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The increasing use of automated decision making (ADM) and machine learning sparked an
ongoing discussion about algorithmic accountability. Within computer science, a new form
of producing accountability has been discussed recently: causality as an expression of
algorithmic accountability, formalized using structural causal models (SCMs). However,
causality itself is a concept that needs further exploration. Therefore, in this contribution we
confront ideas of SCMs with insights from social theory, more explicitly pragmatism, and
argue that formal expressions of causality must always be seen in the context of the social
system in which they are applied. This results in the formulation of further research
questions and directions.
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INTRODUCTION

The rise of machine learning and automated decision making (ADM) affects many domains of social
life. They have been used in court decisions (Angwin et al., 2016), policing (Kaufmann et al., 2019),
hiring practices, and many more. Negative experiences with these systems led to a scholarly
discussion in which formulations like Weapons of Math Destruction (O’Neil, 2016) or
Algorithms of Oppression (Noble, 2018) have been used. As such, the power of algorithms and
how to deal with these entities has become a major point of discussion (Ziewitz, 2016; Beer, 2017)—
even creating its own field of critical algorithm studies (e.g., Gillespie, 2014; Seaver, 2018). Because of
the intensifying application of these systems in various social domains, issues of fairness, (in)justice
and power relations have become the focus of attention, especially in the form of bias (Friedman and
Helen, 1996; Bozdag, 2013; Crawford, 2013). As a result, “algorithmic accountability” has been
suggested as a means (e.g., Diakopoulos 2015) to mitigate the risks of bias and inequalities produced
by algorithmic systems (Veale and Binns, 2017).

Accountability, however, is an ambiguous term in itself and was never clearly defined in computer
science. Kacianka et al., (2017) found that most implementations of accountability do not use a peer
reviewed definition of accountability and either provide no definition at all or rely on a loose
dictionary definition. Despite being used as an umbrella term, accountability gained much
prominence within the academic discussion, most prominently at the ACM Conference on
Fairness, Transparency and Accountability. There, accountability is understood as “public
accountability” and mostly follows the understanding of (Bovens, 2007, 9), who writes that “[t]
he most concise description of accountability would be: “the obligation to explain and justify
conduct”, although he also cautions that “[a]s a concept (...) “accountability” is rather elusive. It has
become a hurrah-word, like “learning”, “responsibility”, or “solidarity”, to which no one can object”
(Bovens, 2007, 9). This also seems to be true for algorithmic accountability. Wieringa (2020, 10).
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conducted a systematic literature review of the field of algorithmic
accountability through the lens of Bovens. She found that the
“term “algorithmic accountability” is inherently vague” and
derives the following definition of algorithmic accountability,
using the terminology and ideas presented by Bovens:

“Algorithmic accountability concerns a networked account for
a socio-technical algorithmic system, following the various stages
of the system’s lifecycle. In this accountability relationship,
multiple actors (e.g. decision makers, developers, users) have
the obligation to explain and justify their use, design, and/or
decisions of/concerning the system and the subsequent effects of
that conduct. As different kinds of actors are in play during the
life of the system, they may be held to account by various types of
fora (e.g. internal/external to the organization, formal/informal),
either for particular aspects of the system (i.e. a modular account)
or for the entirety of the system (i.e. an integral account). Such
fora must be able to pose questions and pass judgment, after
which one or several actors may face consequences. The
relationship(s) between forum/fora and actor(s) departs from a
particular perspective on accountability” (Wieringa, 2020, 10).

However, it is important to note that there is not just one
definition of accountability. For example, in contrast to Bovens,
Lindberg (2013), who is deeply critical of Bovens and the Utrecht
school1, establishes accountability as a classical concept where
subtypes are complete instances of their parents. In psychology,
Hall et al. (2017) give a great overview of the concept of felt
accountability, which focuses on the feeling of the individual.
Besides algorithmic accountability, the state of the art on
accountability in computer science is split into three branches
of research.

