
Whispering: Joint Service Offloading and
Computation Reuse in Cloud-Edge Networks

Boubakr Nour∗, Spyridon Mastorakis‡, and Abderrahmen Mtibaa§
∗School of Computer Science, Beijing Institute of Technology, China
‡Computer Science Department, University of Nebraska at Omaha, USA

§Department of Computer Science, University of Missouri–Saint Louis, USA
Email: n.boubakr@bit.edu.cn, smastorakis@unomaha.edu, amtibaa@umsl.edu

Abstract—Due to the proliferation of Internet of Things (IoT)
and application/user demands that challenge communication and
computation, edge computing has emerged as the paradigm
to bring computing resources closer to users. In this paper,
we present Whispering, an analytical model for the migration
of services (service offloading) from the cloud to the edge,
in order to minimize the completion time of computational
tasks offloaded by user devices and improve the utilization of
resources. We also empirically investigate the impact of reusing
the results of previously executed tasks for the execution of newly
received tasks (computation reuse) and propose an adaptive task
offloading scheme between edge and cloud. Our evaluation results
show that Whispering achieves up to 35% and 97% (when coupled
with computation reuse) lower task completion times than cases
where tasks are executed exclusively at the edge or the cloud.

Index Terms—Edge Computing, Service Offloading, Compu-
tation Reuse

I. INTRODUCTION

The exponential growth in the volume of data and com-
putation, which traverses the network daily from user de-
vices to distant cloud data centers, result in networking and
systems challenges. These challenges are coupled with the
expectation of users to receive a high quality of experience,
mainly characterized by low-latency and resilient pervasive
computation and/or data access [1]. These trends have led
to new research, tools, and platforms for edge computing,
where computing resources are deployed physically close
to users and offer services that would otherwise be offered
on the cloud, essentially reducing network utilization and
computation time [2]. Yet, selecting which services to migrate
(offload) from the cloud to the edge remains a challenge.

With the proliferation of edge computing solutions, mech-
anisms are needed to efficiently manage computing resources
in order to maximize the computing capacity at the edge [3].
A critical aspect for the maximization of the capacity of
computing resources is to avoid the execution of duplicate
computation whenever possible [4]. To achieve that, we em-
ploy a mechanism called computation reuse, where edge
servers store the results of up to a certain number of tasks
offloaded by users and will (partially or fully) reuse the results
of such already executed tasks for the execution of newly
received tasks.

In this paper, we present Whispering, an analytical frame-
work to optimize service offloading decisions from the cloud
to the edge. To achieve that, the cloud needs to interact

with (“whisper” to) the edge and vice versa. Whispering
enables service providers to minimize the response time for
services that are costly (in terms of communication and
computation) and are more frequently invoked by their users
through offloading these services to the edge. For services
offloaded to the edge, Whispering employs computation reuse
to further reduce the task execution times and maximize
the computing capacity of the available resources. Finally,
Whispering estimates the task completion times at the edge
based on up-to-date information about the utilization of edge
computing resources, offloading tasks to the edge or cloud
in an adaptive manner with the objective of minimizing their
completion times.

Whispering makes two main contributions: (i) it analytically
models the optimization of service offloading decisions from
the cloud to the edge and the management of edge computing
resources, and (ii) it investigates the impact and tradeoffs
of computation reuse at the edge. Our evaluation results
show that Whispering, through its adaptive task offloading
mechanism, achieves up to 35% lower task completion times
than schemes that execute tasks exclusively at the edge or the
cloud. At the same time, computation reuse further optimizes
the performance of Whispering by achieving up to 97% lower
task completion times compared to cases where computation
reuse is not employed.

