IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021 765

CoxNet: A Computation Reuse
Architecture at the Edge

Zouhir Bellal ™, Boubakr Nour

Abstract—In recent years, edge computing has emerged as
an effective solution to extend cloud computing and satisfy the
demand of applications for low latency. However, with today’s
explosion of innovative applications (e.g., augmented reality,
natural language processing, virtual reality), processing services
for mobile and smart devices have become computation-intensive,
consisting of multiple interconnected computations. This coupled
with the need for delay-sensitivity and high quality of service
put massive pressure on edge servers. Meanwhile, tasks invoking
these services may involve similar inputs that could lead to the
same output. In this paper, we present CoxNet, an efficient com-
putation reuse architecture for edge computing. CoxNet enables
edge servers to reuse previous computations while scheduling
dependent incoming computations. We provide an analytical
model for computation reuse joined with dependent task offload-
ing and design a novel computing offloading scheduling scheme.
We also evaluate the efficiency and effectiveness of CoxNet via
synthetic and real-world datasets. Our results show that CoxNet
is able to reduce the task execution time up to 66% based on a
synthetic dataset and up to 50% based on a real-world dataset.

Index Terms—Edge computing, service offloading, computation
reuse, serverless computing.

I. INTRODUCTION

ODAY’S networks are witnessing a massive growth

in the number of connected devices, such as smart-
phones, wearable devices, Internet of Things (IoT) [1]. This
wave of connected devices led to a major development of
information technology, improving human life quality, and
calls for paradigms for green networking and computing.
Juniper Research has found that the number of IoT devices
will reach 50 billion by 2022 [2]. In recent years, Internet
service providers have undergone rapid growth in both variety
and complexity. The Cisco Annual Internet Report forecasts
that connected home applications will dominate Machine-to-
Machine communication by 2023 and smart car applications
will grow more than 30% over the next two years [3].

Manuscript received December 31, 2020; revised February 26, 2021 and
March 19, 2021; accepted April 2, 2021. Date of publication April 7, 2021;
date of current version May 20, 2021. This work was supported in part by
the National Institutes of Health under Grant NIGMS/P20GM109090; in part
by the National Science Foundation under Award CNS-2016714; and in part
by the Nebraska University Collaboration Initiative. (Corresponding author:
Boubakr Nour.)

Zouhir Bellal is with the LabRI-SBA Lab, Ecole Superieure en
Informatique, Sidi Bel Abbes 2045, Algeria (e-mail: z.bellal @esi-sba.dz).

Boubakr Nour is with the School of Computer Science, Beijing Institute of
Technology, Beijing 100081, China (e-mail: n.boubakr@bit.edu.cn).

Spyridon Mastorakis is with the Department of Computer
Science, University of Nebraska Omaha, Omaha, NE 68182 USA
(e-mail: smastorakis@unomaha.edu).

Digital Object Identifier 10.1109/TGCN.2021.3071497

, Member, IEEE, and Spyridon Mastorakis

, Member, IEEE

Furthermore, both users’ and applications’ requirements have
changed: services are computation-intensive and feature new
requirements, such as location-awareness and delay-sensitivity.
The traditional cloud computing paradigm [4] along with the
limited Internet bandwidth and the long propagation delays
cannot meet the desired Quality of Service (QoS) [5].

To address these challenges, edge computing [6] has
emerged as an extension of cloud computing to push process-
ing services to the proximity of end-devices deployed at the
edge of the Internet (e.g., wireless access points, [oT gateways,
and routers) [7]. The deployment of small-scale data-centers
at the edge, consisting of edge servers, will offer low latency
due to the servers’ proximity to the source of data [8].
Although data-centers at the edge are expected to serve a
wide range of services, their computation scale may be con-
siderably smaller compared to cloud computing. The growth
witnessed in Artificial Intelligent (Al)-based applications led
to the birth of highly complex and computation-intensive
services, such as facial recognition, natural language pro-
cessing, and computer vision [9]. These services commonly
consist of multiple interdependent sub (atomic) services
(Functions-as-a-Service) [10] that form a workflow that can
be represented as a Directed Acyclic Graph (DAG). For
example, an online social network similar to Facebook
may consist of approximately 170 functions on Amazon’s
Lambda [11].

In addition, today’s applications and user demands witness
a natural many-to-one relationship between the computation’s
input-output imposed with location-aware computing. This
phenomenon leads to a temporal, spatial, or even semantic cor-
relation among input data and therefore the computation may
be mapped to the same output [12]. Let us consider an example
where a group of tourists visits Nero’s Golden Palace (Domus
Aurea), one of the most popular landmarks in ancient Rome.
An archaeological Virtual Reality (VR) service powered by
nearby edge servers can be offered to visitors, “transporting”
them back in time and allowing them to see Nero’s Golden
Palace as it used to be centuries ago. The visitors can live this
experience by wearing virtual reality headsets while touring
the site. In this use-case, the massive computation cost required
for VR rendering makes it challenging to meet the desired
Qualify of Experience (QoE) [13]. However, driven from the
fact that the tourists’ angles of view could be overlapping,
the input data of the computation may be similar, leading to
the same output. Eliminating such redundant/duplicate com-
putation by reusing the output results of previous (similar)
tasks instead of re-computing them from scratch reduces the

2473-2400 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6521-5721
https://orcid.org/0000-0001-5609-856X
https://orcid.org/0000-0002-8498-4718

766 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

execution cost and enables edge servers with low computation
capacity to sustain the expected QoE [14].

To address these issues, we complement edge computing
with the reuse of computation, where previously executed
tasks are stored at edge servers, so that the outputs of these
tasks are reused to execute newly incoming similar tasks. We
present CoxNet, a novel computation reuse architecture that
schedules dependent tasks with deadline constraints. Our eval-
uation, based on a synthetic and a real-world dataset, shows
that CoxNet achieves the best performance compared to sev-
eral baseline strategies, reducing the total execution time by
up to 66%.

In summary, our contribution is three-fold:

o First, we extend the edge computing paradigm with the
reuse of computation to effectively meet applications’
QoS requirements and utilize edge computing resources.

e Second, we present an analytical model for computation
reuse combined with computation offloading.

e Third, we design and implement a novel scheduling
scheme taking into consideration services represented as
DAGs in the context of computation reuse and we vali-
date the performance of the designed architecture based
on both synthetic and real-world datasets.

The rest of the paper is organized as follows. Section II
presents a brief background and reviews related works.
Section III presents different use-cases and motivates CoxNet.
We introduce our system model and our problem formu-
lation in Section IV. Section V presents in detail the
proposed architecture and designed mechanisms. We evaluate
the performance and effectiveness of CoxNet in Section VI.
Finally, we conclude the paper in Section VII.

II. BACKGROUND & RELATED WORK

Edge Computing: Cloud computing has shown great
resilience in providing massive amounts of computing
resources [15]. Yet, the requirements of today’s applications
demand low latency, which may not be satisfied when comput-
ing resources are offered by distant clouds. Edge computing,
as an extension of cloud computing, has been proposed to
overcome this challenge by bringing computing resources
physically close to end-users [6]. It is envisioned that edge
computing resources will be organized in small-scale data cen-
ters at the edge, called cloudlets [16]. Given the small scales of
cloudlets (in comparison to cloud deployments), the allocation
and utilization of their resources become vital issues.

In-Network Computing: Researchers have explored differ-
ent approaches to enhance QoS by providing computation
directly in the network [17], [18]. Instead of providing only
network functions, a router is able to examine the received
packets and then perform computation locally instead of for-
warding the task to remote servers [19]. This concept pushes
application developers to re-design the logic of their services
and decompose them into multiple sub-services, and then
offload them to the edge in order to enable in-network com-
puting [20]. This capability empowers edge serves to support
various optimization techniques, such as computation reuse.

Computation Reuse: This concept refers to reusing the exe-
cution results of a previously executed function/service for the

execution of forthcoming computations [21], [22], [23]. To
do so, an edge server stores previous computations (e.g., ser-
vice name, input data, and output results), and thereafter uses
efficient indexing and lookup mechanisms to find similar com-
putation [24]. As a result, the usage of computation resources
and the task execution times can be significantly reduced [25].
This computation paradigm is suitable for applications (e.g.,
image recognition, real-time video processing), where “simi-
lar” task input data could lead to the same output (computation
results).