First, works building on Weitzner et al., (2008) use the term
“Information Accountability” to formulate a new approach to
data control measures based on the idea of detection, rather than
prevention. This approach does not try to prevent unauthorized
data access, but wants to design systems in such a way that data
access is logged and therefore any access to data is easily tracked.
If data is “leaked”, it should be easy to identify the deviant entity
and hold it accountable. Second, in the field of cryptographic
protocols, Küsters et al. (2010) formalized accountability and
linked it to verifiability. The main challenge here is to discover
entities that attempt to falsify the results of elections. This
requires a precise definition of a protocol, or allowed actions,
to work. Recent advances in accountability for cryptographic
protocols also started to investigate the use of causal reasoning for
attributing blame (e.g. Künnemann et al. 2019). Third,
accountability is discussed in the field of cloud computing,
mainly focusing on data protection as well as accounting for
resource usage (e.g. Ko et al. 2011).

The question remains how an algorithm can be hold
accountable for its “actions”. Algorithms are often discussed in

terms of opaque and powerful black boxes (Pasquale, 2015),
which resulted in the often-formulated demand of algorithmic
transparency. Yet it remains unclear how to implement
algorithmic transparency and what its benefits would be
(Ananny and Crawford, 2018). Accountability would require
the translation of expert knowledge, such as algorithmic
techniques, into accounts that are understandable to a broader
audience. A task that is not easily achieved—especially when
confronted with machine learning applications (Burrell, 2016;
Neyland, 2016). Additionally, the ideal of transparency often
collides with claims of intellectual property rights (Burrell, 2016).
Thus, exploring alternative approaches of producing and
thinking about accountability are needed.

In the recent debate, interpretability and explainability are
discussed as alternatives to total transparency of algorithmic
systems. Doshi-Velez et al. (2017) for example point out the
importance of explanations to produce accountability. Instead of
demanding absolute transparent systems, they argue that it
suffices to know “how certain factors were used to come to
the outcome in a specific situation” (Doshi-Velez et al., 2017,
7). This does not require full disclosure of the internal workings of
an algorithmic system, but can be achieved by a statistical input/
output analysis which results in a simplified model of human-
readable rules explaining the observed data points. By this, the
explanation system is an empirical reconstruction of the
algorithm’s behavior. Such an explanation is not a one-to-one
reconstruction of the internal workings, but an external model to
find interpretable rules to explain the algorithm’s actions.

But not only in legal settings is causality important for
explanations and achieving fairness (Madras et al., 2019).
Mittelstadt et al. (2016) argue for the relevance of causality
and causal knowledge in ethical considerations regarding AI
and machine learning. Wachter et al. (2017a) extended this
approach by suggesting counterfactuals. Counterfactuals are
deviations from observed input data that are used to
reconstruct relations between input and output that goes
beyond the actual application. By this, explanations in form
of differences in the input data that make a difference in the
results can be reconstructed, e.g. using varying variables on race
or gender to see if the results change (Mittelstadt et al., 2019).
Further, Wachter et al. (2017b) argue that counterfactual
explanations meet the legal requirements formulated under
the GDPR. However, formulating potential influence of input
data points on the behavior of agents requires a post-hoc
explanation of causality (Miller, 2019; Mittelstadt et al.,
2019). If we formulate rules describing the impact of input
data on the classification of an algorithmic system, we are
basically modelling a causal relationship to grasp observed
behavior that goes beyond mere correlation. Mittelstadt et al.
(2016) therefore argue for the relevance of causality and causal
knowledge in ethical considerations regarding AI and machine
learning. Madras et al. (2019) even argue that counterfactual
causal models are able to produce fairer systems, as the influence
of hidden confounding variables can be discovered. As a result,
causality seems to be a promising approach to tackle issues of
algorithmic accountability. This led computer science scholars
to explore the formal expression of algorithmic accountability as

1Lindberg (2013, 203) writes that “[t]he main achievement [of Bovens and the
Utrech School] is to obfuscate the distinctiveness of accountability from other types
of constraints on actors’ power to act autonomously. When the term “sanction”
finally is misunderstood to denote only punishment (deviating from the proper
meaning of the word in English), the paraphrasing becomes misleading.”
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a structural causal model (SCM) (Kacianka and Pretschner,
2018). The underlying idea is that accountability always requires
causality (Kacianka et al., 2020). This approach extends the
argument for causality as an essential feature beyond the notion
of explainability. It assumes that a person cannot be held
accountable for actions s/he did not cause, therefore referring
to the social and political function of causality in human
reasoning (see also Miller, 2019; Mittelstadt et al., 2019). In
doing so, it also signifies the importance of the underlying
models of causality and the process of their (social)
construction.

