Future Generation Computer Systems 122 (2021) 40-51

Contents lists available at ScienceDirect
FTEER

Future Generation Computer Systems

m o
i 1

journal homepage: www.elsevier.com/locate/fgcs Te—

An Al-enabled lightweight data fusion and load optimization approach #
for Internet of Things S

Mian Ahmad Jan **, Muhammad Zakarya **, Muhammad Khan?, Spyridon Mastorakis ¢,
Varun G. Menon ¢, Venki Balasubramanian ¢, Ateeq Ur Rehman ?

2 Department of Computer Science, Abdul Wali Khan University Mardan, Pakistan

b ComNets Lab, Department of Computer Science, New York University, Abu Dhabi, United Arab Emirates

¢ College of Information Science & Technology, University of Nebraska Omaha, USA

4 Department of Computer Science and Engineering, SCMS School of Engineering and Technology, Ernakulam 683576, India
€ School of Science, Engineering and Information Technology, Federation University, Mount Helen, VIC 3350, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 6 October 2020

Received in revised form 3 March 2021
Accepted 17 March 2021

Available online 8 April 2021

In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might
overlap frequently. In these applications, the nodes gather highly correlated and redundant data in
their vicinity. Processing these data depletes the energy of nodes and their upstream transmission
towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network
gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed

Keywords: while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may
Internet of Things experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure
Data fusion QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight

Load optimization
Evolutionary algorithms
Gateway-Edge configuration
Service migration

data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-
correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic
service migration technique to reconfigure the load across various edge servers. We assume this as
an optimization problem and use two meta-heuristic algorithms, along with a migration approach,
to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the
load at each server, and once it surpasses a threshold value (which is dynamically computed with
a simple machine learning method), an exhaustive search is performed for an optimal and balanced
periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale
and densely populated IoT applications.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

In the Internet of Things (IoT), the sensor nodes of various ap-
plications gather highly correlated data in their neighbourhoods
that affect the outcome of any decision made at the cloud data
centres [1,2]. In these applications, the data are unstructured, in-
termittent and somewhat dynamic. The raw data gathered by the
nodes need to be processed locally and analysed at the edge and
cloud data centres to optimize the usage of available resources.
The raw data need to be fused within the network to reduce the
correlation in them. Each node, unaware of its neighbour’s sens-
ing range, gathers data in its neighbourhood. The sensing range
of two or more nodes may overlap leading to the aggregation of
similar data [3]. Each node needs to perform local data fusion to

* Corresponding authors.
E-mail addresses: mianjan@awkum.edu.pk (M.A. Jan),
mohd.zakarya@awkum.edu.pk (M. Zakarya).

https://doi.org/10.1016/j.future.2021.03.020
0167-739X/© 2021 Elsevier B.V. All rights reserved.

discard multiple copies of the same data. In-network data fusion
alleviates the redundancy to trade-off the volumes of data and
the available resources at the edge and cloud data centres [4].
The presence of resource-starving nodes means that a data fusion
approach needs to be lightweight, robust, and scalable, based on
application requirements.

Data fusion alone is not enough to optimize the usage of
available network resources. The upstream fused data toward
the cloud data centres need to be fairly distributed among the
edge servers [5,6]. In the existing literature [7-9], the fused data
streams are offloaded to the nearest edge servers. However, this
approach is not efficient as some of these servers may overload
quickly in comparison to others that remain underutilized. The
underlying nodes and network gateways associated with the
over-utilized servers may suffer higher latency, packet drop, and
bandwidth consumption. For a fair distribution of the network
load, a dynamic load balancing approach needs to be adopted to
assign the time-consuming tasks to underutilized servers. Based

https://doi.org/10.1016/j.future.2021.03.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.03.020&domain=pdf
mailto:mianjan@awkum.edu.pk
mailto:mohd.zakarya@awkum.edu.pk
https://doi.org/10.1016/j.future.2021.03.020

M.A. Jan, M. Zakarya, M. Khan et al.

on the run-time load at the servers, a decision needs to be made
for the assignment of data streams. The configuration of net-
work entities needs to be constantly monitored for an optimized
and balanced load. Artificial Intelligence (Al)-enabled algorithms
can manage the complex relationship among the network enti-
ties [10,11]. These algorithms need to be adopted for intelligent
load balancing and optimization of the selected paths for re-
liable transmission of the fused data. They have the ability to
reconfigure the devices’ connectivity based on their experienced
load.

Moreover, heterogeneity of the edge servers and network
bandwidth may generate opportunities for application migra-
tions (running within virtual machines) which could be bene-
ficial in further load-balancing, avoiding stranded (wasted) re-
sources, and performance degradation (due to overload situa-
tions). Stranded resources are those which cannot be allocated
due to the unavailability of another resource e.g. CPU cores
are fully utilized but memory is half utilized — half memory
cannot be allocated because there are no CPU cores available
to run the VM/workload/application. Here, heterogeneity refers
to the speed of server to process data or network bandwidth.
This is achieved through comparing the current utilization levels
of the edge servers and/or the rate of transferring over a net-
work link (channel conditions) to some pre-defined threshold
values. If utilization level of an edge server or a network link
surpasses a particular threshold value, migrations will happen.
However, a static threshold may not be appropriate; therefore,
we use a simple machine learning model to compute an adaptive
threshold.

In this paper, we propose a novel data fusion and load opti-
mization approach for the IoT-enabled applications. Our approach
reduces data redundancy at the node level and fairly distributes
the fused data streams among the edge servers. It is scalable and
can be used by any application, provided that the threshold values
for monitored data are known. It ensures the availability of high-
quality data at the cloud data centres for decision-making. The
main contributions of this work are as follows.

1. A lightweight data fusion approach that reduces the cor-
relation and redundancy in the gathered data by using
MiniMax stratified sampling. The buffer of each node is
partitioned into multiple stratum, each one holding only
two values, i.e., a minimum (min) and a maximum (max).
A comparison with min and max decides to discard or
retain any newly sensed data. After a sampling interval, the
stratum of each node transmits only two data readings by
discarding all other correlated readings.

2. A dynamic load optimization approach that maintains a
balanced traffic in the network using a real-valued Ge-
netic Algorithm (GA) and Discrete Particle Swarm Opti-
mization (DPSO). A Software-Defined Networking (SDN)
controller monitors the load on individual edge servers and
reconfigures the current Gateway-Edge configuration if an
unbalanced load is experienced. For reconfiguration, the
SDN controller invokes these evolutionary algorithms to
identify the transmission path for each gateway towards
a prospective server.

3. The above contribution does not account for dynamic load-
balancing, i.e., when on some particular resources, the
data get processed quicker than others. A dynamic ser-
vice migration technique is suggested to balance the load
across several edge servers that triggers migration deci-
sions, based on current resource (edge server, network
channel) usage. A dynamic threshold is computed using a
simple regression model in order to keep resources well-
balanced.

41

Future Generation Computer Systems 122 (2021) 40-51

The rest of our paper is organized as follows. In Section 2,
we provide an overview of the background studies pertaining to
our proposed approach. In Section 3, our proposed framework
and algorithms are described in detail. This section also offers
a service migration technique for load balancing across several
edges. The experimental results and performance evaluation are
sketched in Section 4. Finally, we provide concluding remarks and
future research directions in Section 5.

2. Background

In this section, we provide the background studies pertain-
ing to data fusion in the context of load optimization for IoT
applications.

