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OUTLIER DETECTION IN TIME SERIES VIA MIXED-INTEGER
CONIC QUADRATIC OPTIMIZATION\ast 

ANDR\'ES G\'OMEZ\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider the problem of estimating the true values of a Wiener process given
noisy observations corrupted by outliers. In this paper we show how to improve existing mixed-
integer quadratic optimization formulations for this problem. Specifically, we convexify the existing
formulations via lifting, deriving new mixed-integer conic quadratic reformulations. The proposed re-
formulations are stronger and substantially faster when used with current mixed-integer optimization
solvers. In our experiments, solution times are improved by at least two orders-of-magnitude.
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1. Introduction. Analysis of time series data plays a critical role in forecasting
and signal processing problems. Therefore, there is an extensive body of literature
devoted to this topic [19]. Some well-known techniques to tackle such problems in-
clude Kalman filtering [20, 51, 52], auto regressive integrated moving average and
exponential smoothing models [18, 21, 25, 38, 73], and regression-based approaches
[31, 50, 64, 69, 72]. However, time series may be affected by gross errors, system
changes, strikes, natural disasters, or other forms of outliers. The previously men-
tioned methods are known to be sensitive to outliers [24], with even a single outlier
potentially resulting in incorrect statistical conclusions.

In this paper we consider the problem of, given a mix of noisy and anomalous
observations of a Wiener process, obtaining a maximum a posteriori (MAP) esti-
mate of the true values of the process by simultaneously detecting and removing
all outliers. The MAP problem we study involves combinatorial decisions (which
points to discard). It has typically been tackled by iterative ``greedy"" procedures
[5, 24, 45, 61, 62, 70, 71] that may result in suboptimal decisions. Alternatively, the
MAP problem can be easily formulated as a mixed-integer quadratic optimization
(MIQO) problem [78, 79], but the natural convex relaxation of such formulations is
weak, and branch-and-bound methods may require a prohibitive amount of time to
converge.

Contributions and outline. In this paper, we close the gap between fast but
heuristic approaches and exact but impractical MIQO approaches. By exploiting
the structure imposed by the Wiener process, we formulate the inference problem as
a mixed-integer conic quadratic optimization (MICQO) that substantially improves
the relaxation quality of the natural MIQO formulation [78]. In our computations,
the MICQO formulation reduces the number of branch-and-bound nodes required
to proved optimality by at least three orders-of-magnitude (with respect to natural
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1898 ANDR\'ES G\'OMEZ

MIQO formulations), resulting in a speed-up of two orders-of-magnitude or more. The
exact approach is shown to outperform heuristic methods in correctly identifying out-
lier observations and estimating the true value of the Wiener process. Moreover, the
convex relaxation of the MICQO is strong enough to provide high quality estimates,
which can be computed fast by solving a convex optimization problem. The MICQO
formulation is based on the convexification in the original space of variables of a rank-
three quadratic function with four continuous variables and two indicator variables;
we use the lifting theory developed in [63] to obtain the desired ideal formulations.

The remainder of this paper is organized as follows. In section 2 we provide the
relevant background for the paper, including a literature review, description of the
model, and MAP estimation approach. In section 3 we discuss the natural (but weak)
MIQO formulation. In section 4 we focus on the convex relaxations of the mixed-
integer optimization problems: we discuss why existing techniques are not able to
improve upon the natural MIQO formulation and then present the proposed conic
quadratic reformulation (presented in Corollary 4.4 in the paper). In section 5 we
report computational results. In section 6 we give a formal derivation of the proposed
convexification, and in section 7 we conclude the paper.

Notation. Throughout the paper, we denote vectors in bold. LetN = \{ 1, . . . , n\} .
Given a vector \bfity \in RN and a set T \subseteq N , let \bfity \bfitT denote the subvector of \bfity induced
by T . Given a \in R, we use the convention that a2/0 = 0 if a = 0 and a2/0 = \infty 
otherwise. We use \bfite to denote a vectors of ones (the dimension can be inferred from
the context). Given two vectors \bfitx and \bfity of the same dimension, we denote by \bfitx \circ \bfity 
their Hadamard product, i.e., (\bfitx \circ \bfity )i = xiyi. Given a random variable W , we use
the notation W \sim \scrN (\mu , \sigma 2) to denote that W follows a normal distribution with mean
\mu and variance \sigma 2.

2. Background. In this section we give relevant background for the paper.

2.1. Wiener process. A stochastic process \{ Wt\} t\geq 0 is a Wiener process [65]
(also called a Brownian motion) if (i) W0 = 0, (ii) \{ Wt\} t\geq 0 has stationary independent
increments, and (iii) Wt \sim \scrN (0, t\gamma 2) for some \gamma > 0. Note that by transforming the
process to Wt/\gamma , we assume without loss of generality that \gamma = 1.

Alternatively, \{ Wt\} t\geq 0 is a Wiener process if and only if it is Gaussian process
with E[Wt] = 0 and, for all 0 \leq t1 \leq t2, cov(Wt1 ,Wt2) = t1. In other words, given
any sequence 0 \leq t1 \leq t2 \leq \cdot \cdot \cdot \leq tn, the random variables (Wt1 ,Wt2 , . . . ,Wtn) follow
a multivariate random variable with mean vector 0 and covariance matrix

(2.1) \Sigma =

\left(       
t1 t1 t1 . . . t1
t1 t2 t2 . . . t2
t1 t2 t3 . . . t3
...

...
...

. . .

t1 t2 t3 . . . tn

\right)       .

