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In this paper, we study the effect of dependence on detecting
sparse signals. In particular, we focus on global testing against sparse
alternatives for the means of binary outcomes following an Ising
model, and establish how the interplay between the strength and
sparsity of a signal determines its detectability under various notions
of dependence. The profound impact of dependence is best illustrated
under the Curie-Weiss model where we observe the effect of a “ther-
modynamic” phase transition. In particular, the critical state exhibits
a subtle “blessing of dependence” phenomenon in that one can de-
tect much weaker signals at criticality than otherwise. Furthermore,
we develop a testing procedure that is broadly applicable to account
for dependence and show that it is asymptotically minimax optimal
under fairly general regularity conditions.

1. Introduction. Motivated by applications in a multitude of scientific
disciplines, statistical analysis of “sparse signals” in a high dimensional set-
ting, be it large-scale multiple testing or screening for relevant features, has
drawn considerable attention in recent years. For more discussions on sparse
signal detection type problems see, e.g., Addario-Berry et al. (2010); Arias-
Castro, Donoho and Huo (2005); Arias-Castro and Wang (2015); Arias-
Castro et al. (2008); Cai and Yuan (2014); Donoho and Jin (2004); Hall
and Jin (2010); Ingster, Tsybakov and Verzelen (2010); Mukherjee, Pillai
and Lin (2015), and references therein. A critical assumption often made in
these studies is that the observations are independent. Recognizing the po-
tential limitation of this assumption, several recent attempts have been made
to understand the implications of dependence in both theory and method-
ology. See, e.g., Arias-Castro, Candès and Plan (2011); Hall and Jin (2008,
2010); Jin and Ke (2014); Wu et al. (2014). These earlier efforts, setting in
the context of Gaussian sequence or regression models, show that it is im-
portant to account for dependence among observations, and under suitable
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conditions, doing so appropriately may lead to tests that are as powerful as
if the observations were independent. However, it remains largely unknown
how the dependence may affect our ability to detect sparse signals beyond
Gaussian models. The main goal of the present work is to fill in this void.
In particular, we investigate the effect of dependence on detection of sparse
signals for Bernoulli sequences, a class of problems arising naturally in many
genomics applications (e.g., Mukherjee, Pillai and Lin, 2015).

Let X = (X1, . . . , Xn)
> ∈ {±1}n be a random vector such that P(Xi =

+1) = pi. In a canonical multiple testing setup, we want to test collec-
tively that H0 : pi = 1/2, i = 1, 2, . . . , n. Of particular interest here is the
setting when Xi’s may be dependent. A general framework to capture the
dependence among a sequence of binary random variables is the so-called
Ising models, which have been studied extensively in the literature (Ellis
and Newman, 1978; Ising, 1925; Majewski, Li and Ott, 2001; Mezard and
Montanari, 2009; Onsager, 1944; Stauffer, 2008). An Ising model specifies
the joint distribution of X as:

PQ,µµµ(X = x) :=
1

Z(Q,µµµ)
exp

(
1

2
x>Qx+µµµ>x

)
, ∀x ∈ {±1}n,(1)

where Q is an n×n symmetric and hollow matrix, µµµ := (µ1, . . . , µn)
> ∈ R

n,
and Z(Q,µµµ) is a normalizing constant. Throughout the rest of the paper,
the expectation operator corresponding to (1) will be analogously denoted
by EQ,µµµ. It is clear that the matrix Q characterizes the dependence among
the coordinates of X, and Xi’s are independent if Q = 0. Under model (1),
the relevant null hypothesis can be expressed as µµµ = 0. More specifically,
we are interested in testing it against a sparse alternative:

(2) H0 : µµµ = 0 vs H1 : µµµ ∈ Ξ(s,B),

where

Ξ(s,B) :=

{
µµµ ∈ R

n : |supp(µµµ)| = s, and min
i∈supp(µµµ)

µi ≥ B > 0

}
,

and
supp(µµµ) := {1 ≤ i ≤ n : µi 6= 0}.

Our goal here is to study the impact of Q in doing so.
To this end, we adopt an asymptotic minimax framework that can be

traced back at least to Burnashev (1979); Ingster (1994, 1998). See Ingster
and Suslina (2003) for further discussions. Let a statistical test for H0 versus
H1 be a measurable {0, 1} valued function of the data X, with 1 indicating
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rejecting the null hypothesis H0 and 0 otherwise. The worst case risk of a
test T : {±1}n → {0, 1} can be given by

Risk(T,Ξ(s,B),Q) := PQ,0 (T (X) = 1) + sup
µµµ∈Ξ(s,B)

PQ,µµµ (T (X) = 0) ,(3)

where PQ,µµµ denotes the probability measure as specified by (1). We say
that a sequence of tests T indexed by n corresponding to a sequence of
model-problem pair (1) and (3), to be asymptotically powerful (respectively
asymptotically not powerful) against Ξ(s,B) if
(4)
lim sup
n→∞

Risk(T,Ξ(s,B),Q) = 0 (respectively lim inf
n→∞

Risk(T,Ξ(s,B),Q) > 0).

The goal of the current paper is to characterize how the sparsity s and
strength B of the signal (µµµ) jointly determine if there is a powerful test, and
how the behavior changes with Q. In particular,

• for a general class of Ising models, we provide tests for detecting arbi-
trary sparse signals and show that they are asymptotically rate optimal
for Ising models on regular graphs in the high temperature regime;

• for Ising models on the cycle graph, we establish rate optimal results
for all regimes of temperature, and show that the detection thresholds
are the same as the independent case;

• for the Curie-Weiss model (Kac, 1969; Nishimori, 2001), we provide
sharp asymptotic detection thresholds for detecting arbitrarily sparse
signals, which reveal an interesting phenomenon at the thermodynamic
phase transition point of a Curie-Weiss magnet.

Our tools for analyzing the rate optimal tests depend on the method of
exchangeable pairs (Chatterjee, 2007b), which might be of independent in-
terest.

The rest of the paper is organized as follows. In Section 2 we study in detail
the optimal detection thresholds for the Curie-Weiss model and explore the
effects of the presence of a “thermodynamic phase transition” in the model.
Section 3 is devoted to developing and analyzing testing procedures in the
context of more general Ising models where we also show that under some
conditions on Q, the proposed testing procedure is indeed asymptotically
optimal. Finally we conclude with some discussions in Section 5. The proof
of the main results is relegated to Section 6. The proof of additional technical
arguments can be found in Mukherjee, Mukherjee and Yuan (2017).

2. Sparse Testing under Curie-Weiss Model. In most statistical
problems, dependence reduces effective sample size and therefore makes in-
ference harder. This, however, turns out not necessarily to be the case in
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our setting. The effect of dependence on sparse testing under Ising model is
more profound. To make this more clear we first consider one of the most
popular examples of Ising models, namely the Curie-Weiss model. In the
Curie-Weiss model,

Pθ,µµµ(X = x) :=
1

Z(θ,µµµ)
exp


 θ

n

∑

1≤i<j≤n

xixj +

n∑

i=1

µixi


 ,(5)

where in this section, with slight abuse of notation, we rename PQ,µµµ,EQ,µµµ,
and Z(Q,µµµ) by Pθ,µµµ, Eθ,µµµ and Z(θ,µµµ) respectively, for brevity. The Curie-
Weiss model is deceivingly simple and one of the classical examples that
exhibit the so-called “thermodynamic” phase transition at θ = 1. See, e.g.,
Kac (1969); Nishimori (2001). It turns out that such a phase transition
directly impacts how well a sparse signal can be detected. Following the
convention, we shall refer to θ = 1 as the critical state, θ > 1 the low
temperature states and θ < 1 the high temperature states.

2.1. High temperature states. We consider first the high temperature
case i.e. 0 ≤ θ < 1. It is instructive to begin with the case when θ = 0,
that is, X1, . . . , Xn are independent Bernoulli random variables. By Central
Limit Theorem

√
n

(
X̄ − 1

n

n∑

i=1

tanh(µi)

)
→d N

(
0,

1

n

n∑

i=1

sech2(µi)

)
,

where

X̄ =
1

n

n∑

i=1

Xi.

In particular, under the null hypothesis,

√
nX̄ →d N (0, 1) .

This immediately suggests a test that rejects H0 if and only
√
nX̄ ≥ Ln

for a diverging sequence Ln = o(n−1/2s tanh(B)) is asymptotic powerful,
in the sense of (4), for testing (2) whenever s tanh(B) � n1/2. This turns
out to be the best one can do in that there is no powerful test for testing
(2) if s tanh(B) = O(n1/2). See, e.g., Mukherjee, Pillai and Lin (2015). An
immediate question of interest is what happens if there is dependence, that
is 0 < θ < 1. This is answered by Theorem 1 below.
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Theorem 1. Consider testing (2) based on X following the Curie-Weiss
model (5) with 0 ≤ θ < 1. If s tanh(B) � n1/2, then the test that rejects H0 if
and only if

√
nX̄ ≥ Ln for a diverging Ln such that Ln = o(n−1/2s tanh(B))

is asymptotically powerful for (2). Conversely, if s tanh(B) = O(n1/2), then
there is no asymptotically powerful test for (2).

Theorem 1 shows that, under high temperature states, the sparse testing
problem (2) behaves similarly to the independent case. Not only the detec-
tion limit remains the same, but also it can be attained even if one neglects
the dependence while constructing the test.

2.2. Low temperature states. Now consider the low temperature case
when θ > 1. The näıve test that rejects H0 whenever

√
nX̄ ≥ Ln is no

longer asymptotically powerful in these situations. In particular, X̄ con-
centrates around the roots of x = tanh(θx) and

√
nX̄ is larger than any

Ln = O(n1/2) with a non-vanishing probability, which results in an asymp-
totically strictly positive probability of Type I error for a test based on
rejecting H0 if

√
nX̄ ≥ Ln.

