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Abstract 

This study presents a two-stage stochastic aggregate production planning model to determine the optimal renewable 
generation capacity, production plan, workforce levels, and machine hours that minimize a production system’s 
operational cost. The model considers various uncertainties, including demand for final products, machine and labor 
hours available, and renewable power supply. The goal is to evaluate the feasibility of decarbonizing the 
manufacturing, transportation, and warehousing operations by adopting onsite wind turbines and solar photovoltaics 
coupled with battery systems assuming the facilities are energy prosumers. First-stage decisions are the siting and 
sizing of wind and solar generation, battery capacity, production quantities, hours of labor to keep, hire, or layoff, and 
regular, overtime, and idle machine hours to allocate over the planning horizon. Second-stage recourse actions include 
storing products in inventory, subcontracting or backorder, purchasing or selling energy to the main grid, and daily 
charging or discharging energy in the batteries in response to variable generation. Climate analytics performed in San 
Francisco and Phoenix permit to derive capacity factors for the renewable energy technologies and test their 
implementation feasibility. Numerical experiments are presented for three instances: island microgrid without 
batteries, island microgrid with batteries, and grid-tied microgrid for energy prosumer. Results show favorable 
levelized costs of energy that are equal to $48.37/MWh, $64.91/MWh, and $36.40/MWh, respectively. The model is 
relevant to manufacturing companies because it can accelerate the transition towards eco-friendly operations through 
distributed generation. 
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1. Introduction
Aggregate production planning (APP) determines optimum production levels, machine hours, and workforce usage 
for each period over a planning horizon to satisfy customers’ demands and minimize production costs [1]. APP permits 
developing the master production schedule and planning for other production resources, such as capacity and raw 
material.  In [1], authors found that attention to stochastic APP models has recently increased due to the need to 
address practical issues not included previously. However,  [1] did not identify any APP contributions considering 
microgrids integration or another type of distributed generation (DG) systems as an alternative energy source. 
Renewable energy integration is a critical issue to address in manufacturing due to climate change and the need to 
attain the United Nations sustainable global goal of affordable and clean energy. The contribution of this research 
work is to fill this existing gap in the APP literature by developing a two-stage stochastic (TSS) model that incorporates 
renewable energy (RE) adoption decisions into APP. The goal of this research work is to contribute to accelerate the 
cost-efficient adoption of RE in production systems striving to operate as net-zero carbon manufacturing (N-ZCM) 
facilities. N-ZCM facilities have all energy consumed over the year offset with the RE generated. 

This paper presents a two-stage stochastic APP model for a manufacturing system that faces uncertainties in final 
products’ demand and machine and labor hours availability. The model aims to determine the optimum size of 
microgrids comprised of wind turbines (WT), solar photovoltaics (PV), and batteries, and the optimum production 
plan, machine hours, and workforce levels that minimize the system expected operational cost. Capital investment and 
maintenance of RE systems are part of the cost. The manufacturing system consists of factories and warehouses 
planning to install a microgrid in each facility. The microgrids can operate in island mode or connected to the main 
grid. If connected, the facilities become energy prosumers (EP) to perform bidirectional energy exchange (i.e., buy 
conventional power or sell RE energy) with the main grid. The RE supply is also stochastic due to the intermittent 
wind speed and uncertain weather conditions.  The paper is organized as follows. Section 2 presents a literature review 
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on mathematical programming models to integrate RE into production planning, a topic closer to APP. Section 3 
provides the WT and PV power generation models. Section 4 formulates the two-stage stochastic APP model. Section 
5 describes the numerical experiments and discusses the results. Section 6 summarizes the conclusions. 