II. RELATED WORK

Service offloading: Cloud computing offers an abundance
of computing resources for the execution of compute-intensive
applications. Yet, cloud servers are located far away from
users, which makes cloud computing not suitable for delay-
sensitive applications. On the other hand, executing tasks on
user devices may be more efficient since no communication is
required, but it is not feasible as devices (e.g., smartphones,
tablets) have limited computing resources. Offloading services
from the cloud to edge servers offers a tradeoff between
computation and communication. The process of service of-
floading consists of [5]: (i) partitioning the application into
one or more services, (ii) selecting which of these services to
offload, (iii) placing services to remote (edge or cloud) servers,
and (iv) performing computation (task execution) and sending
the computation output (task execution results) back to users.
Messaoudi et al. [6] adopted service offloading for a CPU-

978-1-7281-7122-7/21/$31.00 ©2021 IEEE

IC
C

 2
02

1
- I

EE
E

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 |

97
8-

1-
72

81
-7

12
2-

7/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
42

92
7.

20
21

.9
50

04
57

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

intensive gaming application. Parts of the gaming application
are offloaded to an edge server where the computation is
executed and the results are sent back to the users to be
integrated with the application. Chen et al. [7] proposed a
resource-efficient computation offloading scheme that offloads
computations from Internet of Things (IoT) devices to nearby
devices and edge servers. Lai et al. [8] designed a fairness-
oriented scheme to balance task-sharing and computation
offloading in edge-cloud networks.

Reuse of computation: The notion of computation reuse
has recently attracted attention by the community. Guo et
al. [9] explored the reuse of similar computations across
applications that run on the same device. Guo et al. [10] also
proposed a framework for computation reuse across devices
through machine learning techniques for the identification of
similar tasks. Lee et al. [4] conducted a preliminary, empirical
study to quantify the performance gains of (partially) reusing
task execution results among users at the edge. Furthermore,
Mastorakis et al. [11] proposed an edge networking framework
that handles low-level communication details on behalf of ap-
plications, providing network support to achieve computation
reuse among users in a distributed manner.

The motivation behind our work is to enhance service
offloading with computation reuse at the edge. Our proposed
scheme, Whispering, differs from previous works, since it
takes an analytical approach for the investigation of service of-
floading enhanced with computation reuse, aiming to improve
resource utilization and minimize task completion times.

III. SYSTEM MODEL & PROBLEM FORMULATION

A. System Model & Assumptions

We consider a network formed by a service provider v which
controls: (i) a distant cloud data center, and (ii) a set of edge
servers scattered across a geographic area. We consider an
area where v controls at most one edge server, which we will
refer to as e. Let Q = {q1,q2, . . . ,qu} denote the set of users
subscribed to the service provider v and are co-located in the
area where edge server e resides. These users subscribe to
a set of services R = {r1,r2, . . . ,rn}. A user q sends tasks,
denoted by Tq = {t1

q, t
2
q, . . . , t

h
q }, for remote execution by the

service provider’s cloud or edge servers. We assume that each
of these tasks is independent and uses (invokes) at most one
service ri,1 ≤ i ≤ n.

Fig. 1 illustrates our task offloading framework for compu-
tation at the edge and the cloud controlled by service provider
v. We assume that initially all services invoked by users run
on the cloud. v makes offloading decisions for services that
are widely invoked by its users, relocating the code of these
services to an edge server e to reduce the completion time
of tasks for such services. In the rest of this model, notations
are presented for a period of time τ and are summarized in
Table I. For simplicity, we omit the time in our notations. All
decisions are made on a per time period τ basis.

The service provider v keeps monitoring the received tasks
for the offered services and makes decisions periodically, every
τ, to: (i) let user tasks be executed on the cloud, or (ii) offload

Comp. Code

Reuse Table

Service 1

Comp. Code

Reuse Table

Service 1

...

R
e
u

se

Cloud

Core

Edge

Incoming

Tasks (Input)

Offloading

Task

Fig. 1: Execution of tasks offloaded by users of a service provider
v. Tasks, which invoke a service ri , can run on the cloud or at an
edge server (for offloaded services). Service offloading is tackled as
an optimization problem running at the service provider v.

one or more corresponding service(s) to the edge for the
execution of tasks that invoke the offloaded service(s). During
each period τ, cloud and edge servers will share statistics
about the services they run and the tasks they execute. These
statistics will be gathered by the service provider to make
informed decisions for the next period τ.