In [12], a cloud-based adaptive sensing belief propagation pro-
tocol (ASBP) was proposed. ASBP estimates the quality of links to
determine the shortest routes toward the cloud for data gathered
from IoT applications. The protocol exploits the spatio-temporal
correlation among the data streams at cloud datacentres to re-
duce the energy consumption, and balance the load by keeping a
subset of nodes in active states at a given time. ASBP, however,
is unable to evenly distribute the load on edge servers for a
large-scale IoT network. Besides, fusing massive amount of sensor
data at the cloud incur a significant amount of transmission
overhead. A dynamic sensor activation algorithm, SensorRank,
was proposed to prioritize the deployed nodes based on their
residual energy levels, their relative distance, and their links qual-
ities [13]. SensorRank considered symmetric channels for data
transmission among the neighbouring nodes. These channels may
lead to an uneven load distribution among the nodes, and on the
gateways and edge servers, respectively. A spatio-temporal based
novel data mining approach (NDM) was proposed for the removal
of redundant data, prior to upstream transmission towards the
gateways [14]. NDM uses a packet classification approach to
filter out redundant data to maintain the network load on the
edge servers. NDM is non-scalable and its iterative nature of
load distribution at the edge incurs an excessive overhead at the
resource-constrained sensor nodes.

In [11], an optimized mobile sink-based load balancing (OMS-
LB) protocol was proposed to achieve balanced load for a large-
scale IoT network. OMS-LB offloads the computationally complex
tasks from data gathering devices to a Software-defined Network
(SDN) controller that is interfaced with cloud datacentres. The
proposed protocol uses PSO and GA to determine the optimal
paths for a mobile edge server and optimal data gathering points,
i.e., gateways. OMS-LB does not define any criteria for data col-
lection from an application perspective. Besides, the presence of
a single server makes this protocol non-scalable, and vulnerable
to security threats. A multi-edge based architecture was proposed
for seamless integration of cloud datacentres in an IoT environ-
ment [5]. The proposed architecture used a multilevel protocol
for gateways selection and Al-based load balancer for the identi-
fication of an optimal load distribution. However, the proposed
architecture lacks any information about the heterogeneity of
nodes, network latency and bandwidth requirements. In [15], the
authors proposed a data aggregation scheme by estimating an
accurate sensor matrix from the gathered raw data. A fog server
is used to reconstruct the matrix that contains minimal noise
and highly refined data. However, the proposed matrix does not
take into account the load balancing issue and has limitations
imposed on its scalability. Besides, it lacks any information on
heterogeneous data fusion and interoperability of IoT devices.

All these existing approaches focused on centralized gateways
and edge servers for load optimization and decision-making. The
presence of centralized entities affect the scalability, fault toler-
ance and optimal load adjustment of a network. Besides, these

M.A. Jan, M. Zakarya, M. Khan et al.

approaches operate without data aggregation and fusion at the
network level. As a result, they require excessive processing and
storage of redundant data at the network gateways and edge
servers. The transmission of redundant data ultimately deteri-
orate the QoS of an underlying network. In the IoT paradigms,
it is inevitable to consider Al algorithms for maintaining a bal-
anced load for various applications. There are numerous Al al-
gorithms developed to resolve the load optimization problem.
However, in this paper, we utilize the most embraced evolution-
ary algorithms, i.e., Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) [16-18]. GA and PSO are population-based
algorithms, where the population means a group of all possible
solutions, i.e., Gateway-Edge configurations (load balancing and
optimization) [19].

GA is a bio-inspired search algorithm in which the popula-
tion is referred to as a group of chromosomes. The genes of
the fittest available chromosomes are utilized to generate new
chromosomes, i.e., new optimal Gateway-Edge configurations, via
mutation and crossover. On the other hand, in standard PSO, the
population of all possible solutions is referred to as a swarm
of particles. PSO is inspired by the social behaviour of swarms
of ants, a flock of birds, a shoal of fish, etc. In all these cases,
the swarm probe the search space for identifying the food with
varying velocities. In the case of PSO, each particle is considered a
candidate solution for the Gateway-Edge configuration problem.
In the case of GA, each chromosome is considered a candidate
solution. Since both these algorithms are not directly applicable
to integer-based load optimization problems, we have developed
a real-valued GA and a Discrete PSO (DPSO) for identifying the
optimal Gateway-Edge configurations.

Load balancing is an essential part of the IoT, edge and cloud
frameworks that could be achieved in two different ways: (i)
dynamic service placement; and (ii) service migration. In respect
of (i), two policies are suggested in [20]: cloud-only placement:
place all application’s modules in the server; and edge-ward
placement: favour to run application’s modules on various edge
devices. Moreover, if allocation of an edge device is not suitable
for a particular module, then either resources from other edge
devices (server) could be provisioned or it could be migrated
somewhere else. Empirical evaluation of both policies suggests
that the edge-ward policy significantly improves the application’s
performance and reduces the network traffic. In respect of (ii),
authors in [21,22] suggest that if an application’s performance
is the worst on a particular edge device (due to more number
of connected sensor devices, network congestion etc.), then its
migration either to the server or to another edge device could
improve its performance and reduces network traffic. Moreover,
mobility management in mobile edge clouds (MECs) also involves
migrations [22].

Migrations could also be triggered to balance resource uti-
lization levels of edge nodes. For example, if the utilization of
an edge node increases certain threshold value (say 80%), some
of the application’s module may be moved to other edges. Mi-
gration can also take place when resources are under utilized
i.e. threshold of 20%. This is done to conserve and consolidate
resources to save energy [23]. In the later case, energy could
be saved through migrating workloads from these underutilized
servers to other servers; and switching them off. However, this
may cause performance issues, in particular, if demand exceeds
suddenly. We, in this paper, prefer the former one as our ob-
jective is not saving energy; instead we want to balance the
load across different switched on servers. Furthermore, we use a
dynamic threshold-based method that estimate these threshold
values periodically — using Eq. (12). Service migration could only
be achieved if various sand-boxing technologies such as virtual-
ization, containerization are being used to virtualize the server

42

Future Generation Computer Systems 122 (2021) 40-51

and edge device resources [24]. In practice, resources in public
clouds are virtualized, which increases resource utilization levels
and saves energy. If various modules of a particular application
are being run in a Virtual Machine (VM) or container; then the
service can be migrated either off-line or live. In live migration,
the service is moved transparently while still running; however,
in off-line migration the service is stopped first, moved, and then
resumed at the target edge. Using CRIU' technology, containers
could be more quickly migrated than VMs. In case of live VM
migration, where VMs data are kept on a shared storage reachable
over the network, the time of migration T,z depends on the total
volume of memory used by the VM M,,, and available network
bandwidth B;y. For virtual machine V; the total migration time
is given by:
My,
5 (1)
total

The above equation is used to compute only the migration
time of a particular VM. Every VM for this T, time is consid-
ered offline, which is also called the downtime of the VM. The
downtime (or performance loss) is dependent on the migration
duration, as given by Eq. (1) [25]. Increased downtime results
in poor performance; therefore it should be minimized for high
availability of the datacenter. The performance degradation Pgeg
due to a single migration is calculated using the following formula
(as given by Eq. (2)), where Uy, is the CPU utilization of VM V;, to
is the migration start time and 0.1 is the factor that shows the
average performance degradation for web application i.e. 10% of
the CPU utilization [23,26].

Tnig v =

to JrTmigv.

