple example in which within-system im-
pacts are noncumulative, linear on invader abundance, but with dif-
ferent slopes in different types of ecosystems. Further assume that
invader abundance varies over time in each ecosystem and that dif-
ferent landscapes hold three types of ecosystems (with a high slope,
moderate slope, and low slope, respectively, to their abundance-
impact curves) in different proportions. Snapshot samples taken
from such a landscape will produce data points whose distribution
depends on (a) the within-system abundance-impact curves; (b) the
distribution of invader densities over time within each ecosystem;
and (c) the proportion of each kind of ecosystem in the landscape
(and possibly (d) the proportion of each kind of ecosystem in the
sample, if the ecosystems are not sampled using a representative
sampling design). The three selected examples in Figure 8 show that
highly varied distributions of points, and therefore highly varied
abundance-impact curves, can be produced from snapshot samples
taken from a single simple system. It does not take much imagina-
tion to see that almost any distribution of data points and any shape
of abundance-impact curve can be obtained from cross-system
snapshot sampling, even if the system has a very simple underlying
structure, if different ecosystems have different abundance-impact
curves. This problem becomes even more severe if the system has a
more complex underlying structure (e.g., abundance-impact curves
that are nonlinear or different in shape in different ecosystems,
cumulative impacts). Except in the case of coincidence, the abun-
dance-impact curves obtained by snapshot sampling (the black lines
in Figure 8) will generally not match any of the within-system abun-
dance-impact curves in shape, parameters, or even sign. Specifically,
the fitted lines will not accurately predict the results of changing
invader abundances in any ecosystem in the landscape and can even
(as in Figure 8b) produce predictions of the wrong sign.

If we sample the ecosystems in this simple example repeatedly
to get their long-term mean abundances and impacts, we will ob-
tain less noisy versions of plots like those shown in Figure 8. If the
abundance of the invader does not vary much over time, the long-
term curve will closely resemble the snapshot curve, whereas if in-
vader abundance within ecosystems varies greatly over time, the
long-term curve will look a lot cleaner than the snapshot version.
However, neither cross-system curve will generally resemble the
within-system curves, in either shape or parameters.

If the within-system abundance-impact curve is nonlinear (which
will often be the case; e.g., Benkwitt, 2015; Norbury et al., 2015;
Strayer, Solomon, et al., 2019), the snapshot and long-term
cross-system curves will also differ from one another in shape and
parameters. They will differ because the mean value of a dependent
variable evaluated at a series of points along a nonlinear function is

not the same as the value of the dependent variable evaluated at the
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mean value of the independent variable (cf. Karamata's Inequality
or Jensen's Inequality—Denny, 2017). This problem can range in

severity from negligibly small to large depending on the degree of
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nonlinearity in the within-system abundance-impact curves and the
amount of temporal variation in invader abundance.

Thus, even if the impact of the invader is not a cumulative func-
tion of invader abundance, the three different abundance-impact
curves are equivalent only under special conditions. The within-sys-
tem curve and the snapshot curve will be the same only if invader
impact is unaffected by the characteristics of the ecosystem (i.e.,
if a single abundance-impact curve applies to all ecosystems in the
sample). The snapshot curve and the long-term cross-system curve
will be the same only if all within-system invader-impact curves are
linear. And all three curves will be the same only if both of these con-
ditions apply—if the abundance-impact curve is linear and identical
in all ecosystems in the sample. These conditions seem unlikely to
apply to many impacts of invaders.

Cumulative impacts introduce additional complications. We have
seen that if we wish to obtain an interpretable within-system abun-
dance-impact curve for cumulative impacts, we must consider (and
weight) invader abundance over some window of time, and both
the width of the time window and the weighting function can differ
across ecosystems. Consequently, even if abundance-impact curves
are similar across all ecosystems, the snapshot approach will not pro-
duce interpretable results for cumulative impacts, unless the impact
equilibrates rapidly (e.g., the blue line in Figure 5, left) or the invad-
er's abundance is stable over time. Nor will the long-term cross-sys-
tem abundance-impact curves equal the within-system curves,
even if abundance-impact curves are similar across all ecosystems
(although they may be less erroneous than the snapshot results), be-
cause the temporal weighting functions will generally be nonlinear.
This further restricts the conditions under which cross-system and
within-system abundance-impact curves will resemble one another.