Cloud modeling: We assume that the cloud data centers
have unlimited computing resources. Offloaded tasks are dis-
tributed to specific cloud servers through a waiting queue.
The resources are situated further away from users than edge
servers. We assume that services offered by v are pre-installed
on the cloud and ready to execute tasks that invoke them.

Edge modeling: We assume that an edge server e can be
shared by multiple service providers, thus v reserves one or
more slices of computing resources on e to offer a certain
quality of experience to its users. Overall, an edge server
maintains a set of slices, denoted by Se = {s1, s2, . . . , sk}. A
slice is no more than a part of resources dedicated to a service
provider. Each edge server receives tasks that are dispatched
to the appropriate slice based on the service provider and the
services requested, while results are sent back to users [12].

In addition to the computation capabilities and a waiting
queue (used to buffer incoming tasks until the resources of a

TABLE I: Summary of notations.

Notation Description

S Set of slices
Q Set of users
f v Computation capacity on the cloud
f s Computation capacity of an edge slice
bv
q Bandwidth between user and cloud

Dt Task input data
Ft Task complexity
ωv

t Waiting time on the cloud
ωe

t Waiting time at the edge
Γ(t)(q ,v) Communication cost between a user and the cloud
Γ(t)(q ,e) Communication cost between a user and an edger server
χ(t)v Computation cost on the cloud
χ(t)e Computation cost at the edge
L Computation reuse table lookup cost

zst 1-0 Offloading variable:
zst = 1: task computation is offloaded to slice s

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

slice become available if they are occupied), each slice has two
components: (i) slice settings: they describe the characteristics
of the slice in terms of computation (CPU), memory (RAM),
lifetime duration, etc., (ii) computation code: an instance of
the computation program (service) offloaded to the edge – we
assume that a slice can accommodate services according to
the available resources and can execute up a certain number
of tasks simultaneously, and (iii) a computation reuse table: a
data structure used to store the computation results of already
executed tasks so that they can be (partially or fully) reused
for the execution of newly received tasks.

Task modeling: A task t is defined based on two variables:
(i) the input data Dt , and (ii) the execution complexity Ft as
the required resources to execute a task given the provided
input data. Note that the task complexity is a function of both
the size of the input and the complexity of the service.

Communication modeling: Let Γ(t) denote the task com-
munication cost from the user to the edge or the cloud. The
estimated communication cost is based on the size of the task
input data (Dt), the minimum bandwidth between the user and
the cloud/edge, and the waiting time in the queue. Thus, a task
t sent by user q will be executed on the cloud v (we assume
that the cloud and the service provider are co-located) with
the following cost:

Γ(t)(q,v) =
Dt

bvq
+ ωv

t

Similarly, if the same task t is sent to the edge e, the estimated
communication cost is:

Γ(t)(q,e) =
Dt

beq
+ ωe

t

where ωv
t � ωe

t .
Computation modeling: Let χ(t) denote task’s t execution

time, which we refer to as computation cost. The estimated
computation cost at the cloud is based on the task complexity
(Ft) and the cloud computation capacity, and is defined as:

χ(t)v =
Ft

f v

Hence, the overall task completion cost on the cloud, (ζ), is
estimated as the sum of the estimated communication cost
Γ(t)(q,v) and the estimated computation cost χ(t)v , as shown
in the following equation:

ζ(t) = Γ(t)(q,v) + χ(t)v (1)

In the same way, the estimated computation cost for task t
at an edge server e is based on the task complexity and the
computation capacity of slice s:

χ(t)s =
Ft

f s

Hence, the overall task completion cost at the edge, (ξ),
is defined as the sum of the estimated communication cost
Γ(t)(q,e) and the estimated computation cost χ(t)s . So far, we
have assumed that resources are available at the edge when
tasks arrive. However, tasks offloaded to the edge for execution

may have to wait if the slice’s resources are fully utilized.
These tasks will be sent to the cloud that has an abundance
of resources. Therefore, the estimated computation cost χ(t)s

for slice s, is conditioned with the availability of resources for
s, as shown in the following equation:

ξ(t) = Pr [t]
(
Γ(t)(q,s) + χ(t)s

)
+ (1 − Pr [t])ζ(t), (2)

where Pr [t] indicates the probability that a task t will arrive
to the edge server e while resources are available for its
execution.