Paeg, = 0.1 x / " Uy,(£).dt
to

Note that, the above performance degradation model (10%
loss in workload execution time) is benchmarked in [23,27]; and
we assume that it already accounts for other time consuming
activities such as: the time to initiate a VM migration; the time
to transfer page files (dirty pages in case of live or online VM
migration); the time to boot/spin up a new server (if there is no
currently running server that can accept the VM being migrated);
and the time to restart the VM (in the case of cold or offline VM
migration) [28].

(2)

3. Data fusion and load optimization approach for IoT appli-
cations

In Fig. 1, the sensor nodes of various applications transmit
their data to cloud data centres via the network gateways and
edge servers. Among these applications, the smart city nodes
gather and transmit highly correlated data streams. The transmis-
sion of these streams affects the decision-making at data centres
and creates bandwidth bottlenecks for time-critical and delay-
sensitive applications. Moreover, these applications experience
excessive latency and degradation in the network throughput if
an unbalanced load is experienced at the edge servers. An uneven
load distribution results in some of the servers over-utilized while
others remain underutilized. The unbalanced load leads to packet
loss, longer delays, and network congestion. In this section, we
discuss our proposed data fusion and load optimization approach
to eliminate data redundancy and maintain a balanced load at the
network entities.

1 https://criu.org/Main_Page.

https://criu.org/Main_Page

M.A. Jan, M. Zakarya, M. Khan et al.

Future Generation Computer Systems 122 (2021) 40-51

- = - T - — —
’//|o| ‘\\
uhkh @ © (il " s
\ Redundant wh e Do lu P
Data =
©
-_ c
- T T <
e}
-
o
|’ s
Il-
H Y
Under Utilized
Edge Servers . N~ P
g ~77 Data Th . seSise =
2 / Redundancy \ 5. T
o <
0,9, g)ﬂ
el
w
1%}
c
kel
©
©
o
Q
<
's
Healthcare Industrial
SecUmty Automation
Transportation .
Smart City

Fig. 1. Data redundancy and unbalanced load in IoT.

3.1. The Proposed Fog-loT Framework

The proposed model consists of three layers i.e. the cloud
layer, the edge layer and the local layer, as shown in Fig. 1. The
local layer is responsible to gather important data (related to
traffic, healthcare, and crowd, etc.) through various IoT devices
and sensors. Once the data is collected, it is processed and/or
stored at the edge layer through edge clouds [29]. The edge level
processing may also include aggregation that could be achieved
through removing redundant data. The filtered data can, then,
be sent to the remote cloud layer for further processing such
as storage, monitoring and resource management. Transferring
the gathered data at local layer directly to the cloud layer, or
through edge, may introduce significant delays in the cloud net-
work, which is optimized through data fusion and load balancing
methods as discussed in Sections 3.2 and 3.3.

The edge infrastructure is of great use when reading the stored
data for processing through machine learning approaches. For
example, real-time prediction of the traffic flow might happens
at the edge layer, however, prediction for monitoring services
(load, service migration) can be performed at the cloud layer [30].
Moreover, if real-time prediction, for example, shortest or safe
route estimation, is carried out on the remote cloud, then it will
incur significant delays depending on the network quality and
capacity. In that scenario, the nearest edge cloud can predict the
road conditions, congestion and distance; if the required data is
stored locally. However, due to the least storage and processing
capabilities of the edge clouds [31], the data may not be available

43

or processed locally. In that case, there are three various options:
(i) move the required data from the cloud to the edge, process,
take decisions, and discard; (ii) perform the prediction at the
remote cloud (in whole); and (iii) train the prediction model at
the remote cloud and predict at edge layer (distributed fashion
computation). Similarly, the huge amount of collected data may
consist of duplicate values that could create network congestion
and, therefore, affect the prediction process. The edge cloud can
use fusion and aggregation technique to send only appropriate
data to the remote cloud.

3.2. Data fusion

In a densely deployed smart city, energy hole problem is
a common issue faced by the one-hop neighbours of the base
station [32]. These one-hop neighbours not only transmit their
own data but also relay the data of downstream nodes to the
base station. As a result, their energy is depleted rapidly as
compared to other nodes. To fill the void left by energy-depleted
nodes and to maintain seamless network connectivity, one or
more nodes may either sense multiple regions or move around
the field to fill this gap. These nodes continuously sense and
aggregate data in their neighbourhood, as shown in Fig. 2. Each
node S maintains a coverage area based on its sensing range
(Rs), and a radio coverage based on its communication range (R.),
respectively. The Rs enables efficient data monitoring, whereas
the R. ensures the upstream data transmission. These nodes can
have a uniform or non-uniform coverage degree. The coverage

M.A. Jan, M. Zakarya, M. Khan et al.

Future Generation Computer Systems 122 (2021) 40-51

Smart City Application

Overlapping Region

Case 1: Uniform Coverage Degree

Case 1: Non-uniform Coverage Degree

Fig. 2. Data Correlation of varying coverage degrees.

degree represents the number of nodes actively monitoring a
particular region, i.e., an overlapped region. For uniform coverage,
the value of correlation degree (C;) remains constant for all the
nodes. On the other hand, the value of Cy varies for some or all the
nodes in a non-uniform coverage. A larger value of C; represents
highly correlated and redundant data as multiple nodes monitor
a particular event in the overlapped region.

To eliminate the correlated and redundant data, we use a
lightweight data fusion approach at the node level. The proposed
approach uses a minimax function for the identification and re-
moval of redundant data. In a smart city, each node is equipped
with multiple sensors based on an application requirement. In
this paper, we restrict our discussion to the temperature sensors
only. However, the flexibility of our approach enables it to be
extended for any application provided that the threshold values
of monitored data are known. We classify the sensed temperature
readings based on the correlation and similarity index among
them. Each class, also known as stratum, contains a particular
range of temperature readings. For each node, we define ten
different stratum that are dynamic and depend on application
requirements. They are designed using the concept of stratified
sampling, a probability-based sampling technique [33,34].

44

The strata® are defined within the buffer of each node and
can store temperature readings ranging from 20 °C to 39.99 °C.
Based on these readings, each stratum holds a different range
of varying values of up to 2 °C. For instance, the range of first
stratum St, is {20.00,...,21.99}, and the last stratum St,, is
{38.00, ..., 39.99}, respectively. The outcome of each stratum
can either be a min or max value. Each stratum has a mean value
m that defines its min and max, respectively. In the beginning,
when a new temperature reading T; is sensed by a node, it is
checked against strata of the given node to identify a destination
stratum. Once a match is found, T; is compared against m of
the stratum. If T; is less than m, it becomes the min, otherwise,
it becomes the max, as shown in Eq. (3). The next time a new
reading T;y; is sensed within the range of the same stratum, it is
compared against m. If T, is less than m, a comparison is made
with the new min. If T; is less than min, the former turns out to
be the new min, otherwise, it is discarded. A similar comparison
is made with max. If T;;¢ is greater than max, it turns out to be
the new max, otherwise, it is discarded. Irrespective of T;, Ti11 or
any other subsequent readings, an exact match with the values

2 plural of stratum.

M.A. Jan, M. Zakarya, M. Khan et al.

of m, min or max means that these readings will be discarded.

min, if T <m,
f(St,,...,St,,) =10, if Ti==m, 3)
max, if T; > m.

