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ABSTRACT

Utilities and local power providers throughout the world have recog-
nized the advantages of the “smart grid” to encourage consumers to
engage in greater energy efficiency. The digitalization of electricity
and the consumer interface enables utilities to develop pricing ar-
rangements that can smooth peak load. Time-varying price signals
can enable devices associated with heating, air conditioning, and
ventilation (HVAC) systems to communicate with market prices in
order to more efficiently configure energy demand. Moreover, the
shorter time intervals and greater collection of data can facilitate
the integration of distributed renewable energy into the power grid.
This study contributes to the understanding of time-varying pricing
using a model that examines the extent to which transactive energy
can reduce economic costs of an aggregated group of households
with varying levels of distributed solar energy. It also considers the
potential for transactive energy to smooth the demand curve.
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1 INTRODUCTION

This study examines the interaction of transactive energy with
distributed generation for a localized community of consumers who
also produce some of their own electricity. In other words, it creates
a virtual power plant (VPP) that is managed by pricing signals and
adopts widely discussed parameters (variables), such as pricing
techniques, battery presence, distributed energy resources (DERs),
and load management through remote adjustment of appliances
such as air conditioning units.

The key contributions of this study are twofold. First, it tests
the effectiveness of pricing techniques to control load management.
The findings of this paper can be directly applied in real life settings
as it uses real energy consumption and weather data in Sacramento,
California (CA). Second, by adopting several parameters, such as
battery use, solar penetration rate, wattage of solar, and pre-cooling
systems, this study attempts to produce the most effective trans-
active energy model that adopts solar energy. In this sense, the
findings can lead to policy proposals that aid the development of
transactive energy systems. It is especially applicable for regions
where the solar penetration rate is high and increasing.

Transactive energy (TE) refers to the combination of economic and
control techniques to improve grid reliability and efficiency [15]. One
of the fundamental goals of TE is to coordinate the operation of new
energy systems that contribute to the efficiency and reliability of
the grid, which include many DERs. DERs refer to renewable energy
generation technologies deployed in the distribution grid [13] at
consumer’s side and include local storage batteries, roof-top solar
photovoltaic units, wind-generation units, and biomass generators.
This study specifically focuses on the adoption of distributed solar
energy and battery presence.

The study uses energy and pricing generation data from Sacra-
mento, CA. In general, the state has government policies with
relatively advanced use of time-of-use pricing and distributed en-
ergy generation. Customers in the state are served by public power
companies for some cities (e.g., Sacramento, CA), rural electricity
cooperatives, investor-owned utilities, and increasingly community-
choice aggregation (CCA) organizations. The state does not have
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retail competition for customers, but CCAs in California have grown
rapidly [12] [21]. Customer aggregation occurs when a local gov-
ernment or group of local governments enroll customers in their
jurisdiction to purchase electricity for them as a collective unit. Do-
ing so can provide customers with better prices. In California, some
CCA organizations developed or launched in a form where the lo-
cal government is involved in managing contracts and supporting
energy efficiency and renewable energy generation, and the CCA
organization begins to approximate a public power agency [20]. In
these more advanced forms of CCAs, there is growing interest in
VPPs. This research focuses on examining various DER configura-
tions in VPPs.

Although the data and context are based on California, the analy-
sis is relevant for other electricity utilities, cooperatives, and public
power organizations in other states or countries that are consider-
ing the use of VPPs to enhance grid stability and efficiency. Any
electricity provider that also wants to integrate higher levels of
distributed renewable energy with pricing programs for demand
management would find the analysis to be relevant. The study
generates experiments to model the effects of TE on energy con-
sumption decisions with varying levels of distributed renewable
energy and examines the effects on household costs.

The central research question is: what are the most efficient pa-
rameters in a decentralized energy system? In answering this ques-
tion, several relevant parameters are considered, such as pricing
techniques, battery presence, the penetration rate of DERs, and
load management and pricing optimization techniques such as pre-
cooling. The two pricing techniques tested were time-of-use pricing
(TOU) and real-time pricing (RTP). In TOU, the price follows a set
schedule, generally changing a few times throughout the day. In
RTP, the price is varied over very short time intervals based on pro-
jected demand in those time frames. The experimental results show
relationships between various combinations of these parameters
and their effects on smoothing of the demand curve.

