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Abstract—In this paper, we investigate the channel estima-
tion (CE) problem in an underwater visible light communication
(UVLC) system invoking fractionally-sampled optical orthogonal
frequency division multiplexing (FS-OOFDM). In practical UVLC
scenarios, the communication links inevitably suffer from many
stochastic channel effects including multi-path dispersion, scatter-
ing, turbulence, etc., and/or from the mobility of the transceiver,
therefore resulting in a time-varying, location-dependent non-
stationary propagation environment. Naturally, compared with
the indoor visible light communication (VLC) scenario with a
typical assumption being the time-flat channel models, it becomes
a notable challenge for designing a low-complexity adaptive CE
in the much more complicated UVLC scenarios. To solve this
problem, we derive a class of Bayesian CE algorithms referred
to as the Sherman-Morrison formula (SMF) based CE (SMF-CE),
by exploiting the property of rank-one structure of the second-
order channel statistics in the delay domain. Furthermore, an
adaptive version of SMF-CE (ASMF-CE) can be obtained through
updating the imperfect a priori knowledge of the channel and
the noise’s statistics. Simulation results demonstrate the superior
performances of the proposed algorithms in comparison to existing
methods, while maintaining a reduced computational complexity
in comparison to the conventional linear minimum mean square
error (LMMSE) scheme.

Index Terms—Channel estimation (CE), fractional sampling
(FS), optical orthogonal frequency division multiplexing
(OOFDM), Sherman-Morrison formula (SMF), underwater
visible light communication (UVLC).

I. INTRODUCTION

W ITH the growing demand for marine and oceanographic
applications, wireless technologies play an increasingly

important role and attract more interest from both the academia
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and the industry [1]. Compared with wired communication
technologies such as fiber optics, wireless techniques are more
cost-effective, offering a higher flexibility and more operational
advantages especially in marine scenarios [1], [2]. Currently,
acoustic communication is the most widely used technology tar-
geting long-distance underwater information transmission [3].
However, it becomes restrictive for some practical applica-
tions, where a higher data rate is required, particularly in a
short-to-medium coverage. In this case, underwater visible light
communication (UVLC) attracts increasing attention, due to its
capability of providing wider bandwidth, lower latency, better
security and most importantly, much higher data rates [3]–[5],
especially when combined with the optical orthogonal frequency
division multiplexing (OOFDM) technologies [6]–[8].

Despite the promising benefits, many technical challenges
still remain open for UVLC, for example channel estimation
(CE) which is one of the essential function to enable broadband
UVLC transmissions. So far, the studies on UVLC CE are
very limited and how to acquire sufficiently accurate channel
information is an open issue. As the most straightforward idea,
one may propose to simply reuse existing CE methods developed
for indoor visible light communication (VLC) or even for radio
frequency (RF) systems in the UVLC scenario. Although such
a direct migration may logically work, the actual achievable
performance is far from optimal or could even degrade signif-
icantly, due to the specific disadvantageous effects of UVLC
channels such as absorption, scattering and turbulence, which
severely constrain UVLC systems’ attainable link performance
and coverage [9]–[11].

Compared with the indoor VLC channels, where temporal
dispersion is often introduced by multi-path reflection, the
multiple scattering produced by the rich types of underwater
scatterers becomes the major source for the significant temporal
dispersion in UVLC channels. Such a key difference implies that
the existing CE schemes tailored for indoor VLC systems, for
example the adaptive statistical Bayesian minimum mean square
error CE (AS-BMMSE-CE) [12], are likely not optimal for
UVLC systems. Inspired by the diagonalization approach [13],
AS-BMMSE-CE is derived under the semi-orthogonality con-
dition, which relies on a unique pilot pattern that is hard to be
extended to multiple-input multiple-output (MIMO) scenarios.
Moreover, the authors of [5], [9] point out that the non-turbulent
channel impulse response (NT-CIR) in diffusive UVLC channel
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links usually contains dense and energy-concentrated non-line-
of-sight (NLOS) taps, due to interactions between photons and
underwater suspended particles. As a result, the channel impulse
response (CIR) of a diffusive UVLC channel is no longer sparse
in the delay domain. Thus, some conventional CE methods, such
as the compressive sensing (CS) based CEs [14], [15] or the
sparse detection aided methods [16], may not be directly applica-
ble to UVLC scenarios. Although Ma et al. [17] investigated the
possibility of employing a CS-aided CE in UVLC systems, their
channel model only assumes the sparsity of the reflective paths,
without an accurate description of the scattering and turbulence
effects of UVLC channels, which however may invalidate the
sparsity assumption concerned.

In addition, note that the time-varying characteristics of
UVLC channels mainly depend on two factors. The first aspect
is the optical turbulence defined as the random variation of the
refractive index [4], [5], which does not occur under indoor VLC
channels. The second cause is the mobility effect of the user
equipment (UE). Different from RF wireless channels, it is dif-
ficult to exactly model the time-varying characteristics in mobile
UVLC scenarios, as the statistics of the channel state information
(CSI) strongly depend on the specific moving path or location
of the UE [18]. Due to such tricky issues, it is also practically
difficult to acquire either the first-order statistics, namely the
mean of the UVLC CIR, or the second-order statistics, namely
the covariance and autocorrelation matrices of the UVLC CIR.
Having said that, even if a priori channel information were made
available, the relative movement between a UVLC transmitter
and a UVLC receiver inevitably leads to spatial misalignment,
thus naturally invalidates such information.

The problems mentioned above together make the design of
an optimal or even a proper CE method for a UVLC system
become more challenging than for its RF or indoor VLC coun-
terparts. Naturally, it is highly desirable to design an efficient CE
scheme by exploiting the specific properties of UVLC channels,
such that the performance can be optimized for the underwater
environment.

Against this background, in this paper we extend our prelim-
inary work of [19] with the following main contributions:

1) Despite the increased path loss and delay spread, the
rich diffusive links of UVLC channels can potentially
alleviate the issue of light source tracking and align-
ment. Inspired by this property, we apply the time-domain
(TD) fractionally-sampled based OOFDM (FS-OOFDM)
to UVLC, which has not been investigated for optical
underwater systems before. The new system is capable
of reaping the multi-path diversity gain [20] offered by
the diffusive UVLC channel links, hence effectively im-
proving the achievable system performance.

2) A class of Bayesian estimators referred to as the Sherman-
Morrison formula (SMF) based CE (SMF-CE) is derived
utilizing the rank-one structure of the UVLC channel’s
second-order statistics. Compared with the optimal linear
minimum mean square error CE (LMMSE-CE), the SMF-
CEs avoid the matrix inversion that incurs an online cubic
complexity. Particularly, the optimal SMF CE (OSMF-
CE) can achieve the identical performance as the LMMSE-
CE at a reduced-order complexity.

Fig. 1. The block diagram of the exemplified UVLC system.

3) Last but not least, we further propose an adaptive version
of the SMF CE (ASMF-CE), where for the first time, spe-
cific approaches are designed for handling the imperfect
a priori knowledge of the estimated statistics of both the
UVLC channel and the noise. To preserve the rank-one
structure of the estimated second-order statistics, we com-
pute the largest eigenvalue and the corresponding eigen-
vector by taking advantage of a simple power iteration
algorithm. Moreover, we devise a new common frame-
work for the first-order statistics estimation, exploiting the
channel correlations in both time and delay domains.

The organization of this paper is as follows. The system model
is discussed in Section II. Then, the proposed class of SMF-CEs,
subsuming its optimal and sub-optimal versions, is introduced
in Section III. Furthermore, the adaptive versions of SMF-CEs
are designed in Section IV, followed by the computational com-
plexity analysis in Section V. Simulation results are provided in
Section VI. Finally, our conclusions are given in Section VII.

Notations: Uppercase and lowercase bold variables denote
matrices and vectors, respectively; ∗ and ⊗ denote the con-
volution and the Kronecker product operations, respectively;
vec(·), tr(·), (·)T , (·)H refer to the column-stacking vectoriza-
tion, trace, transpose and Hermitian transpose operations, re-
spectively; (·)∗ represents the conjugate of (·); E{·} is the
expectation operation; �·� denotes the largest integer less than
or equal to its argument; IL refers to an L × L identity matrix;
diag(a) denotes the diagonal matrix with its diagonal entries
being the elements of vector a; ‖ · ‖2 and ‖ · ‖∞ indicates the
Euclidean norm and the maximum norm, respectively; �(z)
defines the real part of a complex number z. Furthermore, [a]i
denotes the i-th entry of vector a, and [A]i,j is the (i, j)-th entry
of matrixA. Finally, assuming thatx is an eigenvector ofAwith
its associated eigenvalue λ, we refer to (λ,x) as an eigenpair
of A.