The max and min of a given stratum can be plotted as a
stationary point on a curve. A point P;xo, f(xg)) is considered a
stationary point of a function f{x) if (g—) is 0 at x=x,. Suppose a

X
function y=f(x) is a stationary point with x=x,. Then

2

o if [%]x:,(0 < 0, then x=x, is the max of a stratum.
2

o if [%]x:XO > 0, then x=x, is the min of a stratum.

o if []y, =0, then

- if [%]Xz,(0 < 0 for x>x,, and [Z—{(]wo > 0 for x<x,, then
X=X, is the max of the given strata.

- if[%]x:x0 > 0 for x>x,, and [%]x:x0 < 0 for x<x,, then
X=X, is the min of the given strata.

In our data fusion approach, the sampling rate of each node is
S, packets per second, where S, > 1. The stratum of each node
transmits only two packets, i.e., a min and a max, after every one
minute. If a node constantly maintains its sampling rate at S, = 1
for one minute, our approach achieves a maximum of 3 times
reduction in the number of transmitted packets to the gateways.
For S, >1, the number of transmitted packets is reduced even
further by a minimum of 3 times. In our approach, the S, of a
node and the number of transmitted packets from its strata to the
gateways are inversely proportional to each other. These strata
significantly reduce data redundancy, network latency, packet
collision probability, and ultimately the network congestion. In
our proposed approach, each node maintains a similarity index
(£2) for the data gathered over the S; interval. The value of 2
ranges from 0.03 to 0.1. If £2 is equal to 0.03, it means that among
two temperature packets within the range of 0.03 °C, only one
will be retained. For example, in case of two packets with values
20 °C and 20.03 °C, only one will be retained in the stratum.
Hence, larger the value of £2, higher will be the rate at which
the data are fused.

3.3. Load optimization

Upon data fusion, each node transmits the refined data to
cloud data centres via the network gateways and edge servers.
The gateways are relay nodes that need to be monitored for
maintaining a balanced load at the edge servers. For this purpose,
an optimal Gateway-Edge configuration is required. We use var-
ious Key Performance Indicators (KPIs) for an in-depth analysis
of the network traffic to identify the optimal configuration. An
SDN controller is used for identifying the transmission route for
each gateway. It monitors the load on each server, and once it
surpasses a threshold value, an alarm is raised to re-configure the
current Gateway-Edge connection. If the Gateway-Edge configu-
ration is known at a particular time t, then finding the optimal
balanced Gateway-Edge configuration at time t + 1 is a primary
challenge. If N is the number of gateways, and M is the number of
edge servers, then the Gateway-Edge configuration at a particular
time t can be represented by a vector G¢ (G, G5, ..., G,
where G, € {1,2, ..., N}. As an example, G, = m means that the
nth gateway is transmitting to an mth server at time t. Finding
the optimal Gateway-Edge configuration vector at time t + 1,
ie, G = (G*1, GLM, ..., Git1), is a prime objective. To solve
the Gateway-Edge configuration problem, we consider two KPIs,
i.e., Average Residual Energy (KPlagg) of the network and Load
Fairness Index (KPI.f) of the servers.

The LFI is monitored based on Jain’s Fairness Index [35]. The
normalized weighted sum of these two KPIs is taken into account

45

Future Generation Computer Systems 122 (2021) 40-51

to maximize the network performance (NP) at time t as shown in
Eq. (4).

MGX(NP) = O[KPIARE + ﬁKPILFI. (4)

Here, NP is a primary objective function for optimization prob-
lems, and « and B8 are the weights assigned to each KPI. These
weights represent the priority level of each KPI in the objective
function, as shown in Eq. (5).

1 W R 1 (2 Z i)\ ¢)2
i(t i=1 Zun=1 'n,i¥n max
NP = a2 é)”ﬂ‘m) (
' S (X0 a0\ e
i(t)

i=1

where, Y is the residual energy of a sensor node i at time t and
is deﬁneﬁ as the remaining energy (R;(t)) of node i to the initial
energy (E) of each node at time ¢. For all the nodes in the network,
E is similar at the time of deployment. For the second KPI, we
consider the load fairness at the edge servers. I,; is a binary
indicator, i.e, I,; is 1, if an nth gateway transmits ¢, packets to
ith server at time ¢, otherwise, I ; is 0.

To find an optimal Gateway-Edge configuration, an SDN con-
troller needs to perform an exhaustive search for all possible
gateway to edge combinations. Literally, it means that the size
of the search space is equivalent to MY, where M represents the
number of edge servers and N represents the number of active
gateways at a particular time t. The number of possible configu-
rations increases exponentially with an increase in the number of
M and N, respectively. To resolve the Gateway-Edge configuration
as an optimization problem, we use the evolutionary algorithms,
i.e., GA and DPSO. The following steps are executed for these
algorithms to achieve an optimal configuration and a balanced
load.

5)

1. Generate a random population R? of size A. The best possi-
ble position for each particle, i.e., Gateway, is initiated such
that Pbest) =1,V 1 <i < A.

2. Discover the fitness value of each particle for DPSO and
each chromosome for GA in R (using Eq. (5)) and identify
its global best position Gbest®, using Eq. (6).

Gbest® = argmax, ;- \F(Pbest}).

(6)

3. For GA, if the best candidate solution for Gateway-Edge
configuration is attained or the maximum number of gen-
erations has reached, then the search ends, otherwise, Step
4 is executed. For DPSO, if the best candidate solution is
achieved, then the velocities of particles in the current
population need to be updated using Eq. (7).

vi = j, V=" + ayri(Pbest} — x}) + ary(Gbest! — x1).

(7)

Here, xf represents the current position of particle i at
[iteration, r; and r, are random variables within the
(0, 1) range, a; and a, are acceleration constants used
for pulling the particles toward the best position, and j,
reflects the inertia effect of preceding particle’s velocity
over the updated particle’s velocity.

4. Next, a set of the best available y chromosomes are ex-
tracted from the current population for GA. The current
population is R and the selection probability is Ps. For
DPSO, the iteration number is simply updated, i.e., [=[+1.

5. In case of GA, crossover and mutation are performed on
y. All infeasible solutions, i.e., R'- y are replaced with
. Here, u represents the newly generated chromosomes.
In the case of DPSO, if the best candidate solution is at-
tained for Gateway-Edge configuration, then the search
ends; otherwise, Step 6 is executed.

M.A. Jan, M. Zakarya, M. Khan et al.

6. For GA, all the steps from Step 2 are repeated. For DPSO,
the personal best position for each particle is updated using
Eq. (8).

Pbest|™!, if F(r!) < F(Pbest:™ ")

rl, otherwise.

Pbest} = : (8)

7. For DPSO, the global best position is updated using Eq. (9).

argmax, _; ,F(Pbest!), if F(Pbest}) > F(Pbest;™")
Gbest! =

Gbest!™", otherwise.

9)
8. For DPSO, repeat all the steps from Step 1.

The flowchart of our proposed approach is shown in Fig. 3.
The SDN controller constantly performs the Gateway-Edge con-
figuration based on the NP and KPI values. Since the controller
needs to collect various information from the network to analyse
the NP for the current Gateway-Edge configuration, we have
highlighted the data fusion at the node level as well. The above
solution can be used for homogeneous edge servers or that have
capabilities to execute at approximate equal times. Furthermore,
it does not account for dynamic scenarios where some data get
processed earlier than the other edges. Therefore, to further bal-
ance the load, a service migration algorithm is suggested — which
is feasible as, largely, edge servers run Linux-based operating
systems.