2. Literature Review
The study in [2] develops a multi-period, multistage stochastic production-inventory planning model for a multi-plant 
manufacturing system powered with onsite RE, grid RE, and grid conventional energy . The goal is to minimize the 
total annualized cost comprised of production and energy costs and satisfy the target levels for the green energy 
coefficient (i.e., the ratio of RE over total energy consumed). The system studied includes two RE technologies, WT 
and PV.  It excludes batteries and the operation of facilities as EP. The work in [3] implements a two-step, deterministic 
optimization framework for determining the optimal production plan and the microgrids sizes in a multi-facility system 
considering variation in energy supply due to random wind speed and weather conditions. The microgrids include 
batteries and are connected to the main grid only to purchase energy. Experimental results show that net-zero energy 
operation is cost-effective in geographical areas where the WT capacity factor is above 0.25 or the PV capacity factor 
exceeds 0.45, respectively. Reference [4] introduces a TSS programming model for minimizing APP cost for a multi-
site garment company considering product demand uncertainty and excluding energy aspects. To the best of our 
knowledge, there are few publications on production planning with RE adoption. This research would be among the 
first endeavors on implementing a two-stage stochastic APP model integrating WT, PV, batteries, and the EP paradigm 
to achieve low-carbon manufacturing operations with minimum cost.  

3. Methodology for Modeling WT and PV Power Generation
Wind speed usually increases with height. Equation (1) below estimates the wind speed at any height h, denoted as vh. 
It is a function of the wind speed vg recorded by the observing system at the height above the ground hg and the Hellman 
exponent k, which considers seaside location, air stability, and terrain shape.  

𝑣ℎ = 𝑣𝑔 (
ℎ

ℎ𝑔

)

 𝑘 

(1)

Equation (2) presents a cubic model used to determine WT output power, 𝑃𝑤 (𝑣ℎ), as a function of the wind speed at
height h. The equation shows that the power curve has four operating phases: standby (0 < v <𝑣𝑐), nonlinear production
( 𝑣𝑐≤ v ≤𝑣𝑟), rated power region (𝑣𝑟≤ v ≤𝑣𝑠) and cut-off (v > 𝑣𝑠).

𝑃𝑤 (𝑣ℎ) = {

 0  0 < 𝑣 < 𝑣𝑐 , 𝑣 > 𝑣𝑠

𝑃𝑚 (
𝑣ℎ

𝑣𝑟

)3  𝑣𝑐 ≤ 𝑣 ≤ 𝑣𝑟

𝑃𝑚 𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑠

(2) 

The capacity factor of a WT, λ, measures the WT utilization and is a number in the [0,1] range.  Equation (3) computes 
λ when  𝑣𝑐 ≤ 𝑣 ≤ 𝑣𝑟. If the wind speed is less than 𝑣𝑐 or larger than 𝑣𝑠, then λ is 0. For wind speeds above 𝑣𝑟 , λ is 1.

λ = 
𝑃𝑚 (

𝑣ℎ
𝑣𝑟

)3

𝑃𝑚 
(3) 

Under weather uncertainty, the actual power output of a PV system, denoted as 𝑃𝑝𝑣(t) at time t in day d, is given by

𝑃𝑝𝑣(t) = 𝑊𝑡ηA𝐼𝑝𝑣(t) [1– 0.005(𝑇0 – 25)] (4) 

where 𝑊𝑡 is a random variable representing the stochastic weather condition at time t in day d. Besides, η is the PV
efficiency, A is the PV size or area (𝑚2), 𝐼𝑝𝑣(𝑡) is the actual solar irradiance incident on PV at time t in day d
(W/m2), and 𝑇0 is the PV operating temperature (ºC). Equation (5) computes the capacity factor of a PV system, λ𝑃𝑉.

λ𝑃𝑉  = 1

𝑃𝑃𝑉
𝑀𝑎𝑥𝑇

∑ 𝑃𝑃𝑉
𝑇
𝑡=1 (𝑡) (5) 
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In Equation (5), 𝑃𝑃𝑉
𝑀𝑎𝑥  is the rated capacity or PV maximum output power. In the numerical experiments discussed in

Section 5, computations of capacity factors assume 𝑃𝑃𝑉
𝑀𝑎𝑥 , η, A, and 𝑇0 as 160W, 0.2, 1m2, and 45ºC, respectively.