Approaches have been proposed to exploit this feature in
several domains. For instance, Cachier [26] is one of the
first approaches that reduces the number of executed image
recognition tasks by extracting features of the requested recog-
nition tasks and seeking to find a match with a similar
computed task from a cache. Yet, the same concept can be
adopted in other use-cases and applications. Guo et al. [12]
proposed FoggyCache, a framework that reduces the compu-
tation cost of image and audio recognition applications by
reusing approximate computation results across devices. The
reuse of computation is achieved through an Adaptive Locality
Sensitive Hashing (A-LSH) and a Homogenized K-Nearest
Neighbors (H-kNN) algorithm. The former indexes input data,
while the latter represents the similarity between task input
data. Similarly, work in [27] reuses image recognition tasks
within a single device and leverages a set of algorithms
to assess the input similarity and maximize de-duplication
opportunities.

Due to the complexity involved in today’s applications, the
execution of tasks cannot be seen a monolithic workflow [28].
Instead, the execution consists of sub-tasks following an
execution workflow commonly represented by a DAG, differ-
ent approaches have been proposed to explore computation
reuse in dependent tasks computation [29]. For instance,
DryadInc [30] and Nectar [31] reduce incremental large-scale
computation graphs by storing and reuses the results of per-
formed computations. However, these approaches require that
the DAG remains static. Recently, Barreiros, Jr. et al. [32]
presented an approach that reuses computations to optimize
parameter sensitivity analysis. In a sensitivity analysis, a
task is performed multiple times over the same dataset with
partially varied inputs that open opportunities to reuse com-
putation. A similar approach is proposed in [33], where the
authors reduce hyperparameter tuning by reusing the results
of overlapping hyperparameter configurations. Yet, due to the
sequential nature of the targeted problems, the authors did not
seek to reuse the computation of an intermediate node in the
DAG if its predecessor was not reused.

Serverless Computing: Serverless computing has received
significant attention from both the research community and
the industry. Serverless provides various features, such ease-
of-maintenance, auto-scaling, and a pay-as-you-go model,
that contributes to the fast deployment and maintenance
of services/applications [34]. Many cloud service providers
have released their own serverless platforms, such as Google
Cloud functions, Amazon Lambda, and Microsoft Azure
functions. A serverless-based service consists of a collec-
tion of loosely coupled stateless functions, where each one

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

2 Fa
[20 and 3D Bounding] Polygons
tation s

2

Video so o
Lines and Splines.

Fig. 1. The serverless paradigm and computation reuse use-cases.

implements specific capabilities. These functions collabo-
rate with each other to accomplish the desired tasks. There
can be many interdependent functions, which process and
transfer data to each other and return the result to the ser-
vice consumer [34]. The collection of functions could be
deployed at the edge servers using independent containers
(e.g., Docker). The reliance of today’s services on such a
paradigm delivers a complex form of computation, consist-
ing of multiple interconnected functions in the form of DAGs
(e.g., Facebook’s video processing application [35]). In order
to accelerate the development and the deployment of such
complex services, many cloud platforms (e.g., AWS) allow
developers to share their functions via private application
repositories or even public ones, enabling different services
to share and use the same public functions. This function
sharing among multiple services can help with accelerating
computation and application deployment (e.g., machine learn-
ing, artificial intelligence algorithms). Moreover, by sharing
functions among different services, there is a high probability
of re-computing the same function multiple times. This opens
opportunities to reduce the required computation by reusing
similar computation results instead of recomputing them from
scratch. Fig. 1 illustrates an example of three services that use
shared functions.

IITI. MOTIVATION

We envision edge computing environments, where each ser-
vice consists of an execution graph (workflow) represented as
a DAG. Subsequently, a DAG is composed by a set of func-
tions that are executed, so that the overall functionality of a
service is realized. In CoxNet, a function may be common
(shared) among several services, while the execution results
of each function are stored by edge servers, so that they can
be reused during the execution of the same function with the
same or similar input(s) in the future. This reuse of computa-
tion enables edge servers to avoid the execution of duplicate
computation, thus utilizing their computing resources effec-
tively. To signify the premise of CoxNet, let us consider the
following scenarios (Fig. 1).

Object Detection Service: Let us consider a scenario, where
self-driving vehicles use cameras to avoid obstacles around
them through an object detection service at the edge. The
workflow of such a service may involve different functions,
as shown in Fig. 1. A video segmentation function (F2) is the

767

starting point for this service, since it is responsible for the
segmentation of the input video to individual images, which
will be passed to subsequent functions for the detection of
physical objects. The functions 2D and 3D Bounding Boxes
(F1), Lines and Splines (F3), and Polygons (F4) will iden-
tify physical objects around the vehicle (e.g., other vehicles,
pedestrians, bicycles) [36] and define landline and boundary
recognition on roads. Finally, the function semantic segmen-
tation (F5) will enable the annotation of every pixel within an
image.

Traffic Monitoring Service: Let us consider a scenario,
where drones equipped with cameras and wireless commu-
nication capabilities are deployed in a smart city for traffic
monitoring purposes [37]. These drones capture and offload
video recordings of traffic to a traffic monitoring service,
which detects violations, provides the identity of cars, and
reports these violations to authorities. Similarly to the object
detection service, this service is organized as a DAG that
includes two phases. In the first phase, cars are identified in
the video streams (F2 — F1, F3, F4 — F5), while, in
the second phase, the identified cars are passed to the vio-
lation detection function (F6), which identifies the violation
and notifies the authorities.

Augmented Reality Mobile Game: Mobile augmented real-
ity games allow virtual content like 3D models, animations,
and annotations to be placed on top of a real-world envi-
ronment [38]. For example, in Pokémon GO, players seek to
capture and develop Pokémons, and challenge other players.
GPS is used to match the player’s location with the virtual
world, then augmented reality is used to put a Pokémon crea-
ture on top of the real-world. Players can interact with this
virtual world using their smartphone cameras. As augmented
reality games become more sophisticated, the computing
capacity they require exceeds the limited capacity of mobile
devices. To this end, the deployment of services at the edge
for such games may be necessary. In the service illustrated
in Fig. 1, the received snapshots are preserved in a waiting
queue (F7) and are analyzed by functions F1 and F4 to identify
physical objects in the scene. Subsequently, the virtual content
function (F8) associates Pokémon creatures with the identified
objects and the player’s surroundings. Finally, the image com-
bining function (F9) combines the snapshots of the real and
virtual content, so that the combined content can be displayed
on the player’s device.

These scenarios demonstrate that: 1) edge services can be
composed by common functions (each function can be used
by several services) and 2) the input to common functions of
the same service or among services may be similar enough,
thus yielding the same results when these functions are exe-
cuted. In other words, due to the nature of the service usage,
requested (intermediate or final) computations may be redun-
dant. To this end, the results of previous executions of such
functions can be stored by edge servers, so that they are reused
in the future. For example, if multiple users play Pokémon
GO as they navigate through the same city, they may cap-
ture videos or images of the same sights from different angles
or with different lighting, especially, if these sights are popu-
lar (e.g., playing Pokemon GO around the Eiffel Tower). The

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

768 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

TABLE I
SUMMARY OF THE MOST COMMONLY USED NOTATIONS

Model Parameters

Y(e) The current computation capacity of edge server e
Se The set of offloaded services at edge server e

A€ The set of the accepted tasks at edge server e

D, The input data of task ¢

O; The output data of task ¢

As The deadline of task ¢

W; The total workload of task ¢

G, The Directed Acyclic Graph (DAG) of task ¢

Ve The set of sub-tasks of task ¢

P, The remaining time to finish the execution of task 7
o () The complexity of task #

PDL(t) The proportional deadline of sub-task 7

w(T) The workload of sub-task 7

gr The gain of sub-task 7

Pred, The set of direct predecessors of sub-task 7
Suc, The set of direct successors of sub-task 7

o The potential reusability of sub-task 7

R, The set of performed computations of sub-task 7
rr € R A performed computation of sub-task T

rd(ry) The rate of computation r

D The input data of computation r

oz The result of computation r-
The score of computation r

same applies to vehicles driving close to each other (e.g., adja-
cent lanes of a highway). Finally, vehicles in crowded streets
and users playing augmented reality games in these streets
may capture overlapping video frames, thus the same objects
may be detected in these frames.