To overcome this difficulty, we shall consider a slightly modified test statis-
tic:

X̃ =
1

n

n∑

i=1


Xi − tanh


 θ

n

∑

j 6=i

Xj




 ,

Note that

tanh


 θ

n

∑

j 6=i

Xj


 = Eθ,0(Xi|Xj : j 6= i)

is the conditional mean ofXi given {Xj : j 6= i} under the Curie-Weiss model
with µµµ = 0. In other words, we average after centering each observation
Xi by its conditional mean, instead of the unconditional mean, under H0.
The idea of centering by the conditional mean is similar in spirit to the
pseudo-likelihood estimate of Besag (1974, 1975). See also Bhattacharya
and Mukherjee (2015); Chatterjee (2007a); Guyon (1995).

We can then proceed to reject H0 if and only if
√
nX̃ ≥ Ln. The next

theorem shows that this procedure is indeed optimal with appropriate choice
of Ln.

Theorem 2. Consider testing (2) based on X following the Curie-Weiss
model (5) with θ > 1. If s tanh(B) � n1/2, then the test that rejects H0 if
and only if

√
nX̃ ≥ Ln for a diverging Ln such that Ln = o(n−1/2s tanh(B))
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is asymptotically powerful for (2). Conversely, if s tanh(B) = O(n1/2), then
there is no asymptotically powerful test for (2).

Theorem 2 shows that the detection limits for low temperature states
remain the same as that for high temperature states, but a different test is
required to achieve it.

2.3. Critical state. The situation however changes at the critical state
θ = 1, where a much weaker signal could still be detected. This is made
precise by our next theorem, where we show that detection thresholds, in
terms of s tanh(B), for the corresponding Curie-Weiss model at criticality
scales as n−3/4 instead of n−1/2 as in either low or high temperature states.
Moreover, it is attainable by the test that rejects H0 whenever n1/4X̄ ≥ Ln

for appropriately chosen Ln.

Theorem 3. Consider testing (2) based on X following the Curie-Weiss
model (5) with θ = 1. If s tanh(B) � n1/4, then a test that rejects H0 if
and only if n1/4X̄ ≥ Ln for a suitably chosen diverging sequence Ln, is
asymptotically powerful for (2). Conversely, if s tanh(B) = O(n1/4), then
there is no asymptotically powerful test for (2).

A few comments are in order about the implications of Theorem 3 in
contrast to Theorem 1 and 2. Previously, the distributional limits for the
total magnetization

∑n
i=1Xi has been characterized in all the three regimes

of high (θ < 1), low (θ > 1), and critical (θ = 1) temperatures (Ellis and
Newman, 1978) when µµµ = 0. More specifically, they show that

√
nX̄

d→ N
(
0,

1

1− θ

)
if θ < 1,

n1/4X̄
d→ W if θ = 1,

(√
n(X̄ −m(θ))|X̄ > 0

)
d→ N

(
0,

1

1− θ(1−m(θ)2)

)
if θ > 1,

where W is a random variable on R with density proportional to e−x4/12

with respect to Lebesgue measure, and m(θ) is the unique positive root of
the equation z = tanh(θz) for θ > 1. A central quantity of their analy-
sis is studying the roots of this equation. Our results demonstrate paral-
lel behavior in terms of detection of sparse external magnetization µµµ. In
particular, if the vector µµµ = (B, · · · , B, 0, 0, · · · , 0) with the number of
nonzero components equal to s, we obtain the fixed point equation z =
p tanh(θz +B) + (1− p) tanh(θz), where p := s/n. One can get an informal
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explanation of the detection boundary for the various cases from this fixed
point equation. As for example in the critical case when θ = 1, we get the
equation

z = p tanh(z+B)+(1−p) tanh(z) ⇒ z−tanh(z) = p[tanh(z+B)−tanh(z)].

The LHS of the second equality is of order z3 for z ≈ 0, and the RHS is
of order p tanh(B). This gives the relation z3 ∼ (p tanhB), which gives the
asymptotic order of the mean of X̄ under the alternative as z ∼ (p tanhB)1/3.
Since underH0 the fluctuation of X̄ is n−1/4, for successful detection we need
n−1/4 � (p tanhB)1/3, which is equivalent to s tanh(B) � n1/4 on recalling
that s = np. Similar heuristic justification holds for other values of θ as well.

Interestingly, both below and above phase transition the detection prob-
lem considered here behaves similar to that in a disordered system of i.i.d.
random variables, in spite having different asymptotic behavior of the to-
tal magnetization in the two regimes. However, an interesting phenomenon
continues to emerge at θ = 1 where one can detect a much smaller signal or
external magnetization (magnitude of s tanh(B)). In particular, according to
Theorem 1 and Theorem 2, no signal is detectable of sparsity s � √

n, when
θ 6= 1. In contrast, Theorem 3 establishes signals satisfying s tanh(B) � n1/4

is detectable for n1/4 . s � √
n, where an . bn means an = O(bn). As men-

tioned before, it is well known the Curie-Weiss model undergoes a phase
transition at θ = 1. Theorem 3 provides a rigorous verification of the fact
that the phase transition point θ = 1 can reflect itself in terms of detection
problems, even though θ is a nuisance parameter. In particular, the detec-
tion is easier than at non-criticality. This is interesting in its own right since
the concentration of X̄ under the null hypothesis is weaker than that for
θ < 1 (Chatterjee et al., 2010) and yet a smaller amount of signal enables us
to break free of the null fluctuations. We shall make this phenomenon more
transparent in the proof of the theorem.

3. Sparse Testing under General Ising Models. As we can see
from the previous section, the effect of dependence on sparse testing un-
der Ising models is more subtle than the Gaussian case. It is of interest
to investigate to what extent the behavior we observed for the Curie-Weiss
model applies to the more general Ising model, and whether there is a more
broadly applicable strategy to deal with the general dependence structure.
To this end, we further explore the idea of centering by the conditional mean
we employed to treat low temperature states under Curie-Weiss model, and
argue that it indeed works under fairly general situations.
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3.1. Conditional mean centered tests. Note that under the Ising model
(1),

EQ,0(Xi|Xj : j 6= i) = tanh(mi(X))

where

mi(X) =
n∑

j=1

QijXj .

Following the same idea as before, we shall consider a test statistic

X̃ =
1

n

n∑

i=1

[Xi − tanh(mi(X))],

and proceed to rejectH0 if and only if
√
nX̃ ≥ Ln. The following result shows

that the same detection limit s tanh(B) � n1/2 can be achieved by this test
as long as ‖Q‖`∞→`∞ = Op(1), where ‖Q‖`p→`q = max‖x‖`p≤1 ‖Qx‖`q for
p, q > 0.

Theorem 4. Let X follow an Ising model (1) with Q such that ‖Q‖`∞→`∞ =
O(1). Consider testing hypotheses about µµµ as described by (2). If s tanh(B) �
n1/2, then the test that rejects H0 if and only if

√
nX̃ ≥ Ln for any Ln → ∞

such that Ln = o(n−1/2s tanh(B)) is asymptotically powerful.

The condition ‖Q‖`∞→`∞ = O(1) is a regularity condition which holds for
many common examples of the Ising model in the literature. In particular, Q
oftentimes can be associated with a certain graph G = (V,E) with vertex set
V = [n] := {1, . . . , n} and edge set E ⊆ [n]× [n] so that Q = (nθ)G/(2|E|),
where G is the adjacency matrix for G, |E| is the cardinality of E, and
θ ∈ R is a parameter independent of n deciding the degree of dependence in
the spin-system. Below we provide several more specific examples that are
commonly studied in the literature.

Dense Graphs:. Recall that

‖Q‖`∞→`∞ = max
1≤i≤n

n∑

j=1

|Qij | ≤
n2|θ|
2|E| .

If the dependence structure is guided by densely labeled graphs so that
|E| = Θ(n2), then ‖Q‖`∞→`∞ = O(1).
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Regular Graphs:. When the dependence structure is guided by a regular
graph of degree dn, we can write Q = θG/dn. Therefore,

‖Q‖`∞→`∞ = max
1≤i≤n

n∑

j=1

|Qij | =
|θ|
dn

· dn = |θ|,

and again obeying the condition ‖Q‖`∞→`∞ = O(1).

Erdös-Rényi Graphs:. Another example is the Erdös-Rényi graph where an
edge between each pair of nodes is present with probability pn independent
of each other. It is not hard to derive from Chernoff bound and union bounds
that the maximum degree dmax and the totally number of edges |E| of an
Erdös-Rényi graph satisfy with high probability:

dmax ≤ npn(1 + δ), and |E| ≥ n(n− 1)

2
pn · (1− δ)

for any δ ∈ (0, 1), provided that npn � log n. This immediately implies that
‖Q‖`∞→`∞ = Op(1).

In other words, the detection limit established in Theorem 4 applies to
all these types of Ising models. In particular, it suggests that, under Curie-
Weiss model, the

√
nX̃ based test can detect sparse external magnetization

µµµ ∈ Ξ(s,B) if s tanh(B) � n1/2, for any θ ∈ R, which, in the light of
Theorems 1 and 2, is optimal in both high and low temperature states.