4. Two-Stage Stochastic APP Model
This paper researches a manufacturing system consisting of multiple factories and warehouses. The system is adopting 
microgrids to generate the energy to produce, transport, and store the products over a planning horizon comprised of 
multiple production periods, which are assumed to be months.  The factories produce multiple products, and there is 
uncertainty in final products’ demands and available machine hours and labor hours. The microgrids operate under 
uncertain wind speed and weather conditions and can be connected or disconnected from the main grid. In the grid-
connected case, the facilities acting as EP can buy energy or sell extra RE generated to preserve the environment, 
drive economic development, and realize net-zero carbon manufacturing operations. The model used to solve the APP 
problem with RE integration is a TSS program.  

The TSS program aims to simultaneously determine: (1) the optimal sizing of three RE generation technologies (i.e., 
WT, PV, and batteries) and (2) the optimum production plan, machine hours, and workforce levels to minimize the 
total expected cost of the system.  The first stage occurs at time zero.  The main first-stage decisions taken for all 
periods in the time horizon are the amounts to produce for each product and the size of the WT, PV, and batteries to 
install in each factory and warehouse. Other first-stage decisions include defective and rectification amounts, hours of 
labor allocated,  hired and layoff, and regular, overtime, and idle machine hours. First-stage decisions do not change 
over the periods. Recourse actions are based only on the realized uncertainty. They include: (1) the amount of product 
stored in inventory, backordered, or subcontracted in each period, (2) the daily energy stored in the batteries, and (3) 
the daily energy sold to or purchased from the main grid. In the mathematical programming model, I represents the 
set of products, T represents the set of production periods, T’ represents the set of previous production periods, S 
represents the scenarios. Besides, G represents the set of generation technologies, K represents the set of factories, N 
represents the set of warehouses, and J represents the set of days in the planning horizon. Tables 1 and 2 present the 
model’s notation, definition, units. Some rows in the tables provide more than one notation due to similar definitions. 

Table 1: Decision variables 

Notation Definition Units 
𝑥𝑖𝑘𝑡  Amount of product i produced at factory k in period t item 

𝑚𝑖𝑘𝑡 , 𝑟𝑖𝑘𝑡 Amount of product i defective (rectified) at factory k in period t item 
𝑦𝑖𝑛𝑡𝑠 Amount of inventory of product i stored at warehouse n in period t under scenario s item 
𝑏𝑖𝑘𝑡𝑠  Amount of product i backordered at factory k in period t under scenario s item 
𝑞𝑖𝑘𝑡𝑠  Amount of product i subcontracted at factory k in period t under scenario s item 
𝑙𝑘𝑡 Labor hours kept at factory k in period t h/period 

ℎ𝑘𝑡,𝑓𝑘𝑡 Labor hours hired (layoff) at factory k in period t, h/period 
𝑤𝑘𝑡,𝑜𝑘𝑡 , 𝑝𝑘𝑡 Regular, overtime, and idle machine hours, respectively, at factory k in period t h/period 

𝑃𝑘𝑔
𝑐 , 𝑃𝑛𝑔

𝑐 Capacity of generation technology g in factory k (warehouse n) MW 
𝑄𝑘𝑗𝑠

− 𝑄𝑛𝑗𝑠
− Energy sold by factory k (warehouse n) at day j under scenario s MWh/day 

𝑄𝑘𝑗𝑠
+ , 𝑄𝑛𝑗𝑠

+ Energy bought from main grid at factory k (at warehouse n)  at day j in scenario s MWh/day 
𝐵𝑘

𝑐 , 𝐵𝑛
𝑐 Battery capacity installed in factory k (in warehouse n) MWh/day 

𝐵𝑘𝑗𝑠
𝑓

, 𝐵𝑛𝑗𝑠
𝑓

 Energy stored in battery at factory k (at warehouse n) at day j under scenario s MWh/day 

Table 2: Model parameters (Note: units not applicable (N/A) for some notation). 