SCMs (Pearl and Mackenzie, 2018) represent a human-
readable graphical model, while also offering mathematical
tools to analyze and reason over them. For example, take two
definitions of accountability: One states that a system is
accountable, if its logs might be reviewed by some third party.
The second one defines an elaborate framework of checks and
balances, in which every action of a computer system is reviewed
by a human principal. Both are valid definitions of accountability
and in line with recent literature. The first example is similar to
the notion of felt accountability used in psychology (Hall et al.,
2017), while the second one resembles the Responsible-
Accountable-Consult-Inform (RACI) framework used in the
organizational sciences (Smith et al., 2005). Both models can
be expressed as a SCM and matched to a technical system. If a
system takes an undesired action, its SCM will allow us to
understand why this undesired action happened. If the SCM
corresponds to an accountability definition, we can also see who is
to be held accountable for the system’s undesired action.

Yet an open question is how accountability, expressed as SCMs,
can take the social structure in which they are placed into account
i.e. consider, which forms of accounting (Neyland, 2016) for their
actions are compatible with the practices (re-)produced within the
social domain. We therefore confront ideas of SCMs with insights
from the social sciences and humanities and argue that formal
expressions of causality must always be seen in the context of the
social system in which they are applied. The argument operates
with the observation that SCMs are being discussed as means for
producing algorithmic accountability and situates this observation
in an interdisciplinary perspective. In this contribution, we will first
introduce how causality can be expressed in SCMs and then
contrast the method with concepts from interactionist theories
of social science, more specifically pragmatism, to theorize the
interaction effects between causal models of algorithms and the
social interaction order in which they are placed.

FROM CAUSALITY TO ACCOUNTABILITY:
THE COMPUTER SCIENCE APPROACH

While correlation does not imply causation is a well-known
mantra, hardly anyone can give a mathematical formalization
of causality. Recently, Pearl and Mackenzie (2018) put forward a
formalization of causality that extends structural equationmodels
to SCMs, but the expression of causality comes with its own
methodological challenges. The gold standard of determining
causality has been the randomized controlled trial (RCT), which

has been popularized by RA Fisher (for a historical perspective
see Pearl and Mackenzie, 2018, 139). In such experiments, the
investigators try to create a stable environment and manipulate
only a single variable (ceteris paribus). The fundamental
downside of RCTs is that they are often infeasible, unethical
or prohibitively expensive (Pearl and Mackenzie, 2018).

The alternatives to RCTs are observational studies, where
researchers gather data and try to understand some (causal)
processes. In these settings, researchers cannot directly
manipulate any factors and are therefore restricted to recorded
data, which makes the reconstruction of causal relations
problematic. Pearl was the first to show that even with
observational data causality could be proven (Pearl and
Mackenzie, 2018). According to Pearl, SCMs allow expressing
an understanding of a process’ causal structure, which can be
formally expressed as follows:

Formally, an SCM is a tuple M � (U,V,F) where U is a set of
exogenous variables, V is a set of endogenous variables, F
associates with each variable in X ∈ V a function that
determines the value of X given the value of all other variables.

It is noteworthy that the universe of discourse is split into two
sets of variables: exogenous variables, which are taken as given
and for which no explanation can be provided, and endogenous
variables that are considered relevant for the causality relations.
Additionally, a given understanding of the causal relation is
modeled by a set of functions in F that describe the
mathematical relation between the variables. By not having a
causal relation between variables in such a model, it is assumed
that one variable cannot influence another. In the graphical
model corresponding to the SCM this is shown by the absence
of arrows between two variables.

In Figure 1, one can mathematically express that B has no
effect on Y, but that X is causally linked to Y. The caveat of this
modeling approach is that any statement of causality depends on
the underlying model. We, as experts, are forced to state our
assumptions and invite others to challenge them. While there is
no way to prove a causal model correct, we can use data to refute
some. However, for any given model, we can most likely find an
alternative model, that will also explain the data.