3.2. Optimality. The detection limit presented in Theorem 4 matches
those obtained for independent Bernoulli sequence model. It is of interest to
understand to what extent the upper bounds in Theorem 4 are sharp. The
answer to this question might be subtle. In particular, as we see in the Curie-
Weiss case, the optimal rates of detection thresholds depend on the presence
of thermodynamic phase transition in the null model. To further illustrate
the role of criticality, we now consider an example of the Ising model without
phase transition and the corresponding behavior of the detection problem
(2) in that case. Let

Qi,j =
θ

2
I{|i− j| = 1 mod n}

so that the corresponding Ising model can be identified with a cycle graph
of length n. Our next result shows that the detection threshold remains the
same for any θ, and is the same as the independent case i.e. θ = 0.
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Theorem 5. Suppose X ∼ PQ,µµµ, where Q is the scaled adjancency ma-
trix of the cycle graph of length n, that is, Qi,j = θ

21{|i − j| = 1 mod n}
for some θ ∈ R. If s tanh(B) ≤ C

√
n for some C > 0, then no test is

asymptotically powerful for the testing problem (2).

In view of Theorem 4, if s tanh(B) � n1/2, then the test that rejects H0 if
and only if

√
nX̃ ≥ Ln for any Ln → ∞ such that Ln = o(n−1/2s tanh(B))

is asymptotically powerful for the testing problem (2). Together with The-
orem 5, this shows that for the Ising model on the cycle graph of length n,
which is a physical model without thermodynamic phase transitions, the de-
tection thresholds mirror those obtained in independent Bernoulli sequence
problems (Mukherjee, Pillai and Lin, 2015).

The difference between these results and those for the Curie-Weiss model
demonstrates the difficulty of a unified and complete treatment to general
Ising models. We offer here, instead, a partial answer and show that the test
described earlier in the section (Theorem 4) is indeed optimal under fairly
general weak dependence for reasonably regular graphs.

Theorem 6. Suppose X ∼ PQ,µµµ as in (1) and consider testing hypothe-
ses about µµµ as described by (2). Assume Qi,j ≥ 0 for all (i, j) such that
‖Q‖`∞→`∞ ≤ ρ < 1 for some constant ρ > 0, ‖Q‖2F = O(

√
n), and

∥∥∥∥Q1− 1>Q1

n
1

∥∥∥∥
2

= O(1).

If s tanh(B) ≤ C
√
n for some constant C > 0, then no test is asymptotically

powerful for (2).

Theorem 6 provides rate optimal lower bound to certain instances pertain-
ing to Theorem 4. One essential feature of Theorem 6 is the implied impos-
sibility result for the s � √

n regime. More precisely, irrespective of signal
strength, no tests are asymptotically powerful when the number of signals
drop below

√
n in asymptotic order. This is once again in parallel to results

in Mukherjee, Pillai and Lin (2015), and provides further evidence that low
dependence/high temperature regimes (as encoded by ‖Q‖`∞→`∞ ≤ ρ < 1)
resemble independent Bernoulli ensembles. Theorem 6 immediately implies
the optimality of the conditional mean centered tests for a couple of common
examples.
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High Degree Regular Graphs:. When the dependence structure is guided
by a regular graph, that is Q = θ

dn
G, it is clear that

∥∥∥∥Q1− 1>Q1

n
1

∥∥∥∥
2

= 0.

If 0 ≤ θ < 1 and dn &
√
n, then one can easily verify the conditions of

Theorem 6 since

‖Q‖`∞→`∞ = θ < 1, and ‖Q‖2F = nθ2/dn.

Dense Erdös-Rényi Graphs:. When the dependence structure is guided by
a Erdös-Rényi graph on n vertices with parameter pn, that is Q = θ/(npn)G
with Gi,j ∼ Bernoulli(pn) independently for all 1 ≤ i < j ≤ n, we can also
verify that the conditions of Theorem 6 holds with probability tending to
one if 0 ≤ θ < 1 and pn bounded away from 0. As before, by Chernoff
bounds, we can easily derive that with probability tending to one,

‖Q‖`∞→`∞ = θ
dmax

npn
≤ θ(1 + δ)npn

npn
= θ(1 + δ),

and

‖Q‖2F =
θ2

n2p2n

∑

1≤i<j≤n

Gi,j ≤
θ2(1 + δ)n(n− 1)pn

2n2p2n
≤ θ2

2pn
(1 + δ),

for any δ > 0. Finally, denote by di the degree of the ith node, then

∥∥∥∥Q1− 1>Q1

n
1

∥∥∥∥
2

=
θ2

n2p2n

n∑

i=1


di −

1

n

n∑

j=1

dj




2

≤ θ2

n2p2n

n∑

i=1

(di − (n− 1)pn)
2 = Op(1),

by Markov inequality and the fact that

E

[
n∑

i=1

(di − (n− 1)pn)
2

]
= n(n− 1)pn(1− pn).

4. Simulation Results. We now present results from a set of numeri-
cal experiments to further demonstrate the behavior of the various tests in
finite samples. To fix ideas, we shall focus on the Curie-Weiss model since
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it exhibits the most interesting behavior in terms of the effect of thermo-
dynamic phase transitions reflecting itself on the detection thresholds for
the presence of sparse magnetization. In order to demonstrate the detection
thresholds cleanly in the simulation, we parametrized sparsity s as s = n1−α

for α ∈ (0, 1). In this parametrization, the theoretical detection thresholds
obtained for the Curie-Weiss model can be restated as follows. For θ 6= 1,
Theorem 1 and Theorem 2 suggest that the critical signal strength equals
tanh(B) ∼ n−( 1

2
−α). In particular if tanh(B) = n−r, then no test is asymp-

totically powerful when r > 1
2 − α; whereas the test based on condition-

ally centered magnetization is asymptotically powerful when r < 1
2 − α.

Moreover, for α > 1/2, all tests are asymptotically powerless irrespective
of the amount of signal strength. However θ = 1, Theorem 3 demonstrates
that the critical signal strength equals tanh(B) ∼ n−( 3

4
−α). In particular if

tanh(B) = n−r, then no test is asymptotically powerful when r > 3
4 − α;

whereas the test based on total magnetization is asymptotically powerful
when r < 3

4 − α. Moreover, for α > 3/4, all tests are asymptotically pow-
erless irrespective of the amount of the signal strength. The simulation pre-
sented below is designed to capture the different scenarios where non-trivial
detection is possible i.e. α ≤ 1/2 for θ 6= 1 and α ≤ 3/4 for θ = 1.

We evaluated the power of the two tests, based on total magnetization
and the conditionally centered magnetization respectively, at the signifi-
cance level of 5% and sample size n = 1000. We generated the test statis-
tics 500 times under the null and take the 95%-quantile as the critical
value. The power against different alternatives are then obtained empir-
ically from 500 repeats each. The simulation from a Curie-Weiss model
in the presence of magnetization is done using the Gaussian trick or the
auxiliary variable approach as demonstrated by Lemma 3. In particular
for a given θ and µµµ in the simulation parameter set, we generated a ran-
dom variable Z (using package rstan in R) with density proportional to

fn,µµµ(z) := nθz2

2 −
∑n

i=1 log cosh(θz + µi). Next, given this realization of
Z = z we generated each component of X = (X1, . . . , Xn) independently

taking values in ±1 with Pθ,µµµ(Xi = xi) =
e(µi+zθ)xi

eµi+zθ+e−µi−zθ . Thereafter Lemma
3 guarantees the joint distribution of X indeed follows a Curie-Weiss model
with temperature parameter θ and magnetization µµµ. We believe that this
method is much faster than the one-spin at a time Glauber dynamics which
updates the whole chain X one location at a time. We have absorbed all
issues regarding mixing time in the simulation of Z, which being a one di-
mensional continuous random variable behaves much better in simulation.

In figure 1, we plot the power of both tests for θ = 0.5 (high temper-
ature, conditionally centered magnetization), θ = 1 (critical temperature,
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total magnetization), and θ = 1.5 (low temperature, conditionally centered
magnetization). Each plot was produced by repeating the experiment for
a range of equally spaced signal sparsity-strength pairs (α, r) with an in-
crement of size 0.05. In addition, we plot in red the theoretical detection
boundary given by r = 1/2 − α for non-critical temperature (θ 6= 1) and
r = 3/4− α for critical temperature (θ = 1). These simulation results agree
very well with our theoretical development.

5. Discussions. In this paper we study the asymptotic minimax rates
of detection for arbitrary sparse signals in Ising Models, considered as a
framework to study dependency structures in binary outcomes. We show
that the detection thresholds in Ising models might depend on the presence
of a “thermodynamic” phase transition in the model. In the context of a
Curie- Weiss Ising model, the presence of such a phase transition results
in substantial faster rates of detection of sparse signals at criticality. On
the other hand, lack of such phase transitions, in the Ising model on the
line graph, yields results parallel to those in independent Bernoulli sequence
models, irrespective of the level of dependence. We further show that for
Ising models defined on graphs enjoying certain degree of regularity, detec-
tion thresholds parallel those in independent Bernoulli sequence models in
the low dependence/high temperature regime. It will be highly interesting
to consider other kinds of graphs left out by Theorem 6 in the context of
proving matching lower bounds to Theorem 4. This seems highly challenging
and might depend heavily on the sharp asymptotic behavior of the parti-
tion function of more general Ising model under low-magnetization regimes.
The issue of unknown dependency structure Q, and especially the estima-
tion of unknown temperature parameter θ for Ising models defined on given
underlying graphs, is also subtle as shown in Bhattacharya and Mukherjee
(2015). In particular, the rate of consistency of an estimator of θ under the
null model (i.e. µµµ = 0) depends crucially on the position of θ with respect to
the point of criticality and in particular high temperature regimes (i.e. low
positive values of θ) may preclude the existence of any consistent estimator.
The situation becomes even more complicated in presence of external magne-
tization (i.e. µµµ 6= 0). Finally, this paper opens up several interesting avenues
of future research. In particular, investigating the effect of dependence on
detection of segment type structured signals deserves special attention.