Notation Definition Unit 
𝑐𝑖𝑡

𝑥 , 𝑐𝑖𝑡
𝑤 , 𝑐𝑖𝑡

𝑞 Materials, transportation, and subcontracting cost, respectively, for product i in 
period t 

$/item 

𝑐𝑖𝑡
𝑦

, 𝑐𝑖𝑡
𝑏 Inventory holding cost and backorder cost, respectively, for product i in period t $/item 

𝑐𝑖𝑡
𝑚, 𝑐𝑖𝑡

𝑟 Defective and rectification cost, respectively, for product i in period t $/item 
𝑐𝑡

𝑙 Regular time labor hour cost in period t $/h
𝑐𝑡

ℎ , 𝑐𝑡
𝑓 Labor hiring and labor layoff cost, respectively, in period t $/h 
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𝐷𝑖𝑘𝑡𝑠 Demand of product i in factory k in period t under scenario s item/period 
𝑚𝑖𝑡

𝑚𝑎𝑥 Maximum defective amount of product i in period t item/period 
𝑊𝐻𝑡

𝑚𝑎𝑥 Maximum inventory capacity in period t item/period 
𝐿𝐻𝑘𝑡𝑠

𝑚𝑎𝑥 , 𝑀𝐻𝑘𝑡𝑠
𝑚𝑎𝑥  Maximum labor (machine) hours in factory k in period t and scenario s h/period 

𝑎𝑖 , 𝑢𝑖 Unit labor hour and unit machine hour, respectively, required by product i h/item 
𝛼 Percentage of allowable workforce variation % 
υ Allowable defective percentage from production % 
η Percentage of defective product produced that is rectified % 

𝛷𝑔, 𝛷𝑏 Capital recovery factor of generation technology g and battery b, respectively N/A 
𝑐𝑔 Penalty cost or tax incentive of generation technology g $/MWh
𝑏𝑔 Operating and maintenance (O&M) cost of generation technology g $/MWh

𝑎𝑔, 𝑎𝑏 Capacity cost for generation technology g and battery b, respectively $/MW
𝜏𝑔𝑗  Number of generation hours in day j for generation technology g h/day 
𝜏𝑔

∗  Generation hours for generation technology g over the entire production periods h 
𝑒𝑖

𝑥, 𝑒𝑖
𝑓 Energy consumed for producing and storing one unit of product i, respectively MWh/item 

𝑞𝑣 Electric vehicle energy intensity rate MWh/kg/km 
𝑚𝑣 Vehicle self-weight kg 

𝑑𝑘𝑛 , 𝑑𝑛𝑘  Distance between factory k and warehouse n (warehouse n and factory k) km 
β Number of daily trips trip/day 

𝐿𝑘,  𝐿𝑛 Base electricity load of factory k and warehouse n, respectively MW 
𝑤𝑖  Unit weight of product i kg/item 

|J|,|Jt| Size of the set of days over the entire horizon and in period t, respectively day 
𝜆𝑔𝑘𝑗𝑠 , 𝜆𝑔𝑛𝑗𝑠 Capacity factor for generation technology g in factory k (warehouse n) in day j 

under scenario s 
N/A 

χ Number of hours in a day h 
𝑢−, 𝑢+ Profit from selling energy and cost of buying energy, respectively $/MWh 

δ Daily operating hours of a facility (warehouse or factory) h/day
p(s) Probability of scenario s 

The two-stage stochastic, aggregate production planning model is presented below 

Minimize 

𝑍 = ∑ ∑ ∑(𝑐𝑖𝑡
𝑥

𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼

+ 𝑐𝑖𝑡
𝑤) 𝑥𝑖𝑘𝑡 + ∑ ∑ ∑(𝑐𝑖𝑡

𝑚

𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼

𝑚𝑖𝑘𝑡 + 𝑐𝑖𝑡
𝑟 𝑟𝑖𝑘𝑡) + ∑ ∑(𝑐𝑙𝑙𝑘𝑡

𝑡∈𝑇𝑘∈𝐾

+ 𝑐ℎℎ𝑘𝑡 + 𝑐𝑓𝑓𝑘𝑡) +

∑ ∑ ∑ ∑ 𝑝(𝑠)