Estimation of resource availability: The resource avail-
ability is estimated using the probability Pr [t], which will be
computed based on the task waiting time in the edge queue ωe

t ,
the capacity of the slice f s compared to the task complexity
Ft , as well as the arrival rate of tasks λ in a given period of
time τ. We assume that the task arrival time follows a Poisson
distribution and the number of tasks in the slice s is l:

Pr [t] = 1 −
Ft

f s
.

l
λ
. ωe

t

A task t will be executed at the edge with a probability Pr ,
while it will be sent to the cloud with a probability of 1− Pr .
The queuing system is modeled using Little’s Law.

B. Problem Formulation

For any time period, τ, the service provider v decides which
of the received tasks should be executed at the edge and which
ones should be executed on the cloud in order to minimize the
overall cost of task completion. This will subsequently result
in reducing the overall resource utilization of v. We formulate
this objective as a minimization function, where we aggregate
the execution times at the edge and the cloud and minimize the
overall time based on an optimal service offloading strategy.

Objective function: We define the objective function (3a) to
minimize the overall task completion cost at the edge and the
cloud combined for any given time period τ, subject to a set
of constraints based on task complexity, resource availability,
and slice capacity:

minimize
t, s, z

n∑
t=1

k∑
s=1

zst ξ + (1 − zst) ζ (3a)

subject to∑
t∈T

zst Ft ≤ f s ∀s ∈ S, (3b)

zst ∈ {0,1} ∀t ∈ T,∀s ∈ S (3c)

zst denotes whether a task t is sent to an edge slice s (zst = 1)
or the cloud v (zst = 0) for execution. We call zkt the offloading
decision variable.

Tasks will be dispatched to the edge slice s or the cloud
subject to the following constraints: (3b): for any period of
time τ, the aggregate task complexity should not exceed the
slice resource capacity – for instance, a slice cannot accept to
run a service that will need RAM, storage, and CPU resources
that exceed its capabilities, and (3c): the offloading decision

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

variable is binary; zst = 1 if the service is offloaded to an edge
server and tasks invoking this service will also be executed
at the edge. Otherwise, zst = 0 if a service is offered on the
cloud, thus tasks invoking this service will also be executed
on the cloud.

Theorem: The problem is NP-hard.
Proof. The goal of service offloading from the cloud to
the edge is to minimize the execution time. The problem
formulated in (3a) can be represented as a Knapsack problem
which is NP-complete. Therefore, the presented problem is
NP-hard. �

IV. Whispering IN ACTION

To solve the problem introduced in (3a), we propose
a heuristic-based algorithm, Whispering. Whispering imple-
ments a continuous communication channel between edge and
cloud servers to gather information regarding tasks received
and the status of edge slices in order to efficiently select
the set of services to offload to the edge (Section IV-A). To
further reduce task execution times and resource utilization,
Whispering employs the (partial or full) reuse of the results of
previously executed tasks for the completion of newly received
tasks (Section IV-B).

A. Cloud-Edge Service Offloading

The first part of Whispering, illustrated in Alg. 1, consists
of service offloading from the cloud to the edge. Whispering
starts by gathering periodically, every τ time period, statistics
about the tasks that have been executed at the edge e and
the cloud v. All tasks will be aggregated in a pool T . For
each task t ∈ T , the service provider v compares the overall
cost to complete this task at the edge and on the cloud taking
into account both communication and computation costs as
shown in Eqs. (1) and (2). Only the lowest cost (between
task completion at the edge or the cloud) will be saved in a
cost bucket C. For every task, we also measure the frequency
of service invocation as an increment of the frequency f of
service r invoked by t. Subsequently, we sort the cost bucket
based on the frequency f of the invoked service r and the
overall completion cost C. We then offload first the service
with the highest frequency (most widely invoked) and the
lowest overall cost to the edge to maximize the number of
tasks executed at the edge with the minimum cost.