6. Proof of Main Results. In this section we collect the proofs of
our main results. It is convenient to first prove the general results, namely
the upper bound given by Theorem 4 and lower bound by Theorem 6, and
then consider the special cases of the Ising model on a cycle graph, and
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Fig 1. The power of testing procedures in the dense signal setup. (a) shows the power of the
conditionally centered magnetization test for θ = 0.5, (b) shows the power of the total mag-
netization test for θ = 1 (c) shows the power of the conditionally centered magnetization
test for θ = 1.5 . The theoretical detection threshold is drawn in red.
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Curie-Weiss model.

6.1. Proof of Theorem 4. The key to the proof is the tail behavior of

fQ,µµµ(X) :=
1

n

n∑

i=1

[Xi − EQ,µµµ(Xi|Xj : j 6= i)] =
1

n

n∑

i=1


Xi − tanh


∑

j 6=i

QijXj + µj




 ,

where EQ,µµµ means the expectation is taken with respect to the Ising model
(1). In particular, we shall make use of the following concentration bound
for fQ,µµµ(X).

Lemma 1. Let X be a random vector following the Ising model (1). Then
for any t > 0,

PQ,µµµ(|fQ,µµµ(X)| ≥ t) ≤ 2 exp

{
− nt2

4 (1 + ‖Q‖`∞→`∞)2

}
.

Lemma 1 follows from a standard application of Stein’s Method for con-
centration inequalities (Chatterjee, 2005, 2007b; Chatterjee et al., 2010). We
defer the detailed proof to the Appendix.

We are now in position to prove Theorem 4. We first consider the Type I
error. By Lemma 1, there exists a constant C > 0 such that

PQ,0(
√
nX̃ ≥ Ln) ≤ 2 exp(−CL2

n) → 0.

It remains to consider the Type II error. Note that

X̃ − fQ,µµµ(X) =
1

n

n∑

i=1


tanh


∑

j 6=i

QijXj + µi


− tanh


∑

j 6=i

QijXj






=
1

n

∑

i∈supp(µµµ)


tanh


∑

j 6=i

QijXj + µi


− tanh


∑

j 6=i

QijXj






≥ 1

n

∑

i∈supp(µµµ)


tanh


∑

j 6=i

QijXj +B


− tanh


∑

j 6=i

QijXj




 ,

where the inequality follows from the monotonicity of tanh.
Observe that for any x ∈ R and y > 0,

(6) tanh(x+y)−tanh(x) =
[1− tanh2(x)] tanh(y)

1 + tanh(x) tanh(y)
≥ [1−tanh(x)] tanh(y),
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where the inequality follows from the fact that | tanh(x)| ≤ 1. Thus,

X̃ − fQ,µµµ(X) ≥ tanh(B)

n

∑

i∈supp(µµµ)


1− tanh


∑

j 6=i

QijXj




 .

Because ∑

j 6=i

QijXj ≤ ‖Q‖`∞→`∞ ,

we get

X̃ − fQ,µµµ(X) ≥ s tanh(B)

n
[1− tanh (‖Q‖`∞→`∞)] .

Therefore,

√
nX̃ −

√
nfQ,µµµ(X) ≥ s tanh(B)√

n
[1− tanh (‖Q‖`∞→`∞)] � Ln.

This, together with another application of Lemma 1, yields the desired claim.

6.2. Proof of Theorem 6. The proof is somewhat lengthy and we break
it into several steps.

6.2.1. Reduction to magnetization. We first show that a lower bound can
be characterizing the behavior of X̄ under the alternative. To this end, note
that for any test T and a distribution π over Ξ(s,B), we have

Risk(T,Ξs,B,Q) = PQ,0 (T (X) = 1) + sup
µµµ∈Ξ(s,B)

PQ,µµµ (T (X) = 0)

≥ PQ,0 (T (X) = 1) +

∫
PQ,µµµ (T (X) = 0) dπ(µµµ).

The rightmost hand side is exactly the risk when testing H0 against a simple
alternative where X follows a mixture distribution:

Pπ(X = x) :=

∫
PQ,µµµ (X = x) dπ(µµµ)

By Neymann-Pearson Lemma, this can be further lower bounded by

Risk(T,Ξ(s,B),Q) ≥ PQ,0 (Lπ(X) > 1) +

∫
PQ,µµµ (Lπ(X) ≤ 1) dπ(µµµ),

where

Lπ(X) =
Pπ(X)

PQ,0(X)
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is the likelihood ratio.
We can now choose a particular prior distribution π to make Lπ a mono-

tone function of X̄. To this end, let π be supported over

Ξ̃(s,B) = {µµµ ∈ {0, B}n : |supp(µµµ)| = s} ,

so that
π(µµµ) ∝ Z(Q,µµµ), ∀µµµ ∈ Ξ̃(s,B).

It is not hard to derive that, with this particular choice,

Lπ(X) ∝
∑

µµµ∈Ξ̃(s,B)

exp(µµµ>X) = ES exp

(
B
∑

i∈S
Xi

)
,

where ES means expectation over S, a uniformly sampled subset of [n] of
size s. It is clear, by symmetry, that the rightmost hand side is invariant
to the permutation of the coordinates of X. In addition, it is an increasing
function of

|{i ∈ [n] : Xi = 1}| = 1

2

(
n+

n∑

i=1

Xi

)
,

and hence an increasing function of X̄.
The observation that Lπ(X) is an increasing function of X̄ implies that

there exists a sequence κn such that

Risk(T,Ξ(s,B),Q) ≥ PQ,0 (Lπ(X) > 1) +

∫
PQ,µµµ (Lπ(X) ≤ 1) dπ(µµµ)

= PQ,0

(
n∑

i=1

Xi > κn

)
+

∫
PQ,µµµ

(
n∑

i=1

Xi ≤ κn

)
dπ(µµµ)

≥ PQ,0

(
n∑

i=1

Xi > κn

)
+ inf

µµµ∈Ξ̃(s,B)
PQ,µµµ

(
n∑

i=1

Xi ≤ κn

)
.

It now remains to study the behavior of X̄.
In particular, it suffices to show that, for any fixed x > 0,

(7) lim inf
n→∞

PQ,0

{
n∑

i=1

Xi > x
√
n

}
> 0,

and for any xn → ∞,

(8) lim sup
n→∞

sup
µµµ∈Ξ̃(s,B)

PQ,µµµ

(
n∑

i=1

Xi > xn
√
n

)
= 0.
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Assuming (7) holds, then for any test T to be asymptotic powerful, we need
κn � √

n to ensure that

PQ,0

{
n∑

i=1

Xi > κn

}
→ 0.

But, in the light of (8), this choice necessarily leads to

inf
µµµ∈Ξ̃(s,B)

PQ,µµµ

{
n∑

i=1

Xi ≤ κn

}
→ 1,

so that
Risk(T,Ξ(s,B),Q) → 1.

In other words, there is no asymptotic powerful test if both (7) and (8) hold.
We now proceed to prove them separately.

6.2.2. Proof of (8):. Recall that mi(X) =
∑n

j=1QijXj and assume µµµ ∈
Ξ̃(s,B) with s tanh(B) ≤ C

√
n. Also let r = (r1, . . . , rn)

> where r = r(Q) :=
Q1. We split the proof into two cases, depending on whether B ≤ 1 or B > 1.

The case of B ∈ [0, 1] :. Write

n∑

i=1

Xi =
n∑

i=1

[Xi − tanh(mi(X) + µi)] +
n∑

i=1

[tanh(mi(X) + µi)− tanh(mi(X))]

+
n∑

i=1

[tanh(mi(X))−mi(X)] +
n∑

i=1

mi(X).

Observe that,

n∑

i=1

mi(X) = 1>QX =
n∑

i=1

riXi = ρ∗
n∑

i=1

Xi +
n∑

i=1

(ri − ρ∗)Xi,

where ρ∗ = 1
n1

>r = 1
n1

>Q1. Thus,

(1− ρ∗)
n∑

i=1

Xi =

n∑

i=1

[Xi − tanh(mi(X) + µi)] +

n∑

i=1

[tanh(mi(X) + µi)− tanh(mi(X))]

+

n∑

i=1

[tanh(mi(X))−mi(X)] +

n∑

i=1

(ri − ρ∗)Xi.

=: ∆1 +∆2 +∆3 +∆4.
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It is clear that

PQ,µµµ

{
n∑

i=1

Xi > xn
√
n

}
≤

4∑

j=1

PQ,µµµ

{
∆j >

1

4(1− ρ∗)
xn

√
n

}
.

We now argue that for any xn → ∞,

(9) sup
µµµ∈Ξ̃(s,B)

PQ,µµµ

{
∆j >

1

4(1− ρ∗)
xn

√
n

}
→ 0, j = 1, . . . , 4.

The case for ∆4 follows from our assumption (
∥∥∥Q1− 1>Q1

n 1

∥∥∥
2
= O(1)) upon

Cauchy-Schwarz inequality. The case ∆1 follows immediately from Lemma
1. On the other hand, we note that

n∑

i=1

[tanh(mi(X) + µi)− tanh(mi(X))] ≤
n∑

i=1

|tanh(mi(X) + µi)− tanh(mi(X))|

≤
n∑

i=1

tanh(µi) = s tanh(B),

where the second inequality follows from the subadditivity of tanh. The
bound (9) for ∆2 then follows from the fact that s tanh(B) = O(

√
n).

We now consider ∆3. Recall that |x − tanh(x)| ≤ x2. It suffices to show
that, as xn → ∞,

(10) sup
µµµ∈Ξ̃(s,B)

PQ,µµµ

{
n∑

i=1

m2
i (X) >

1

4
xn

√
n

}
→ 0,

which follows from Markov inequality and the following lemma.