II. SYSTEM MODEL

In this work, we use light emitted diode (LED) transmitters
and photodiode (PD) receivers, which operate under diffusive
channel links that commonly exist in UVLC systems with
relatively large divergence of source, large aperture, and wide
field-of-view (FOV). Without loss of generality, we consider
a UVLC system based on direct-current-biased optical OFDM
(DCO-OFDM) [8], as depicted in Fig. 1, though the proposed
CE schemes can be readily applicable to other types of OOFDM
systems. Furthermore, a low UE mobility is assumed.
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A. UVLC Channel Model

The typical characteristics of the UVLC channel model in-
clude absorption, scattering and turbulence effects. The ab-
sorption and scattering effects refer to the phenomenons,
where photons suffer from energy loss, and interact with the
molecules/atoms of the transmission medium, respectively [3].
On the other hand, the optical turbulence effect refers to the
phenomenon commonly caused by the variation of the refraction
index along the propagation path due to fluctuations in the
temperature, salinity and density of the water [1].

In recent studies [5], [10], [21], a Monte Carlo (MC) approach
has been utilized to investigate the absorption and scattering ef-
fects, which were verified through water-tank experiments [22].
Based on the numerical MC simulations [21], we may obtain
the NT-CIR at the UE’s n-th position by

c′n(τ) =
Lc−1∑

l=0

αn,lδ(τ − τn,l), (1)

where δ(x) is the unit impulse function, and Lc denotes the
number of channel taps described by the position-dependent
amplitude αn,l and the delay τn,l, where l = 0, . . . , Lc − 1.
More explicitly, the NT-CIR model of (1) may be viewed as the
histogram of the received intensity versus propagation delay.

Furthermore, note that the parameters Lc, αn,l, τn,l in (1)
characterize only the absorption and scattering effects, without
reflecting the turbulence effect. Since the coherence time is
typically at the order of 10−5–10−2 seconds, which is much
longer than the UVLC channel delay spread [5], we may assume
that the same turbulence-induced fading coefficient, denoted by
ρn(t), is applied to all taps of a c′n(τ) given in (1).

Following the above discussions, the overall CIR at the UE’s
n-th position may be formulated as

cn(t, τ) = ρn(t)c
′
n(τ), (2)

where ρn(t) follows the generalized Gamma (GG) distribution,
which was experimentally validated for a wide range of scintilla-
tion index values spanning from weak to strong turbulence [23].
The GG distribution is defined as

f(ρn(t); a, d, p) =
p

adΓ
(

d
p

) [ρn(t)]
d−1 e−[

ρn(t)
a ]

p

, (3)

where the distribution parameters a, d and p should satisfy the
condition [23]

E{ρn(t)} = aΓ

(
d

p
+

1

p

)
Γ

(
d

p

)
= 1. (4)

In this case, the scintillation index becomes [23]

σ2
I =

E{ρ2n(t)} − E2{ρn(t)}
E2{ρn(t)} =

Γ(dp )Γ(
d+2
p )

Γ2(d+1
p )

− 1. (5)

To address the impact from realistic UVLC environment, the
values of these distribution parameters for the GG distribution
suggested by [23] were considered in our work.

Thus, we may define the equivalent CIR as hn(t, τ) =
cn(t, τ) ∗ p(τ), where p(τ) represents coefficients related to the

pulse shaping and matched filter operations. In the sequel, CIR
refers to the equivalent CIR unless otherwise stated. Based on
the above definitions, hn(t, τ) can be alternatively formulated
by

hn(t, τ) = ρn(t)μh,n(τ), (6)

where μh,n(τ) = c′n(τ) ∗ p(τ).

B. FS-OOFDM Model

We consider a FS-OOFDM model [20] with an oversampling
factor M and the sampling period TM = Ts

M , where Ts is the
sampling period of the conventional OOFDM model. A cyclic
prefix is used to ensure the inter-symbol interference (ISI) is
eliminated.

At the transmitter, each subcarrier is modulated by a complex
pilot or data symbol xn,k, where n and k denote the indices of
the OOFDM symbol and the subcarrier, respectively. We assume
that a comb-type pilot pattern is used in the system, where
Kp pilot symbols having the unity amplitude at certain sub-
carrier indices P = {ki|0 ≤ i ≤ Kp − 1} are multiplexed with
data symbols. The corresponding transmitted frequency-domain
(FD) signal vector is denoted by xn = [xn,0, . . . , xn,K−1]

T ∈
C

K×1, where each element symbol is transmitted at one of
the total K subcarriers in an OOFDM symbol. Note that in
OOFDM systems [8],xn,k should fulfil the Hermitian symmetry
(HS) constraint with respect to the (K2 )-th subcarrier, namely
xn,k = x∗

n,K−k (1 ≤ k ≤ K
2 − 1), where xn,0 = xn,K2

= 0.
As pointed out by [24], slowly varying UVLC channels do

not follow the complex Gaussian distribution. Nonetheless, they
can still be partially described by their first- and second-order
statistics. Since the coherence time of a UVLC channel is
typically much longer than a normal OOFDM symbol duration,
we assume that the CIR, which is impacted by both the mobility-
induced and the turbulence-induced fading, is time invariant
within one OOFDM symbol period.

Similar to [12], we use the OOFDM symbol index n to
represent the index of the UE position, implying that the channel
changes as the UE moves from one position to another. The FD
signal received at then-th position,Yn = [yn,0, . . . ,yn,M−1] ∈
C

K×M , can be modeled as

Yn = SnHn +Vn, (7)

where Hn = [Hn,0, . . . ,Hn,M−1] ∈ C
K×M is the FD channel

matrix, Vn = [vn,0, . . . ,vn,M−1] ∈ C
K×M is the FD noise

matrix, and Sn = diag([sn,0, . . . , sn,K−1]) ∈ C
K×K denotes

the transmitted signals after the clipping operation. If a large
direct-current (DC) bias BDC of for example 13 dB is used, the
clipping noise can be negligible [6], leading to

sn,k =

{√
KBDC, k = 0

xn,k, 1 ≤ k ≤ K − 1
. (8)

More specifically, The channel transfer function (CTF)
Hn,m can be viewed as the Fourier transform of hn,m =
[hn,m,0, . . . , hn,m,L−1]

T ∈ R
L×1
≥0 , where hn,m,l = hn(t, lTs +

mTM ) denotes the l-th channel tap with the m-th oversampling
offset at the n-th position, while L is the number of CIR taps.
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Then we obtain

Hn = FL [hn,0, . . . ,hn,M−1] , (9)

where [FL]k,l = e
−j2πkl

K , 0 ≤ k ≤ K − 1, 0 ≤ l ≤ L− 1. Fur-
thermore, vn,m = [vn,m,0, . . . , vn,m,K−1]

T ∈ C
K×1 is the

complex additive white Gaussian noise (AWGN) complying
with vn,m ∼ CN (0K×1, σ

2IK), where σ2 is the FD noise
power.

Substituting (9) into (7) and then vectorizing the FD received
matrix, we have

yn = S̃nF̃Lhn + vn, (10)

where yn=vec (Yn)∈C
MK×1, S̃n= IM ⊗ Sn∈C

MK×MK ,
F̃L = IM ⊗ FL ∈ C

MK×ML, hn = vec([hn,0, . . . ,hn,M−1])
∈ R

ML×1
≥0 , and vn = vec(Vn) ∈ C

MK×1. The covariance ma-
trix of vn is denoted by Cv = E{vnv

H
n }, which has the form

of Cv = σ2C̄v [20, (7)], and the (m1K + k1,m2K + k2)-th
element of C̄v is given by

[C̄v]m1K+k1,m2K+k2
=

1

K

K−1∑

n1=0

K−1∑

n2=0

p(τ)ej
2π
K (k1n2−k2n1),

(11)
where {m1,m2} = {0, . . . ,M − 1}, {k1, k2} = {0, . . . ,K −
1}, and τ = (n2 − n1)Ts + (m2 −m1)TM . Moreover, we de-
fine the FD signal-to-noise ratio (SNR) as Pt

σ2 , where Pt =
E{|sn,k|2}.