Some of the problems with horizontal designs can be solved by
careful matching of study sites, so that differences in a relevant eco-
system characteristic are minimized (i.e., so that the study ecosys-
tems all fall along a single abundance-impact curve, as do points of
the same color in Figure 8), or by explicitly including the relevant
ecosystem characteristics in the abundance-impact model. Indeed,
both of these strategies have been recommended or used in horizon-
tal studies of impacts (e.g., Jackson, Ruiz-Navarro, & Britton, 2015;
Pysek et al., 2012; Staska, Essl, & Samimi, 2014; Thiele et al., 2010).
Nevertheless, such strategies may fail to produce reliable abun-
dance-impact curves if the sites are poorly matched, the within-sys-
tem abundance-impact curve is nonlinear, orimpacts are cumulative.
All of these problems are likely to be common. Furthermore, because
the different impacts of a single species may be sensitive to different
ecosystem characteristics (as in the two Dreissena examples), a set
of study sites that is well-matched for studying one impact may be

ill-suited to study another impact of the same species.

4 | WHY DOES THIS MATTER?

It has been well appreciated that ecosystem characteristics help

to determine the establishment, spread, and local abundance of
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non-native species (e.g., Leung & Mandrak, 2007; Lewis et al., 2017,
Lockwood et al., 2013). The examples presented here emphasize
that ecosystem characteristics can also strongly affect the abun-
dance-impact curve. That is, ecosystems help to set not only the
occurrence and abundance of a non-native species at a site, but also
its per capita effects.

Abundance-impact curves can be important to several import-
ant scientific and management problems (e.g., Sofaer et al., 2018;
Thiele et al., 2010; Yokomizo et al., 2009). Most obviously, an ac-
curate abundance-impact curve can help managers evaluate the
benefits and costs of proposed management actions to reduce
the abundance of a non-native species (Yokomizo et al., 2009).
Abundance-impact curves are essential to schemes to assess the re-
gional impacts of non-native species (e.g., Thiele et al., 2010; Vander
Zanden, Hansen, & Latzka, 2017). They can also provide a standard-
ized way by which to compare impacts of one non-native to another,
or natives to non-natives (Pearse et al., 2019). Using the wrong pa-
rameters and shape for an abundance-impact curve can therefore
have serious consequences for scientific understanding, and incur
unnecessary monetary and environmental costs from inappropriate
management actions (e.g., Yokomizo et al., 2009).

| have shown here that within- and across-system abundance-
impact curves can be radically different in shape and parameters
(Figure 8). Nevertheless, previous studies have generally failed to
recognize the existence of different kinds of abundance-impact
curves, regarded them as interchangeable (e.g., Sofaer et al., 2018),
used across-system curves to judge how the impacts of a non-native
species would change if its abundance was to change (e.g., Bradley
et al., 2019), or mixed different kinds of abundance-impact curves
(e.g., Norbury et al., 2015). Such uncritical use of abundance-impact
curves is likely to cause confusion and slow scientific progress, lead
to misleading understanding of the impacts of non-native species,
cost money (Yokomizo et al., 2009), and damage ecosystems that are

subject to inappropriate management actions.

5 | THE WAY FORWARD

Ecosystems can strongly influence abundance-impact curves of
non-native species, complicating their use and interpretation. The
examples presented here for Dreissena, which are relatively realis-
tic, show that the ecosystem is of first-order importance, roughly
as important as Dreissena abundance, in determining two selected
impacts (shell accumulation and provision of macrophyte habitat).
There has been little systematic examination of how other per capita
impacts of Dreissena vary across ecosystems, but the information
that is available suggests that these impacts do vary substantially
across different kinds of ecosystems. Thus, apart from any effect of
Dreissena abundance, Caraco et al. (1997), Higgins et al. (2011), and
Sarnelle, White, Horst, and Hamilton (2012) found that impacts on
phytoplankton depend on epilimnetic volume, stratification, turbid-
ity, and nutrient content; Strayer, Hattala, and Kahnle (2004, figure

8 and associated text) suggested that impacts on fish communities

depend greatly on system morphometry, hydrology, and turbidity, as
well as the species composition of the fish community; impacts on
native bivalves may depend on hydrodynamics and sediment type
(Strayer & Malcom, 2018; Zanatta et al., 2015); and Strayer, Caraco,
Cole, Findlay, and Pace (1999, figure 9) found large differences in
many attributes of ecosystems that were invaded by Dreissena popu-
lations of similar density. It therefore seems likely that many impacts
of Dreissena depend substantially on ecosystem characteristics and
cannot be reduced to a single abundance-impact curve.