𝑠∈𝑆

 (𝑐𝑖𝑡
𝑏  𝑏𝑖𝑘𝑡𝑠 +

𝑡∈𝑇𝑘∈𝐾𝑖∈𝐼

𝑐𝑖𝑡
𝑞

 𝑞𝑖𝑘𝑡𝑠) + ∑ ∑ ∑ ∑ 𝑝(𝑠)

𝑠∈𝑆

𝑐𝑖𝑡
𝑦

 𝑦𝑖𝑛𝑡𝑠

𝑡∈𝑇𝑛∈𝑁𝑖∈𝐼

+ ∑ ∑ 𝛷𝑔𝑎𝑔𝑃𝑘𝑔
𝑐

𝑔∈𝐺

+

𝑘∈𝐾

 

∑ ∑ 𝛷𝑔𝑎𝑔𝑃𝑛𝑔
𝑐

𝑔∈𝐺𝑛∈𝑁

+ ∑
𝛷𝑏𝑎𝑏𝐵𝑘

𝑐

χ
𝑘∈𝐾

+ ∑
𝛷𝑏𝑎𝑏𝐵𝑛

𝑐

χ
𝑛∈𝑁

− ∑ ∑ ∑ 𝑝(𝑠) 𝑢−
𝑄𝑘𝑗𝑠

−

χ
𝑠∈𝑆𝑗∈𝐽𝑘∈𝐾

+  ∑ ∑ ∑ 𝑝(𝑠)

𝑠∈𝑆𝑗∈𝐽𝑘∈𝐾

𝑢+
𝑄𝑘𝑗𝑠

+

χ
− 

∑ ∑ ∑ 𝑝(𝑠) 𝑢−
𝑄𝑛𝑗𝑠

−

χ
𝑠∈𝑆𝑗∈𝐽𝑛∈𝑁

+ ∑ ∑ ∑ 𝑝(𝑠)

𝑠∈𝑆𝑗∈𝐽𝑛∈𝑁

𝑢+
𝑄𝑛𝑗𝑠

+

χ
+ ∑ ∑ ∑ 𝑝(𝑠)(𝑏𝑔 − 𝑐𝑔)𝜏𝑔

∗(∑
𝜆𝑔𝑘𝑗𝑠

|𝐽|
𝑗∈𝐽

)𝑃𝑘𝑔
𝑐

𝑠∈𝑆𝑔∈𝐺𝑘∈𝐾

+ 

∑ ∑ ∑ 𝑝(𝑠)(𝑏𝑔 − 𝑐𝑔)𝜏𝑔
∗(∑

𝜆𝑔𝑛𝑗𝑠

|𝐽|
𝑗∈𝐽

)𝑃𝑛𝑔
𝑐

𝑠∈𝑆𝑔∈𝐺𝑛∈𝐾

(6) 

Subject to:

𝑦𝑖𝑛𝑡−1𝑠 − 𝑦𝑖𝑛𝑡𝑠  +  𝑥𝑖𝑘𝑡  +  𝑞𝑖𝑘𝑡𝑠 − 𝑏𝑖𝑘𝑡−1𝑠 +  𝑏𝑖𝑘𝑡𝑠  −  𝑚𝑖𝑘𝑡 + 𝑟𝑖𝑘𝑡 =  𝐷𝑖𝑘𝑡𝑠

∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇\{1}, ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑠 ∈ 𝑆 

(7) 
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∑(𝑒𝑖
𝑥 + 𝑞𝑣𝑑𝑘𝑛𝑤𝑖)

𝑥𝑖𝑘𝑡

|𝐽𝑡|
+ 𝛿𝐿𝑘 + 𝑞𝑣β𝑑𝑘𝑛𝑚𝑣 + 𝐵𝑘𝑗𝑠

𝑓
− 𝐵𝑘𝑗−1𝑠

𝑓
+ 𝑄𝑘𝑗𝑠

− =

𝑖∈𝐼

∑ 𝜏𝑔𝑗𝜆𝑔𝑘𝑗𝑠𝑃𝑘𝑔
𝑐

𝑔∈𝐺

+ 𝑄𝑘𝑗𝑠
+

∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽\{1}, ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑠 ∈ 𝑆 