2 MOTIVATION

The use of DERs for energy generation has been increasing in
California, which has the highest installed capacity of DERs in
the United States with 3154 MW of DERs installed in 2014 [13].
However, despite their popularity, installation and maintenance
cost is deterring many potential consumers from transitioning to
DERs. A simulation model that indicates the economic savings of
DER adoption and the most effective DER model could encourage
more consumers to adopt DERs.

In addition, emerging TE technologies could smooth the demand
curve and provide energy price systems that adhere to the supply
and demand of energy at any given time [8] [17]. These benefits
are expected to lead to more efficient grid management and cost
savings. This study will help to clarify how different real-time pric-
ing configurations interact with changes in the grid configurations,
including DERs and energy storage.

By directly linking DER and TE and by using real-world data,
this study builds on and complements experimental projects such
as [11] [25] [14] by exploring a wider range of potential config-
urations of parameters than those are generally found in these
projects.
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Power grids equipped with TE are a highly complex CPS with
additional human and economic factors that must be considered. A
systematic approach to automate design of RTP models can lead to
more adaptive load management as well as operational efficiencies.

3 RELATED WORK
3.1 Distributed Energy Resources

The role of distributed energy resources (DERs) has become increas-
ingly important, particularly as the shift towards renewable energy
becomes more prevalent. Concurrent with the growth of DER is
the development of energy storage technologies, such as battery
energy storage systems and flywheels [4].

DERs can be configured as microgrids and VPPs for enhancing
their efficiency, cost effectiveness, and resilience [19]. In particular,
VPPs are considered to be a cost-efficient integration of DERs [6].
This study contributes to the existing literature by examining vari-
ous configurations of DER in a VPP setting that uses TE.

3.2 Transactive Energy

Transactive energy (TE) has been widely discussed in the literature,
and it is considered as one of the key energy technologies that
will result in more renewable and sustainable energy production
and consumption. The advantages of TE are largely twofold: first,
it allows for more predictive energy demand and consequently
more efficient load management [9]. For example, [22] argued that
buildings are 70 % of the load on today’s grid, which makes the
shape of electricity loads critically important in improving energy
efficiency. TE can play an important role in smoothing the daily load.
Second, for various reasons (more efficient load, integration of DER,
etc.), transactive energy is also expected to dramatically reduce
energy costs for both consumers and producers [9]. Transactive
systems have been shown to reduce expected costs up to 75 % when
local markets and flexibility are considered [18].

In this sense, real-time pricing (RTP) is one of the key charac-
teristics of TE [8]. RTP requires constant data collection, often as
frequent as every 5 minutes, which allows for more efficient peak
demand and use of energy [27]. A 5 % reduction of peak demand
can lead to $3 billion savings in the United States [10]. Furthermore,
peak load reductions can lead to environmental benefits and a re-
duction of emissions. On the consumer side, there are economic
benefits of RTP. Zethmayr and Kolata found that 97 % of regional
customers would have saved money with RTP without changing
their behavior because flat-rate supply service tends to incur higher
bills than the hourly market price [27].

However, there are also challenges associated with RTP. One of
the biggest challenges is privacy because there is a constant col-
lection of energy consumption data. In order to solve the problem,
there is ongoing innovation in privacy standards, guidelines, and
regulation in various countries [16].

One of the most commonly used implementation methods for
price modification is transactive incentive signals, in which the
signal is sent by the utility to each consumer. Another commonly
used implementation method is the transactive feedback signal,
which is sent from the consumer to the utility and contains infor-
mation regarding expected energy use. This has been modeled as
time-of-use-based demand-response [24].
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4 EXPERIMENT DESIGN

In order to simulate the community, their energy use, and the
effect of different parameters, the system is modeled in a widely
used open-source power-distribution system simulator known as
GridLAB-D [7].