Lemma 2. Let X be a random vector following the Ising model (1). As-
sume that Qi,j ≥ 0 for all (i, j) such that ‖Q‖`∞→`∞ ≤ ρ for some constant
ρ < 1, and ‖Q‖2F = O(

√
n). Then for any fixed C > 0,

lim sup
n→∞

sup
µµµ∈[0,1]n:

∑n
i=1

µµµi≤C
√

n

1√
n
EQ,µµµ

(
n∑

i=1

m2
i (X)

)
< ∞.

The proof of Lemma 2 is deferred to the Appendix in Mukherjee, Mukher-
jee and Yuan (2017).
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The case of B > 1 :. In this case s tanh(B) ≤ C
√
n implies s ≤ C ′√n,

where C ′ := C/ tanh(1). Also, since the statistic
∑n

i=1Xi is stochastically
non-decreasing in B, without loss of generality it suffices to show that, for
a fixed S ⊂ [n] obeying |S| = s,

lim sup
K→∞

lim sup
n→∞

lim sup
B→∞

sup
µµµ∈Ξ̃(s,B):
supp(µµµ)=S

PQ,µµµ

{
∑

i∈Sc

Xi > K
√
n

}
= 0.(11)

Now, for i ∈ S we have for µµµ ∈ Ξ̃(s,B)

PQ,µµµ(Xi = 1|Xj = xj , j 6= i) =
eB+mi(x)

eB+mi(x) + e−B−mi(x)
=

1

1 + e−2mi(x)−2B
≥ 1

1 + e2−2B
,

and so limB→∞ PQ,µµµ(Xi = 1, i ∈ S) = 1 uniformly in µµµ ∈ Ξ̃(s,B) with
s ≤ C ′√n. Also note that for any configuration (xj , j ∈ Sc) we have

PQ,µµµ(Xi = xi, i ∈ Sc|Xi = 1, i ∈ S) ∝ exp


1

2

∑

i,j∈Sc

xixjQij +
∑

i∈Sc

xiµ̃S,i


 ,

(12)

where µ̃S,i :=
∑

j∈S Qij ≤ ‖Q‖`∞→`∞ ≤ ρ. Further we have

n∑

i=1

µ̃µµS,i =
n∑

i=1

∑

j∈S
Qij =

∑

j∈S

n∑

i=1

Qij ≤ C ′ρ
√
n.(13)

We shall refer to the distribution in (12) as P
Q̃S ,µ̃µµS

where Q̃S is the (n −
s)× (n− s) principle matrix of Q by restricting the index in Sc. Therefore
we simply need to verify that Q̃S satisfy the conditions for Q in Theorem 6.
Trivially Q̃ij ≥ 0 for all i, j and ‖Q̃‖`∞→`∞ ≤ ‖Q‖`∞→`∞ ≤ ρ. For verifying
the third condition, i.e.

∥∥∥∥∥Q̃1− 1>Q̃1

n
1

∥∥∥∥∥

2

= O(1),
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note that

O(1) =

∥∥∥∥Q1− 1>Q1

n
1

∥∥∥∥
2

=
1

2n

n∑

i,j=1

(ri(Q)− rj(Q))2

≥ 1

2n

∑

i,j∈Sc

(ri(Q)− rj(Q))2

=
n− s

n
× 1

2(n− s)

∑

i,j∈Sc

(ri(Q)− rj(Q))2

≥n− s

n

∥∥∥∥∥Q̃1− 1>Q̃1

n
1

∥∥∥∥∥

2

.

Therefore with oB(1) denoting a sequence of real numbers that converges to
0 uniformly over µµµ ∈ Ξ̃(s,B),

lim sup
B→∞

sup
µµµ∈Ξ̃(s,B):
supp(µµµ)=S

PQ,µµµ

{
∑

i∈Sc

Xi > K
√
n

}

≤ lim sup
B→∞

sup
µµµ∈Ξ̃(s,B):
supp(µµµ)=S

{
PQ,µµµ

(
∑

i∈Sc

Xi > K
√
n|Xj = 1, j ∈ S

)
+ oB(1)

}

= lim sup
B→∞

sup
µµµ∈Ξ̃(s,B):
supp(µµµ)=S

P
Q̃S ,µ̃µµS

(
∑

i∈Sc

Xi > K
√
n

)

≤ sup
S⊂[n]

sup
µ̃µµS :

∑

i∈Sc
µ̃S,i≤C′ρ

√
n

P
Q̃S ,µ̃µµS

(
∑

i∈Sc

Xi > K
√
n

)
,

where the last line follows from (13). The proof of the claim (11) thereafter
follows using the same argument as that for the case when B < 1 since
µ̃S,i ≤ ρ < 1 for each i ∈ Sc.

6.2.3. Proof of (7):. It is clear that, by symmetry,

(14) PQ,0

(∣∣∣
n∑

i=1

Xi| > K
√
n
)
= 2PQ,0

( n∑

i=1

Xi > K
√
n
)
.

In establishing (8), we essentially proved that

(15) lim sup
K→∞

lim sup
n→∞

sup
µµµ∈Ξ̃(s,B)

PQ,µµµ

(
n∑

i=1

Xi > K
√
n

)
= 0.
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By choosing K large enough, we can make the right hand side of (14) less
than 1/2. This gives

∑

x∈{−1,1}n
ex

>Qx/2 ≤ 2
∑

x∈Dn,K

ex
>Qx/2,(16)

where Dn,K :=
{
|
∑n

i=1Xi| ≤ K
√
n
}
. Then, setting Cn := {

∑n
i=1Xi >

λ
√
n}, for any K > λ we have

PQ,0(Cn) ≥ PQ,0(Cn ∩Dn,K) =

∑
x∈Cn∩Dn,K

ex
′Qx/2

∑
x∈{−1,1}n e

x′Qx/2

≥1

2

∑
x∈Cn∩Dn,K

ex
′Qx/2

∑
x∈Dn,K

ex′Qx/2

≥e−2Kt

2

∑
x∈Cn∩Dn,K

e
x′Qx/2+ t√

n

∑n
i=1 xi

∑
x∈Dn,K

ex′Qx/2

=
e−2Kt

2

PQ,µµµ(t)(Cn ∩Dn,K)

PQ,0(Dn,K)

Z(Q,µµµ(t))

Z(Q,0)

≥e−2Kt

2
PQ,µµµ(t)(Cn ∩Dn,K),

where µµµ(t) = tn−1/21. In the last inequality we use the fact that the function
t 7→ Z(Q,µµµ(t)) is non-increasing in t on [0,∞), as

∂

∂t
Z(Q,µµµ(t)) =

1√
n
EQ,µµµ(t)

n∑

i=1

Xi ≥
1√
n
EQ,0

n∑

i=1

Xi = 0.

To show (7), it thus suffices to show that there exists K large enough and
t > 0 such that

lim inf
n→∞

PQ,µµµ(t)(Cn ∩Dn,K) > 0.

To this end, it suffices to show that for any λ > 0 there exists t such that

(17) lim inf
n→∞

PQ,µµµ(t)(

n∑

i=1

Xi > λ
√
n) > 0.

If (17) holds, then there exists t > 0 such that

lim inf
n→∞

PQ,µµµ(t)(Cn) > 0.
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It now suffices to show that for any t fixed one has

lim sup
K→∞

lim sup
n→∞

PQ,µµµ(t)(D
c
n,K) = 0,

which follows from (15).
It now remains to show (17). To begin, note that for h > 0,

EQ,µµµ(h)Xi = EQ,µµµ(h) tanh

(
mi(X) +

h√
n

)

= EQ,µµµ(h)

tanh(mi(X)) + tanh
(

h√
n

)

1 + tanh(mi(X)) tanh
(

h√
n

)

≥ 1

2

[
EQ,µµµ(h) tanh(mi(X)) + tanh

(
h√
n

)]

≥ 1

2
tanh

(
h√
n

)
.

In the last inequality we use Holley inequality (e.g., Theorem 2.1 of Grim-
mett, 2006) for the two probability measures PQ,0 and PQ,µµµ(h) to conclude

EQ,µµµ(h) tanh(mi(X) ≥ EQ,0 tanh(mi(X)) = 0,

in the light of (2.7) of Grimmett (2006). Adding over 1 ≤ i ≤ n gives

F ′
n(h) =

1√
n
EQ,µµµ(h)

n∑

i=1

Xi ≥
√
n

2
tanh

(
h√
n

)
,(18)

where Fn(h) is the log normalizing constant for the model PQ,µµµ(h). Thus,
using Markov’s inequality one gets

PQ,µµµ(t)

(
n∑

i=1

Xi ≤ λ
√
n

)
=PQ,µµµ(t)

(
e
− 1√

n

∑n
i=1 Xi ≥ e−λ

)
≤ exp {λ+ Fn(t− 1)− Fn(t)} ,

Using (18), the exponent in the rightmost hand side can be estimated as

λ+ Fn(t− 1)− Fn(t) = λ−
∫ t

t−1
F ′
n(h)dh ≤ λ−

√
n

2
tanh

(
t− 1√

n

)
,

which is negative and uniformly bounded away from 0 for all n large for
t = 4λ+ 1, from which (17) follows.
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6.3. Proof of Theorem 5. We set mi(X) =
∑n

j=1QijXj and assume µµµ ∈
Ξ̃(s,B) with s tanh(B) ≤ C

√
n. By the same argument as that of Section

6.2.1, it suffices to show that there does not exist a sequence of positive reals
{Ln}n≥1 such that

PQ,0

(
n∑

i=1

Xi > Ln

)
+ PQ,µµµ

(
n∑

i=1

Xi < Ln

)
→ 0.

Suppose, to the contrary, that there exists such a sequence. For any t ∈ R

we have

EQ,0 exp

{
t√
n

n∑

i=1

Xi

}
=
Z
(
Q, t√

n
1
)

Z (Q,0)
= λ1

(
t√
n

)n

+ λ2

(
t√
n

)n

,

where

λi(t) :=
eθ cosh(t) + (−1)i+1

√
e2θ sinh(t)2 + e−2θ

eθ + e−θ
.