(8) 

∑ 𝑒𝑖
𝑓

𝑦𝑖𝑛𝑡𝑠 (
𝑗 − ∑ |𝐽𝑡′|𝑡∈𝑇′

|𝐽𝑡|
) + 𝛿𝐿𝑛 + 𝑞𝑣β𝑑𝑛𝑘𝑚𝑣 + 𝐵𝑛𝑗𝑠

𝑓
− 𝐵𝑛𝑗−1𝑠

𝑓
+ 𝑄𝑛𝑗𝑠

− =

𝑖∈𝐼

∑ 𝜏𝑔𝑗𝜆𝑔𝑛𝑗𝑠𝑃𝑛𝑔
𝑐

𝑔∈𝐺

+ 𝑄𝑛𝑗𝑠
+

∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽\{1}, ∀𝑘 ∈ 𝐾, ∀𝑛 ∈ 𝑁, ∀𝑠 ∈ 𝑆 

(9) 

∑ 𝑎𝑖𝑥𝑖𝑘𝑡

𝑖∈𝐼

=  𝑙𝑘𝑡         ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (10) 

𝑙𝑘𝑡 =  𝑙𝑘𝑡−1 + ℎ𝑘𝑡 − 𝑓𝑘𝑡  ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (11) 

ℎ𝑘𝑡 + 𝑓𝑘𝑡 ≤ 𝛼𝑙𝑘𝑡−1   ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (12) 

∑ 𝑢𝑖𝑥𝑖𝑘𝑡

𝑖∈𝐼

=  𝑤𝑘𝑡   ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (13) 

𝑤𝑘𝑡 =  𝑤𝑘𝑡−1 + 𝑜𝑘𝑡 − 𝑝𝑘𝑡   ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (14) 

𝑙𝑘𝑡 ≤    𝐿𝐻𝑘𝑡𝑠
𝑚𝑎𝑥  ,   𝑤𝑘𝑡 ≤    𝑀𝐻𝑘𝑡𝑠

𝑚𝑎𝑥  ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (15) 

𝜐𝑥𝑖𝑘𝑡 = 𝑚𝑖𝑘𝑡  ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇  (16) 

𝜂𝑚𝑖𝑘𝑡 = 𝑟𝑖𝑘𝑡   ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (17) 

0 ≤ 𝑚𝑖𝑘𝑡 − 𝑟𝑖𝑘𝑡 ≤ 𝑚𝑖𝑘𝑡
𝑚𝑎𝑥   ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇 (18) 

∑ 𝑦𝑖𝑛𝑡𝑠 ≤ 𝑊𝐻𝑡
𝑚𝑎𝑥

𝑖∈𝐼

 ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (19) 

0 ≤ 𝐵𝑘𝑗𝑠
𝑓

≤ 𝐵𝑘
𝑐  ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (20) 

The objective function (6) minimizes the expected annual cost considering all production and energy costs. Constraint 
(7) assures product demands are satisfied in all scenarios and periods and it varies slightly for the first period, 
Constraints (8) and (9) represent the daily energy balance kept in the factory and warehouse in days different from the 
first one in which the equations vary slightly.  Constraint (10) indicates that the labor hour consumed to produce the 
products must be equal to the labor hours kept in each period. Constraint (11) updates the workforce level from one 
period to the next one. Constraint (12) satisfies norms regarding the maximum amount of labor hired and fired in each 
period. Constraint (13) states that the total machine hours used in production of all products must equal the machine 
hours allocated in each period. Constraint (14) updates the machine hours from one period to the next one considering 
overtime and downtime hours. Constraints listed in (15) guarantee that labor and machine hours do not exceed the 
corresponding maximum available hours in each scenario. Constraints (16)-(17) define the amounts of production 
defective and to be rectified. Constraint (18) limits the amount of defective product. Constraint (19) is the inventory 
capacity constraint. Constraint (20) is for the factory, and it ensures that the daily energy stored or discharged should 
not exceed the battery capacity. A similar constraint applies to the warehouse.  