Finally, a subcarrier-by-subcarrier maximum ratio combining
(SS-MRC) approach is employed to combine the multi-path di-
versity, so as to acquire a gain similarly available in an equivalent
single-input-multiple-output (SIMO) system. More details of
this approach can be found in [20].

III. SHERMAN-MORRISON FORMULA BASED

CHANNEL ESTIMATION

In this section, we propose a class of Bayesian channel esti-
mators based on the SMF, exploiting the rank-one structure of
the second-order channel statistics.

A. Overview of LMMSE-CE

For notation convenience, we use a superscript (·)(p) to in-
dicate the pilot symbols. Define y

(p)
n = Πyn ∈ C

MKp×1 as
the received signal vector at pilot subcarriers, where Π is an
MKp ×MK pilot index matrix with its (i, j)-th element being

[Π]i,j =

{
1, j = ki +K

⌊
i

Kp

⌋

0, otherwise
, (12)

where 0 ≤ i ≤ MKp − 1, 0 ≤ j ≤ MK − 1. With the aid of
the least squares (LS) based CE, we obtain the channel estimates
at pilot subcarriers as follows

Ĥ(p)
n = (S̃(p)

n )−1y(p)
n = Φhn + zn, (13)

where Ĥ
(p)
n is the LS estimate of H

(p)
n , Φ = ΠF̃L ∈

C
MKp×ML, zn = (S̃

(p)
n )−1Πvn ∈ C

MKp×1 and S̃
(p)
n =

ΠS̃nΠ
T ∈ C

MKp×MKp . As pilot symbols have the unity
amplitude, zn is zero mean with the covariance matrix

Cz = σ2C̄z, where C̄z = ΠC̄vΠ
T ∈ C

MKp×MKp . Given
the observation Ĥ

(p)
n , the objective of our work is to obtain a

high-accuracy estimate of hn, denoted by ĥn.
Based on (13), the classic LMMSE estimator has been

proposed and widely used, which only depends on the first
two moments of the channel PDF. With the mean vector
μh,n = [μT

h,n,0, . . . ,μ
T
h,n,M−1]

T ∈ C
ML×1, where μh,n,m =

[μh,n(mTM ), . . . , μh,n(mTM + (L− 1)Ts)]
T ∈ C

L×1, and
the covariance matrix Ch,n = E{Δh,nΔ

H
h,n} = E{(hn −

μh,n)(hn − μh,n)
H} ∈ C

ML×ML being known a priori, the
LMMSE estimator of the CIR is [25, Page 391]

ĥLMMSE,n = μh,n +Ch,nΦ
H(ΦCh,nΦ

H +Cz)
−1ΔH,n

= μh,n + (C−1
h,n +ΦHC−1

z Φ)−1ΦHC−1
z ΔH,n,

(14)

where ΔH,n = Ĥ
(p)
n − Φμh,n, and we define �n =

ΦCh,nΦ
H +Cz for notation convenience later. Note that

the second equality in (14) only holds for invertible Ch,n.
Furthermore, given the estimation error εn = hn − ĥLMMSE,n,
its covariance matrix is given by Cε,n = E{εnεHn } =
Ch,n −Ch,nΦ

H�−1
n ΦCh,n. The corresponding mean square

error (MSE) is JLMMSE = tr{Cε,n}.
Remark 1: Note that the LMMSE estimator of (14) is not

the optimal Bayesian estimator for UVLC channels, where hn

does not follow the Gaussian distribution. However, it is the
optimal linear estimator in the MMSE sense and thus is still
considered as a useful reference in practice. Having said that,
LMMSE-CE requires the calculation of the MKp ×MKp term
�−1

n , which involves matrix inversion and thus imposes a cubic-
order computational complexity, especially if the matrix has a
high dimension. This motivates us to find a new solution for
reducing the associated complexity, which would be extremely
beneficial for applications in the highly resource-constrained
UVLC environment.

B. The Optimal SMF-CE

In the sequel, we drop the time index t in ρn(t) for notation
convenience. Considering the fact that each tap of the CIR ex-
periences the uniform turbulence fading in UVLC channels [5],
we obtain

Ch,n = E{hnh
H
n } − E{hn}E{hn}H

= E{(ρnμh,n)(ρnμh,n)
H} − μh,nμ

H
h,n

=
E{ρ2n} − E2{ρn}

E2{ρn} μh,nμ
H
h,n, (15)

where we have exploited (4), and hn = ρnμh,n, which is the
vectorized version of (6). Note that this is the UVLC channel’s
key property that differs from the indoor VLC channel. Then,
inserting (5) into (15), we have

Ch,n = σ2
Iμh,nμ

H
h,n. (16)

According to (16), it can be noted that Ch,n depends on both
the scintillation index and the first-order statistics of the UVLC
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CIR. Moreover, another important observation from (16) is that
the channel covariance matrix Ch,n is not of full column rank
or, more precisely, it is of rank 1 due to the fact that it is the
outer product of two nonzero vectors. Such a specific property
implies that conventional CE schemes based on Bayesian-type
estimators may not be directly applicable to the UVLC chan-
nels. For example, in this case, the diagonality and invertibility
assumptions on Ch,n stated in [12] for indoor VLC channels no
longer holds.

Remark 2: Due to the rank-one property of the UVLC chan-
nel covariance matrix, we cannot directly estimate the CIR
with the aid of the second equality in (14). This inspires us
of developing a new CE method particularly tailored for the
UVLC channel, to exploit the rank-one structure of its channel
covariance matrix, such that the complexity of the estimator may
be reduced.

By inserting Ch,n of (16) into �n defined in (14), we have

�n
−1 = [σ2

I (Φμh,n)(Φμh,n)
H +Cz]

−1, (17)

which may be viewed as the inverse of a rank-one modification
ofCz. If the FD noise power σ2 is a priori known at the receiver,
the inverse of �n may be calculated by the following Lemma:

Lemma 1: (Sherman-Morrison formula [26]) If A is an
L × L nonsingular square matrix, and if u and v are L × 1
vectors satisfying 1 + vTAu �= 0, then the sum A+ uvT is
nonsingular, and it holds that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (18)

Then through (18), we can simplify LMMSE-CE of (14)
to the low-complexity OSMF-CE. Specifically, let us set A =
Cz, u = σ2

IΦμh,n, v = Φ∗μ∗
h,n and L = MKp. Then, apply-

ing Lemma 1 to (17) yields

�n
−1 = C−1

z − σ2
IC

−1
z Φμh,nμ

H
h,nΦ

HC−1
z

1 + σ2
Iμ

H
h,nΦ

HC−1
z Φμh,n

=
1

σ2

(
C̄−1

z − C̄−1
z ΦCh,nΦ

HC̄−1
z

σ2 + tr{Ch,nΦ
HC̄−1

z Φ}

)

=
1

σ2

(
C̄−1

z − MH
1 Ch,nM1

σ2 + tr{Ch,nM2}
)
, (19)

where M1 and M2 are defined as

M1 = ΦHC̄−1
z ∈ C

ML×MKp

M2 = M1Φ = ΦHC̄−1
z Φ ∈ C

ML×ML, (20)

with M2 being a Hermitian positive definite matrix.
Next, by substituting (19) into the first equality in (14), we

can obtain the proposed OSMF-CE by

ĥOSMF,n = μh,n +
1

σ2
Ch,nΦ

HC̄−1
z ΔH,n

− 1

σ2

Ch,nΦ
HMH

1 Ch,nM1

σ2 + tr{Ch,nM2} ΔH,n

= μh,n +
1

σ2
(Ch,nM1 −Θn)ΔH,n, (21)

where we define Θn =
Ch,nM2Ch,nM1

σ2+tr{Ch,nM2} . Using (16), we can
expand Θn as follows

Θn =
σ2
Iμh,n(σ

2
Iμ

H
h,nM2μh,n)μ

H
h,nM1

σ2 + tr{Ch,nM2} . (22)

Furthermore, observe that

σ2
Iμ

H
h,nM2μh,n = tr{σ2

Iμh,nμ
H
h,nM2} = tr{Ch,nM2}.