The offloading of services stops when the probability that
received tasks invoking the offloaded services can exhaust all
resources at an edge server e grows – all slices s ∈ e will
be occupied. Once service offloading is done, v checks the
number of remaining services (|R|); if the number exceeds a
given Threshold, v will consider allocating more resources at
the edge, resulting in offloading more services. To add more
slices, we adopt the best fit bin-packaging algorithm.

B. Whispering Coupled With Computation Reuse

Although Whispering’s service offloading scheme can help
reduce the overall cost of task computation and improve the
user quality of experience, the task execution itself is still

bounded by the limited resources that v has at the edge. This
limits the number of tasks that can be executed at the edge in
a given period of time.

To elaborate on the potential gain of a computation reuse
mechanism, let us consider a use-case where the annotation of
a given image is requested by several users. For example, in the
case that several visitors of a museum take pictures of a pop-
ular sculpture with their mobile phones from different angles,
these visitors request the same service (image annotation) with
similar/overlapping inputs (pictures of the same sculpture from
different angles). Assuming that the service provider v offers
this annotation service rannotate to its users (museum visitors),
v may be able to send all the similar/overlapping tasks for
annotation to the same slice. As a result, the edge may be
able to aggregate and reuse common/shared computation parts
instead of re-executing each task from scratch.

Once an edge server receives a given task t for execution,
it will check via a lookup if t is “similar” to a previously
executed task t ′. To enable computation reuse at the edge, as
discussed in Section III-A, the edge server is equipped with
a computation reuse table. The overall cost, (σ), considering
computation reuse will be the sum of the communication cost
Γ(t)(q,s), the reuse lookup cost L, which is conditioned by the
probability of a successful lookup, and the computation cost
C, if partial reuse is possible. Otherwise, the task computation
will be launched from scratch at the edge as shown in Eq. (4):

σ(t) = Pl(t)
(
Γ(t)(q,s) + L +

X(t)s

C(t)

)
+ (1 − Pl(t))ξ(t) (4)

Pl indicates the probability of finding a match in the
reuse table. Pl depends on the size of the reuse table (Z)

Algorithm 1: Whispering service offloading scheme.
1 for (each τ) do

// Receive statistics of already executed tasks.
2 T ← Receive(e, t); T ← T+ Receive(v, t ′);
3 for (each task t ∈ T) do

// Eq. (1) and Eq. (2).
4 C ← min

(
compute(v, ζ(t)), compute(v, ξ(t))

)
;

// frequency of invoking service r .
5 f(r, t)++;
6 end

// Sort services based on cost and frequency.
7 R← sort(T, C, f);
8 while (available slice resources at e) do
9 r ← R.pop();

10 offload(e,r);
11 R← R − {r};
12 end
13 if (|R| ≥ Threshold) then

// best fit bin-packaging.
14 allocate(s ∈ e);
15 while (available slice resources at e) do
16 r ← R.pop();
17 offload(e,r);
18 R← R − {r};
19 end
20 end
21 end

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

and the task execution time (ts). Smaller table sizes result
in a lower probability of finding a match but require less
storage resources [13], while large table sizes have higher
probabilities of finding a reuse match but require additional
storage resources:

Pl = 1 −
1

Z ∗ Tt
When the edge is about to perform a reuse lookup, it

computes the probability of finding a match. If this probability
exceeds a certain threshold, a reuse look is performed, other-
wise the task will be executed from scratch. The reuse gain
is based on the difference between executing a task t from
scratch and the execution delay of t when existing results
are reused. Computation reuse can be full or partial: (i) in
case of full reuse, the received task has the same input data
as an already stored task – in this case, no computation is
required, and (ii) in case of partial reuse, parts of the input
data and/or computation required for the received task can
be found through an already stored task – in this case, some
additional computation will be performed.

V. EVALUATION

In this section, our goal is to evaluate the tradeoffs of the
Whispering design under various settings. First, we present
our evaluation setup and metrics, and then we discuss our
evaluation results.