The model in (6)-(20) represents the APP model instance with EP and battery adopted.  The APP model with island 
microgrid (IM) and battery and the one for IM without battery result from dropping terms in (6), (8), (9), and (20). 
The model was coded using the AMPL mathematical programming language and solved through the CPLEX solver. 

5. Numerical Experiment and Results
In the numerical experiment, the manufacturing system consists of one factory located in San Francisco and one 
warehouse in Phoenix. The factory makes two products with two demand levels, i.e., high and low. The maximum 
labor and machine hours available can be at any three levels, i.e., low, medium, and high. The specific values assumed 
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for all the model input parameters are in [5]. The variation over the years for the daily WT and PV capacity factors 
(CF) is accounted by selecting three years (2013, 2014, and 2015) of hourly wind and weather profiles, applying the 
methodology in Section 3, and averaging the hourly CF in each day. Hence, the random parameters of the model 
produce a set of size |S|=108 scenarios (2×2×3×3×3). The scenarios are classified into three equally probable 
categories (i.e., 1=low, 2=medium, 3=high) by assigning the corresponding numerical score to low, medium, and high 
product demands, machine, and labor hours available and adding those scores. There are 22, 64, and 22 scenarios in 
the low, medium, and high category. WT and PV CF are computed for 26,280 observations (365days×24 hours/day×3 
sets) of wind speed and weather conditions. The San Francisco and Phoenix mean CF for the WT are 0.4142 and 
0.1541, respectively, while the mean CF for the PV are 0.2959 and 0.3736. In San Francisco, the WT capacity factor 
is 39.98% higher than the PV one, whereas, in Phoenix, the PV capacity factor is 142.44% higher than the WT one. 
The energy tariffs are assumed fixed, $130/MWh to buy, and $30/MWh to sell in EP mode.   

5.1 Levelized Cost of Energy 
Levelized cost of energy (LCOE) represents the cost of producing one MWh of energy. It is an indicator to decide 
whether a RE project is attractive compared to conventional energy. The LCOE’s for the model instances studied are 
$48.37/MWh for island model (IM) without battery, $64.91/MWh for IM with battery, and $36.40/MWh for EP. These 
values are below the actual cost of traditional energy sources, which is $50-$100/MWh in the US. 

5.2 Expected Cost and Sensitivity Analysis 
The expected cost is $28,591,046 for IM without battery, $17,131,084 for IM with battery and $12,727,622 for EP. 
This result indicates that the EP model instance is the most economically viable. EP results in 55% cost reduction if 
compared to IM without battery and in 25.70% cost reduction if compared to IM with battery. A preliminary full four-
factorial design of experiments was performed to determine if products demand distribution, PV installation cost, tax 
incentives for installing PV, and the probabilities of each of the 108 scenarios in the TSS model affect the expected 
cost. The number of levels selected for each of these factors is 4, 3, 3, and 3, respectively. One replication or run in 
each experimental condition produced 108 (4×3×3×3) experimental runs. The statistical analysis of the experiment 
showed that all factors were significant, with PV installation cost having the largest impact on expected cost. 

6. Conclusions
This paper presents and implements a two-stage stochastic optimization model for solving an aggregate production 
planning problem that involves wind and solar-based microgrid systems with batteries and energy prosumer facilities. 
The renewable generation daily capacity factors are estimated from hourly climate data for three recent years in San 
Francisco and Phoenix and input to the model scenarios. The capacity factors capture the variability of wind and solar 
generation over the planning horizon. Three operating modes are studied: 1) island microgrid without batteries, 2) 
island microgrid with batteries and 3) grid-tied microgrid with batteries. The numerical experiments show that 
manufacturing facilities operating with grid-tied microgrid as energy prosumer are the most cost-effective if compared 
to facilities powered by island microgrids. The expected cost and levelized cost of energy results show that the 
proposed two-stage stochastic aggregate production planning model can potentially accelerate the manufacturing 
industry’s  transition towards an eco-friendly operation. A future work is to input the estimated hourly capacity factors 
directly into the model, refine the granularity of some of the model constraints so they are satisfied hourly instead of 
daily, and implement time-varying energy tariffs.  
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