The simulation is based in Sacramento, CA, where DERs are
widely prevalent and the region has sufficient weather variations to
demonstrate dynamic feedback and control. The simulation models
a community with 544 residential houses and 26 businesses using
2017 weather data, which was the latest and most reliable weather
data for that area [3]. In order to optimize solar DER, a number of
parameters are employed, such as solar panel power, solar panel
penetration, the presence or absence of batteries, and pre-cooling.
All simulations were run from 0:00:00 8/1/2017 to 0:00:00 8/15/2017.
No heating was added to the model because it is unlikely that heat-
ing will be used in this area during the summer periods. Running
the same simulation in the winter months likely would have re-
sulted in solar panels and batteries used to store solar energy for
later use and in having a reduced ability to flatten the load curve.

The above parameters were varied to observe their effects on
the relevant outcomes: reducing utility demand, cutting costs for
communities, reducing peak load on the system, and flattening the
load curve. Each parameter combination was paired with both the
TOU and RTP price schedules.

The functionality through which these outcomes could be im-
proved is demand response. In other words, consumers will alter
their energy demand based on changes in price. This is included
in the model in the HVAC units. The behavior of these units is
modeled by passive controllers in GridLAB-D, which, according to
the procedure described in the following section, will decrease air
conditioning use when prices are high.

4.1 Data Collection

Data were collected using government websites that published
energy data, independent solar companies’ websites, and other
published data. Simulating a model requires assumptions on energy
consumption, the choice of solar panels (i.e., efficiency of the solar
panel), battery storage, and energy pricing scheme. Consequently,
the following assumptions were made based on the data collected.
Each household in California consumes approximately 546 kWh per
month. This assumption is based on the 2018 data published by the
U.S. Energy Information Administration [1]. This is the most recent
dataset available for energy consumption per state, and there was
little change in energy consumption in California from 2016 and
2018. Therefore, it is assumed that there is little change in energy
consumption from 2018 to 2020.

Solar panels tend to vary in prices and efficiency. The five most
popular solar panels in California (Solar Estimate 2020) were av-
eraged, which makes the efficiency of the simulated solar panels
19.52 %. The average size of home solar installations in California
in 2019 was 7 kW.

4.2 Experiment Parameters

Pricing technique: One of the key characteristics of TE is the
adoption of different pricing techniques. This study adopts two dif-
ferent pricing techniques: time-of-use (TOU) and real-time pricing
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(RTP). TOU is one of the most widely used pricing techniques cur-
rently used in California. RTP is currently not deployed because of
regulatory limitations regarding energy data collection, but it is the
most commonly used pricing structure in TE [26]. Therefore, using
an alternative platform such as simulation modeling is particularly
useful in comparing these two pricing techniques. The two pricing
systems are explained in detail in Section 5.

Wattage of the solar system: Simulations were executed with
5 kW solar panels, a common residential solar system generation
capacity, and 7 kW, the most common generation capacity of resi-
dential installations in California.

Battery presence: The simulation also considers whether bat-
tery presence changes the efficiency of DERs. Batteries are consid-
ered particularly useful in many solar systems because they can
provide energy after the sunset or even during days when direct
sunlight is not available due to the weather restrictions. Each house-
hold is assumed to contain one battery storage system modeled
on Tesla Powerwall, which includes a built-in inverter. However,
the battery model can be configured for different capacities. One
battery is assumed to be enough because it not only simplifies
modeling, but, more importantly, it also removes the constraint of
using two batteries at all houses, which could be cost prohibitive
for some houses. Moreover, a single battery with configurable ca-
pacity makes the study more adaptable and flexible under different
conditions and for different areas.

Solar penetration rate: The simulation introduces variation in
the solar penetration rate of the community to analyze the extent to
which solar adoption affects the demand curve, and consequently,
grid management and reliability. Therefore, three different solar
penetration rates are tested: 0 %, 25 %, and 50 %.