This computation for the normalizing constants for the Ising model on the
cycle graph of length n is standard (Ising, 1925). By a direct calculation we
have

λ1(0) = 1 > λ2(0) = tanh(θ), λ′
1(0) = λ′

2(0) = 0, c(θ) := λ′′
1(0) > 0,

and so

EQ,0e
t√
n

∑n
i=1 Xi = λ1

( t√
n

)n
+ λ2

( t√
n

)n n→∞→ e
c(θ)t2

2) .

This implies that under H0

1√
n

n∑

i=1

Xi
d→ N(0, c(θ)),

which for any λ > 0 gives

lim inf
n→∞

PQ,0

(
n∑

i=1

Xi > λ
√
n

)
> 0.

Therefore, Ln � √
n. Now invoking Lemma 1, for any K > 0 we have

PQ,µµµ

{∣∣∣∣∣

n∑

i=1

(Xi − tanh(mi(X) + µi)

∣∣∣∣∣ > K
√
n

}
≤ 2e−K2/4(1+θ)2 .
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On this set we have for a universal constant C < ∞
∣∣∣∣∣

n∑

i=1

(Xi − tanh(mi(X))

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

(Xi − tanh(mi(X) + µi))

∣∣∣∣∣

+

∣∣∣∣∣

n∑

i=1

(tanh(mi(X) + µi)− tanh(mi(X)))

∣∣∣∣∣

≤K
√
n+ C

n∑

i=1

tanh(µi)

≤K
√
n+ Cs tanh(B),

and so

PQ,µµµ

{∣∣∣∣∣

n∑

i=1

(Xi − tanh(mi(X)))

∣∣∣∣∣ > K
√
n+ Cs tanh(B)

}
≤ 2e−K2/4(1+θ)2 .

(19)

Also, setting g(t) := t/θ − tanh(t), we get

n∑

i=1

(Xi − tanh(mi(X)) =

n∑

i=1

g(mi(X)) = {Qn(X)−Rn(X)}g(θ),

where

Qn(X) := |{1 ≤ i ≤ n : mi(X) = θ}| , Rn(X) := |{1 ≤ i ≤ n : mi(X) = −θ}| .

Indeed, this holds, as in this casemi(X) can take only three values {−θ, 0, θ},
and g(.) is an odd function. Thus using (19) gives

PQ,µµµn

{
|Qn(X)−Rn(X)| > K

√
n+ Cs tanh(B)

g(θ)

}
≤ 2e−K2/4(1+θ)2 .

But then we have

PQ,µµµn

{
n∑

i=1

Xi > Ln

}
=PQ,µµµ

{
n∑

i=1

mi(X) > θLn

}

=PQ,µµµ {Qn(X)−Rn(X) > Ln} ≤ 2e−K2/4(1+θ)2 ,

as

Ln � K
√
n+ Cs tanh(B)

g(θ)
.

This immediately yields the desired result.
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6.4. Proof of Theorem 1. By Theorem 6, there is no asymptotically pow-
erful test if s tanh(B) = O(n1/2). It now suffices to show that the näıve test
is indeed asymptotically powerful. To this end, we first consider the Type I
error. By Theorem 2 of Ellis and Newman (1978),

√
nX̄ →d N

(
0,

1

1− θ

)
,

which immediately implies that Type I error

Pθ,0

(√
nX̄ ≥ Ln

)
→ 0.

Now consider Type II error. Observe that

X̄ − fQ,µµµ(X) =
1

n

n∑

i=1

tanh


∑

j 6=i

QijXj + µi




=
1

n

n∑

i=1

tanh
(
θX̄ + µi − θXi/n

)

=
1

n

n∑

i=1

tanh
(
θX̄ + µi

)
+O(n−1),

where the last equality follows from the fact that tanh is Lipschitz. In addi-
tion,

1

n

n∑

i=1

tanh
(
θX̄ + µi

)
= tanh

(
θX̄
)
+

1

n

∑

i∈supp(µµµ)

[
tanh

(
θX̄ + µi

)
− tanh

(
θX̄
)]

≥ tanh
(
θX̄
)
+

1

n

∑

i∈supp(µµµ)

[
tanh

(
θX̄ +B

)
− tanh

(
θX̄
)]

≥ tanh
(
θX̄
)
+

s tanh(B)

n

[
1− tanh

(
θX̄
)]

,

≥ tanh
(
θX̄
)
+

s tanh(B)

n
[1− tanh (θ)] ,

where the second to last inequality follows from (6). In other words,

√
n(X̄ − tanh(θX̄))−

√
nfQ,µµµ(X) ≥ s tanh(B)√

n
[1− tanh (θ)] .

Since supx∈R
x−tanh(θx)

x < ∞, an application of Lemma 1, together with the

fact that Ln = o(n−1/2s tanh(B)) yields

Pθ,µµµ

(√
nX̄ ≥ Ln

)
→ 1.



DETECTION THRESHOLDS FOR ISING MODELS 27

6.5. Proof of Theorem 2. The proof of attainability follows immediately
from Theorem 4. Therefore here we focus on the proof of the lower bound.
As before, by the same argument as those following Section 6.2.1, it suffices
to show that there does not exist a sequence of positive reals {Ln}n≥1 such
that

PQ,0

(
n∑

i=1

Xi > Ln

)
+ PQ,µµµ

(
n∑

i=1

Xi < Ln

)
→ 0.

From the proof of Lemma 1 and the inequality | tanh(x) − tanh(y)| ≤
|x− y|, for any fixed t < ∞ and µµµ ∈ Ξ̃(s,B) we have

Pθ,µµµ

(
X̄ >

s

n
tanh(θX̄ +B) +

n− s

n
tanh(θX̄) +

θ

n
+

t√
n

)
≤ 2e−

t2

2nan ,

where

an :=
2

n
+

2θ

n
+

2θ

n2
.

Also note that

s

n
tanh(θX̄ +B) +

n− s

n
tanh(θX̄) ≤ tanh(θX̄) + C

s

n
tanh(B),

for some constant C < ∞. Therefore

Pθ,µµµ

{
X̄ − tanh(θX̄) > C

s

n
tanh(B) +

θ

n
+

t√
n

}
≤ 2 exp

(
−t2/2nan

)
.

Since s tanh(B) = O(n1/2), we have

sup
µµµ∈Ξ̃(s,B)

Pθ,µµµ

{
X̄ − tanh(θX̄) >

C(t)√
n

}
≤ 2 exp

(
−t2/2nan

)
(20)

for some finite positive constant C(t). Now, invoking Theorem 1 of Ellis and
Newman (1978), under H0 : µµµ = 0 we have

√
n(X̄ −m)|X̄ > 0

d→ N

(
0,

1−m2

1− θ(1−m2)

)
,

where m is the unique positive root of m = tanh(θm). The same argument
as that from Section 6.2.1 along with the requirement to control the Type I
error then imply that without loss of generality one can assume the test φn

rejects if X̄ > m+ Ln, where Ln � n−1/2.
Now, note that g(x) = x − tanh(θx) implies that g′(x) is positive and

increasing on the set [m,∞), and therefore

g(x) ≥ g(m) + (x−m)g′(m).
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This gives

Pθ,µµµ

(
X̄ > m+ Ln, X̄ − tanh(θX̄) ≤ C(t)√

n

)

≤Pθ,µµµ

(
X̄ > m+ Ln, X̄ −m ≤ C(t)

g′(m)
√
n

)
,

which is 0 for all large n, as Ln � n−1/2. This, along with (20) gives

lim inf
n→∞

inf
µµµ∈Ξ̃(s,B)

Eθ,µµµ(1− φn) ≥ 1,

thus concluding the proof.

6.6. Proof of Theorem 3. The proof of Theorem 3 is based on an aux-
iliary variable approach known as Kac’s Gaussian transform (Kac, 1959),
which basically says that the moment generating function of N(0, 1) is et

2/2.
This trick has already been used in computing asymptotics of log partition
functions (Comets and Gidas, 1991; Mukherjee, 2013; Park and Newman,
2004).

In particular, the proof relies on the following two technical lemmas. The
proof to both lemmas is relegated to the Appendix in Mukherjee, Mukherjee
and Yuan (2017) for brevity.

Lemma 3. Let X follow a Curie-Weiss model of (5) with θ > 0. Given
X = x let Zn be a normal random variable with mean x̄ and variance 1/(nθ).
Then

(a) Given Zn = z the random variables (X1, · · · , Xn) are mutually inde-
pendent, with

Pθ,µµµ(Xi = xi) =
e(µi+zθ)xi

eµi+zθ + e−µi−zθ
,

where xi ∈ {−1, 1}.
(b) The marginal density of Zn is proportional to e−fn,µµµ(z), where

fn,µµµ(z) :=
nθz2

2
−

n∑

i=1

log cosh(θz + µi).(21)

(c)

sup
µµµ∈[0,∞)n

Eθ,µµµ

( n∑

i=1

(Xi − tanh(µi + θZn))
)2

≤ n.
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While the previous lemma applies to all θ > 0, the next one specializes
to the case θ = 1 and gives crucial estimates which will be used in proving
Theorem 3.

For any µµµ ∈ (R+)n set

A(µµµ) :=
1

n

n∑

i=1

tanh(µµµi).

This can be thought of as the total amount of signal present in the parameter
µµµ. In particular, note that for µµµ ∈ Ξ(s,B) we have

A(µµµ) ≥ s tanh(B)

n
,

and for µµµ ∈ Ξ̃(s,B) we have

A(µµµ) =
s tanh(B)

n
.

In the following we abbreviate s tanh(B)/n := An.