How does CoxNet differ from prior work: CoxNet intro-
duces a deadline-based scheduling architecture for emerging
serverless-based edge computing services. Rather than focus-
ing on domain-specific services, CoxNet realizes an architec-
ture that capitalizes on offering computation deduplication in
a universal manner to all services deployed at the edge. In
this context, CoxNet aims to achieve the right tradeoff among:
1) identifying which computation to be stored for potential
reuse in the future; 2) storing as much computation that may
be useful in the future as possible; and 3) alleviating the over-
head of searching for computation that can be reused once an
incoming task is received by an edge server.

IV. SYSTEM MODEL & PROBLEM FORMULATION

In this section, we present our system model and problem
formulation. Table I summarizes the most commonly-used
notations in our work.

A. System Model

Network Stakeholders: We consider a system, where a cloud
provider v manages a set of services S = {s1,82,...,8n}.
We assume each service is decomposed into a set of atomic
services s = {a1, ag, ..., a;}, where s € S. This decomposi-
tion aims to facilitate the execution and deployment of services
by composing new services in short periods of time. This com-
position can be obtained using the dependency information
attached to the received task (also called the task’s DAG). For
each atomic service a, we denote I(a) as the range of possible
inputs that can be used to call the atomic service a.

Remote
Cloud

Task Forwarding (1) Services Offloading (2)

'\ Reusable
c) Subtasks
Computation

Reuse

{*‘Q < Non-Reusable I:;-\-' '<

Subtasks A3

Edge -

Computation
From Scratch

Cloud
A h

Incoming Tasks

. Offloaded Services

Ocloud Services

Fig. 2. Reference model.

Fig. 2 illustrates a reference model where the cloud provider
offloads services based on different factors (e.g., utilization,
popularity) to edge servers to improve QoS (e.g., low latency,
bandwidth optimization) and QoE. We assume that the service
provider has already offloaded important services at the edge.
Let 5S¢ = {s{,...,s;} denote the set of offloaded services at
an edge server e.

Task Modeling: We assume that services are consumed by
users with mobile devices. Let Ts = {t{,5,...,t/} denote
the set of tasks that invoke a service s over time.

Each task ¢ € Ty is characterized by input data Dy, output
data Oy, a workload W3, and a deadline constraint A;, which
denotes the available time for an edge server to execute the
task. Ay = A} —T(Dy) — I'(Oy), where A, is the deadline
constraint specified by the user to receive the task execution
results, I'(D;) and I'(O) represent the required time to trans-
mit the input and output data respectively from the user to the
edge server and vice versa. We denote by A° = {t1,...,;}
a set of currently accepted tasks at an edge server e. For each
accepted task ¢ € A¢, P; denotes the expected time to com-
plete the execution of task ¢. A task is composed of a set
of sub-tasks ¢ = {r1,...,7;} that have certain dependen-
cies to each other. These dependencies are represented by a
DAG G¢(v,§), where vy represents the set of sub-tasks and
¢ = {(i,5)]i,5 € t,i — j} the set of edges that describe
the dependencies among sub-tasks. For example, (i,7) € &
implies that sub-task 7; can be executed only and only after
sub-task 7; is completed. In other words, the output of 7;
is required as an input for 7;. Each sub-task 7 € ¢ requires
the execution of an atomic service a from the set of atomic
services that form the service requested by task r. The exe-
cution of a sub-task refers to the invocation of the required
atomic service with the sub-task inputs. For each sub-task 7,

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

pred(7) and suc(7) denote the set of direct predecessors and
successors of sub-task 7 respectively.

The input data D(7) of a sub-task 7 is given as D(7) =
UT/Epred(T) O(t1), where O(7/) is the output of sub-task 7.
The sub-task that all of its predecessors have been executed
is called a ready sub-task.

Each sub-task has a workload w(7) expressed as an amount
of Floating Point Operations Per Second (FLOPs), indicating
the required computation cost (i.e., the number of floating-
point operations that the system needs to perform to execute
sub-task 7). Therefore, the overall computation cost of a
task is obtained by W; = Zle w(7;). Each sub-task has
a proportional deadline PDL(T) that represents the execution
deadline for sub-task 7. To meet the entire task’s deadline
Ay, the system has to satisfy all of its sub-tasks’ proportional
deadlines.

Computation Modeling: We identify three computation
cases: 1) remote execution on the cloud: the task is fully
executed at a cloud server; 2) full execution at the edge: the
service has been offloaded to the edge where the task is fully
executed; and 3) reuse of computation: instead of executing
each sub-task from scratch, we reuse the results of a previously
executed sub-task that the edge server has stored. Specifically,
we reuse the results of sub-tasks with “similar enough” input
data, since applying the same computation to similar input will
likely generate the same output due to high semantic corre-
lation. In such cases, we may perform a lookup to find the
results of similar previously executed sub-tasks, however, if
such results cannot be found, we will execute a sub-task from
scratch.

The computation cost for each case is shown in
Egs. (1a), (1b), and (1c) respectively:
Z 2.i=1%\Ti) w(7;)
t 1
X8 = v, (1a)
Zl‘g—l w(7;)
) = ==1" Y 1b
x(t) A, < U, (1b)
k k .
(1) = Wip 22i—1(l) + 2251 (1 —) x w(1)) (10)
X At X \I/e
where U and V. denote the computation capacity at the cloud

and edge server, respectively. The task complexity ¢(t) = Amf

therefore refers to the minimum needed computation capacity
to execute task . zr indicates whether the result of sub-task
T is achieved through computation reuse (1) or not (0) and
I indicates whether a lookup operation was conducted before
the execution of the sub-task 7 (1) or not (0). Finally, Wy,
designates the cost of a lookup operation.

Communication Modeling: A task can be executed either
at the edge or the cloud. The communication cost is based
on the size of the input data (Dy), the output data (Oy), and
the available bandwidth b,. Eqs. (2a) and (2b) indicate the
required communication cost when a task is executed at the
cloud and edge respectively.

r(p = 220 (22)
q

(1) = Dtb;eo’*. (2b)
q

769
Task 1
1
v Merged Graph
26 (3 (5b H
. Reusable Graph
3N\
(d) 4\A A/6 (de) ; \\ /®
7t9 ‘\ L
Task 2 Crapn V/ Grnpll 3
. & G
@b (3 (8)»
NN \ /
©al4) ®
S ilg!

e

Fig. 3. Example of a merged graph/reusable graph generated from the DAGs
of two tasks.

Task’s Overall Cost: The overall cost to execute a task is
defined as the sum of computation cost for all sub-tasks and
communication cost: Wy = x(t) + I'(¢).

B. Problem Formulation

Our problem is defined as an objective to minimize the
task’s execution time. The same formulation can refer to
minimizing the resource utilization. The edge server reuses
computation to reduce the overall volume of performed com-
putations (CPU cycles) by reusing previously executed stored
sub-tasks, as shown in Eq. (3a).

Ig}tll Z xt Wy (3a)
teT
subject to zz € {0, 1}. (3b)

V. CoxNet: A COMPUTATION REUSE ARCHITECTURE
AT THE EDGE

In this section, we present the design of CoxNet, a prac-
tical architecture built on top of edge computing. CoxNet
features a computation reuse-aware design that aims to reduce
the utilization of computing resources and the execution time
of tasks at the edge. CoxNet consists of two main steps:
1) merged/reusable graph generation: generate a global view
about sub-tasks’ invocation and their usage and 2) task admis-
sion policy: allow edge servers to accept/execute only the tasks
that they are capable of meeting their deadlines.

A. Merged/Reusable Graph

Merged Graph (MG): The merged graph is a directed graph
that stores DAGs of tasks that have been executed at the edge.
Each edge server maintains a merged graph for all offloaded
services, which is created gradually as tasks are received and
executed. Specifically, after each successful execution of a
task, the task’s DAG is appended to the merged graph. The
merged graph is not only used for aggregating the performed
sub-tasks at the edge and the dependencies among them, but
also for revealing the estimation of reusing the results of these
sub-tasks in future computations. Fig. 3 illustrates an example
of merging the DAGs of two tasks to create a merged graph.

Each sub-task 7 (vertex in the graph) has a weight value
o7 that represents the potential reusability of the sub-task’s
computation results. Two sub-tasks 7 and 7/ are connected
with a weighted edge pr r/ that represents the predominance of
a dependency between the two sub-tasks. The predominance

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

770 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

refers to how many times an output of 7 has been used as
an input for 7/. Its value is obtained as the number of times
that edge (7, 7/) is present in DAGs of tasks that have been
executed by an edge server.