Drawing on forms of causal modeling and applying them on
algorithmic systems provides us with the possibility to express

FIGURE 1 | A simple causal model following the definitions of (Pearl and
Mackenzie, 2018, 159) (created by the authors).
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accountability of algorithmic systems in mathematical terms.
Once a notion of accountability has been agreed upon, it can
be expressed as a SCM. This formalization determines what data
needs to be collected, making it possible to design systems in a
way that sensitive data, such as gender or race, will not need to be
stored. In Figure 1, for example, if B was gender and we were only
interested in Y, we can show that B does not affect Y and that we
therefore do not need to record B.

To illustrate our point, we will expand on the example given by
Kacianka and Pretschner (2018). They examined a prominently
reported accident involving an autonomous vehicle operated by
Uber in Arizona (Elish, 2019). In this unfortunate accident, the
test vehicle was driving autonomously and had a safety driver on
board. However, the system mis-detected a pedestrian crossing
the road, fatally injuring her. The safety driver on board of the car
was distracted and did not manage to operate the brake in time,
while the emergency braking system designed by the chassis
manufacturer was disabled, because it interfered with the
autonomous driving capabilities of the car. In the aftermath,
one of the questions asked was who was to be held accountable for
the accident. This example can now be modeled as an SCM
(Kacianka et al., 2020). The answer to who is to be held
accountable in the ultimately depends on the causal
understanding of the events. The Figure below depicts three
possible causal configurations:

Figure 2A shows a configuration in which the human has
direct influence on the trajectory of the car. This influence is
moderated by the software in Figure 2B, and in Figure 1C the
human has no influence on the course of events at all. When
talking about autonomous cars, many people will often have the
causal model shown by Figure 2C in mind, while Figure 2B or
even 2a are equally valid explanations. SCMs (Pearl and
Mackenzie, 2018), as used in Figure 2, offer a mathematically
precise way to express such causality relations. The arrows denote
causal connections, while the boxes denote variables. Here,
rectangular boxes represent components, and rounded boxes
represent natural or juridical persons. Even if we do not
specify the exact mathematical function for each relation, we
can reason about some form of causality. For instance, the
absence of an arrow in Figure 2C, between the Safety Driver
and the Trajectory, expresses that there is no causal connection
between them. On the other hand, in Figure 1C, we could specify
the exact influence of the components on the Trajectory.
Simplifying to a Boolean formula, where false means do

nothing and true indicates a change in trajectory, the formula
could be: Trajectory � Brake or Software or Driver

To model that the system only brakes if both the emergency
brake and the system agree, we couldmodel it like this:Trajectory =
(Brake and Software) or Driver

Now, once we have such a causal representation of a system,
we can start looking for patterns of accountability. Following
Kacianka et al. (2020), we can express definitions of
accountability as causal models. For example, they use the
definition of (Lindberg, 2013, 209), who conceptualizes
accountability as:

1) An agent or institution who is to give an account (A for
agent);

2) An area, responsibilities, or domain subject to accountability
(D for domain);

3) An agent or institution to whom A is to give account (P for
principal);

4) The right of P to require A to inform and explain/justify
decisions with regard to D; and

5) The right of P to sanction A if A fails to inform and/or
explain/justify decisions with regard to D.

This can be expressed as in the causal model shown in Figure 3

We can draw different conclusions about accountability from
the graphical representations of causality. Coming back to the
different models of causality in Figure 2, we are confronted with
different possibilities. We can see that in Figure 2A, the
software, the emergency brake, and the safety driver, are
accountable for the accident. However, looking at Figure 2C,
we can see that the safety driver is no longer connected to the
pattern and thus cannot be held accountable. We want to
emphasize that we do not argue for the correctness of the
specific models. Both the model of the system, as well as the
model of accountability, can be improved, changed and refined.
Rather we want to show that the usefulness of SCMs is that they
allow us to express these causal relationships and offer us a

FIGURE 2 | Three possible SCMs for the Uber case (from left to right) (A) The human can take over, (B) Human Influence is moderated by the machine, (C) No
human influence is possible (created by the authors).

FIGURE 3 | The causal model for the Lindberg accountability pattern;
the principal is not part of the pattern. Taken from Kacianka et al. (2020).
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formalization to clearly state our assumptions. These
assumptions can then be discussed and criticized, and joint
models can be developed.