Pre-cooling: Without pre-cooling, the behavior of HVAC sys-
tems is determined only by the current price of power. With pre-
cooling enabled, HVAC systems will cool houses in advance of
future power price increases, with the goal of saving money for
consumers. Both conditions are tested.

5 SYSTEM ARCHITECTURE

In this section, we describe our approach to modeling the power
grid and load, TOU and RTP pricing, and experiment automation.

5.1 Modeling the Grid and Load

The GridLAB-D model is based on the feeder model R1-12.47-2 [23]
developed by Pacific Northwest National Laboratory (PNNL). The
feeder model is comprised of a moderately populated suburban and
sparsely populated rural area in which approximately 70 % of the
circuit-feet are overhead and 30 % are underground. This feeder
model was extended by adding triplex meters connecting existing
triplex nodes to the houses. Triplex meters were also added to
connect each solar panel and inverter pair to the grid (see Figure 1).
In addition to power consumption from the HVAC, each residential
house was connected to two ziploads: one using GridLAB-D’s built-
in unresponsive_load schedule, and the other using the built-in
responsive_load schedule. The power use for the 26 commercial
entities in the simulation was setup with unresponsive ziploads.
Each business had loads modeling interior lighting, exterior lighting,
plugs, gas waterheater, and occupancy.
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Figure 1: Part of the Grid Model used in Experiments

Consumer response to price changes is primarily modeled by
a passive controller connected to each residential home’s HVAC
system. All HVAC’s in our model were electric. These passive con-
trollers respond to the price changes in the stubauction object (a
basic GridLAB-D auction module), determined by the price schedule
being used. The parameters range_low and range_high represent the
most the consumer is willing for their house temperature to change
due to transactive control. The range_low parameter was set as a
random number in the range between -1 and -2, and range_high
was set at a random number between 2 and 4. This means that the
consumer with average preferences (76 °F base temperature) would
be willing to have their HVAC vary the temperature between about
74 °F and 80 °F.

The stubauction object in GridLAB-D was used in conjunction
with passive controllers, which responds to price changes. The
stubauction period was 300 s, meaning that RTP price updates
occur every 5 minutes.

Within the maximum range of temperature alterations, HVAC
behavior is modeled by piece-wise functions [2] corresponding to
customer willingness to change temperature within their maximum
range. Variable ramp_high represents the temperature increase that
would accompany a 1 standard deviation increase in price. Variable
ramp_low represents the temperature decrease that a customer
would be willing to pre-cool to in the case of a price 1 standard
deviation below average. Both ramp_high and ramp_low are set to
a random number between 1 and 4.

Group IDs were assigned to each triplex meter indicating whether
it was residential, commercial or solar meter. Using these group
IDs, collectors aggregate the data from each of residential, commer-
cial, and solar entities to get a clear picture of energy production
and consumption in each simulation. The default powerflow solver
method in GridLAB-D, Forward Backward Sweep (FBS), was used
for the simulation. The minimum timestep in GridLAB-D was set to
15 s, which was found to offer enough precision without resulting
in prohibitively long simulation runtimes. Treatment of transient
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stability would require enforcing transient stability thresholds as in-
variants and relating transient stability with price variations, which
is outside the scope of this paper.

The temperature inside the house can greatly affect the energy
bill. The average cooling temperature in hot-dry states, which in-
cludes California, is 76.4 °F [5]. The cooling set points were ran-
domized for each house using a uniform distribution within 2 °F of
this average, between 74 °F to 78 °F. This specific range was chosen
to give variation among different households, which would result
in a more realistic data.

5.2 TOU & RTP Pricing

For TOU, data were used from Marin County, CA. During weekdays,
the peak demand period is from 1 p.m. to 7 p.m. and park peak period
is from 10 a.m. to 1 p.m. as well as 7 p.m. to 9 p.m. During weekends,
the park peak period is from 5 p.m. to 8 p.m. All other hours are
considered off-peak hours.