Each sub-task 7 in the merged graph has a set of records,
which represent previous executions of this sub-task. These
records are denoted as R, = {rTl, ..y} A record 7 =
(Dy, OF) represents a previous execution of sub-task 7 with
DT as input data and O as the resulting output. Each record
rr collected during a previous execution of sub-task 7 has a
rate rd(r;) that indicates the number of times that sub-task
7 has been invoked with input D]. Moreover, each record in
the merged graph admits a score S(r) that indicates the overall
impact among other records. This score is calculated using:
1) the rate of the record’s input rd(r;) and 2) the workload
of the sub-task w(7). These two metrics are normalized using
the normalization technique “the larger the better” to end up
with the normalized rate :’d(rT) and the normalized workload

:)(7) Thus, the score is given as S(r) = \/:}(T);k”d(’l‘q—).

. .. . d(rr) .
The potential reusability metric, o, = ZT%?](T), is cal-

culated by the division of how many times a sub-task 7 has
been computed over how many times its input data was dif-
ferent. >, . p_rd(rr) is the presence of sub-task 7 in all the
received tasks’ DAGs and |R;| is the input variation of the
sub-task 7 (i.e., the different inputs used by sub-task 7). It
is important to indicate that two sub-tasks invoking the same
atomic service are considered as identical.

Reusable Graph (RG): The reusable graph is a sub-graph
of the merged graph RG C MG. It identifies sub-tasks that
bring high gain g, if they are reused during the execution
of incoming sub-tasks in the future. This gain is expressed as
gr = \/w(7)or, ensuring a proper balance between the poten-
tial reusability of a subtask and its workload. The extraction
of RG from MG depends on g5 and pipres, Which indicate
the minimum gain values of a sub-task (vertex) and an edge,
respectively, in order to be a part of the reusable graph. These
threshold values may be dynamically adapted by each edge
server based on its available storage resources.

The mechanism to extract a reusable graph from a merged
graph consists of two main steps: 1) vertex-omitted sub-graph:
it starts by removing sub-tasks with a weight under the thresh-
old weight g4,.s and their incoming and outgoing edges from
the merged graph and 2) edge-omitted sub-graph: it passes
through the remaining graph and deletes each edge with a
lower weight than the edge weight threshold pyp,.s. Fig. 3
shows an extracted reusable graph from the merged graph for
thres = Pthres = 2. For simplicity reason, we assume that the
workload of all sub-tasks are the same and they equal to 2.

Dynamic Evolving Graph Processing: The merged graph
operations involve adding new vertices or edges, or updating
their weights. However, performing these operations based on
limited edge computing resources poses challenges since the
execution of incoming tasks should be timely, since graph-
structured updates (e.g., a set of newly added vertices) are
continuously streaming in. As shown in Fig. 4, after the execu-
tion of a task, CoxNet assigns a worker to conduct the required
updates on the merged graph for the DAG of each completed

Worker

Update ~ | Assignment

Task scheduler

Lookups

Y
Worker
Y

Merged Graph
Manager

tgt_id ‘weight 1[}- -==- ’ tgt_id ‘weightnD Edges list

Score1[}-- oo

(Elected atomic service () Candidate atomic service

Record 1 Record k

Score kD Records list

Selected Record

Fig. 4. Dynamic reusable graph generation and usage.

task. Multiple workers can be launched in parallel enabling
fast convergence of updates of the merged graph.

As described in Algorithm 1, a worker explores all vertices
starting from the root node of a task’s DAG and updates the
merged graph. For each vertex in the DAG, the worker adds
it to the merged graph if itself has not been added already.
To achieve that, the Merged Graph Manager (MGM) attaches
an offset to each inserted vertex to reduce the complexity of
searching for a vertex by offering direct access to any vertex
for the workers (Line 6). Note that two sub-tasks requesting
the same atomic service are represented with the same offset.

After finding the offset of a vertex (Line 8), the worker
updates its records (performed computations) either by adding
a new record r if the requested atomic service has never been
executed with the current sub-task input data D] (Line 21),
or by increasing the rate of the record rd(r;) if it has already
been performed once before (Line 10). These updates allow
workers to also update the record’s score of sub-tasks as they
are being performed (Line 11). Subsequently, the worker is
able to calculate the potential reusability of a sub-task and its
gain (Lines 23-24) to decide whether to add it to the reusable
graph. To do so, the worker first determines the threshold value
(Line 25) indicating minimum gain that a sub-task should
have, so that it can be part of the reusable graph. This thresh-
old is changing dynamically over time, which can be obtained
as the average between the received task’s gain and the former
threshold (Line 25).

Next, the worker verifies whether the sub-task’s gain sur-
passes the newly obtained threshold. If so, it submits the
sub-task’s records to the Reuse Table Manager (RTM) to
include them in the reusable graph (Line 28). Based on the
records’ scores, RTM selects the records with greater scores
than the ones it already holds. To do so, RTM always keeps
a trace of the record with the minimum score min_score after
each update. Once one record or more are selected, CoxNet
marks the requested atomic service for that sub-task as elected
(Lines 33-35). From that point and onwards, these selected

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

Algorithm 1: CoxNet’s Dynamic Graph Generation

Global Var.: MG: merged graph,
min_score: minimum score
Input: G: incoming task’s DAG.

1 Function DGGen(G):

2 offset < Glroot].offset;

3 if (G[root].visited = False) then
4 Glroot].visited «— True;

5 if (offset = @) then
6

7

8

Mpes: dynamic threshold,

‘ offset «+ Add(MG, Glroot]);

end
v « GetVertex(MG, offset); record <+ FindRecord(v,
Dg [root]);
9 if (record # @) then
10 rd(record)++;
1 S(record) «— UpdateScore(r);
12 if (v.elected=True) then
13 if (S(record) > min_score & r.selected = False) then
14 SubmitRecordTORTM(record);
15 if (record.selected = True) then
16 \ v.SelectedRecords++;
17 end
18 end
19 end
20 else

21 \ AddRecord(v, record);

22 end
2 oy — Lreny rd(rr) Td(TT);
Ry |
24 Ju — \/‘U(V)Uu;
25 Gthres < gthrcs+gV;
26 if (gv > gihres + @ & v.elected = False) then
27 for (record € Ry) do
28 SubmitRecordTORTM(record);
29 if (record.selected = True) then
30 | v.SelectedRecords++;
31 end
32 end
33 if (v.SelectedRecords > () then
34 | velected < True;
35 end
36 end
37 for (¢ € suc(n)) do
38 | AddEdges(v, DGGen(c));
39 end
40 end
41 return v;
42 end

records are available to be reused in response to incoming sub-
tasks. Finally, the worker adds the edges that linked the visited
sub-task with its successors after visiting them (Lines 37-39).

Reuse Table Management: The reuse table stores records
of sub-tasks that are likely to be reused in the future. The
table’s size has a strong impact on lookup operation costs. A
large table could maximize the potential of computation reuse,
but at the same time make lookup operations expensive and
lengthy. Regardless of the storage capacity at the edge, the
size of the reuse table should be limited and make the best
use of this limited size. Therefore, when a worker submits a
set of records for a sub-task to be included in the reuse table,
the decision to keep or evict an existing record r is based on
the record’s score S(r) (records with the lowest scores will
be evicted). Therefore, whenever all the records of a specific
atomic service are evicted, the RTM requests the MGM to
wipe out this atomic service from the list of elected ones.
Moreover, RTM shares the minimum record score in the reuse

There is
available space for a
new record

Delete non-selected
records

Period is
consumed

‘ ves Yes No

" v
Decrease the
Pick the atomic service
with minimum time left
Is elected No——| Delete all
records

selected records'
L 5

U]

scores

Reset the period

q

Fig. 5. Merged graph recycling mechanism.

table min_score with MGM to let workers submit updates for
records of an elected vertex only if the scores of these records
are higher than the minimum score (Algorithm 1, Lines 13-18).