Though, taking up the warning of Mittelstadt et al. (2019),
models should be used carefully. In the Uber example, the
different definitions of accountability provided will result in
different understandings: one could conclude that Uber was
accountable or that the driver was accountable. While none of
the two definitions is inherently wrong on a formal level, a shared
definition of accountability is needed to resolve the issue. This
insight on the contingency in modeling leads to the conclusion
that models of causality are so-called second order observations.
They formalize not only how a causal relation can be expressed,
but they also have to consider how the social system experiences
causalities and creates spoken or written accounts about them. As
such, accountability of algorithmic systems is not merely about
making actions of an algorithm understandable through causal
reasoning, but should also address the question of towards whom
such an algorithmic system should be accountable (Neyland,
2016). In other words, the algorithmic system must be
accountable to the principals with whom it interacts in the
given situation. This implies two conditions. First, the causal
model for the algorithmic system needs to be aligned with the
actual application in the specific social system in which it is
placed. Second, the model and its assumptions must not only be
accountable to the developers of the model, but also the accounts
created by a SCM have to be interpretable by the other members
of the social system. Briefly: the SCM must be seen in context.

PUTTING STRUCTURAL CAUSAL MODELS
INTO CONTEXT

Causality as a concept has been discussed in the social sciences for a
long time. Thus, contrasting and confronting the notion of
causality from the formal perspective of computer science with
the approach of pragmatism, could produce insights into the social
interfaces between algorithmic accountability and social structure.
As described before, different SCMs can be applied to explain given
data. The question then is, which models correspond with shared
expectations and practical enactments of accountability, and to
which extent. Coming back to the Uber example, the model could
describe both the missing reaction of the driver or the action of the
board-computer not applying the brakes as a causal factor for the
accident. Formally, both factors might explain the accident, but
they relate to different normative assumptions.

The multiplicity of possible explanations is thereby not unique
to causal modelling in computer science and neighboring fields,
but touches upon a general epistemic position and how the world
is experienced by individuals and communities. An influential
tradition that deals with questions of social construction of truth
and collective expectations has been American pragmatism
(James, 1907 2014; Thomas and Thomas, 1928). American
pragmatism was foremost a philosophy developed in the U.S.
at the beginning of the 20th century. Later it became an influential
way of thinking within the social sciences, exemplified by the
Chicago School of Sociology (e.g., Park, 1915) and Symbolic

Interactionism (Blumer, 1986; Dewey, [1925] 2013). Besides, it
has been understood by its scholars as an empirical philosophy
(see Dewey, [1925] 2013), which conveys an interesting branch of
thinking that focuses on the practices and interactions of
individuals and how bigger patterns and social worlds emerge
from them (Strauss, 1978; Bowker and Star, 2000).

Two conceptions of human action are of importance when
discussing causality as a mode of accountability production. First,
pragmatists argue that human action is tied to problem solving.
What we do, and what results out of our actions, is tied to the
perception of a problem that needs to be solved, and our positioning
in the world. These problems that need to solved are not objectively
given, but are experienced and imagined as such by an individual or a
group of individuals (Marres, 2007). Thus, firstly, when looking at
patterns of communication or interaction, the question arises what
problem and—more importantly—whose problem is solved by the
observed behavior. Secondly, the perception of the world cannot be
separated from these problem-solving activities. What is true or real
is experienced in our practices, in testing and updating our
assumptions about the world. Truth therefore becomes a question
of practicability and “what works” (James, [1907] 2014).
Nevertheless, in a given situation different perceptions and
imaginations of truth can work in the practical doing. As a result,
sharing a common vision of the world is not necessarily given, but
must actively be produced through processes of socialization
(Thomas and Thomas, 1928). This contingency of perceived
reality must then be considered when talking about causality.

For Dewey—an important pragmatist scholar at the beginning
of the 20th century—causality represents a sequential order of
events, though he doesn’t see causality as the result of pre-
existing associations between these events (Dewey, [1938] 2007).
Instead, the associations between these events are operational, i.e.
associations are constructed in a social process in order to solve a
given problem of inquiry. In this perspective, the notion of causality
is insofar problematic, as the assumption that an event A caused
event B is in itself a reduction within an endlessly more complex
situation. For each event A that we can identify, we can also identify
more events that caused it, moving to ever finer-grained levels of
interactions. Meanwhile, event B is not necessarily the end of a
potential endless chain of causations (see also Stone, 1994).