3.3.1. Service migration technique

In our framework, load balancing can bring, at least, two
benefits: performance improvement; and infrastructure energy
efficiency. We trigger service migration either if: the utiliza-
tion level of a particular edge node; and/or the data transfer
rate on a particular link (channel condition), exceed certain pre-
defined threshold values (steps 1 to 5) [36]. Once a module is
being moved to another edge, it will immediately start receiving
packets on another, perhaps, less utilized route. This could be
achieved, after copying memory contents of the VM or container
through sending a complimentary ARP (address resolution pro-
tocol) reply packet to inform the routing devices, within the
network, to send data packets to its new location. As a result,
both goals, i.e. balanced workload on various edges and reduced
network traffic, could be achieved. Once a migration decision
is triggered from a particular edge, next is to select a module
of a suitable application to move. We move the application’s
module which can utilize the destination edge more i.e. priority
is given to the module which is receiving more packets than
other modules (step 6). Lastly, the module is migrated to the
least utilized, neighbouring, edge platform; in order to diminish
the migration performance impacts over the application’s mod-
ule and migration time (step 7). Finally, the selected module of
the application m and the destination server are added to the
migration map (step 8-10). The migration map is, then, passed
to the load optimization module, as shown in Fig. 3, in order
to reconfigure the Gateway-Edge configuration, periodically. The
migration steps are described in Algorithm 1:
where EN,. is the total provisioned CPU resources (cores) and
ENym is the total provisioned memory resources (RAM) with
respect to their total capacities. Note that, U, and Uy, refer to
the utilization level of a particular resource i.e. CPU, memory,
respectively. Network resources such as bandwidth can also be
considered in this formulation. Moreover, the channel condition
Bj is estimated using the transmission rate T;, as given by:

P;.h;;
T, = Bj.logy(1 + %) (10)

46

Future Generation Computer Systems 122 (2021) 40-51

Algorithm 1: Service migration technique

Input: dynamic CPU and memory utilization threshold
values i.e. Uy and Uy, respectively — computed
periodically using Eq. (12); channel condition C;

Output: migration list map — input for load optimization

module in Fig. 3

compute CPU utilization level of the edge node (EN,.);

compute memory utilization level of the edge node (ENyy,);

compute channel condition (C.);

for each node € edge do

if ENy > Ui or ENyy > Ugy or Co > C; then
select application m from edge node;
choose edge node n as destination node;
map <« m, n;
end if
end for
return map

© 0N U R W N =

-
-

where B represents the bandwidth between edge server i and
gateway j, h; denotes the channel gain for gateway j at edge
server i and P; is the transmission power of gateway j. Fur-
thermore, N is the background noise [37]. Note that, Alg. 1 will
approximately take O(mnlog(n)) - where m denotes the total
number of edges, n denotes the number of edge nodes and
log(n) is the time needed to compute configuration states such
as resource utilization levels and channel conditions. The best
case occurs at O(log(n)) plus the time needed to complete all
possible migrations. However, complexity would increase up to
O(mn)? for large number of edges, hosts and application requests
— if unluckily an application cannot be placed or, in case, enough
resources are not available. Note that, from security point of
view, service migration in the IoT and VM or container migration
in infrastructure clouds are completely different [36]. Usually,
in infrastructure clouds, the migration data is transferred over
dedicated networks; however, in IoT the data is transferred over
the internet. This makes it essential to encrypt the migrated
data and to authenticate the service migration messages that are
exchanged among various edge devices.

Using static values for thresholds may not be feasible to trigger
effective migrations in platforms with dynamic, heterogeneous
and unpredictable workloads. This is due to the fact that re-
sources that falls within the range of the least and most utilized
(lower and upper thresholds) resources could not be reconfigured
i.e. all hosts are equally loaded. In such scenario, threshold values
can either be decreased or increased to balance the load amongst
the edge nodes. Therefore, threshold values are needed to be
adaptive and dynamically estimated using some sort of statistical
techniques on historical data [23]. For example, we can adjust the
threshold values based on the strength of the deviation of the
edge or link utilization levels because higher deviations increase
the likelihood of rising utilization levels. In other words, the
higher the deviation, the lower the value of the threshold. Various
methods such as local regression (LR), median absolute deviations
(MAD), and entropy can be used to measure the statistical dis-
persion. For implementational simplification purposes, we prefer
to use the MAD that describes the median of absolute values of
deviations (residuals) from the data’s median. For a particular
dataset D = {Dq, D,, D3, ..., Dy}, the MAD can be computed as:

MAD = median;(abs[D; — median;(D;)]) (11)
The adaptive threshold value 7, is given by:
T, =1— A.MAD (12)

M.A. Jan, M. Zakarya, M. Khan et al.

Node senses a new .
Yes T becomes
New Min

Assignment of Strata

Comparison
Strata defined

in the Node
Buffer

Identified

$
Ye
No b T becomes
New Max

Data Aggregation at the Node Level

Future Generation Computer Systems 122 (2021) 40-51

Collect information from the
Network

Analyze NP and KPI in the current
Gateway-Edge Configuration

Transmit|
—

3
g
g
£

Fe—

Optimize NP to achieve optimal
Edge C ions using

GA and DPSO Algorithms

New Gateway-Sink
Configuration has better NP
than the current one?

Load Optimization at the Edge Server

DPSO

gbest!=argmaxF(pbest])
1<j<(a)

max; F(pbest]) 2 F
(gbest'~1)?

|

gbest] —gbest}'\

No

Generate Initial Swarm
I A1 N
@y rIA\)’ 1=0

pbest}=r]
15j< 1Al

1<j<|al i

GA

(=

Generate initial
population (JA[)

!

NP &KPIs analysis for
all |A] Particles
(Gateway-Edge
configuration)

!

Generatenew |
population

NP and KPl analysis of
T all|A| Gateway-Edge
llocations

ghbest! = argmaxF
(pbest})
1sjs 14|

[

| Crossover and Mutation

1 H NP, 3

2 rl NP,

3 r NP,

Tal

V} = iwV/ 4+ Cyz, (pbest) — x})
+ Ca8; (ghest'— X[)

XiH=xf v}

|

Update Iteration counter

NPlA|

NPy,

Generation counter
updates:

1=1+1

1=1+1

I

NP & KPIs analysis for all |4]
particles (Gateway-Edge
configuration)

Convergence
criterion
satisfied?
Yes

Fig. 3. Flowchart of the proposed approach.

where X is a parameter that describes how strongly the system
tolerates edges over utilizations — lower A results in higher
tolerance to variations in utilization level. Once 7, is computed,
the utilization levels of the node and link are compared to it in
order to trigger appropriate migration decisions.

4. Experimental results

In this section, we evaluate the efficiency of our proposed
data fusion and load optimization approach in terms of various
experimental metrics. For data fusion, we developed a Java-based
simulator that utilizes the data collected from sensors, a setup
similar to the one adopted at Intel Berkeley Research Lab [38].
Upon fusion, the simulator feeds the refined data to the gate-
ways. For optimal Gateway-Edge configuration, we use Matlab
2018a interfaced with Java. Moreover, we added several Java
class files to mimic the notion of containers that simulate a
containerized fog infrastructure. The classes were taken from the
well-known fog simulator iFogSim [20]. The service migration
technique uses either: (i) a static threshold value of 80%; or (ii)
dynamic thresholds computed using Eq. (12) in order to trigger

47

migrations of application modules across edges. We further as-
sume that overload (i.e. upper threshold) will not happen due
to service placement constraint. To carry out this, the iFogSim
default policies for selecting over-loaded servers, containers and
target servers were used.