A. Evaluation Setup and Metrics

We implemented Whispering in Python. Our evaluation
network environment, shown in Fig. 2, consists of a service
provider, which is connected to cloud resources, an edge server
that can offer on-demand (1 to 8) slices, and a set of users.
The computation duration on the cloud varies between 2s to 5s,
while the computation duration at the edge varies between 3s
to 8s. Unless otherwise noted, there are 1000 services offered
by v and users generate 1000 tasks towards v. The input of
tasks varies between 50 to 200 MB.

All tasks are generated by users and are forwarded to the
edge. If the requested service is not available at the edge, a task
is further forwarded to the cloud. For services that have already
been offloaded from the cloud to the edge, computation of
previous tasks can be reused for their execution. We evaluated

 -

tasks/s

10-20 simultanuous task
capacity per slice; 3-8s

execution time

Core Network
10 Gbps Links

1-8 slices
 e

1-3 hops
5-8 hops

Cloud
(co-located with v)

i

2-5s
execution

time

. .

. .

. .

Fig. 2: Evaluation network setup and parameters.

Whispering’s performance as well as the potential gain of
enabling computation reuse based on the following metrics:
• Average task completion time: The time elapsed between

the generation of a task by a user, the execution of the task
(either at the edge or the cloud), and the reception of the
results of the task execution by the user.

• Average waiting time: The time elapsed between the
reception of a task by the edge/cloud and the beginning of its
execution. This metric highlights the time spent by the tasks
waiting in the queues for computation at the edge/cloud.

• Number of offloaded services: The number of services the
cloud has offloaded to the edge.

• Resource utilization: The utilization of the slices’ resources
(percent of the capacity of the resources that is currently
utilized).

• Resource load: The amount of computation executed at the
cloud, the edge, or the edge after performing reuse to satisfy
received tasks.

B. Evaluation Results

Fig. 3 illustrates the average task completion time as the
number of received tasks increases. Our results indicate that
executing tasks at the edge and randomly distributing the exe-
cution of tasks between the edge and the cloud initially results
in lower completion times than executing tasks exclusively
on the cloud. However, as the number of tasks increases,
the edge computing resources that have a capacity of four
slices get fully utilized. To this end, tasks offloaded to the
edge have to wait for edge resources to become available for
times longer than offloading these tasks for execution on the
cloud, which has a sufficiently large capacity of resources.
Moreover, our results show that as the number of tasks grows,
Whispering (even with a capacity of a single slice) outperforms
the execution of tasks exclusively at the edge or the cloud as
well as the random task offloading between edge and cloud.

Fig. 4 shows the average task waiting time as the number of
executed tasks grows. Our results show that as the number of
received tasks grows, the waiting time increases. At the same
time, as the resource capacity increases, the wait time reduces.

In Fig. 5, we present results on the utilization of computing
resources and the number of services offloaded from the cloud
to the edge as we increase the number of slices at the edge
for 1000 received tasks. The results show that the number

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700 800 900 1000

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

)

Number of Tasks

Cloud
Edge

Random [4 Slices]
Whispering [1 Slice]

Whispering [2 Slices]
Whispering [4 Slices]

Fig. 3: Average task completion time.

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 200 300 400 500 600 700 800 900 1000

A
vg

. W
ai

tin
g

Ti
m

e
(s

)

Number of Tasks

Whispering [1 Slice]
Whispering [2 Slices]
Whispering [4 Slices]

Cloud

Fig. 4: Average task waiting time.

of offloaded services from the cloud to the edge increases
exponentially with the number of slices. Furthermore, Whis-
pering is able to fully utilize all the available edge computing
resources for up to six slices, while for eight slices the
resource utilization is about 80%, since most services have
been offloaded to the edge and the edge has still resources to
execute more tasks.

 0

 0.25

 0.5

 0.75

 1

 1 2 3 4 5 6 7 8
 0

 25

 50

 75

 100

O
ffl

oa
de

d
S

er
vi

ce
s

U
til

iz
at

io
n

(%
)

Number of Slices

Offloaded Services
Resource Utilization

Fig. 5: Resource utilization.