(23)
Substituting (23) into (22) leads to the following equality

Θn =
tr{Ch,nM2}

σ2 + tr{Ch,nM2}Ch,nM1. (24)

Then, inserting (24) into (21), the OSMF-CE becomes

ĥOSMF,n = μh,n +
Ch,nM1

σ2 + tr{Ch,nM2}ΔH,n, (25)

which yields the MSE of OSMF-CE as

JOSMF = tr{(hn − ĥOSMF,n)(hn − ĥOSMF,n)
H}

= tr{Ch,n} − 2
tr{Ch,nM1CHh,n}
σ2 + tr{Ch,nM2}

+
tr{Ch,nM1CH,nM

H
1 Ch,n}

(σ2 + tr{Ch,nM2})2 , (26)

where CHh,n=E{ΔH,nΔ
H
h,n} and CH,n=E{ΔH,nΔ

H
H,n}.

Utilizing ΔH,n = zn +ΦΔh,n, we expand CHh,n and CH,n

to

CHh,n = E
{
(zn +ΦΔh,n)Δ

H
h,n

}

= E
{
znΔ

H
h,n

}
+ΦE

{
Δh,nΔ

H
h,n

}

= Czh,n +ΦCh,n,

CH,n = E
{
(zn +ΦΔh,n)(zn +ΦΔh,n)

H
}

= E
{
znz

H
n

}
+ E

{
znΔ

H
h,n

}
ΦH +ΦE

{
Δh,nz

H
n

}

+ΦE
{
Δh,nΔ

H
h,n

}
ΦH

= Cz +Czh,nΦ
H +ΦChz,n +ΦCh,nΦ

H , (27)

where Czh,n = E{znΔH
h,n} and Chz,n = CH

zh,n. Noting that
zn and Δh,n are uncorrelated, we may assume Czh,n =
Chz,n = 0. Thus, (27) can be simplified to

CHh,n = ΦCh,n,

CH,n = Cz +ΦCh,nΦ
H . (28)

By exploiting (20) and (28), we observe that

tr{Ch,nM1CHh,n} = tr{Ch,nM1ΦCh,n}
= tr{Ch,nM2Ch,n}
= tr{Ch,nM2} · tr{Ch,n},

tr{Ch,nM1CH,nM
H
1 Ch,n} = tr{Ch,nM1CzM

H
1 Ch,n}

+ tr{Ch,nM2Ch,nM2Ch,n}
= (σ2 + tr{Ch,nM2})

· tr{Ch,nM2} · tr{Ch,n}.
(29)
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Incorporating (29) into (26) yields

JOSMF =
σ2tr{Ch,n}

σ2 + tr{Ch,nM2} . (30)

From another perspective, (30) can also be considered as a
function of σ2

I with the aid of (16), yielding

JOSMF =
cn,1σ

2σ2
I

σ2 + cn,2σ2
I

, (31)

where both cn,1 = μH
h,nμh,n and cn,2 = μH

h,nM2μh,n are con-
stants independent of the channel fading coefficient ρn and the
noise variance σ2.

As a brief summary, we point out that OSMF-CE of (25)
shares the same optimality with LMMSE-CE of (14) among the
family of linear CEs, since the former is derived from the form
of the latter by only exploiting the rank-one property of the co-
variance matrix, which does not result in any loss of optimality.
In other words, OSMF-CE can be viewed as a special version of
LMMSE-CE customized for UVLC channels. However, while
the LMMSE-CE has a high computational complexity due to
the online matrix inversion operations, the proposed OSMF-CE
only requires matrix/vector multiplications that result in a much
lower complexity. This advantage is highly beneficial from
the implementation perspective, especially in the challenging
underwater environment where UVLC systems operate.

C. The Sub-optimal SMF-CE

In practice, only imperfect estimates of the mean vector μh,n

and the covariance matrix Ch,n are available. Such imperfect
conditions greatly constrain the achievable performance of the
Bayesian CEs, which are sensitive to the mismatch in the sta-
tistical knowledge [13]. Such an issue motivates us to adapt the
OSMF-CE for striking a tradeoff between MSE performance
and the availability of the a priori channel knowledge.

Let us consider a general form of the CE as

ĥn = WĤ(p)
n , (32)

where W is to be optimized. By minimizing the MSE, we can
get the optimal version of W as

WO = arg min
W

E{‖hn − ĥn‖22}

= Rh,nΦ
H(ΦRh,nΦ

H +Cz)
−1, (33)

where Rh,n is the autocorrelation matrix of hn. Interestingly,
based on (16), Rh,n is also a rank-one matrix

Rh,n = Ch,n + μh,nμ
H
h,n = (σ2

I + 1)μh,nμ
H
h,n. (34)

If we let A = Cz, u = (σ2
I + 1)Φμh,n, v = Φ∗μ∗

h,n, and L =
MKp, then we may apply Lemma 1 to the inverse term of (33),
resulting in

WO =
1

σ2
Rh,nΦ

H

(
C̄−1

z − MH
1 Rh,nM1

σ2 + tr{Rh,nM2}
)

=
Rh,nM1

σ2 + tr{Rh,nM2} . (35)

Substituting (35) into (32) yields the sub-optimal Sherman-
Morrison formula based CE (SSMF-CE)

ĥSSMF,n = WĤ(p)
n |W=WO =

Rh,nM1

σ2 + tr{Rh,nM2}Ĥ
(p)
n .

(36)
Similar to the OSMF-CE, we can also develop the MSE of
SSMF-CE

JSSMF=
σ2tr{Rh,n}

σ2 + tr{Rh,nM2}=
cn,1σ

2(σ2
I + 1)

σ2 + cn,2(σ2
I + 1)

> JOSMF,

(37)
where JOSMF is given in (31). This implies that the OSMF-
CE always performs better than the SSMF-CE from the MSE
perspective. Furthermore, we have the following property of the
SSMF-CE:

Theorem 1: Given the perfect a priori knowledge on CIR,
the performance of the SSMF-CE is asymptotically equivalent
to that of the OSMF-CE, when σ2 approaches zero.

Proof: To compare the performance of the OSMF-CE and
SSMF-CE, we define the ratio η as follows

η =
JOSMF

JSSMF
=

σ2
I

σ2
I + 1

· σ
2 + tr{Rh,nM2}

σ2 + tr{Ch,nM2} . (38)

Due to the positive definite property of M2, both tr{Ch,nM2}
and tr{Rh,nM2} are positive numbers, which satisfy

tr{Rh,nM2}
tr{Ch,nM2} =

σ2
I + 1

σ2
I

> 1, (39)

where we have exploited (23) and (34). Furthermore, noting
tr{Rh,nM2} > tr{Ch,nM2} from (39), it can be observed that
the derivative of η with respect to σ2 is always negative. Thus,
η is a decreasing function of σ2. Particularly, when σ2 → 0, we
obtain

lim
σ2→0

η =
σ2
I

σ2
I + 1

· tr{Rh,nM2}
tr{Ch,nM2} = 1, (40)

implying that σ2 → 0 ⇒ JOSMF = JSSMF. Hence, we may
conclude that when the SNR becomes sufficiently high, the
performance of the SSMF-CE is asymptotically equivalent to
that of the OSMF-CE. The proof completes. �

Note that comparing with the need to acquire both μh,n

and Ch,n in (25) by OSMF-CE, the SSMF-CE scheme of (36)
relaxes the requirement for a priori information to Rh,n only.
Furthermore, similar to OSMF-CE, SSMF-CE does not involve
the matrix inversion operation either.

IV. ADAPTIVE SMF-BASED CHANNEL ESTIMATORS

Both the OSMF/SSMF-CEs proposed in Section III require
a sufficiently accurate a prior knowledge of CIR. If a good
link alignment can be maintained for a UVLC UE, it might be
unnecessary to frequently update the a prior knowledge of CSI
due to the almost constant average optical power at the UE. In
practical scenarios, however, link misalignment often occurs or
the UE can move to another position. In such cases, the dynamic
change of the a priori knowledge of CIR in space and time, which
unfortunately is generally not known at the UE side, should be
considered in the CE design.
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To tackle the above-mentioned issue, in the sequel we propose
the adaptive versions of the OSMF/SSMF CEs.