In Fig. 4, the percentage of fused packets transmitted to the
gateways is shown for different values of 7. Here, T represents
the number of readings sensed by each node over its sampling in-
terval (S;). The percentage of transmitted packets is calculated as
57" x 100, where S, denotes the number of fused packets sent from
the strata of each node. The efficiency of our data fusion approach
enhances with an increase in the value of 7. The percentage of
transmitted fused packets from the strata of each node drops to
1% for 1000 packets, sensed during S,. Our approach conserves
the energy of resource-starving nodes and at the same time,
reduces the burden on the network gateways. In comparison to
our approach, the existing schemes deliver higher percentage of
redundant data to the gateways. For example, EECC [34] transmits
multiple copies of the same data from the strata of each node
after S, interval. As a result, the percentage of fused data delivered
at the gateways is proportionally high. Moreover, without data

M.A. Jan, M. Zakarya, M. Khan et al.

—— Data Fusion (Our Approach) — @ - Without Data Fusion

100

80

60

40

Percentage of Fused Data

20

50

100

200 500 1000

T

Fig. 4. Percentage of fused data.

C—t=200 N =500
/3 1=1000 - == Without Data Fusion

1010 J
80

60

40

Percentage of Fused data

20

0.03 0.05 0.07 0.1

Similarity Index in the Gathered Data (Q)

Fig. 5. Data fusion with varying values of similarity index.

fusion, all the sensed packets need to be transmitted to the
gateways that will adversely affect the decision-making at the
data centres.

During data fusion, each node examines the similarity index
(£2) in the data gathered over the S, interval. This index further
reduces the redundancy and at the same time, lowers the pro-
cessing burden on the nodes and the network gateways. In Fig. 5,
the percentage of fused data for varying values of £2 is shown.
In this figure, the values of r varies from 200 to 1000 and $2
from 0.03 to 0.1, respectively. If £2 is 0.03, it means that among
multiple readings having a similarity lower than or equal to 0.03,
only one reading will be retained and the rest will be discarded.
As a result, a higher percentage of readings will be discarded with
an increase in the value of £2. Moreover, our approach achieves
a higher percentage of fusion when the value of 7 increases. This
figure shows that with higher values of §2 and , the processing
and transmission burdens on the edge nodes and gateways de-
creases, significantly. In the absence of data fusion technique, a
higher percentage of data is delivered to the gateways that in turn
increases the processing and transmission burden on the nodes.

The optimal Gateway-Edge configurations achieved by GA and
DPSO are shown in Table 1. We considered three benchmark
problems P;, Py, and P; with two, three, and four edge servers,
respectively. P;, P, and P; contain 1200 sensor nodes includ-
ing 200 gateways, distributed over the sensing field. In Py, GA

48

Future Generation Computer Systems 122 (2021) 40-51

1200

1000

Packet drop

n
o
S

S}

Fig. 6. Packet loss with varying values of o and B.

Table 1
Optimal gateway-edge configurations.

Number of edge servers Convergence rate Number of iterations

GA DPSO GA DPSO
2 0925 094 14 11
3 0.86 0.895 28 21
4 0805 0.85 43 31

converges to an optimal Gateway-Edge configuration after the
14th generation. DPSO, on the other hand, achieves the optimal
configuration after the 11th iteration. Please note that iteration
and generation are similar terms. The former is used in PSO
and the latter in GA, as discussed in Section 3.3. GA achieves
185 optimal Gateway-Edge configurations over 200 generations
with a convergence rate of 0.925, whereas, in DPSO, there are
188 optimal configurations with a convergence rate of 0.94. In
P, and P3, the convergence rate of GA and DPSO decreases and
larger values of iterations and generations are required to achieve
an optimal Gateway-Edge configuration. It is mainly due to an
increasing number of edge servers in these benchmark problems.
These results show that DPSO reaches an optimal solution in
fewer iterations as compared to GA.

We assessed the network performance (NP) for all optimal
solutions in term of packet drop by modifying the KPIs such that «
and B are set in the ordered form of 0,0.1, ...,1 with a constraint
o + B <= 1. To properly tune « and 8, an exhaustive search
is performed on P; using these parameters to achieve an optimal
Gateway-Edge configuration. When « and 8 are set to 0.8 and 0.2,
respectively; a minimum packet drop is observed, as shown in
Fig. 6. The selection of proper weights for the optimization func-
tion, i.e.,, NP, is challenging and essential for achieving optimal
results in the context of evolutionary algorithms.

The service migration technique, as suggested in Section 3.3.1,
was implemented to balance the load across the edge servers.
Increasing the total number of edge servers decreases the uti-
lization levels and vice versa, as shown in Table 2. Moreover, the
number of migrations happened is proportional to the amount
of fog servers. The standard deviation actually represents how
the current load on each server differs from other servers — the
higher this value, the more less balanced is the workload and
vice versa. We observed significant reduction in utilization levels,

M.A. Jan, M. Zakarya, M. Khan et al.

Table 2

Average utilization levels (%) of the edge servers and number of migrations
(using static and dynamic threshold values for load balancing and resource
re-configuration).

Number of servers GA DPSO
Utilization

Migrations Utilization Migrations

Static threshold values

2 629 £ 599 101 614 + 6.45 89
3 60.4 + 6.31 105 58.7 + 8.01 103
4 59.6 + 644 147 59.1 £ 732 122
Dynamic threshold values
2 712 £ 127 134 753 £ 2.02 155
3 628 = 1.71 178 68.4 + 389 189
4 543 £ 1.09 201 59.7 £ 299 217

100 i y "

IllFog-server 1 [llFog-server 2 [Fog-server 3 [_]Fog-server 4 -
B

80 o 1
2
12} ——
© 60 L 4
>
K
c
o
T 40 B
N
5

20 - q

No-migration No-migration

With-migration With-migration
A 0]

Fig. 7. Load balancing for four fog servers [error bars denote standard deviations
from the means].

that, essentially translate to greater energy savings and improved
levels of performance. We observed, as shown in Table 2, that
using static threshold values reduces the migration opportunities.
Moreover, increased levels of variations were observed in server’s
utilization levels. This means that either resources were utilized
more or the least due to less migration opportunities. Using
dynamic threshold values, the variations in utilization levels may
decrease significantly — as more migrations will occur subse-
quently. Varying the threshold values will essentially result in
variations of outcomes and differences in Gateway-Edge reconfig-
uration. Fig. 7 shows average utilization levels (along with error
bars at five minute intervals) when four fog servers are taken into
account. Moreover, number of migrations would have some im-
pacts on network traffic and processing performance. For four fog
servers when migrations are not taken into account, we achieved
48.75 £ 23.67 and 41.28 + 28.56 average utilization levels for GA
and DPSO, respectively. The high variations (standard deviations)
show the imbalance load across various servers which might
happened due to dynamics in workloads execution or processing
patterns. With migrations, we were able to significantly reduce
these variations as shown in Fig. 7.