RTP price schedules are generated from the results of TOU simu-
lations. Two strategies were employed to reduce peak power usage
and flatten the demand curve: raising prices during times of high
usage and lowering prices in advance of high usage periods, both
based on the TOU simulation results. Two lookahead periods were
used in which the demand over the next set of time-frames would be
averaged together. In the first, shorter lookahead period, higher de-
mand in the TOU simulation corresponds to proportionally higher
price for the RTP price schedule. In the second, longer lookahead
period, higher demand in the TOU simulation would correspond
to a proportionally lower price for the RTP price schedule. These
two candidate price schedules are averaged together according to a
weighting.

Based on the TOU simulation results, let Up be the mean power
usage in the previous ’x” time-slots of 5 minutes each, and Uy, be the
mean power usage in the next 'y’ time-slots of 5 minutes each, A be
the average power usage for the entire simulation, and w1 and w2
be the weighting of the ’x” and ’y’ lookahead periods respectively
(where, w1 + w2 = 1), then

Py = Up /A * avg_price 1)
P_=(2-A/Up) * avg_price )
Pp=Ppx wl+P_xw2 3)

After setting up TOU and RTP capabilities, parameters x, y, and
wl (as w2 = 1 - wil) were varied to determine the best combina-
tion for an RTP price schedule. The process of generating price
schedules, running the GridLAB-D simulation, and processing the
results of the simulation were automated with a bash script. After
each simulation run, results such as residential load, commercial
load, and solar load were reported every 5 minutes. From these
results, a Python script automatically calculated metrics such as
the peak power demand, the standard deviation of power demand,
and a statistic we created: a 6-hours MaxMing. In MaxMing metric,
the average of 5 minimum load time-frames was subtracted from
the average of 5 maximum load time-frames over each 6-hours
time-period of the simulation. This metric aimed to show which
simulation parameters resulted in large variation over short time-
frames, even if the absolute peak load over the simulation wasn’t
extremely high.
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Name Max (VA) | SD(VA) | MaxMing(VA) | ResBill ($) | Sol Bill ($)
7_batt_RTP_50 2070750 306491 2113857 65.09 -62.94
7_batt_RTP_50_nopre 2179040 324463 2142096 64.18 -61.71
5_batt_ RTP_50 2464840 358899 2389285 74.73 -15.67
5_batt_RTP_50_nopre 2501670 377959 2403859 73.96 -14.88
7_batt_RTP_25 2469690 425150 2653535 82.51 22.98
7_batt_RTP_25_nopre 2460750 438485 2658196 82.15 22.94
5_batt_RTP_25 2766350 457178 2834549 87.24 45.01
5_batt_RTP_25_nopre 2700960 470534 2872458 86.98 44.77
5_nobatt_RTP_50 2538620 419921 3036072 74.75 -7.45
7_batt_TOU_50 3188990 348845 3210814 69.55 -81.64
7_batt_ TOU_50_nopre 3185220 347426 3219136 69.35 -81.84
7_nobatt_RTP_50 2485180 436913 3340449 65.55 -44.11
0_batt_RTP_50 2860000 560933 3399355 99.30 99.30
0_batt_RTP_25 2816270 562452 3416696 98.86 98.86
0_nobatt_RTP_50 2901270 559742 3436602 99.06 99.06
0_batt_RTP_50_nopre 2883640 577873 3508441 98.43 98.43
0_batt_RTP_25_nopre 2986200 578469 3538669 98.76 98.76
5_batt_TOU_50 3550930 403705 3638344 80.60 -27.39
5_batt TOU_50_nopre 3527530 404007 3671989 80.47 -27.52
7_batt_TOU_25 3461310 467367 4025024 89.99 18.35
7_batt TOU_25_nopre 3453180 468556 4061837 89.80 18.16
5_batt_ TOU_25 3591500 499584 4356122 95.25 44.08
5_batt TOU_25_nopre 3621350 500911 4377977 95.13 43.96
7_nobatt_TOU_25 3626040 500120 4480413 90.68 19.04
5_nobatt TOU_50 3619740 481036 4493945 81.75 -26.24
5_nobatt_TOU_25 3642000 522936 4561583 95.79 44.62
7_nobatt_TOU_50 3656030 496599 4816567 70.99 -80.20
0_batt_TOU_50 3637330 611532 5055585 107.96 107.96
0_nobatt_TOU_50 3659540 609829 5064896 108.57 108.57
0_nobatt_TOU_25 3640000 609522 5070649 108.50 108.50
0_batt_TOU_25 3649990 610658 5081957 108.31 108.31
0_batt_TOU_25_nopre 3652230 611289 5098970 107.96 107.96
0_batt_TOU_50_nopre 3645750 613297 5128058 107.84 107.84