Merged Graph Recycling: The merged graph is stored
and managed as an adjacency list based on the architecture
proposed in [39] to reduce the complexity of random access
operations. Due to the incremental process of the merged
graph generation, an efficient mechanism to control its grad-
ual growth and maintain its size is fundamental, especially at
an edge server where storage resources are limited. Different
mechanisms can be adopted to deal with this issue:

e Periodic Recycling: It consists of removing all merged
graph’s records after a fixed period of time regardless
of the merged graph’s actual size. However, the avail-
able storage space for the merged graph could be fully
occupied before the period expires, making the system
incapable of adding new records.

o Threshold-based Recycling: It consists of deleting all
records once the merged graph size reaches a fixed thresh-
old. Although this mechanism ensures space availability
for incoming records, it may be unfair among atomic
services. For example, let us consider two atomic services
a1 and ag, where a; is inserted in the merged graph at
time t1, while ag is inserted after a while at time to
(t1 < tg). Since aj is part of the merged graph for a
longer period of time than ag, it is more likely that a;
becomes a part of the reusable graph.

To address the aforementioned issues, we define a custom
mechanism to control the size of the merged graph and, at
the same time, guarantee a fair and equal opportunity for all
atomic services to join the reusable graph. Essentially, CoxNet
combines both mechanisms that we mentioned above. As
presented in Fig. 5, instead of using a generic period, CoxNet
uses an independent local period for each atomic service, so
that each service is managed individually. Consequently, when
an atomic service consumes its local period, MGM deletes its
records to release storage space. However, when no space is
available to preserve new records, MGM will not wait until
one of the atomic services consumes its local period, but it
will rather remove the records of the atomic service with the
minimum time left.

Although the presented policy guarantees that each atomic
service has an equal period to be in the merged graph and
ensures the availability of space for forthcoming records,

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

772 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

removing the selected records of an already elected atomic
service after consuming its local period leads to decreasing
the opportunity of computation reuse, since these records are
expected to have high reusability. Therefore, CoxNet conserves
valuable records for as long as they are beneficial. When an
elected atomic service consumes its local period, CoxNet resets
its period and keeps only its selected records while the rest
(non-selected records) are deleted. Extending the local period
allows these selected records to accumulate high scores com-
pared to the rest of the records in the reuse table. This can
lead to essentially making these records untouchable by the
eviction policy, since the policy evicts records based on their
scores. Therefore, to avoid this side-effect, CoxNet decreases
the score of selected records to the current minimum score of
the reuse table.

B. Task Admission Policy

The limited computing capacity of edge servers poses a
challenge, especially when the deadline constraint is the pri-
mary factor to consider for received tasks. To prevent edge
servers from accepting tasks beyond their computation capabil-
ities, we propose an admission policy that enables edge servers
to accept only the tasks, whose deadline constraints they can
satisfy. Otherwise, servers forward received tasks that exceed
their computing capacity to the cloud.

Algorithm 2 summarizes the CoxNet admission policy. Once
a task is received for execution by an edge server, CoxNet first
checks if the requested service is available at the server. If this
is not the case, the task is forwarded to the cloud for execu-
tion (Lines 2-4). If the requested service is available at the
edge, CoxNet accepts the task if the server possesses suffi-
cient resources to accommodate its execution. Otherwise, the
received task is forwarded to the cloud. To confirm the avail-
ability of computing resources, one of the following cases
should be verified in CoxNet:

e Case (1): The computation resources currently available

at the edge server e are enough to execute and deliver
the task within its deadline (Lines 7-10).

e Case (2): When the currently available resources are
insufficient, CoxNet explores whether it is able to wait
until the computation resources to be released by termi-
nated tasks are sufficient to satisfy the deadline of the
incoming task (Lines 13-22). To do so, CoxNet seeks
a time-slot P, after finishing task ¢/, where the com-
putation resources available at that time (Py/) will be
enough to meet the deadline of the incoming task. If this
is the case, CoxNet accepts the task and postpones its exe-
cution by Py sec (Lines 18-21). Otherwise, it forwards ¢
to the cloud (Lines 24-27). However, postponing the task
increases its complexity, hence CoxNet recalculates the
task’s complexity (Line 15) to meet its requirements.

By relying on such an admission policy, CoxNet is able
to avoid accepting tasks beyond the computational capac-
ity of edge servers and avoid missing the tasks’ deadline
constraints. It is important to state that whenever a task is
accepted, CoxNet adopts either a computation from scratch or
a computation reuse approach for each sub-task to minimize

Algorithm 2: CoxNet’s Admission Policy

Input: s: requested service, #: Task, A deadline

1 Accept « False;
2 if (s ¢ S€) then
3 | Forward(s,t,A¢); return
4 else
5 Pt — At;
6 ¢e<—‘Ife—ZtGAe 5
7| if (Ve > ¢¢) then
8 Accept «— True;
9 return 1;
10 else
u L «— clone(A®);
// Sort A€ based tasks’ remaining time P
12 Sort(L, Pt);
13 while (3 ¢/ € L & not(Accept) & Py < Pt) do
14 Ye(Pyr) — e + dyr3
15 Pt — W,
16 Pt — At - Pt/;
17 Remove(L, th;
18 if (Ye(Pyr) > ¢y) then
19 Accept «— True;
20 return 1;
21 end
22 Pe — ¢e(Pt/)§
23 end
24 if (not(Accept)) then
25 Forward(s, t,A¢);
26 return 0;
27 end
28 end
29 end

the task’s execution time. CoxNet first calculates the propor-
tional deadlines for all sub-tasks based on the task deadline
Ay¢. The proportional deadline of a sub-task 7; can be obtained
as follows:

PDL(r;)
At - CTTend’
min(UTjES’LLC(Ti) PDL(’T])> — CTT“ i # Tond

if 7 = Tend

where CT, = ? denotes the execution time of sub-task 7.
Then, CoxNet appends an initialization sub-task 7 to the task’s
DAG G}, which represents the predecessor of all starting sub-
tasks. The sub-task 7q is considered as a sub-task without a
workload (w(7m9) = 0). The initialization sub-task is used as
a bridge for the task input data, where D(19) = Dy, and
O(m0) = D(10).

By using the Reuse Table, CoxNet is able to search for
stored tasks that are similar to the received task and reuse
stored results instead of executing the incoming task from
scratch. To schedule a task, CoxNet starts by scheduling the
ready successors of the initialization sub-task Rsuc (7). This
set of sub-tasks are stored based on their proportional dead-
line. Then, for each sub-task 7; € Rsuc(rg), CoxNet checks
whether the requested atomic service has been elected. If it has
been elected, CoxNet searches whether the Reuse Table con-
tains previous executions of this atomic service with input data
that is identical/similar to the incoming sub-task’s input data
D(7;). CoxNet directly reuses the output of such a previous
execution and considers the sub-task as terminated/executed.

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

TABLE 11
EVALUATION PARAMETERS

Items Parameters
Simulation parameters

Atomic service workload range 5-15

Atomic service input range 5-25

Atomic service estimated execution time

100w (1) ns
Lookup workload 5

Threshold 3

Reuse table size (RG size) 400 Records
Number of atomic services 100
Number of services 20

Number of atomic services in the service 30

Number of sub-task in the task 5

Parameters for the Alibaba dataset evaluation

Atomic service input range 4-16
Lookup workload 5

Reuse table size (RG zise) 300 records
Threshold Dynamic

If there is no match in the Reuse Table, the sub-task is redi-
rected to the ready queue, so that it is executed from scratch.
CoxNet maintains a priority-based queue in which sub-tasks
with the earliest deadline are prioritized. This lookup proce-
dure could be bypassed, allowing CoxNet to submit a sub-task
directly to the ready queue when the requested atomic service
is not elected. In this fashion, when a sub-task is executed,
CoxNet iteratively schedules its successors until the whole task
is executed.

VI. EVALUATION

In this section, we present the evaluation of CoxNet in two
phases. In the first phase, we evaluate the performance of
CoxNet via an extensive simulation study using our analytical
model. In the second phase, we conduct our evaluation using
the Alibaba cluster dataset.! We implemented CoxNet in Java
and we conducted our experiments on a computer equipped
with an Intel Core 17-7500U processor and 8GB of RAM run-
ning Windows 10. Our evaluation parameters are shown in
Table II. We have evaluated CoxNet in comparison with the
following strategies:

1) Always Reuse: This strategy aims to increase the reuse
opportunities by conducting a lookup operation on the
reuse table before starting scheduling any subtask. The
updates of the reuse table is based on the Last Recently
Used (LRU) policy.

2) Random: This strategy randomly decides whether a
lookup operation on the reuse table should be done. The
LRU policy is used to update the reuse table.

3) Greedy: Similarly to [40], we implement a greedy
strategy. Its goal is to reduce the overall required work-
load by looking only for sub-tasks that require a high
workload within a task.