A. Noise Variance Estimation

The noise variance is required by the OSMF/SSMF-CEs.
Although many efforts have been dedicated to noise variance es-
timation for conventional OFDM systems [27], [28], the existing
solutions were not designed for FS-OOFDM, thus ignoring some
specific features that may be exploited for further optimization.
Aiming to solve such issues, we propose a simple yet efficient
noise variance estimator tailored for the FS-OOFDM system
introduced in Section II-B.

In DCO-OFDM systems, both the 0-th and (K2 )-th subcarriers
are not used due to the HS constraint. When adding the DC bias
to the original signal, as given by (8), it may overwhelm the FD
noise superimposed on the 0-th subcarrier. Therefore, we may
choose to exploit the received signal on the (K2 )-th subcarrier for
noise variance estimation. Thanks to the FS technique, we can
effectively average the multiple signal receptions on the (K2 )-th
subcarrier as the initial estimate, denoted by σ̄2

n, corresponding
to the n-th position

σ̄2
n =

1

M

M−1∑

m=0

|[yn,m]K
2
|2, (41)

Assuming that the noise variance remains constant during the
UE’s movement, the estimated noise variance σ̂2

n at the n-th
position can be refined with the following rank-one update

σ̂2
n =

1

n

n∑

i=1

σ̄2
i =

n− 1

n
σ̂2
n−1 +

1

n
σ̄2
n, (42)

where σ̂2
n is an unbiased estimator of the FD noise power σ2.

B. Imperfect Second-Order Statistics Estimation

As the first step, we obtain the maximum likelihood (ML)
estimate of the CIR [24], [25] without any a priori knowledge

ĥML,n = WMLĤ
(p)
n , (43)

where WML = (ΦHC̄−1
z Φ)−1ΦHC̄−1

z . Substituting Ĥ
(p)
n

from (13) into (43) yields

ĥML,n = WMLΦhn +WMLzn = hn + en, (44)

where

en = WMLzn =
(
ΦHC̄−1

z Φ
)−1

ΦHC̄−1
z zn (45)

denotes the ML estimation (MLE) error, with its covariance
matrix given by

Ce = E{eneHn } = σ2
(
ΦHC̄−1

z Φ
)−1

= σ2M−1
2 . (46)

Then, we may approximate Ce by substituting σ̂2
n in (42) for σ2

in (46), yielding

Ĉe,n = σ̂2
nM

−1
2 . (47)

Now we need to either obtain both μh,n and Ch,n for the
OSMF-CE of (25), or get Rh,n for the SSMF-CE of (36). For
non-stationary channels, both Ch,n and Rh,n can be estimated

Algorithm 1: The Power Iteration Algorithm.
Input: A, Imax, ε
1: Initialization: λ = 0, x = [1, . . . , 1]T

2: for i = 1, . . . , Imax do
3: λ′ = λ, x′ = x
4: Generate the next vector y = Ax′

5: Update the largest eigenvalue λ = ‖y‖∞
6: Update the corresponding eigenvector x = y

‖y‖∞
7: if |λ− λ′| < ε and ‖x− x′‖2 < ε then
8: break
9: end if

10: end for
Output: λ, x

by applying the exponential forgetting window approach [24].
More specifically, the initial estimate C̄h,n can be recursively
updated by exploiting the following strategy with a forgetting
factor βC [29]

C̄h,n = βC
[
C̄h,n−1 + (1− βC)Δ̄h,nΔ̄

H
h,n

]
, (48)

where Δ̄h,n = ĥML,n − μ̄h,n−1 denotes the difference between

the ML estimate vector ĥML,n measured at the n-th UE position
and the exponentially weighted moving average vector μ̄h,n−1

associated with the (n− 1)-th UE position. Note that μ̄h,n is
recursively updated by [29]

μ̄h,n = μ̄h,n−1 + (1− βC)Δ̄h,n. (49)

Similarly, the estimate R̄h,n can be recursively updated by using
the exponential forgetting window approach [24], [30]

R̄h,n = βRR̄h,n−1 + (1− βR)ĥML,nĥ
H
ML,n, (50)

where βR is a forgetting factor.
Note that the rank-one structures of Ch,n and Rh,n are the

prerequisites for OSMF-CE and SSMF-CE, respectively. How-
ever, the rank of C̄h,n in (48) or the rank of R̄h,n in (50) might
be larger than 1 due to the residual errors in the ML estimates
denoted by (43). Under this circumstance, we need to monitor the
dominant eigenpair of C̄h,n and R̄h,n to compute their rank-one
approximation, where the dominant eigenpair refers to the pair
of the largest eigenvalue and its corresponding eigenvector.

A simple yet effective method to compute the dominant
eigenpair is the power iteration algorithm [31], which has a
linear convergence rate. To accelerate the convergence, a shifting
technique can be employed [32], where the value of the shift as-
sociated with the optimal convergence rate is calculated based on
the average of the second-largest and the smallest eigenvalues.
However, it is somewhat difficult to determine an appropriate
shift value in practical scenarios [32]. Therefore, no shift is
applied in our implementation of the power iteration algorithm
outlined in Algorithm 1, where Imax and ε denote the maximum
number of iterations and the termination threshold, respectively.

Denote the dominant eigenpairs of C̄h,n and R̄h,n as
(λC̄h,n

,uC̄h,n
) and (λR̄h,n

,uR̄h,n
) respectively. Based on the

Eckart-Young Theorem [33], the best rank-one approximation
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Algorithm 2: The ASSMF-CE Algorithm.
Input: nmax, βR

1: Initialization: R̄h,0 = 0ML×ML, σ̂2
0 = 0

2: Determine M1 and M2 by (20)
3: for n = 1, . . . , nmax do
4: Execute (13) to obtain the LS estimate Ĥ

(p)
n

5: Calculate (43) to obtain ĥML,n

6: Update σ̂2
n according to (41) and (42)

7: Calculate R̄h,n by (50)
8: Execute Algorithm 1 to obtain (λR̄h,n

,uR̄h,n
) of

R̄h,n

9: Calculate R̂h,n by (51)
10: Calculate ĥASSMF,n by (52)
11: Ĥn = F̃LĥASSMF,n

12: end for
Output: Ĥn, n = 1, . . . , nmax

of C̄h,n and R̄h,n are given by

Ĉh,n = λC̄h,n
uC̄h,n

uH
C̄h,n

, R̂h,n = λR̄h,n
uR̄h,n

uH
R̄h,n

. (51)

Replacing σ2, Rh,n in (36) with σ̂2
n in (42) and R̂h,n in (51), it

yields our proposed adaptive SSMF-CE (ASSMF-CE)

ĥASSMF,n =
R̂h,nM1

σ̂2
n + tr{R̂h,nM2}

Ĥ(p)
n . (52)

After some derivations, we can formulate its MSE as

JASSMF = tr{Rh,n} − 2
tr{R̂h,nM2Rh,n}
σ̂2
n + tr{R̂h,nM2}

+
σ2tr{R̂h,nM2}tr{R̂h,n}
(σ̂2

n + tr{R̂h,nM2})2

+
tr{R̂h,nM2Rh,nM2R̂h,n}

(σ̂2
n + tr{R̂h,nM2})2

. (53)

We summarize the ASSMF-CE in Algorithm 2, where nmax is
the number of OOFDM symbols or, equivalently, the number of
UE positions.

C. A Common Framework for Imperfect First-order
Statistics Estimation

For the OSMF-CE, we need the a priori knowledge of μh,n,
too. In this subsection, we establish a common framework to
keep track of μh,n based on recent ML estimates.

Assumption 1: Let ρn, n = 1, . . . , nmax denote the
turbulence-induced fading coefficients of the UVLC channel
when the UE moves to the n-th position. Under the condition of
weak turbulence, the temporal correlation model [34], [35] is
utilized to describe the correlation of the consecutive ρn values
at different time instants and different positions.