Table 1. Simulation Results

The values of x = 6 time-slots (30 minutes), y = 115 time-slots
(575 minutes), wi = 0.1, and w2 = 0.9 were found to minimize peak
load, standard deviation, and 6-hours MaxMing.

5.3 Experiment Automation

In order to run large numbers of experiments efficiently, the pro-
cess of running GridLAB-D simulations was automated using a
bash script (see Figure 2). The simulations are run by entering the
following line (or a variation) in git bash:

sh runGLD.sh panel_power battery <.GLM file> x y wi

Here, panel_power is an integer representing the power in kW
of the solar panels; battery specifies running a simulation with 13.5
kW batteries, while the alternative nobattery specifies running a
simulation with no batteries present.

First, the bash script edits the price schedule generation Python
script using the desired parameters: x, y, and wi. The price sched-
ule generation script then executes, using these parameters and a
previous TOU simulation to generate the new price schedule. Next
the bash script edits the GridLAB-D model file according to the
specified parameters. After the simulation, the bash script gener-
ates the bills for residential customers with solar panels, residential
customers without solar panels, and commercial entities, as well as
calculating descriptive statistics of the power load graph.

6 EXPERIMENT RESULTS

Table 1 shows a subset of the simulations run along with some
evaluation metrics. The name of the simulation is comprised of the
following parameters in order:
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e Power generation capacity of the solar panels (0 kWh, 5 kWh,
or 7 kWh);

o batt if the simulations have batteries present, otherwise no-
batt;

e RTP if real-time pricing was used, and TOU if time of use
pricing was used;

o The percentage of residential houses that have solar panels
(25% or 50%); and

e nopre if precooling was disabled for that simulation.

The column names in the simulation results, from left to right,
shows: name of the simulation (Name); grid power load (Max);
the standard deviation of grid power (SD); the differences between
maximum and minimum (MaxMing — defined in Section 5); the
power bill for residential customers without solar panels for the
2 weeks simulation (ResBill); and the power bill for residential
customers with solar panels for the 2 weeks simulation (SolBill).

6.1 Effects of Parameters on Power Costs
There were three main effects of the parameters on power costs:

(1) RTP vs TOU pricing: The RTP model used for this study
does not seem to drastically reduce prices for consumers.
We observed that in each RTP vs TOU simulation pair in
which the other variables were held constant, RTP slightly
reduces the energy bill for residents without solar panels,
and increases the energy bill for residents with solar panels.
One potential reason for this could be shifting of slightly
higher prices to price responsive customers.

Battery storage: Batteries are found to have little effect on
the energy bill of residents without solar panels, but reduce
the bill for residents with solar panels. A potential reason
for this could be that for customers without solar panels,
battery could serve to store power during lower prices, which
could later be used when prices rise. On the other hand, for
customers with solar panels, the effect of local storage might
be negated by the higher prices they could get by pushing
excess power in the grid during that time.

Solar panel penetration and generation capacity: Higher
solar panel penetration and higher solar panel power gener-
ation capacity both correspond with significant reductions
in the energy bill for both categories of customers due to
overall reduction in power demand from utilities.