To gauge the performance of CoxNet, we select the fol-

lowing evaluation metrics, which are commonly used for the
evaluation of scheduling algorithms and caching policies:

! Alibaba trace: https://github.com/alibaba/clusterdata/.

773

1) Workload: The estimated amount of computation that
must be performed to complete all tasks received by a
server.

2) Execution time: The required time to successfully exe-
cute all received tasks.

3) Lookup rate: The total number of successful lookups
(i.e., that found a match in the reuse table) over the
total number of performed lookups.

A. Evaluation of Analytical Model

We have implemented CoxNet in Java using the JgraphT?
library that covers mathematical graph theory along with a col-
lection of sophisticated graph algorithms. The implementation
consists of the admission policy, the task scheduler, and the
reuse table manager. We evaluated the impact of input range
(number of possible inputs), dynamic threshold, and task’s
distribution on the metrics we mentioned above.

1) Impact of Input Range: To investigate the impact of
the number of possible similar inputs (i.e., the atomic ser-
vice’s input range) on the performance, we generate randomly
10000 tasks and vary the input range within the domain of
[1-100]. Fig. 6(a) shows the performance of different strate-
gies expressed by the required workload to complete all tasks.
For all strategies, the overall required workload increases after
an input range of 4, since with smaller input ranges, the size
of the reuse table can still hold all the performed computa-
tions. CoxNet always achieves the lowest required workload
compared to the other three strategies. This stems from two
reasons: 1) the efficient management of the reuse table’s size:
CoxNet caches only a valuable subset of the inputs of atomic
services and their resulting outputs instead of preserving all
possible inputs as the greedy strategy or including worthless
ones as the random and the always reuse strategies and 2) min-
imizing false lookups: CoxNet conducts a lookup only for an
atomic service with high reusability, maximizing the chances
of finding a reusable result in the reuse table. Another promis-
ing finding is that even with large input ranges for each atomic
service, no extra workload is generated under CoxNet. Even in
the worst case, its performance converges to the without-reuse
performance. However, this is not guaranteed with the rest
of the strategies. They all surpass the needed workload with-
out any reuse for input ranges greater than 20. Furthermore,
their potential generated extra workloads are extremely high.
Notably, with an input range of 100, the always reuse strategy
performs 38% more workload to complete all tasks, followed
by greedy with 28%, and finally the random strategy with 19%.

To uncover the source of this extra workload, we exam-
ined the lookup rate of different strategies. Fig. 6(b) shows
the impact of the input range on the strategies’ lookup rate.
The lookup rate of all baseline strategies records an extreme
decline when the reuse table is unable to hold all required
computation. The greedy strategy lookup rate decreases from
99% to 6%. The always reuse and random strategies show the
same decline. On the other hand, even with a large input range,
CoxNet conserves a remarkable lookup rate (more than 65%).

2y graphT: https://jgrapht.org.

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

774

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

TABLE III
IMPACT OF TASK DISTRIBUTION ON CoxNet’S PERFORMANCE

Strategies
Metrics o 1000 Tasks 5000 Tasks
Distribution . .
Without Always Random Greedy CoxNet Without Always Random Greedy CoxNet
Workload Uniform 375804 270139 323607 210168 213986 1882353 1339425 1612084 1019527 953750
ZipF 335774 189651 262549 226081 160785 1528848 652975 955202 906150 578758
Execution Uniform 37580400 25115932 31628094 20971754 23025794 | 188235300 122989506 155750686 95516704 88354142
Time (ns) ZipF 33577400 16764813 25196363 21372415 14340223 | 152884800 61888245 107429753 107006598 61634997
Lookup Uniform / 0.48046 0.4784 0.72882 0.64070 / 0.4866 0.48518 0.74708 0.77698
Rate ZipF / 0.6692 0.67053 0.61897 0.74708 / 0.7924 0.79145 0.53099 0.83920
Gain (%) Uniform / 33 16 44 39 / 35 17 49 53
ZipF / 50 25 36 57 / 60 30 30 60
Strategies
Metrics
Distribution - 10000 Tasks
Without Always Random Greedy CoxNet
Uniform 3763134 2678177 3222928 2037633 1855774
Workload
ZipF 2894658 1103075 2000968 2269161 1173575
Execution Uniform 376313400 246187927 311272460 190853737 171838771
Time (ns) ZipF 289465800 88466726 189338945 214937568 99469134
Lookup Uniform / 0.48669 0.48589 0.74697 0.82171
Rate ZipF / 0.8962 0.89547 0.48649 0.90210
Gain (%) Uniform / 35 17 49 54
ZipF / 69 35 26 66
NENY
penfre ¢ Y,

(a) Workload (b) Lookup

Fig. 6. Impact of input range.

2) Impact of Dynamic Threshold: The reuse table is
updated through a background process. Even though the side
effect of this process may not impact the task execution time, it
could be costly. For that reason, CoxNet relies on a dynamic
threshold that limits the number of records (i.e., performed
computation) to be checked, and accesses only the records that
are likely to be part of the reuse table. To investigate the effi-
ciency of this design, we evaluated CoxNet with two different
configurations. The first is CoxNet g7 which implies a static
threshold value (i.e., fixed to 3), while a dynamic value is used
in the second configuration (i.e., CoxNet py). For this evalua-
tion, we randomly generate 10000 tasks and we compare both
configurations with the baseline strategies based on the aver-
age time required to update the reuse table. Fig. 7(a) shows
the task’s average execution time split between time spent on
a lookup and the time consumed for execution from scratch.
As we observe, there is no significant difference between the
two configurations. Both of them reduce the required execu-
tion time by 70%. However, there is an indisputable difference
in the average time spent on a reuse table update between the
configurations. Fig. 7(b) shows the average time required to
update the reuse table. CoxNet with a dynamic threshold con-
figuration is 53x faster than CoxNet with a static threshold.

Without Coetsy CoxNetoy Greedy

Random Always Comels Cotletoy Greedy Random Aways.

(a) Execution time. (b) Required time to update reuse ta-

ble.

Fig. 7. The impact of the dynamic threshold on task’s execution.

Moreover, it outperforms other baseline strategies. It is 10x
faster compared to greedy, and 8x faster than both random
and always reuse.

3) Impact of Task Distribution: The distribution of the
requests for atomic services could impact the performance
of a computation reuse strategy. For example, a workload-
centered computation reuse strategy may not be effective
for low request frequencies for atomic services with a high
workload. Likewise, a distribution that asserts similar request
frequencies among the offloaded atomic services could put a
frequency-centered computation reuse strategy in a disadvan-
taged situation. To explore the impact of the atomic service
request distribution on the CoxNet performance, we evaluated
the performance of different strategies under two distributions:

o Continuous uniform distribution: For this distribution, we

use a linear congruential generator to generate similar
request frequency rates for each atomic service. Then
we rely on this distribution to randomly generate 10000
tasks.

o Zipf distribution: The Internet traffic follows the Zipf dis-

tribution, which is a continuous probability distribution.
We generate 10000 tasks following the Zipf distribution.

Table III presents the performance for all strategies under

both distributions based on the workload, the lookup rate, the

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

3.5x1010

Wi|hl)ut —n—‘
CoxNet —e— P
3x1010 Hl Greedy .
Random L
Iways Reuse —M - a
2.5%1010 ,
. = y
L
'§ leolﬂ / . >
2 . - -
2 100 z i e
H ! ¥ -
= a .
1x1010 —~ e -
e = —
o Y e o
5x10° _x - —
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Task

Fig. 8. The total workload of tasks.
3.5¢1012 : T
Without —s#—
CoxNet —8— A
3x1012 1 Greedy -
Random X
Jsaqol2 | Rhvays Reuse —a- A
x
5x10 —
.)(
7 2x1012 -]
< LA . - P
‘E 1.5x1012 = -
i~ - [
. -~ —
1x1012 - =
o - S
5x1011 X e
0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Tasks
Fig. 9. The total task execution time.

execution time, and the delivered gain (compared to cases
where reuse is not applied). Under the continuous uniform
distribution, the greedy strategy achieves the best results. It
achieves a lower workload than CoxNet and outperforms the
rest of the strategies by reducing the execution time by 44%.
On the other hand, CoxNet delivers an acceptable performance.
It reduces the execution time by 39% compared to no reuse.
However, its outcome improves while increasing the num-
ber of tasks. After 5000 tasks, CoxNet achieves the best
performance in terms of execution time by achieving a reduc-
tion of 53%. This improvement is due to the effect of the
number of tasks on the lookup rate, since the accuracy of
identifying reusable computations increases and the lookup
decision-making becomes more precise.