5. Conclusions and future work

In this paper, we proposed a lightweight data fusion and
Al-enabled load optimization approach for reconfigurable IoT ap-
plications. The buffer of each node is partitioned into strata that
hold and transmit only non-correlated fused data towards the
network gateways and edge servers. We used GA and DPSO
to optimize the usage of available resources by identifying the
optimal routes for upstream transmission of refined data from the
gateways to edge servers. These algorithms monitored the load at
the servers, and if an unbalanced load is experienced, the current

Future Generation Computer Systems 122 (2021) 40-51

Gateway-Edge configuration is reconfigured. For load monitoring
at the edge, various Key Performance Indicators (KPIs) were used.
Our experimental results significantly reduced the processing and
transmission burden at the nodes for large-sized data streams.
Our approach achieved optimal gateway-edge configurations for
varying number of edge servers in a densely populated network
setup. Moreover, a migration approach was used to balance the
load across different edge servers. Our evaluation of the pro-
posed migration approach demonstrated that all edge servers
are relatively utilized uniformly while having lower standard
deviations in their utilization levels. Subsequently, this ensures
that data is processed at edge which increases performance. In
the future, we aim to analyse the network performance by main-
taining a balanced load at the network gateways. It will enable
the gateways to automate the downstream transmission links
towards the nodes. Moreover, we are keen to see the impact of
migrations in dynamic scenarios, particularly, on network traffic
and transmission delays.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was partially supported by a pilot award from the
Center for Research in Human Movement Variability, USA and the
NIH, USA (P20GM109090) and the National Science Foundation,
USA under award CNS-2016714.

References

[1] Y. Shen, T. Zhang, Y. Wang, H. Wang, X. Jiang, Microthings: A generic IoT
Architecture for flexible data aggregation and scalable service cooperation,
IEEE Commun. Mag. 55 (9) (2017) 86-93.
F. Khan, M.A. Jan, A.U. Rehman, S. Mastorakis, M. Alazab, P. Watters, A
secured and intelligent communication scheme for iloT-enabled pervasive
edge computing, IEEE Trans. Ind. Inf. (2020).
W. Ding, X. Jing, Z. Yan, L.T. Yang, A survey on data fusion in internet
of things: Towards secure and privacy-preserving fusion, Inf. Fusion 51
(2019) 129-144.
[4] F. Alam, R. Mehmood, I. Katib, N.N. Albogami, A. Albeshri, Data fusion and
[oT for smart ubiquitous environments: a survey, IEEE Access 5 (2017)
9533-9554.
W. Twayej, M. Khan, H.S. Al-Raweshidy, Network performance evaluation
of M2M with self organizing cluster head to sink mapping, IEEE Sens.].
17 (15) (2017) 4962-4974.
M.A. Jan, F. Khan, R. Khan, S. Mastorakis, V.G. Menon, P. Watters, M. Alazab,
A lightweight mutual authentication and privacy-preservation scheme for
intelligent wearable devices in industrial-CPS, IEEE Trans. Ind. Inf. (2020).
D. Mazza, D. Tarchi, G.E. Corazza, A unified urban mobile cloud computing
offloading mechanism for smart cities, [IEEE Commun. Mag. 55 (3) (2017)
30-37.
H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, C.-T.
Lin, Edge of things: The big picture on the integration of edge, IoT and
the cloud in a distributed computing environment, IEEE Access 6 (2017)
1706-1717.
S.K. Sharma, X. Wang, Live data analytics with collaborative edge and cloud
processing in wireless IoT networks, IEEE Access 5 (2017) 4621-4635.
[10] H. Yao, M. Li,]J. Du, P. Zhang, C. Jiang, Z. Han, Artificial intelligence for
information-centric networks, IEEE Commun. Mag. 57 (6) (2019) 47-53.
[11] T.A. Al-Janabi, H.S. Al-Raweshidy, A centralized routing protocol with a
scheduled mobile sink-based Al for large scale I-lot, IEEE Sens.]. 18 (24)
(2018) 10248-10261.
[12] E.H. Bijarbooneh, W. Du, E.C.-H. Ngai, X. Fu,]. Liu, Cloud-assisted data
fusion and sensor selection for internet of things, IEEE Internet Things J.
3 (3) (2016) 257-268.

2

3

[5

[6

(7

[8

[9

http://refhub.elsevier.com/S0167-739X(21)00101-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb1
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb2
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb3
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb4
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb6
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb7
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb8
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb9
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb10
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb11
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb12
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb12
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb12
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb12
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb12

M.A. Jan, M. Zakarya, M. Khan et al.

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

N. Nesa, I. Banerjee, Sensorrank: An energy efficient sensor activation
algorithm for sensor data fusion in wireless networks, IEEE Internet Things
J. (2018).

S. Kumar, V.K. Chaurasiya, A strategy for elimination of data redundancy
in internet of things (IoT) based wireless sensor network (WSN), IEEE Syst.
J. (2018).

S. Sanyal, P. Zhang, Improving quality of data: IoT data aggregation using
device to device communications, IEEE Access 6 (2018) 67830-67840.
M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory, Vol.
12, MIT press, 1999.

I.C. Trelea, The particle swarm optimization algorithm: convergence
analysis and parameter selection, Inf. Process. Lett. 85 (6) (2003) 317-325.
M. Abbasi, M. Rafiee, M.R. Khosravi, A. Jolfaei, V.G. Menon,].M. Koushyar,
An efficient parallel genetic algorithm solution for vehicle routing problem
in cloud implementation of the intelligent transportation systems, J. Cloud
Comput. 9 (1) (2020) 6.

K. Kaur, S. Garg, G. Kaddoum, S.H. Ahmed, M. Atiquzzaman, KEIDS:
Kubernetes-based energy and interference driven scheduler for indus-
trial IoT in edge-cloud ecosystem, IEEE Internet Things J. 7 (5) (2020)
4228-4237.

H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, Edge and Fog computing environments, Softw. - Pract.
Exp. 47 (9) (2017) 1275-1296.

L.F. Bittencourt,]J. Diaz-Montes, R. Buyya, O.F. Rana, M. Parashar, Mobility-
aware application scheduling in fog computing, I[EEE Cloud Comput. 4 (2)
(2017) 26-35.

A. Machen, S. Wang, K.K. Leung, BJ. Ko, T. Salonidis, Live service migration
in mobile edge clouds, IEEE Wirel. Commun. 25 (1) (2018) 140-147.

A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consoli-
dation of virtual machines in cloud data centers under quality of service
constraints, IEEE Trans. Parallel Distrib. Syst. 24 (7) (2013) 1366-1379,
http://dx.doi.org/10.1109/TPDS.2012.240.

A.A. Khan, M. Zakarya, R. Khan, H? - a hybrid heterogeneity aware resource
orchestrator for cloud platforms, IEEE Syst.]. 13 (4) (2019) 3873-3876.
M. Zakarya, L. Gillam, Managing energy, performance and cost in large
scale heterogeneous datacenters using migrations, Future Gener. Comput.
Syst. 93 (2019) 529-547.

M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah, R. Khan, O. Rana, R. Buyya,
EpcAware: A game-based, energy, performance and cost efficient resource
management technique for multi-access edge computing, IEEE Trans. Serv.
Comput. (2020) 1-14, http://dx.doi.org/10.1109/TSC.2020.3005347.

A.A. Khan, M. Zakarya, R. Buyya, R. Khan, M. Khan, O. Rana, An energy
and performance aware consolidation technique for containerized data-
centers, IEEE Trans. Cloud Comput. (2019) http://dx.doi.org/10.1109/TCC.
2019.2920914.

M. Zakarya, L. Gillam, A.A. Khan, L.U. Rahman, Perficientcloudsim: a tool to
simulate large-scale computation in heterogeneous clouds, J. Supercomput.
(2020) 1-55, http://dx.doi.org/10.1007/s11227-020-03425-5.