Lemma 4. (a) If θ = 1, for any µµµ ∈ Ξ(s,B) the function fn,µµµ(·) de-
fined by (21) is strictly convex, and has a unique global minimum
mn ∈ (0, 1], such that

m3
n = Θ(A(µµµ)).(22)

(b)
lim sup
K→∞

lim sup
n→∞

Pθ,µµµ(Zn −mn > Kn−1/4) = 0.

(c) If An � n−3/4 then there exists δ > 0 such that

lim sup
n→∞

sup
µµµ:A(µµµ)≥An

Pθ,µµµ

(
Zn ≤ δmn

)
= 0.

The proof of Lemma 4 can be found in the Appendix in Mukherjee,
Mukherjee and Yuan (2017). We now come back to the proof of Theorem
3. To establish the upper bound, define a test function φn by φn(X) = 1

if X̄ > 2δA
1/3
n , and 0 otherwise, where δ is as in part (c) of Lemma 4. By

Theorem 1 of Ellis and Newman (1978), under H0 : µµµ = 0 we have

n1/4X̄
d→ Y,(23)
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where Y is a random variable on R with density proportional to e−y4/12.
Since An � n−3/4 we have

Pθ,0(X̄ > 2δA1/3
n ) = o(1),

and so it suffices to show that

sup
µµµ:A(µµµ)≥An

Pθ,µµµ(X̄ ≤ 2δA1/3
n ) = o(1).(24)

To this effect, note that

n∑

i=1

Xi =
n∑

i=1

(Xi − tanh(µi + Zn)) +
n∑

i=1

tanh(µi + Zn)

≥
n∑

i=1

(Xi − tanh(µi + Zn)) + n tanh(Zn)

Now by Part (c) of Lemma 3 and Markov inequality,

|
n∑

i=1

(Xi − tanh(µi + Zn))| ≤ δnA1/3
n

with probability converging to 1 uniformly over µµµ ∈ [0,∞)n. Thus it suffices
to show that

sup
µµµ:A(µµµ)≥An

Pθ,µµµ(nZn ≤ 3δnA1/3
n ) = o(1).

But this follows on invoking Parts (a) and (c) of Lemma 4, and so the proof
of the upper bound is complete.

To establish the lower bound, by the same argument as that from Section
6.2.1, it suffices to show that there does not exist a sequence of positive reals
{Ln}n≥1 such that

PQ,0

(
n∑

i=1

Xi > Ln

)
+ PQ,µµµ

(
n∑

i=1

Xi < Ln

)
→ 0.

If limn→∞ n−3/4Ln < ∞, then (23) implies

lim inf
n→∞

Eθ,0φn > 0,
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and so we are done. Thus assume without loss of generality that n−3/4Ln →
∞. In this case we have

n∑

i=1

Xi =

n∑

i=1

(Xi − tanh(µi + Zn)) +
n∑

i=1

tanh(µi + Zn)

≤
n∑

i=1

(Xi − tanh(µi + Zn)) +
n∑

i=1

tanh(µi) + n|Zn|,

and so

Pθ,µµµ

(
n∑

i=1

Xi > Ln

)

≤Pθ,µµµ

{
|

n∑

i=1

Xi − tanh(µi + Zn)| > Ln/3

}
+ Pθ,µµµ {nZn > Ln/3}+ Pθ,µµµ {nZn < −Ln/3}

where we use the fact that

n∑

i=1

tanh(µi) = O(n1/4) � Ln.

Now by Part (c) of Lemma 3 and Markov inequality, the first term above
converges to 0 uniformly over all µµµ. Also by Parts (a) and (b) of Lemma
4, Pθ,µµµ {nZn > Ln/3} converges to 0 uniformly over all µµµ such that A(µµµ) =
O(n−3/4). Finally note that the distribution of Zn is stochastically increasing
in µµµ, and so

Pθ,µµµ {nZn < −Ln/3} ≤ Pθ,0 {nZn < −Ln/3} ,

which converges to 0 by (23). This completes the proof of the lower bound.
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APPENDIX – PROOF OF AUXILIARY RESULTS

Proof of Lemma 1. This is a standard application of Stein’s Method
for concentration inequalities (Chatterjee, 2005). The details are included
here for completeness. One begins by noting that

EQ,µµµ (Xi|Xj , j 6= i) = tanh (mi (X) + µi) , mi (X) :=

n∑

j=1

QijXj .

Now let X be drawn from (1) and let X
′
is drawn by moving one step

in the Glauber dynamics, i.e. let I be a random variable which is discrete
uniform on {1, 2, · · · , n}, and replace the Ith coordinate of X by an element
drawn from the conditional distribution of the Ith coordinate given the rest.
It is not difficult to see that (X,X

′
) is an exchangeable pair of random
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vectors. Further define an anti-symmetric function F : Rn × R
n → R as

F (x,y) =
∑n

i=1 (xi − yi), which ensures that

EQ,µµµ

(
F (X,X

′
)|X
)
=
1

n

n∑

j=1

Xj − tanh (mj (X) + µj) = fµµµ(X).

Denoting Xi to be X with Xi replaced by −Xi, by Taylor’s series we have

tanh(mj(X
i) + µj)− tanh(mj(X) + µj)

=(mj(X
i)−mj(X))g′(mj(X)) +

1

2
(mj(X

i)−mj(X))2g′′(ξij)

=− 2QijXig
′(mj(X)) + 2Q2

ijg
′′(ξij)

for some {ξij}1≤i,j≤n, where g(t) = tanh(t). Thus fµµµ(X) − fµµµ(X
i) can be

written as

fµµµ(X)− fµµµ(X
i) =

2Xi

n
+

1

n

n∑

j=1

{
tanh

(
mj

(
Xi
)
+ µj

)
− tanh (mj (X) + µj)

}

=
2Xi

n
− 2Xi

n

n∑

j=1

Qijg
′(mj(X)) +

2

n

n∑

j=1

Q2
ijg

′′(ξij)

Now setting pi(X) := PQ,µµµ(X
′
i = −Xi|Xk, k 6= i) we have

v(X) :=
1

2
EQ,µµµ

(
|fµµµ(X)− fµµµ(X

′)‖(XI −X ′
I)|
∣∣∣X
)

=
1

n

n∑

i=1

|fµµµ(X)− fµµµ(X
i)|pi(X)

≤ 2

n2

n∑

i=1

pi(X)− 2

n2

n∑

i,j=1

|Qijpi(X)g′(mj(X))|

+
2

n2

n∑

i,j=1

Q2
ijg

′′(ξij)
2Xipi(X)

≤ 2

n
+

2

n2
sup

u,v∈[0,1]n
|u′Qv|+ 2

n2

n∑

i,j=1

Q2
ij ,

where in the last line we use the fact that max(|g′(t)|, |g′′(t)|) ≤ 1. The
proof of the Lemma is then completed by an application of Theorem 3.3 of
Chatterjee (2007b).
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Proof of Lemma 2. Let Y := (Y1, · · · , Yn) be i.i.d. random variables

on {−1, 1} with P(Yi = ±1) = 1
2 , and let W := (W1, · · · ,Wn)

i.i.d.∼ N(0, 1).
Also, for any t > 0 let Z(tQ, µ) denote the normalizing constant of the p.m.f.

1

Z(tQ,µµµ)
exp

(
1

2
x>tQx+µµµ>x

)

Thus we have

2−nZ(tQ,µµµ) = Eexp
( t
2
Y>QY +

n∑

i=1

µiYi

)
≤ Eexp

( t
2
W>QW +

n∑

i=1

µiWi

)
,

where we use the fact that EY k
i ≤ EW k

i for all positive integers k. Using

spectral decomposition write Q = P>ΛP and set ν := Pµµµ,W̃ = PW to
note that

Eexp
( t
2
W>QW +

n∑

i=1

µiWi

)
= Eexp

( t
2

n∑

i=1

λiW̃
2
i +

n∑

i=1

νiW̃i

)
=

n∏

i=1

e
ν2i

2(1−tλi)

√
1− tλi

.

Combining for any t > 1 we have the bounds

2n
n∏

i=1

cosh(µi) = Z(0,µµµ) ≤ Z(Q,µµµ) ≤ Z(tQ,µµµ) ≤ 2n
e
∑n

i=1

ν2i
2(1−tλi)

∏n
i=1

√
1− tλi

,(25)

where the lower bound follows from on noting that logZ(tQ,µµµ) is monotone
non-decreasing in t, using results about exponential families. Thus invoking
convexity of the function t 7→ logZ(tQ,µµµ) we have

EQ,µµµ
1

2
X>QX =

∂ logZ(tQ,µµµ)

∂t

∣∣∣
t=1

≤ logZ(tQ,µµµ)− logZ(Q,µµµ)

t− 1

≤
n∑

i=1

{ ν2i
2(1− tλi)

− log cosh(µi)
}
−

n∑

i=1

1

2
log(1− tλi),

where we use the bounds obtained in (25). Proceeding to bound the right-
most hand side above, set t = 1+ρ

2ρ > 1 and note that

|tλi| ≤
1 + ρ

2
< 1.
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For x ∈ 1
2 [−(1 + ρ), (1 + ρ)] ⊂ (−1, 1) there exists a constant γρ < ∞ such

that
1

1− x
≤ 1 + x+ 2γρx

2, − log(1− x) ≤ x+ 2γρx
2.