However, under the Zipf distribution, both always reuse and
the random strategies show improved performance. This dis-
tribution also has a positive impact on CoxNet’s performance.
For 1000 tasks, CoxNet outperforms all other strategies and
achieves the same amount of reduction of the execution time
(60%) as the always reuse strategy after completing 5000
tasks. On the other hand, greedy is the only strategy that
receives an adverse impact under the Zipf distribution due to
focusing only on time-consuming atomic services. Overall, the
results confirm that CoxNet achieves high performance even
with extreme task distributions.

B. Real Dataset Experiments

In this subsection, we evaluate CoxNet with a real-world
dataset. We use Alibaba’s dataset, which has almost 3 million
jobs (which we call a task in this work) with their associated

775

DAG dependency information as well as the duration of each
sub-task and its resource utilization in the cluster (e.g., CPU,
memory). We pre-process the dataset to keep only the termi-
nated dependent tasks. Moreover, we normalize sub-tasks in
terms of CPU usage, so that all sub-tasks occupy 100% of the
CPU. We also reduce the duration of sub-tasks to be coher-
ent with the full usage of the CPU. For instance, if a sub-task
occupies 75% of the CPU, its duration is reduced by 25%. We
extract a total of 10000 tasks, where the average number of
sub-tasks within a task is 4. Furthermore, the sub-tasks’ dura-
tions are scaled to a millisecond for every minute to make
them compatible with the characteristics of edge computing
workloads.

Workload Performance: To determine the workload
performance, we first assign a workload for each atomic ser-
vice. This workload is estimated based on the duration of the
atomic service. Each 100ns represents one unit of workload
(e.g., FLOP). The workload of a lookup operation is set as
static regardless of the applied computation reuse strategy.

We compare CoxNet with the different strategies based on
the total workload needed to complete all received tasks. The
results are shown in Fig. 8. CoxNet results in the lowest
workload among all strategies, reducing the overall required
workload by 43-47% compared to cases of no reuse. On the
other hand, the greedy, random, and always reuse strategies
reduce the total needed workload by 1% (up to 28%), 15%
(up to 19%), and 29% (up to 38%), respectively compared to
cases of no reuse. This difference among the strategies relates
directly to the extra workload generated from false lookups.

Execution Time Performance: We further evaluated the dif-
ferent strategies based on execution time with Fig. 9 showing
the evaluation results. The results tie well with former expe-
rience (i.e., the workload performance experiment), where
all the strategies reflect the same behavior compared to
the one observed in the previous experiment. The execu-
tion time required by CoxNet is lower by 147 x 10°(ns)
up to 1491 x 109(ns) than the execution time needed with-
out computation reuse. At the same time, 147 x 109(ns),
562 x 107 (ns), and 1109 x 109(ns) are the maximum corre-
sponding execution time reduction under the greedy, random,
and always reuse strategies, respectively. A further novel find-
ing is that the real performance is higher than the one revealed
on the workload experiment. The performance of CoxNet,
greedy, and the random strategy is greater by 4% compared
to their performance in terms of workload. Only the always
reuse strategy achieves a performance greater than 6% com-
pared to its workload performance. This equal variation of the
first three strategies proves that the time spent on conducting a
lookup is similar among these strategies, while the difference
for the always reuse strategy can be explained by the absence
of lookup-decision-making operations (i.e., no time is spent on
deciding whether to conduct a lookup or compute the sub-task
from scratch).

Lookup Rate Performance: Fig. 10 shows the lookup rate
during the execution of different strategies. Robust results are
achieved by CoxNet, since its lookup rate starts from 75%
and increases until stabilizing to 84% after executing 3000
tasks. On the contrary, the lookup rates of other strategies

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

776 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 2, JUNE 2021

0.9
0.8 s
0.7
0.6 hb— - opr sk
0.5 . Skl IRW SSUH W —
0.4
03

CoxNet —e—
02 Gredy
0.1 Random [
‘ Always Reuse —#- -
I I

Lookup rate

0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tasks

Fig. 10. The total lookup rate.

55

50 —-—e

- —— —— = —— —— |
45 "

.
40 - . Sl T
= gy — =y

3 CoxNet —@—
30 Gredy

Random
Iways Reuse — -

Gain(%)

25

20 —

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Tasks

Fig. 11. The overall reduction.

are not stable during the experiment, where their performance
is inversely related to the number of tasks. The performance
of the greedy strategy drops from 45% with 1000 tasks to
5% after finishing 10000 tasks. The greedy strategy applies a
cache management policy that focuses only on high workload
computations regardless of their popularity. However, under a
near Zipf distribution of the atomic services as the one present
in the Alibaba dataset, this shortcoming leads to a saturation
of the reuse table with computation that is not beneficial for
future reuse. The other strategies show an equivalent behavior.
On the other hand, CoxNet stores the most valuable compu-
tations for future use by essentially providing a cache with
two layers (i.e., merged graph, reusable graph) that takes into
account the potential reusability of an atomic service.
Moreover, the lookup decision policy applied in CoxNet,
in contrast to other strategies, guarantees an awareness of the
cache’s preserved computations. In other words, a lookup is
conducted only if an atomic service requested by a sub-task
is elected, which implies that the reuse table holds at least
one reusable computation for this atomic service. As a result,
CoxNet achieves the lowest probability of false lookups.
Gain Performance: We evaluated the gain (i.e., the time
reduction achieved by each of the strategies) throughout the
experiment. Fig. 11 shows the gain for the all strategies. The
results show that the minimum gain achieved by CoxNet is
initially 48% (after finishing 1000 tasks). This is due to the
limited number of tasks that lead to similar potential reusabil-
ity for the invoked atomic services and their election. This
explains the highest amount of false lookups at this point
(27%) compared to the rest of the experiment (16-20%). After
this point, CoxNet’s gain increases and stabilizes around 50%

during the rest of the experiment. This confirms the posi-
tive impact of the number of tasks on CoxNet’s performance.
However, this is not the case with other strategies, since they
all get adversely impacted as the number of tasks increases.
Random and always reuse strategies achieve their maximum
gains with small number of tasks. Their gains start to decrease
gradually while the number of tasks increases. Although the
always reuse strategy explores all the reuse opportunities, it
does not deliver the highest performance. This confirms the
efficiency of CoxNet, which reuses computation only when it
is likely to perform a positive lookup (i.e., when an atomic
service is elected). On the other hand, the greedy strategy
follows an exponentially decreasing performance, since the
reuse table gets rapidly filled with worthless computations for
future reuse. This phenomenon is clearly shown in Fig. 11,
where with a limited number of tasks, the reuse table can meet
45% of lookups. However, as the number of tasks increases
and the computation results stay in the reuse table without
being reused, the performance of the greedy strategy declines
dramatically.

VII. CONCLUSION

In this paper, we proposed CoxNet, a computation reuse
architecture at the edge that enables edge servers to reuse
previous computations while scheduling inter-dependent tasks.
CoxNet has been validated via an analytical system model
and evaluated using synthetic and real-world datasets. CoxNet
achieved the best performance among various task schedul-
ing and execution strategies due to its efficient computation
caching and lookup mechanisms. Finally, CoxNet consis-
tently outperformed all compared strategies in terms of crucial
factors, such as the range of possible inputs that sub-task
can be invoked with, the arrival task distributions, and the
post-execution burden.

REFERENCES

[1] F. Khan, M. A. Jan, A. U. Rehman, S. Mastorakis, M. Alazab, and
P. Watters, “A secured and intelligent communication scheme for IIoT-
enabled pervasive edge computing,” IEEE Trans. Ind. Informat., vol. 17,
no. 7, pp. 5128-5137, Jul. 2021.

[2] The Internet of Things: Consumer, Industrial & Public Services
2020-2024. Accessed: Nov. 2020. [Online]. Available: https://
www.juniperresearch.com/researchstore/devices-technology/internet-of-t
hings-iot-data-research-report

[3] Cisco Annual Internet Report (2018-2023). Accessed: Nov. 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html

[4] J. Pan and J. McElhannon, “Future edge cloud and edge computing for
Internet of Things applications,” IEEE Internet Things J., vol. 5, no. 1,
pp. 439-449, Feb. 2018.