S. Mastorakis, A. Mtibaa,]. Lee, S. Misra, Icedge: When edge computing
meets information-centric networking, IEEE Internet Things J. 7 (5) (2020)
4203-4217.

B. Nour, S. Mastorakis, A. Mtibaa, Compute-less networking: Perspectives,
challenges, and opportunities, IEEE Netw. 34 (6) (2020) 259-265.

S. Mastorakis, A. Mtibaa, Towards service discovery and invocation in data-
centric edge networks, in: 2019 IEEE 27th International Conference on
Network Protocols (ICNP), IEEE, 2019, pp. 1-6.

Q. Wang, D. Lin, P. Yang, Z. Zhang, An energy-efficient compressive
sensing-based clustering routing protocol for WSNs, IEEE Sens. J. 19 (10)
(2019) 3950-3960.

T. Li, M. Bolic, P.M. Djuric, Resampling methods for particle filtering:
classification, implementation, and strategies, IEEE Signal Process. Mag. 32
(3) (2015) 70-86.

S.R.U. Jan, M.A. Jan, R. Khan, H. Ullah, M. Alam, M. Usman, An energy-
efficient and congestion control data-driven approach for cluster-based
sensor network, Mob. Netw. Appl. 24 (4) (2019) 1295-1305.

R. Jain, A. Durresi, G. Babic, Throughput fairness index: An explanation, in:
ATM Forum Contribution, Vol. 99, 1999.

P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Commun. Surv. Tutor. (2017).

H. Zhang, F. Guo, H. Ji, C. Zhu, Combinational auction-based service
provider selection in mobile edge computing networks, IEEE Access 5
(2017) 13455-13464.

S. Madden, Intel berkeley research lab data, 2003.

Future Generation Computer Systems 122 (2021) 40-51

Mian Ahmad Jan is an Assistant Professor at the
Department of Computer Science, Abdul Wali Khan
University Mardan, Pakistan. He received his Ph.D. in
Computer Systems from the Faculty of Engineering
and Information Technology (FEIT), University of Tech-
nology Sydney (UTS), Australia. His research interests
include energy-efficient and secured communication
in Wireless Sensor Networks and Internet of Things.
He has been guest editor of numerous special issues
in various prestigious journals e.g. Future Generation
Computer Systems, IEEE Transactions on Industrial In-
formatics, Springer Neural Networks and Applications, IEEE Sensor, etc. are few
to mention. He is an IEEE senior member.

Muhammad Zakarya received the Ph.D. degree in
Computer Science from the University of Surrey,
Guildford, U.K. He is currently a Lecturer with the
Department of Computer Science, Abdul Wali Khan
University Mardan, Pakistan. His research interests
include cloud computing, mobile edge clouds, Inter-
net of Things (IoT), performance, energy efficiency,
algorithms, and resource management. He has deep
understanding of the theoretical computer science and
data analysis. Furthermore, he also owns deep under-
standing of various statistical techniques which are,
largely, used in applied research. He is an Associate Editor for the IEEE Access
Journal and has served as TPC member in various international conferences and
workshops.

Muhammad Khan received his Ph.D. degree in wireless
communications from Brunel University London, United
Kingdom. He is associated with the Wireless Network
and Communication Centre (WNCC) at Brunel Univer-
sity London, and the Computer Networks (ComNets)
Lab at New York University (NYU). He is currently
working on Projects related to 5G mmWave Congestion
Control in collaboration with the University of Con-
tabria, Spain and University of Limerick, Ireland. His
main research interest is next generation wireless com-
munications, Cloud Radio Access networks, Artificial
Intelligence, Machine learning and Congestion Control.

Spyridon Mastorakis (smastorakis@unomaha.edu) is
an Assistant Professor in Computer Science at the
University of Nebraska Omaha. He received his Ph.D.
in Computer Science from the University of California,
Los Angeles (UCLA) in 2019. He also received an M.S.
in Computer Science from UCLA in 2017 and a 5-
year diploma (equivalent to M.Eng.) in Electrical and
Computer Engineering from the National Technical Uni-
4 versity of Athens (NTUA) in 2014. His research interests
' include network systems and protocols, Internet archi-

tectures (such as Information-Centric Networking and
Named-Data Networking), edge computing and IoT, and security.

Varun G. Menon is currently an Associate Professor
in Department of Computer Science and Engineering,
SCMS School of Engineering and Technology, India.
He is a Senior Member of IEEE and a Distinguished
Speaker of ACM Distinguished Speaker. Dr. Varun G
Menon is currently a Guest Editor for [EEE Transactions
on Industrial Informatics, IEEE Sensors Journal, IEEE
Internet of Things Magazine and Journal of Super-
computing. He is an Associate Editor of IET Quantum
Communications and also an Editorial Board Member
of IEEE Future Directions: Technology Policy and Ethics.
His research interests include Internet of Things, Fog Computing and Networking,
Underwater Acoustic Sensor Networks, Cyber Psychology, Hijacked Journals,
Ad-Hoc Networks, Wireless Sensor Networks.

50

http://refhub.elsevier.com/S0167-739X(21)00101-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb13
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb14
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb15
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb16
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb17
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb18
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb19
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb20
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb21
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb22
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb22
http://dx.doi.org/10.1109/TPDS.2012.240
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb24
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb25
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb25
http://dx.doi.org/10.1109/TSC.2020.3005347
http://dx.doi.org/10.1109/TCC.2019.2920914
http://dx.doi.org/10.1109/TCC.2019.2920914
http://dx.doi.org/10.1109/TCC.2019.2920914
http://dx.doi.org/10.1007/s11227-020-03425-5
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb29
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb30
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb31
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb32
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb33
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb34
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb34
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb34
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb34
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb34
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb35
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb36
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb37
http://refhub.elsevier.com/S0167-739X(21)00101-1/sb38
mailto:smastorakis@unomaha.edu

M.A. Jan, M. Zakarya, M. Khan et al.

&

Venki Balasubramanian received the Ph.D. degree in
body area wireless sensor network (BAWSN) for remote
healthcare monitoring applications. He is the Pioneer in
building (pilot) remote healthcare monitoring applica-
tion (rHMA) for pregnant women for the New South
Wales Healthcare Department. His research establishes
a dependability measure to evaluate rHMA that uses
BAWSN. His research opens up a new research area
in measuring time-critical applications. He contributed
immensely to eResearch software research and devel-
opment that uses cloud-based infrastructure and a core

member for the project sponsored by Nectar Australian research cloud provider.
He contributed heavily in the field of healthcare informatics, sensor networks,
and cloud computing. He also founded Anidra Tech Ventures Pty Ltd a smart
remote patient monitoring company.

51

Future Generation Computer Systems 122 (2021) 40-51

Ateeq Ur Rehman is currently working as a Lecturer
at the department of Computer Science, Abdul Wali
Khan University Mardan, KPK, Pakistan. He received his
Ph.D. degree from the University of Southampton in
2017. His main research interests are next-generation
wireless communications and cognitive radio networks,
Internet of Things, Internet of Vehicles, blockchain
technology and differential privacy.

	An AI-enabled lightweight data fusion and load optimization approach for Internet of Things
	Introduction
	Background
	Data fusion and load optimization approach for IoT applications
	The Proposed Fog-IoT Framework
	Data fusion
	Load optimization
	Service migration technique

	Experimental results
	Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