Also a Taylor’s expansion gives

− log cosh(x) ≤ −x2

2
+ x4,

where we have used the fact that ‖(log cosh(x))(4)‖∞ ≤ 1. These, along with
the observations that

n∑

i=1

λi = tr(Q) = 0,
n∑

i=1

ν2i = ||Pµµµ||2 = ||µµµ||2

give the bound

n∑

i=1

{ ν2i
2(1− tλi)

− log cosh(µi)
}
−

n∑

i=1

1

2
log(1− tλi)

≤
{1
2

n∑

i=1

ν2i +
t

2

n∑

i=1

ν2i λi + t2γρ

n∑

i=1

ν2i λ
2
i

}
+
{
− 1

2

n∑

i=1

µ2
i +

n∑

i=1

µ4
i

}
+ γρt

2
n∑

i=1

λ2
i

=
t

2
µµµ>Qµµµ+ t2γρµµµ

>Q2µµµ+
n∑

i=1

µ4
i + γρt

2
n∑

i,j=1

Q2
ij

≤ t

2
Cρ

√
n+ t2γρCρ2

√
n+ C

√
n+ γρt

2D
√
n,

where D > 0 is such that
∑n

i,j=1Q
2
ij ≤ D

√
n. This along with (25) gives

[1
2
C(1 + tρ) + t2γρCρ2 + C + γρt

2D
]√

n ≥1

2
EQ,µµµX

>QX =
1

2
EQ,µµµ

n∑

i=1

Ximi(X)

But, for some random (ξi, i = 1, . . . , n)

1

2
EQ,µµµ

n∑

i=1

Ximi(X)

=
1

2
EQ,µµµ

n∑

i=1

tanh(mi(X) + µi)mi(X)

=
1

2
EQ,µµµ

n∑

i=1

tanh(mi(X))mi(X) +
1

2
EQ,µµµ

n∑

i=1

µimi(X) sech2(ξi).
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Now,

1

2
EQ,µµµ

n∑

i=1

tanh(mi(X))mi(X) ≥η

2
EQ,µµµ

n∑

i=1

mi(X)2,

where

η := inf
|x|≤1

tanh(x)

x
> 0.

The desired conclusion of the lemma follows by noting that

∣∣∣EQ,µµµ

n∑

i=1

µimi(X) sech2(ξi)
∣∣∣ ≤ C

√
n.

Proof of Lemma 3. We begin with Part (a). By a simple algebra, the
p.m.f. of X can be written as

Pθ,µµµ(X = x) ∝ exp

{
nθ

2
x̄2 +

n∑

i=1

xiµi

}
.

Consequently, the joint density of (X, Zn) with respect to the product mea-
sure of counting measure on {−1, 1}n and Lebesgue measure on R is pro-
portional to

exp

{
nθ

2
x̄2 +

n∑

i=1

xiµi −
nθ

2
(z − x̄)2

}

=exp

{
−nθ

2
z2 +

n∑

i=1

xi(µi + zθ)

}
.

Part (a) follows from the expression above.
Now consider Part (b). Using the joint density of Part (a), the marginal

density of Zn is proportional to

∑

x∈{−1,1}n
exp

{
−nθ

2
z2 +

n∑

i=1

xi(µi + zθ)

}

=exp

{
−nθ

2
z2 +

n∑

i=1

log cosh(µi + zθ)

}
= e−fn,µµµ(z),

thus completing the proof of Part (b).
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Finally, consider Part (c). By Part (a) given Zn = z the random variables
(X1, · · · , Xn) are independent, with

Pθ,µµµ(Xi = 1|Zn = z) =
eµi+θz

eµi+θz + e−µi−θz
,

and so

Eθ,µµµ(Xi|Zn = z) = tanh(µi + θz), Varθ,µµµ(Xi|Zn = n) = sech2(µi + θz).

Thus for any µµµ ∈ [0,∞)n we have

Eθ,µµµ

( n∑

i=1

(Xi − tanh(µi + θZn))
)2

=Eθ,µµµEθ,µµµ

{( n∑

i=1

(Xi − tanh(µi + θZn))
)2∣∣∣Zn

}

=E

n∑

i=1

sech2(µi + θZn) ≤ n.

Proof of Lemma 4. We begin with Part (a). Since

f ′′
n,µµµ(z) =

n∑

i=1

tanh2(z + µi)

is strictly positive for all but at most one z ∈ R, the function z 7→ fn,µµµ(z) is
strictly convex with fn,µµµ(±∞) = ∞, it follows that z 7→ fn,µµµ(z) has a unique
minima mn which is the unique root of the equation f ′

n,µµµ(z) = 0. The fact
that mn is positive follows on noting that

f ′
n,µµµ(0) = −

n∑

i=1

tanh(µi) < 0, f ′
n,µµµ(+∞) = ∞.

Also f ′
n(mn) = 0 gives

mn =
1

n

n∑

i=1

tanh(mn + µi) ≤ 1,

and so mn ∈ (0, 1]. Finally, f ′
n,µµµ(mn) = 0 can be written as

mn − tanh(mn) =
s

n

[
tanh(mn +B)− tanh(mn)

]
≥ C

s

n
tanh(B),

for some C > 0, which proves Part (a).
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Now consider Part (b). By a Taylor’s series expansion around mn and
using the fact that f ′′

n(z) is strictly increasing on (0,∞) gives

fn(z) ≥ fn(mn) +
1

2
(z −mn)

2f ′′
n(mn +Kn−1/4) for all z ∈ [mn +Kn−1/4,∞)

fn(z) ≤ fn(mn) +
1

2
(z −mn)

2f ′′
n(mn +Kn−1/4) for all z ∈ [mn,mn +Kn−1/4].

Setting bn := f ′′
n(mn +Kn−1/4) this gives

Pθ,µµµ(Zn > mn +Kn−1/4)

=

∫
mn+Kn−1/4 e−fn(z)dz
∫
R
e−fn(z)dz

≤
∫∞
mn+Kn−1/4 e

− bn
2
(z−mn)2dz

∫mn+Kn−1/4

mn
e−

bn
2
(z−mn)2dz

=
P(N(0, 1) > Kn−1/4

√
bn)

P(0 < N(0, 1) < Kn−1/4
√
bn)

,

from which the desired conclusion will follow if we can show that lim infn→∞ n−1/2bn >
0. But this follows on noting that

n−1/2bn = n−1/2f ′′
n(mn +Kn−1/4)) ≥

√
n tanh2(Kn−1/4) = K2Θ(1).

Finally, let us prove Part (c). By a Taylor’s series expansion about δmn

and using the fact that fn(·) is convex with unique global minima at mn we
have

fn(z) ≥ fn(mn) + (z − δmn)f
′
n(δmn), ∀z ∈ (−∞, δmn].

Also, as before we have

fn(z) ≤ fn(mn) +
1

2
(z −mn)

2f ′′
n(mn), ∀z ∈ [mn, 2mn]

Thus with cn := f ′′
n(2mn) for any δ > 0 we have

Pθ,µµµ(Zn ≤ δmn) =

∫ δmn

−∞ e−fn(z)dz∫
R
e−fn(z)dz

≤
∫ δmn

−∞ e−(z−δmn)f ′
n(δmn)dz

∫ 2mn

mn
e−

cn
2
(z−mn)2dz

=

√
2πcn

|f ′
n(δmn)|P(0 < Z < mn

√
cn)

.(26)
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To bound the the rightmost hand side of (26), we claim that the following
estimates hold:

cn =Θ(nm2
n),(27)

nm3
n =O(|f ′

n(δmn)|).(28)

Given these two estimates, we immediately have

mn
√
cn = Θ(m2

n

√
n) ≥ Θ(A2/3

n

√
n) → ∞,(29)

as An � n−3/4 by assumption. Thus the rightmost hand side of (26) can be
bounded by

mn
√
n

nm3
n

=
1

m2
n

√
n
→ 0,

where the last conclusion uses (29). This completes the proof of Part (c).
It thus remains to prove the estimates (27) and (28). To this effect, note

that

f ′′
n(2mn) =

n∑

i=1

tanh2(2mn + µi)

≤
n∑

i=1

(
tanh(2mn) + C1 tanh(µi)

)2

≤2n tanh2(2mn) + 2C2
1

n∑

i=1

tanh2(µi)

.nm2
n + nA(µn) . nm2

n,

where the last step uses part (a), and C1 < ∞ is a universal constant. This
gives the upper bound in (27). For the lower bound of (27) we have

f ′′
n(mn) =

n∑

i=1

tanh2(2mn + µi) ≥ n tanh2(2mn) & nm3
n.

Turning to prove (28) we have

|f ′
n(δmn)| =

n∑

i=1

tanh(δmn + µi)− nδmn

=
[ n∑

i=1

tanh(δmn + µi)− tanh(δmn)
]
− n[δmn − tanh(δmn)]

≥C2nA(µn)− C3nδ
3m3

n

&nm3
n,
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where δ is chosen small enough, and C2 > 0, C3 < ∞ are universal constants.
This completes the proof of (28), and hence completes the proof of the
lemma.

Division of Biostatistics,

Haviland Hall, Berkeley, CA- 94720.

E-mail: rmukherj@berkeley.edu

Department of Statistics

1255 Amsterdam Avenue

New York, NY-10027.

E-mail: sm3949@columbia.edu
E-mail: ming.yuan@columbia.edu


	1 Introduction
	2 Sparse Testing under Curie-Weiss Model
	2.1 High temperature states
	2.2 Low temperature states
	2.3 Critical state

	3 Sparse Testing under General Ising Models
	3.1 Conditional mean centered tests
	3.2 Optimality

	4 Simulation Results
	5 Discussions
	6 Proof of Main Results
	6.1 Proof of Theorem ??
	6.2 Proof of Theorem ??
	6.2.1 Reduction to magnetization
	6.2.2 Proof of (??):
	6.2.3 Proof of (??):

	6.3 Proof of Theorem ??
	6.4 Proof of Theorem ??
	6.5 Proof of Theorem ??
	6.6 Proof of Theorem ??

	Acknowledgments
	Supplementary Material
	References
	Appendix – Proof of Auxiliary Results
	Author's addresses