[5] P. Hofmann and D. Woods, “Cloud computing: The limits of public
clouds for business applications,” IEEE Internet Comput., vol. 14, no. 6,
pp. 90-93, Nov./Dec. 2010.

[6] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, and M. Guizani,
“Multi-access edge computing: A survey,” IEEE Access, vol. 8§,
pp. 197017-197046, 2020.

[71 S. Mastorakis, X. Zhong, P.-C. Huang, and R. Tourani, “DLWIoT: Deep
learning-based watermarking for authorized IoT onboarding,” 2020.
[Online]. Available: arXiv:2010.10334.

[8] O. Serhane, K. Yahyaoui, B. Nour, and H. Moungla, “A survey of ICN
content naming and in-network caching in 5G and beyond networks,”
IEEE Internet Things J., vol. 8, no. 6, pp. 4081-4104, Mar. 2021.

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

BELLAL et al.: COXNET: COMPUTATION REUSE ARCHITECTURE AT EDGE

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

X. Li et al., “Hardware impaired ambient backscatter NOMA systems:
Reliability and security,” IEEE Trans. Commun., early access, Jan. 11,
2021, doi: 10.1109/TCOMM.2021.3050503.

E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proc. Symp. Cloud
Comput., 2017, pp. 445-451.

G. Adzic and R. Chatley, “Serverless computing: Economic and archi-
tectural impact,” in Proc. Joint Meeting Found. Softw. Eng., 2017,
pp. 884-889.

P. Guo, B. Hu, R. Li, and W. Hu, “FoggyCache: Cross-device approx-
imate computation reuse,” in Proc. Annu. Int. Conf. Mobile Comput.
Netw. (MobiCom), 2018, pp. 19-34.

B. Nour, S. Mastorakis, and A. Mtibaa, “Compute-Less Networking:
Perspectives, Challenges, and Opportunities,” IEEE Netw., vol. 34, no. 6,
pp. 259-265, Nov./Dec. 2020.

B. Nour and S. Cherkaoui, “How far can we go in compute-less
networking: Computation correctness and accuracy,” 2021. [Online].
Available: arXiv 2103.15924.

M. Armbrust et al.,, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50-58, 2010.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Comput.,
vol. &, no. 4, pp. 14-23, Oct./Dec. 2009.

M. Tang, L. Gao, and J. Huang, “Communication, computation, and
caching resource sharing for the Internet of Things,” IEEE Commun.
Mag., vol. 58, no. 4, pp. 75-80, Apr. 2020.

M. Krél, S. Mastorakis, D. Oran, and D. Kutscher, “Compute first
networking: Distributed computing meets ICN,” in Proc. ACM Conf.
Inf. Centric Netw., 2019, pp. 67-77.

A. Yousefpour et al., “All one needs to know about fog computing and
related edge computing paradigms: A complete survey,” J. Syst. Archit.,
vol. 98, pp. 289-330, Sep. 2019.

P. Mach et al., “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628-1656, 2017.

S. Mastorakis, A. Mtibaa, J. Lee, and S. Misra, “ICedge: When edge
computing meets information-centric networking,” IEEE Internet Things
J., vol. 7, no. 5, pp. 4203—4217, May 2020.

B. Nour et al., “A network-based compute reuse architecture for IoT
applications,” 2021. [Online]. Available: arXiv 2104.03818

J. Lee, A. Mtibaa, and S. Mastorakis, “A case for compute reuse in future
edge systems: An empirical study,” in Proc. IEEE Global Commun.
Conf. Workshop, 2019, pp. 1-6.

B. Nour, S. Mastorakis, and A. Mtibaa, “Whispering: Joint service
offloading and computation reuse in cloud-edge networks,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2021, pp. 1-6.

A.-C. Nicolaescu, S. Mastorakis, and I. Psara, “Store edge networked
data (SEND): A data and performance driven edge storage framework,”
in Proc. IEEE Conf. Comput. Commun. (INFOCOM), 2021, pp. 1-11.
U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proc. IEEE Int. Conf.
Distrib. Comput. Syst. (ICDCS), 2017, pp. 276-286.

P. Guo and W. Hu, “Potluck: Cross-application approximate dedu-
plication for computation-intensive mobile applications,” in Proc. Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), 2018,
pp. 271-284.

S. Sundar and B. Liang, “Offloading dependent tasks with communi-
cation delay and deadline constraint,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2018, pp. 37-45.

J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), 2018, pp. 207-215.

L. Popa, M. Budiu, Y. Yu, and M. Isard, “DryadInc: Reusing work in
large-scale computations,” in Proc. HotCloud, vol. 9, pp. 2-6, 2009.

P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: Automatic management of data and computation in datacen-
ters,” in Proc. OSDI, vol. 10, 2010, pp. 75-888.

W. Barreiros, Jr., et al., “Optimizing parameter sensitivity analysis of
large-scale microscopy image analysis workflows with multilevel com-
putation reuse,” Concurr. Comput. Pract. Exp., vol. 32, no. 2, 2020,
Art. no. e5403.

L. Li, E. Sparks, K. Jamieson, and A. Talwalkar, “Exploiting reuse
in pipeline-aware hyperparameter tuning,” 2019. [Online]. Available:
arXiv:1903.05176.

H. Shafiei, A. Khonsari, and P. Mousavi, “Serverless computing: A
survey of opportunities, challenges and applications,” 2020. [Online].
Available: arXiv:1911.01296.

[35]

[36]

[37]

[38]

[39]

[40]

777

Q. Huang et al., “SVE: Distributed video processing at Facebook scale,”
in Proc. Symp. Oper. Syst. Principles, 2017, pp. 87-103.

M. Abbasi, A. Najafi, M. Rafiee, M. R. Khosravi, V. G. Menon, and
G. Muhammad, “Efficient flow processing in 5G-envisioned SDN-based
Internet of Vehicles using GPUS,” IEEE Trans. Intell. Transp. Syst., early
access, Dec. 7, 2020, doi: 10.1109/TITS.2020.3038250.

B. Ji et al., “A survey of computational intelligence for 6G: Key tech-
nologies, applications and trends,” IEEE Trans. Ind. Informat., early
access, Jan. 18, 2021, doi: 10.1109/TI1.2021.3052531.

S. L. Kim, H. J. Suk, J. H. Kang, J. Mo Jung, T. H. Laine, and J. Westlin,
“Using unity 3D to facilitate mobile augmented reality game devel-
opment,” in Proc. IEEE World Forum Internet Thin. (WF-IoT), 2014,
pp- 21-26.

W. Jaiyeoba and K. Skadron, “GraphTinker: A high performance data
structure for dynamic graph processing,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), 2019, pp. 1030-1041.

L. Liu, H. Tan, S. H.-C. Jiang, Z. Han, X.-Y. Li, and H. Huang,
“Dependent task placement and scheduling with function configura-
tion in edge computing,” in Proc. IEEE/ACM Int. Symp. Qual. Service
(IWQoS), 2019, pp. 1-10.

Zouhir Bellal received the B.Sc. and M.Sc. degrees
in computer science from Djillali Liabes University,
Sidi Bel Abbes, Algeria, in 2016 and 2014, respec-
tively. He is currently pursuing the Ph.D. degree
with the Ecole Superieure en Informatique, Sidi
Bel Abbes. His research interests include human-
computer interaction, edge computing, and in-
network computing.

Boubakr Nour (Member, IEEE) received the
Ph.D. degree in computer science and technology
from the Beijing Institute of Technology, Beijing,
China. His research interests include next-generation
networking. He is a recipient of the Best Paper
Award at IEEE GLOBECOM in 2018, and the
Excellent Student Award at Beijing Institute of
Technology in 2016, 2017, and 2018.

Spyridon Mastorakis (Member, IEEE) received the
five year Diploma degree (equivalent to M.Eng.)
in electrical and computer engineering from the
National Technical University of Athens in 2014,
and the M.S. and Ph.D. degrees in computer science
from the University of California at Los Angeles
in 2017 and 2019, respectively. He is an Assistant
Professor in Computer Science with the University
of Nebraska Omaha. His research interests include
network systems and protocols, edge computing and
10T, and security.

Authorized licensed use limited to: University of lllinois. Downloaded on September 28,2021 at 23:28:22 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCOMM.2021.3050503
http://dx.doi.org/10.1109/TITS.2020.3038250
http://dx.doi.org/10.1109/TII.2021.3052531