Under this assumption, a linear multiple-input multiple-
output (MIMO) filter [36] of length Q may be applied to obtain

the estimate of μh,n by

μ̂h,n =

Q−1∑

q=0

Wn,qĥML,n−q, (54)

where Wn,q ∈ C
ML×ML(0 ≤ q ≤ Q− 1) denotes the q-th

weighting matrix at the UE’s n-th position.
Remark 3: Note that μ̂h,n in the AS-BMMSE estimator

proposed by [12] can also be formulated as (54), where Q is
replaced by ωmax, which is the maximum statistic window size,
andWn,q(0 ≤ q ≤ ωmax − 1) are restricted to be diagonal with
their entries being

[Wn,q]l+1,l+1 =

{
1
ωn

l
, 0 ≤ q ≤ ωn

l

0, ωn
l < q ≤ ωmax − 1

, (55)

where ωn
l denotes the statistic window size for the l-th tap at the

n-th position. It has to select the optimal size ωn
l,opt for each tap

l by using the variable statistic window (VSW) approach [12].
However, the formulation of Wn,q in (55) considers the charac-
teristics of indoor VLC channels only, and does not fully exploit
the temporal and scattering correlations of UVLC channels.
Thus, the AS-BMMSE-CE is not optimal for UVLC channels.
To improve the CE accuracy, we propose that the diagonality
constraint for Wn,q is removed and the prerequisite of (55)
is eliminated from (54). Through this way, the temporal and
scattering correlations of the UVLC CIR exhibiting from the
recent ML estimates can be efficiently exploited, thus yielding
a quality-improved μ̂h,n.

After substituting σ2, Ch,n and μh,n in (25) with σ̂2
n, Ĉh,n

and μ̂h,n, respectively, we obtain the proposed adaptive OSMF-
CE (AOSMF-CE) as

ĥAOSMF,n = μ̂h,n +
Ĉh,nM1

σ̂2
n + tr{Ĉh,nM2}

Δ̂H,n, (56)

where Δ̂H,n = Ĥ
(p)
n −Φμ̂h,n with Φ given by (13). For nota-

tion simplicity, we define

An =
Ĉh,nM1

σ̂2
n + tr{Ĉh,nM2}

,Bn = IML −AnΦ. (57)

Then the residual CE error term of (56), denoted by ε̂n, can be
written as

ε̂n = hn − ĥAOSMF,n = hn −AnĤ
(p)
n −Bnμ̂h,n. (58)

Utilizing (13), we develop (58) to

ε̂n = hn −An(Φhn + zn)−Bnμ̂h,n

= (IML −AnΦ)hn −Anzn −Bnμ̂h,n

= BnΔ̂h,n −Anzn, (59)

where we have

Δ̂h,n = hn − μ̂h,n. (60)
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Hence, based on (59), the MSE of AOSMF-CE becomes

JAOSMF = tr{E{ε̂nε̂Hn }}
= tr{BnCĥ,nB

H
n }+ tr{AnCzA

H
n }

− tr{AnCzĥ,nB
H
n + (AnCzĥ,nB

H
n )H}, (61)

where we define

Cĥ,n = E{Δ̂h,nΔ̂
H
h,n},Czĥ,n = E{znΔ̂H

h,n}. (62)

Note that Δ̂h,n in (62) can be obtained by first substituting (44)
into (54) and then by inserting (54) into (60), yielding

Δ̂h,n = hn −
Q−1∑

q=0

Wn,qhn−q −
Q−1∑

q=0

Wn,qen−q. (63)

On the other hand, we define the channel cross-correlation ma-
trix between the (n− q1)-th and (n− q2)-th position as follows

Rh,n,|q1−q2| = E{hn−q1h
H
n−q2

}, {q1, q2} = 0, . . . , Q− 1.
(64)

In particular, Rh,n,0 is the same as Rh,n.
By substituting (63) into (62) and utilizing the definition

in (64), we can transform (61) to

JAOSMF = tr
{
BnRh,nB

H
n

}
+ tr

{
AnCzA

H
n

}

− 2

Q−1∑

q=0

�(tr{BnWn,q(Rh,n,q − δqΔRh,n
)BH

n })

+

Q−1∑

q1=0

Q−1∑

q2=0

tr
{
BnWn,q1Rh,n,|q1−q2|W

H
n,q2

BH
n

}

+

Q−1∑

q1=0

Q−1∑

q2=0

δq1−q2 tr
{
BnWn,q1CeW

H
n,q2

BH
n

}
,

(65)

where

ΔRh,n
= B−1

n AnΦCe, (66)

and Ce is given by (46), while δx is the indicator function that
takes the value of 1 if and only if x = 0, and takes the value of 0
otherwise. The derivation details can be found in Appendix A.

Note that (65) can be viewed as a function of Wn,q . In the
sequel, we intend to solve Wn,q by minimizing (65), yielding

Wopt
n,q = arg min

{Wn,q}
JAOSMF, 0 ≤ q ≤ Q− 1, (67)

where Wopt
n,q denotes the optimal version of Wn,q and can be

obtained through the following theorem.
Theorem 2: Given the covariance matrix Ĉh,n, the optimal

weighting matrices {Wopt
n,q}(0 ≤ q ≤ Q− 1) should satisfy

Q−1∑

q′=0

Wopt
n,q′(Rh,n,|q′−q| + δq′−qCe) = Rh,n,q − δqΔRh,n

,

(68)
where ΔRh,n

= σ2

σ̂2
n
Ĉh,n can be derived from (66).

Proof: See Appendix B. �

TABLE I
COMPUTATIONAL COMPLEXITIES OF VARIOUS CES

Note that for q �= 0, the indicator function δq defined be-
low (65) becomes 0, reducing the right-hand side of (68) to
Rh,n,q, which is equivalent to the Wiener-Hopf structure [36].
For q = 0, the right-hand side of (68) simplifies to Rh,n,0 −
ΔRh,n

.
In order to obtain a closed-form formulation of

Wopt
n,q (0 ≤ q ≤ Q− 1) in (68), for notation conve-

nience, let us first define the ML×QML matrix
Wopt

n = [Wopt
n,0 , . . . ,W

opt
n,Q−1], the ML×QML matrix

Υh,n = [Rh,n,0 −ΔRh,n
,Rh,n,1, . . . ,Rh,n,Q−1], and the

QML×QML block Toeplitz matrix Ψh,n with its (i, j)-th
block element being Rh,n,|i−j|. Then, we may rewrite (68) as

Wopt
n (Ψh,n + IQ ⊗Ce) = Υh,n. (69)

Therefore, the optimal weighting matrices Wopt
n are given by

Wopt
n = [Wopt

n,0 , . . . ,W
opt
n,Q−1] = Υh,n(Ψh,n + IQ ⊗Ce)

−1.
(70)

In practical scenarios, we may replace Ce in (70) and σ2 in
ΔRh,n

with Ĉe,n in (47) and σ̂2
n in (42), respectively. Thus

ΔRh,n
is approximated by Ĉh,n. In addition, Rh,n,q(0 ≤ q ≤

Q− 1) in Ψh,n of (70) may be replaced by R̂h,n,q , which can
be recursively updated by [24], [30]

R̂h,n,q = βRR̂h,n−1,q + (1− βR)ĥML,nĥ
H
ML,n−q. (71)

Then, substituting Wopt
n,q of (70) for Wn,q of (54), we have

μ̂h,n =

Q−1∑

q=0

Wopt
n,q ĥML,n−q, (72)

which can then be applied to (56) to derive the estimated CIR
ĥAOSMF,n. Furthermore, the minimum MSE of AOSMF-CE
defined in (65) can be calculated by substituting (70) into (65)

Jmin
AOSMF = tr

{
BnRh,nB

H
n }+ tr{AnCzA

H
n

}

− tr
{
BnΥh,n(Ψh,n + IQ ⊗Ce)

−1ΥH
h,nB

H
n

}
.

(73)

Finally, we outline the AOSMF-CE scheme in Algorithm 3.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In Table I, we compare the asymptotic computational com-
plexities of various CEs normalized to one OOFDM symbol
duration, where for notation convenience we define K̃ = MK,
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Algorithm 3: The AOSMF-CE Algorithm.
Input: nmax, Q, βC, βR

1: Initialization: ĥML,n = 0ML×1,−(Q− 2) ≤ n ≤ 0,
μ̄h,0 = 0ML×1, R̂h,0,q = 0ML×ML, 0 ≤ q ≤ Q− 1,
C̄h,0 = 0ML×ML

2: Determine M1,M2 by (20) and calculate M−1
2

3: for n = 1, . . . , nmax do
4: Execute (13) to obtain the LS estimate Ĥ

(p)
n

5: Calculate (43) to obtain ĥML,n

6: Update σ̂2
n according to (41) and (42)

7: Calculate Ĉe,n by (47)
8: for q = 0, . . . , Q− 1 do
9: Update R̂h,n,q by (71)

10: end for
11: Calculate C̄h,n by (48)
12: Execute Algorithm 1 to obtain (λC̄h,n

,uC̄h,n
) of

C̄h,n

13: Calculate Ĉh,n by (51)
14: Calculate Wopt

n by (70)
15: Calculate μ̂h,n by (72)

16: Calculate ĥAOSMF,n by (56)
17: Ĥn = F̃LĥAOSMF,n

18: end for
Output: Ĥn, n = 1, . . . , nmax

K̃p = MKp and L̃ = ML. Other notations include the FD filter
order Kf for the one-dimensional (1D) robust Wiener filtering
(RWF) estimator [37] and the TD filter orderKt for the recursive
least squares (RLS) estimator [37], [38].