Taking our example of the Uber-car accident, we could now
ask for the initial event. Was it the driver, who was braking too
late? The system mis-classifying the pedestrian? The driver
starting the car, or maybe even the engineers, who assembled
the system? All of these events would be viable starting points for
a chain of causality. Similarly, we could argue that it wasn’t the hit
of the car, which killed the pedestrian, but that the hit damaged
some inner organs, which led to internal bleeding, which then led
to insufficient oxygen supply to the brain, etc.2, Reducing this
complex process to a relation between e.g. the classification and
the pedestrian’s death represents a simplification, which Dewey
termed “common sense causation” (Dewey, [1938] 2007). This
also includes questions of co-correlations of events, which could

2We would like to note that this is a hypothetical reflection of this unfortunate
event and that we did not inquiry into the exact medical circumstances.
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lead to different common-sense causations. As such, the model of
causality needs a link to learned experiences of the social system’s
members to create plausible accounts on their own actions
(Dewey, [1925] 2013; James, [1907] 2014). Similar concepts
can be found in cognitive psychology (e.g., Pylyshyn, 2006).
Causality therefore not only describes the associations between
different identifiable events, but also presumes a shared
construction of the world.

There is an interesting convergence of arguments between social
theory, the formulation of structural causal models, and
algorithmic accountability. In the context of algorithmic
accountability, Mittelstadt et al. (2019) already argue that
explanations of algorithmic behavior should resemble the
recipient’s epistemic and normative values. In terms of social
theory, this now addresses the constructions of a social system.
Further the “common sense causation”, as described by Dewey, has
been introduced in SCMs as “context setting” (Halpern, 2016).
Context setting defines the elements to identify and include in the
model auf causal relations. This, however, can be seen as a specific
setting of how reality is being perceived and imagined within
SCMs. During the modelling of these SCMs, specific ideas and
assumptions about reality are being inscribed into these models.

Pearl and Mackenzie (2018) base their model of causation on a
question that is not too different to a pragmatist conception of causality.
They follow a definition of causal reasoning that is not asking for the
essence of causality, or, to put it differently—for an objective, neutral,
and detached definition of such a term—but for the performatively
produced understanding of causality. The explanatory power of SCMs
is granted, as “causal inference is objective in one critically important
sense: once two people agree on their assumptions, it provides a 100
percent objectiveway of interpreting any new evidence (or data)” (Pearl
and Mackenzie, 2018, 91). This means that if several models describe
reality in a way that is functional for a given problem definition,
objectivity is achieved through the act of commonly deciding onwhich
model is the most useful. This has important implications on how
SCMs can be applied within a social system to produce accountability.

Arguing for the possibility of multiple models of causal
relationships that have to be negotiated means to assume the
(important) position of an external observer. In order to become
objective in the terms of Pearl and Mackenzie, the reasoning over
different possible causal models have to be aligned with the
interpretation of other observers. The question then is not
only if a model converges with the perceived reality of the
developers, but instead observations of a second order are
necessary, to produce models that are also plausible to these
other observers. This raises the question how causality is being
described within a social system in which the model should be
deployed, i.e. observing how the social setting is observing
reality.3, Causal models rely on a shared understanding of the
world and a common form of causal reasoning. What Pearl and
Mackenzie are implicitly referring to has been conceptualized in
pragmatism as shared knowledge and the production of
intersubjectivity (Mead, 1917 and Mead, 1967). Acting and

reasoning are based on experiences that create implicit causal
models of the world. The interpretation of newly gathered
data—here seen as a new experience—can only be interpreted
according to the experiences one has made in the past. This
therefore requires a deep understanding of the social interaction
system in which causal models should operate.

Coming back to our example of the Uber accident, the question
arises, which of the presented models coheres with society’s
perceptions. For the causal description of the Uber case, the
question therefore is not which SCM is better, but which ones
best reflects the normative and experienced causalities of the social
groups, for which it should solve the problem. This of course entails
interests of different social groups and therefore requires a broader
discussion among them. The model displayed in Figure 2C might
seem intuitive to many people, as the term “autonomous driving”
suggests that the car is acting “on its own”, and thus the company
who built the car should be held accountable, while insurance
companies and producers of autonomous cars would probably
prefer the models described in Figures 2A or 2B. When it comes to
legal decisions and settings, one has to not only attribute
accountability, but also responsibility.