In Fig. 6, we present results on the load of the computing
resources for 1000 received tasks. Our results indicate that as
we increase the number of slices at the edge, more services
can be offloaded from the cloud to the edge. As a result, more
computation is executed at the edge rather than the cloud.
Yet, by adopting the computation reuse mechanism, the edge
reuses the results of previously executed tasks, thus reducing
the overall amount of performed computation.

Finally, in Fig 7, we present the average task completion
time as we increase the total number of available services
to demonstrate the performance benefits of reuse. Whispering
with computation reuse achieved 12-97% lower task comple-
tion times than Whispering without reuse. The impact of reuse
decreases as the number of available services increases, since
the number of tasks per service that can be stored for reuse
purposes decreases (assuming a fixed capacity of task storage
resources). At the same time, Whispering without reuse can
still achieve about 35% lower task completion times compared
to executing tasks exclusively at the edge or the cloud.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 Slice 2 Slices 4 Slices

N
or

m
al

iz
ed

 L
oa

d Cloud Edge wo Reuse Edge w Reuse

Fig. 6: Resource load.

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700 800 900 1000

A
vg

. C
om

pl
et

io
n

Ti
m

e
(s

)

Number of Services

Cloud
Edge

Without Reuse
With Reuse

 0

 25

 50

 75

 100
reuse gain (%)

Fig. 7: Average completion time with reuse.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented Whispering, an analytical
scheme for service offloading from the cloud to the edge.
Whispering aims to minimize the task completion times and
improve resource utilization. To further reduce task completion
times, Whispering employs a computation reuse mechanism,
utilizing the results of previously executed tasks for the
completion of newly received tasks. As part of our future
work, we plan to evaluate the tradeoffs of Whispering through
a real-world deployment and extend its design with analytical
modeling of computation reuse and segmentation of tasks into
a computation graph of subtasks.

ACKNOWLEDGEMENTS

This work was partially supported by the National Insti-
tutes of Health (NIGMS/P20GM109090), the National Science
Foundation under award CNS-2016714, and the Nebraska
University Collaboration Initiative.

REFERENCES

[1] A. Filali et al., “Multi-Access Edge Computing: A Survey,” IEEE
Access, 2020.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
2017.

[3] B. Nour et al., “Compute-less networking: Perspectives, challenges, and
opportunities,” IEEE Network, vol. 34, no. 6, pp. 259–265, 2020.

[4] J. Lee et al., “A case for compute reuse in future edge systems: An
empirical study,” in IEEE GLOBECOM Workshops, 2019, pp. 1–6.

[5] J. Wang et al., “Edge cloud offloading algorithms: Issues, methods, and
perspectives,” ACM Computing Surveys, 2019.

[6] F. Messaoudi et al., “Toward a mobile gaming based-computation
offloading,” in IEEE ICC Conference, 2018.

[7] X. Chen et al., “ThriftyEdge: Resource-efficient edge computing for
intelligent IoT applications,” IEEE Network, 2018.

[8] S. Lai et al., “FairEdge: A Fairness-Oriented Task Offloading Scheme
for Iot Applications in Mobile Cloudlet Networks,” IEEE Access, 2020.

[9] P. Guo et al., “Potluck: Cross-application approximate deduplication for
computation-intensive mobile applications,” in ACM ASPLOS, 2018.

[10] P. Guo et al., “Foggycache: Cross-device approximate computation
reuse,” in ACM MobiCom, 2018.

[11] S. Mastorakis et al., “ICedge: When edge computing meets information-
centric networking,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4203–4217, 2020.

[12] S. Mastorakis et al., “Towards service discovery and invocation in data-
centric edge networks,” in IEEE ICNP Conference, 2019.

[13] A.-C. Nicolaescu et al., “Store Edge Networked Data (SEND): A Data
and Performance Driven Edge Storage Framework,” in IEEE INFOCOM
Conference, 2021.

Authorized licensed use limited to: University of Illinois. Downloaded on September 28,2021 at 23:27:33 UTC from IEEE Xplore. Restrictions apply.

		2021-08-04T13:50:26-0400
	Preflight Ticket Signature