The complexities of the various CE problems are outlined
in Table I in terms of number of floating-point operations
(FLOPs), which are represented by the highest-order terms of
the corresponding polynomial functions. Note that LMMSE-CE,
OSMF-CE and SSMF-CE assume perfect knowledge of the
channel statistics, while other Bayesian schemes have to pay
additional complexities for retrieving the channel statistics. Note
from Table I that LMMSE-CE imposes a cubic-order complexity
with respect to K̃p in each OFDM symbol duration, while
OSMF/SSMF-CEs only require a linear complexity scaled by
L̃. Hence, OSMF/SSMF-CEs have the same asymptotic com-
plexity as MLE and a lower complexity than LMMSE-CE under
the typical condition of K̃p > L̃.

Compared with other estimators, AOSMF/ASSMF-CEs have
superior performances as to be revealed in Section VI, though
resulting in a quadratic order of computational complexity with
respect to L̃, denoted by the term ImaxL̃

2, due to the power
iteration operations specified by Algorithm 1. Furthermore,
additional computations are necessary to track and approxi-
mate the first-order statistics of AOSMF-CE, where a cubic
order of complexity with respect to L̃ dominates the overall
complexity of post-processing. Thus, noting that AOSMF-CE
and ASSMF-CE have comparable performances at medium-to-
high SNRs, as shown in Section VI, we conclude that given
a modest value of Imax, ASSMF-CE is more cost-efficient in

Fig. 2. Illustration of the moving route of UE.

TABLE II
MAJOR PARAMETERS FOR THE UVLC CHANNEL MODEL AND THE

SYSTEM CONFIGURATION

striking a good tradeoff between performance and computational
complexity.

VI. SIMULATION RESULTS

In this section, the simulation results of the proposed SMF-CE
schemes are provided and compared with existing methods. The
UVLC channel model was simulated based on the approach
stated in Section II-A. As an example, we considered a UVLC
scenario, where the transmitter was fixed at the origin of the
virtual Cartesian coordinate system, while the UE slowly moved
along a common zigzag route on the two-dimensional (2D) plane
perpendicular to z-axis, as shown in Fig. 2. The major parameters
used in the simulations are provided in Table II.

As the first test, we evaluate the theoretical MSEs of
OSMF/SSMF-CEs under a wide range of σ2

I spanning from
weak to strong turbulence, as specified by (30) and (37), re-
spectively. For comparison of different CE schemes, we de-

fine the FD MSE metric asΓn = E{‖Hn−Ĥn‖2}
MK = E{‖hn−ĥn‖2}

M .
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Fig. 3. The MSE and BER performances of OSMF/SSMF-CEs.

Fig. 4. The performances of the proposed noise variance estimator.

Fig. 3(a) shows that the simulated results of both OSMF/SSMF-
CEs match the theoretical results, which validates our ana-
lytical derivations. Furthermore, we observe that the perfor-
mance gap between OSMF-CE and SSMF-CE becomes smaller
as the SNR increases. At high SNR levels, the MSE curves
of both OSMF/SSMF-CEs converge, which is consistent with
Theorem 1 that SSMF-CE has an asymptotically equivalent per-
formance as OSMF-CE. An interesting phenomenon is that the
MSE performances of OSMF-CE are more sensitive to σ2

I than
those of SSMF estimators at low SNR levels. This behaviour can
be interpreted by computing the first-order derivatives of (30)
and (37) with respect to σ2

I , where it shows that the former is
larger than the latter given the same σ2

I .
Fig. 3(b) shows the simulated bit error rate (BER) perfor-

mances of the proposed schemes. The curves with M = 1
correspond to the conventional OOFDM system, which can
be turned into a FS-OOFDM system by setting M > 1. From
Fig. 3(b), we note that the FS-OOFDM system offers a large
SNR gain with perfect CSI for both OSMF/SSMF-CEs, thanks
to its exploitation of the multi-path diversity gains offered by the
diffusive UVLC channels. Furthermore, the BER performances
of OSMF/SSMF-CEs are very close to the benchmark scheme
with perfect CSI.

From Fig. 4(a), it can be seen that both OSMF/SSMF-CEs
with estimated σ̂2 perform almost the same as their counterparts
with exact σ2. To investigate the instantaneous estimation error
when the UE moves, in Fig. 4(b) we measured the root MSE
(RMSE) performances of the proposed noise variance estimator

Fig. 5. The MSE and BER performances of various CEs.

at different positions along the entire route. It can be seen that
the convergence rate approximately remains the same at various
SNR levels. This property is indeed beneficial for Bayesian
CEs, since the estimated noise variance, once obtained by the
proposed method, may be applied upon a relatively long time
or UE’s moving distance regardless of the SNR level. In the
remaining part of this section, we applied this noise variance
estimator to all Bayesian CEs including AS-BMMSE [12],
AOSMF and ASSMF CEs.

Fig. 5 compares the MSE and BER performances of the
proposed CEs with their counterparts mentioned in Table I. The
MSE and BER curves were plotted using the results averaged
upon the entire UE moving route. Since perfect a priori knowl-
edge of the channel is practically unavailable, LMMSE-CE and
OSMF/SSMF-CEs, which are designed upon perfect CSI, only
serve as theoretical lower bounds. In case of imperfect channel
and noise statistics, AOSMF/ASSMF-CEs achieved better MSE
and BER performances compared with other CE methods, as
demonstrated by Fig. 5. In particular, compared with the conven-
tional AS-BMMSE-CE scheme, AOSMF-CE and ASSMF-CE
improved the system BER performance by about 1 dB and 2 dB
at the BER of 10−6, respectively.

Interestingly, it can be noted that ASSMF-CE outperformed
AOSMF-CE, despite that the latter is claimed to be the optimal
linear CE method under the common framework discussed in
Section IV-C. Such a phenomenon is mainly due to the fact that
in AOSMF-CE, the estimation of the first-order channel statistics
relies on the accuracy of the second-order channel statistics, as
revealed by (70) and (72). To elaborate further, the second-order
channel statistics utilized by AOSMF-CE are recursively ob-
tained through (71), which may result in error propagation when
its initial estimate is not accurate, hence inevitably degrading the
quality of the estimated first-order channel statistics.

However, if the estimated channel cross-correlation matrix
R̂h,n,q in (71) is replaced with its ideal version, yielding the ref-
erence scheme of AOSMF-CE with perfect second-order statis-
tics (AOSMF-CE-PSS), then the estimated first-order channel
statistics would become more reliable and the overall perfor-
mance can be improved. This is evidenced by Fig. 5, where
we can see that the AOSMF-CE-PSS curve is the closest to
the lower MSE/BER bounds in medium-to-high SNRs. Note
that the MSE performance gains of AOSMF-CE-PSS over
LMMSE/OSMF-CE in the low-to-medium SNR region seen in
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Fig. 6. The MSE and BER performances of various CEs for QPSK modulation
and σ2

I = 2.0399.

Fig. 5(a) was achieved, mainly due to the fact that the traditional
Bayesian lower bound (TBLB) referring to (30) may be broken,
if certain past channel information can be efficiently exploited.
This observation was similar to that found in [12]. In any case,
Fig. 5(b) indicates that both AOSMF/ASSMF-CEs provided
a BER performance approaching the ideal benchmark scheme
with perfect CSI.

Furthermore, we also compared the MSE and BER perfor-
mances of the various CE schemes under a strong turbulence
channel with σ2

I = 2.0399, as shown in Fig. 6. We can note
that the MSE gains of AOSMF-CE and ASSMF-CE over AS-
BMMSE-CE were about 4 dB and 6 dB, respectively, while
the BER gains were about 2 dB and 3 dB, respectively. These
results indicated that the proposed AOSMF/ASSMF-CEs were
capable of attaining reasonable gains against their conventional
counterparts under strong turbulence.