These conclusions about Dreissena probably apply to other
non-native species. Many of the impacts of non-native species
may depend on the characteristics of the invaded ecosystem, in
addition to the abundance of the invader, and the list of relevant
ecosystem characteristics must be diverse, depending on the im-
pact being considered. For instance, the impacts of a nitrogen-fix-
ing plant or a nitrogen-recycling animal must depend on whether
the ecosystem is strongly nitrogen limited or nitrogen replete (e.g.,
Atkinson, Capps, Rugenski, & Vanni, 2017; Luo et al., 2014; Scherer-
Lorenzen, Venterink, & Buschmann, 2007). More generally, we can
expect impacts of non-native species to depend on factors such as
the structure of the food web (e.g., Vander Zanden, Olden, Thorne,
& Mandrak, 2004), whether the ecosystem is rich or poor in nutri-
ents (as for nitrogen), productive or unproductive (as in the second
Dreissena example), highly retentive or rapidly flushed (e.g., Lucas
& Thompson, 2012), stable or highly disturbed, highly heteroge-
neous or relatively uniform (e.g., Lucas, Cloern, Thompson, Stacey,
& Koseff, 2016; MacRae & Jackson, 2001), to name a few obvious
possibilities. Therefore, for many invaders, it will be more useful to
think of multiple abundance-impact curves, each applying to a de-
fined range of impacts, functional groups of species, and types of
ecosystems, and each with its own scientific and management appli-
cations, rather than a single curve.

Furthermore, although this essay has focused on non-native spe-
cies, it should be obvious that these considerations apply equally to
native species, and so have broad application in ecology. Ecologists
and managers often consider trying to increase the abundance of a
native species to increase the ecosystem services it provides (e.g.,
Coen et al., 2007; Kreeger, Gatenby, & Bergstrom, 2018) or reduce
the abundance of a native species to reduce its harmful impacts (e.g.,
Beguin, Tremblay, Thiffault, Pothier, & Cété, 2016). Abundance-im-
pact curves can help to predict the likely changes in impacts result-
ing from a projected change in abundance and thus assess the costs
and benefits of management actions. As for non-native species, it
will be essential in such applications to correctly choose and param-
eterize the abundance-impact curve.

But although it seems clear that ecosystems can strongly influ-
ence the abundance-impact curve, surely there must also be many
cases in which the influence of the ecosystem is small enough
to ignore, especially if the domain of study systems is carefully
defined. But how often do ecosystems matter? Can we identify
the conditions under which ecosystems are most likely to matter?
Clearly, we need better theoretical and empirical explorations

of how (and how much) ecosystems affect abundance-impact
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curves. In many cases, we know enough about the mechanisms of
impact that we should be able to predict what characteristics of an
ecosystem ought to affect a specified impact (as in the Dreissena
examples), and use models, experiments, or field observations to
assess the importance of ecosystem characteristics to invader im-
pacts. It may eventually be possible to develop a theoretical or
empirical basis for separating the situations in which impacts are
sensitive to ecosystem characteristics from those in which im-
pacts are robust to variation in ecosystems.

How should we proceed in the interim until we satisfactorily
understand the importance of ecosystem characteristics to abun-
dance-impact curves? If scientific studies show that the ecosys-
tem has little or no influence on the abundance-impact curve,
then a single abundance-impact curve can be applied for a given
impact of a non-native species across sites, and any of several
methods can be used to estimate the abundance-impact curve
(keeping in mind the caveats about cumulative impacts discussed
above). However, to the extent that the impacts of non-native spe-
cies do depend on the characteristics of the invaded ecosystem
as well as those of the invader, any satisfactory understanding of
invader impacts will have to explicitly consider ecosystems as well
as species. This means that we will need to gather and analyze data
separately for each kind of ecosystem (cf. Norbury et al., 2015;
Thiele et al., 2010) or include ecosystem characteristics in general
models of impacts (e.g., Pysek et al., 2012), limit extrapolations to
well defined domains (of impact type, species functional group,
and ecosystem type; Norbury et al., 2015), and take care to apply
the correct kind of abundance-impact curve to each application.
In particular, unless until ecosystems are shown to have little in-
fluence on a given impact, abundance-impact curves derived from
cross-system designs should be viewed skeptically and used very
cautiously. Likewise, if abundance-impact curves are to be used
for management, it will be important to consider whether such
curves are reliable and have been based on sound science. But
to make an obvious point, management of non-native species is
based on considerations other than abundance-impact curves, as
valuable as they may be, so there is no reason to postpone man-
agement of a non-native species until reliable abundance-impact
curves become available.

The problems raised in this essay will complicate analyses of
abundance-impact curves and non-native species impacts. However,
addressing these problems should improve our understanding of
how non-native species affect ecosystems and reduce uncertainty
around the effects of management of populations of non-native
species. Furthermore, as the Dreissena examples suggest, these are
likely to be tractable problems and can be solved if invasion ecol-
ogists divert some of their attention from the invading species to
the invaded ecosystem, and especially to the interaction between
species and ecosystem.
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