—
)
~

—
[SY)
=

6.2 Effects of Parameters on the Duck Curve

There were also significant impact of the parameters on the duck
curve (a graph of grid power load that dips in the middle of the day
during solar power generation and then rises at the end of the day
as people use more power in the evenings) as follows:

(1) RTP vs TOU pricing: RTP significantly smoothed the duck
curve when compared to TOU by shifting load before peak
usage (see Figure 3). RTP simulations have lower max power,
standard deviation (SD), and MaxMing than TOU simula-
tions when other variables are kept constant. In fact, TOU
simulations with transactive control, had more undesirable
duck curves than without TE, potentially due to abrupt
changes in power demand when price changes.



Destion *21, May 18, 2021, Nashville, TN, USA

+ Base GridLAB-D Model File (.GLM)
+ .GLM Model Parameters

+ Previous TOU Simulation

+ Price Schedule Parameters

* Weather File (TMY3)

Neema, et al.

!

Use model parameters
and base .GLM file to
generate new .GLM file

bash script

Model

Edit generic
price schedule
generator

Execute
customized
price schedule
generator

RTP Price
Schedule

Final .GLM

Python post-

Residential processing script
Power Data

« Commercial i .
Power Data eneras -e

= Solar Panel Power Bills
Data and Load
Price Data Analysis

Figure 2: Simulation Automation Workflow

8/04/17 Grid Power Load

3500000

. 3000000 . RTP

=< 2500000

=<

< 2000000

3

= 1500000

()

£ 1000000

& 500000
0
S55S5S5sS5SS5S5sS35S5sSs5ssssss
CCACCCCCCECCCCArAa 00 a oo oo o
NN ONONNO AN NN N OO O -
Ll - - - -

Time
Figure 3: TOU vs RTP Comparison
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Figure 4: Solar Panel Power Comparison

(2) Battery storage: Batteries also have a significant impact on

smoothing the duck curve for much of the same reasons that
they reduce costs for residents with solar panels. Houses
with batteries will use less grid power during peak hours
due to the raised prices during those time-frames.
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Figure 5: Effect of Tuning RTP Parameters

(3) Precooling: The results show that precooling has a minor

o

6.3

=

smoothing effect. Each RTP simulation with precooling has
a slightly lower standard deviation and MaxMin, difference
than the same simulation without precooling, but the duck
curves are not significantly different.

Solar panel generation capacity: Higher power genera-
tion capacity of the solar panels reduced grid power demand,
as shown in Figure 4, especially during the middle of the
day when most of the solar power is produced. Increasing
the number of solar panels (50% as opposed to 25%) has a
very similar effect on the duck curve as increasing the power
generation capacity of the solar panels.

Effect of Tuning Price Schedules

Through tuning the parameters of the RTP price generator, it was
possible to smooth the duck curve significantly. Figure 5 shows a
comparison between an RTP simulation with the initial guess for
parameters (12_36_.6: x = 12; y =36; and w1 = 0.6) and the set of
parameters selected after testing (6_115_.1: x = 6; y = 115; and w1
= 0.1) as described earlier in equations (1), (2), and (3).
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7 CONCLUSIONS & FUTURE WORK

The study demonstrates the benefits of transactive energy with
real-time pricing in the context of a local electricity network with
distributed solar energy and virtual power plant. The systematic
approach to designing RTP pricing shows how the daily demand
curve can be made smoother under specifiable conditions. However,
the effect on customer prices varies with respect to the use of solar
panels, and more research is needed to understand how customers
can benefit from the arrangement. The study examined diverse
configurations, but many more are possible, and future research
could examine additional effects on the two goals of a smoother
demand curve and customer pricing benefits.

Further research could also improve upon RTP effects demon-
strated by this paper by tuning the price schedule parameters for
each simulation. More specific RTP parameters for each model could
smooth the duck curve even better than shown in the presented
results. With respect to policy implications, the study indicates that
utilities and regulators should continue to engage in both simula-
tion experiments and real-world experiments to understand better
the effects of transactive energy with real-time pricing. These ex-
periments should include conditions that continue to explore the
combinations of battery storage, levels of solar power generation
capacity and penetration, and pricing strategy.
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