Remark 4: Comparing Fig. 5(b) and Fig. 6(b), we can see
that a strong turbulence highly degraded the BER performance
of the UVLC systems concerned. In practical scenarios, how-
ever, channel codes, transmitter beam-expander-and-collimator
(BEC) [23] and receiver aperture averaging lens (AAL) [23] may
be employed to mitigate the impact from strong turbulence.

Last but not least, in Fig. 7(a) and Fig. 7(c) we portray the
MSE performances from the UE position and the subcarrier
index perspectives, respectively, employing the unique uniform
pilot pattern proposed for OOFDM-VLC systems invoking the
HS operation [12]. We averaged the results of all subcarriers
for every UE position in Fig. 7(a) and the results of all UE
positions for every subcarrier in Fig. 7(c), respectively. From
Fig. 7(a), we can see that the AOSMF-CE curve fluctuates
significantly at the initial UE positions, where the quality of
the estimated second-order channel statistics was not good.
In contrast, AOSMF-CE-PSS and ASSMF-CE maintained a
relatively stable performance along the UE’s entire moving
route. On the other hand, evaluating the systems from the FD
in Fig. 7(c), where the vertical bars seen at the bottom of the
figure indicate the subcarriers accommodating pilot symbols, it
can be noticed that the proposed AOSMF/ASSMF-CEs achieved
superior performances compared with other CEs.

Nevertheless, the unique uniform pilot pattern [12] may not
be applicable in MIMO-UVLC or multi-cell UVLC systems,
where the pilot indices have to be shifted from one LED or cell to

Fig. 7. The MSE performances under different pilot patterns.

another, in order to for example avoid inter-cell pilot collisions.
Then, the shifted pilot patterns are no longer uniform and may
result in performance degradation for conventional schemes, as
revealed by Fig. 7(b) and Fig. 7(d), where an example non-
uniform pilot pattern was employed. While the changed pilot
pattern incurred a performance loss in the conventional CEs,
however, it had little average impact on the proposed CEs, whose
design does not depend on the pilot pattern used.

VII. CONCLUSION

In this paper, a specific form of Bayesian CEs, namely the fam-
ily of SMF-CEs, were designed for the UVLC system equipped
with FS-OOFDM. The SMF-CEs exploit the Sherman-Morrison
formula to avoid the online matrix inversion involved in the
conventional LMMSE-CE, thus greatly reducing the associ-
ated computational complexity. With the perfect channel and
noise statistics, we derived the OSMF-CE which has the iden-
tical MSE performance as LMMSE-CE. Moreover, without the
first-order statistical information, we proposed the SSMF-CE
which asymptotically approaches OSMF-CE in terms of the
MSE performance. We further developed the power iteration
algorithm to make the rank-one approximation of imperfect
covariance matrix of UVLC CIRs, which facilitated the design
of a system framework for estimating the first-order statistics
that are generally not available in practical systems. The pro-
posed adaptive implementations of OSMF/SSMF-CEs, namely
AOSMF/ASSMF-CEs, showed robustness to imperfect channel
and noise statistics in comparison to a range of existing methods
in the UVLC environment. Simulation results indicated that at
the target BER of 10−6, the AOSMF/ASSMF-CEs improved
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the system BER performance by about 1 dB and 2 dB over the
conventional AS-BMMSE-CE, respectively.

APPENDIX A
DERIVATION OF (65)

Utilizing (63) and (64), we may expand Cĥ,n and Czĥ,n
in (62) to

Cĥ,n = Rh,n −
Q−1∑

q=0

(Rh,n,qW
H
n,q +Wn,qRh,n,q)

−
Q−1∑

q=0

(E{hne
H
n−q}WH

n,q +Wn,qE{en−qh
H
n })

+

Q−1∑

q1=0

Q−1∑

q2=0

Wn,q1Rh,n,|q1−q2|W
H
n,q2

+

Q−1∑

q1=0

Q−1∑

q2=0

Wn,q1E{en−q1e
H
n−q2

}WH
n,q2

+

Q−1∑

q1=0

Q−1∑

q2=0

Wn,q1E{hn−q1e
H
n−q2

}WH
n,q2

+

Q−1∑

q1=0

Q−1∑

q2=0

Wn,q1E{en−q1h
H
n−q2

}WH
n,q2

(74)

and

Czĥ,n = E{znhH
n } −

Q−1∑

q=0

E{znhH
n−q}WH

n,q

−
Q−1∑

q=0

E{zneHn−q}WH
n,q, (75)

respectively. Since zn and hn are uncorrelated, we have
E{znhH

n } = 0MKp×ML. Recalling from (45) that en is a linear
transform of zn, we also have E{enhH

n } = 0ML×ML. In addi-
tion, we assume that zn is independent for different values of
n, resulting in E{eieHj } = 0ML×ML(i �= j) and E{zieHj } =
0ML×ML(i �= j).

Using the above conditions, we may develop (74) to

Cĥ,n = Rh,n −
Q−1∑

q=0

Rh,n,qW
H
n,q −

Q−1∑

q=0

Wn,qRh,n,q

+

Q−1∑

q1=0

Q−1∑

q2=0

Wn,q1(Rh,n,|q1−q2| + δq1−q2Ce)W
H
n,q2

,

(76)

and then simplify (75) to

Czĥ,n = −E{zneHn }Wn,0

= −CzC̄
−1
z Φ

(
ΦHC̄−1

z Φ
)−1

Wn,0

= −ΦCeWn,0, (77)

where we also exploit (45) and (46). Thus, the term
AnCzĥ,nB

H
n in (61) can be rewritten as

AnCzĥ,nB
H
n = −BnΔRh,n

Wn,0B
H
n , (78)

where

ΔRh,n
= B−1

n AnΦCe. (79)

Finally, by substituting (76) and (78) into (61), we arrive at (65).

APPENDIX B
PROOF OF THEOREM 2

Proof: Taking the partial derivative of (65) with respect to
W∗

n,q for 0 ≤ q ≤ Q− 1, we have

∂JAOSMF

∂W∗
n,q

= −BH
n Bn

(
Rh,n,q − δqΔRh,n

)

+BH
n Bn

Q−1∑

q′=0

Wn,q′(Rh,n,|q′−q| + δq′−qCe).

(80)

In order to simplify ΔRh,n
in (80), we utilize M2 in (20) and

Ĉh,n in (51), and then rewrite Bn in (57) as

Bn = IML − λC̄h,n

σ̂2
n + tr{Ĉh,nM2}

uC̄h,n
uH
C̄h,n

M2. (81)

Next, we define A = IML, u = − λC̄h,n

σ̂2
n+tr{Ĉh,nM2}uC̄h,n

, v =

M∗
2u

∗̄
Ch,n

, and L = ML. Then, we apply Lemma 1 to (81),
leading to

B−1
n = IML −

− λC̄h,n

σ̂2
n+tr{Ĉh,nM2}uC̄h,n

uH
C̄h,n

M2

1− λC̄h,n

σ̂2
n+tr{Ĉh,nM2}u

H
C̄h,n

M2uC̄h,n

= IML +
λC̄h,n

uC̄h,n
uH
C̄h,n

M2

σ̂2
n + tr{Ĉh,nM2} − λC̄h,n

uH
C̄h,n

M2uC̄h,n

= IML +
Ĉh,nM2

σ̂2
n

. (82)

Hence, we can exploit (20), (46), (57) and (82) to obtain

ΔRh,n
=

(
IML +

Ĉh,nM2

σ̂2
n

)
· Ĉh,nM1Φσ2M−1

2

σ̂2
n + tr{Ĉh,nM2}

=
σ2Ĉh,n

σ̂2
n + tr{Ĉh,nM2}

+
σ2tr{Ĉh,nM2}Ĉh,n

σ̂2
n(σ̂

2
n + tr{Ĉh,nM2})

=
σ2

σ̂2
n

Ĉh,n. (83)

Finally, by setting (80) to zero for 0 ≤ q ≤ Q− 1, we arrive
at (68), where ΔRh,n

is given by (83).
The proof of Theorem 2 completes. �
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