Each of the models displayed represents a valid reduction of a
highly complex reality into a manageable set of entities and
relations. However, the normative ideas and social consequences
of these models differ to a large degree. Thus, for SCMs to be able to
act as accountability machines, they have to reflect these social
constraints in order to become objective. Accountability then does
not (only) mean to produce addressable entities that can be held
responsible, but to create a model that is able to give account about
what happened in a way that is understandable and acceptable to
the members of the addressed social group. Constructing causal
models therefore requires knowledge about these different modes of
attributing and producing accountability within different functional
interaction systems.

CONCLUSION AND OUTLOOK

Causality and the calculation of counter-factuals is a promising
approach to algorithmic accountability. By calculating and
formulating human-readable rules to explain the observed
behavior of an algorithmic system, they can be made available
to public scrutiny. Especially, as an implementation of causal
descriptions can be applied in a way that balances the public’s
need to know and the protection of intellectual property rights.
Thus, the introduction of such explainability systems (Doshi-
Velez et al., 2017) creates an interface between the practices of the
developers of algorithmic systems and the organizations and
communities that want or need to hold them accountable.
This could create the means to intervene in the production
and deployment of algorithmic systems.4 Producing account-

3There is of course a long-standing discussion about these issues in (the history of)
cybernetics and social system theories (e.g. Luhmann, 1996; Hayles, 2012).

4This can become even more important if we think about the complicated
relationship between innovation and law, and the way how innovations like
autonomous driving can be made accessible to legal reasoning and regulation
(Eisenberger, 2016).
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ability, in terms of being able to understand and interpret the
behavior of algorithms, also creates contest-ability, i.e. the ability
to reject specific implementations. However, in building
accountability systems, we have to be aware of the
construction of causality within the social system in which
these machineries should be able to operate. That is, in order
to enable a community to hold algorithms and their developers
accountable, SCMs operate as an interface between the practices
of designers and the practices of the social system’s members.

The Uber case illustrates that different models of causality
correspond with social imaginaries of common-sense causality to
varying degrees. The legitimacy of SCMs as accountabilitymachines
therefore hinges on the relation between these different conceptions
of causality. If social research and computer science are to
collaborate in the development of SCMs as a means to produce
accountability, more, and especially interdisciplinary research on
the matter is necessary. It remains an open question, how
translating social visions of fairness, discrimination, and
“normality” into mathematical models can be achieved in a way
that enables interactions between algorithms and their social
context. This calls for more in-depth studies of interaction
patterns between algorithms, social systems, and SCMs as
translation devices between the technical and social realm. Such
studies would enable the development of SCMs, that could express
causalities in a field’s own language. Simultaneously, it would be
naïve to assume that there was only one existing construction of
accountability between different institutions and actors. By making
these different notions of accountability visible, SCMs can therefore
not only foster disagreement with single observers, but with
different communities, each with their own normative account
and resulting constructions of causality.

Opening up the discussion about possible causal models could
therefore also be a means to a broader and (deliberative)
democratic discussion about how algorithms should operate
within our societies. Instead of treating algorithms or causal
models as given, the perspective explored here calls for more
inclusive forms of development, as algorithms and statistical
models are not objective by nature. Bringing developments of
algorithmic systems and SCMs (as accountability machines)
into conversation with the normative ideas and imaginaries of
the social system within which they are operating, could
therefore not only result in account-able, but also more
responsible systems. The question, if and how algorithmic
accountability can foster social integration, therefore needs
further inquiry.

This leads us to three major questions for future research:
First, how do people actually make meaning of their everyday life
in relation with algorithms, especially in different (public)
organizations? Second, how can these processes of meaning-
making be translated into SCMs in a way that is compatible
with the social system? And third, how can these models consider
that different modes of constructing accountability and causality
are being negotiated in social systems? These questions call for a
closer cooperation between several disciplines, including
philosophy (of technology), legal studies, ethics, social science
and computer science, to name just a few. Ethnographic studies of
algorithmic systems in action and quasi-experimental studies
would be a valuable contribution to the technical
implementation of SCMs with interdisciplinary research. It
therefore seems productive to explore the possibilities of
constructing algorithmic accountability by bringing
perspectives and interdisciplinary approaches into an ongoing
conversation with SCMs.
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