The inverse of matrix \Sigma can be computed in closed form [27] as

(2.2) \Sigma  - 1
ij =

\left\{                     

0 if j > i+ 1,

 - 1
tj - ti

if j = i+ 1,
1
t1

+ 1
t2 - t1

if i = j = 1,
1

ti - ti - 1
+ 1

ti+1 - ti
if 1 < i = j < n,

1
tn - tn - 1

if i = j = n,

\Sigma  - 1
ji if i > j.
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OUTLIER DETECTION VIA MIXED-INTEGER OPTIMIZATION 1899

Note that if times t1, . . . , tn are equally spaced, i.e., ti = it1, then it follows that

Wt = Wt - 1 + \xi t,

where \{ \xi t\} nt=1 are independent with \xi t \sim \scrN (0, t1). Thus, in the context of equally
spaced observations, \{ Wt\} t\geq 0 is an autoregressive model of order one, a common class
of processes studied in time series analysis [32].

2.2. Model. Let \{ Wt\} t\geq 0 be a Wiener process. Observations y1, . . . , yn of
process \{ Wt\} t\geq 0 are obtained for (a finite set of) times t1, . . . , tn, but such obser-
vations are corrupted by noise and outliers. Specifically, let S ( N be the set of
outliers, let \=S := N \setminus S be the set of noisy observations, and let \bfitmu \in RN and \bfitsigma \in RN

+

be known vectors of expected values and standard deviations of the noise at each time
period, respectively. Then, for i \in \=S, the observation yi corresponds to the true value
of the process W at time ti plus some Gaussian noise, i.e.,

(2.3) yi = Wti + \epsilon i for i \in \=S,

where \epsilon i \sim \scrN (\mu i, \sigma 
2
i ) and independent of other errors; in contrast, for i \in S, the

observations yi do not follow (2.3) and are in fact independent of the process Wt. To
simplify the notation, we write Wi instead of Wti . The goal is to identify the set of
outliers S \in \scrZ \subseteq 2N---where set \scrZ encodes priors on the set of outliers---and estimate
the true values of the process \{ Wt\} t\geq 0 at times t1, . . . , tn.

This problem can be interpreted as an inference problem in a one-dimensional
graphical model where the underlying structure is not fully known; see Figure 1.
Note that the conditional independence of \{ Wt\} 0\leq t<i and \{ Wt\} t>i given Wi follows
from the fact that matrix \Sigma  - 1 given in (2.2) is sparse and tridiagonal. In the absence
of outliers (S = \emptyset ), the inference problem could be tackled using well-known tools
such as Kalman filters, but such methods fail in the presence of outliers [53]. Since
outliers may be independent of the actual process \{ Wt\} t\geq 0 (and outlier data is not
assumed to follow a known distribution), observations yi with i \in S corresponding to
outliers should be discarded before inferring the values Wi.

2.3. Literature review on outlier detection. There has been substantial
effort devoted to detecting and removing outliers over the past five decades. In the
seminal work of [32], the authors study an autoregressive model without noise, in
which there is a single outlier inducing a fixed error of magnitude \delta . In other words,

𝑊1

𝑦𝑖

𝑁(𝜇1, 𝜎1
2)

𝑊2

𝑦2

𝑊3

𝑦3

…

𝑁(𝜇2, 𝜎2
2)

𝑁(0, 𝑡2 − 𝑡1) 𝑁(0, 𝑡3 − 𝑡2)

𝑊4

𝑦4

𝑁(0, 𝑡4 − 𝑡3)

𝑁(𝜇4, 𝜎4
2)

Fig. 1. Schematic representation as a graphical model. A Wiener process (blue) is evolving
over time, and observations are obtained. In most cases the observations are noisy (orange, in time
indexes 1, 2, and 4) but in some cases they are outliers independent of the process (red, at time 3).
Which observations are noisy and which are outliers is unknown to the decision-maker. The goal is
to estimate the values of Wi (blue) given the observations (orange,red).
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1900 ANDR\'ES G\'OMEZ

| S| = 1, Wti = yi for i \in \=S, and Wti = yi + \delta for i \in S. They propose to identify the
outlier as the index optimal for the maximum likelihood statistic given by

(2.4) min
i\in N

(\bfity  - \Delta \bfiti )\prime \Sigma  - \bfone (\bfity  - \Delta \bfiti ),

where \Delta \bfiti = (0, . . . , 0, \delta , 0, . . . , 0)\prime with the nonzero entry corresponding to the ith
position and \Sigma  - \bfone reduces to (2.2) in the case of a process of order one. Similar
models are studied in [2, 24]; see also [42, 56].

Methods for detecting and removing multiple outliers are often based on the max-
imum likelihood statistic based on a single outlier. Specifically, [24, 70] propose an
iterative procedure identifying one outlier at a time: (i) detect a candidate anomalous
observation using (2.4), (ii) estimate the actual values of the time series \bfity based on
the points identified as outliers, and (iii) repeat. Several other authors use similar
ideas to identify outliers; see [5, 22, 45, 61, 62, 71]. Such procedures, however, may
fail if outliers are close or clustered together, causing the diagnostic tests for single
outliers to fail. To address this issue, [26] uses a procedure similar in spirit to the
expectation-maximization algorithm [28]. All discussed methods rely on independent
phases for estimating the values of process \{ Wt\} t\geq 0 (given a tentative set of outliers)
and identifying outliers (given tentative estimates of the process) and are thus heuris-
tic in nature. Moreover, the aforementioned methods also implicitly assume that
the outliers follow a specific probability distribution, given either by a fixed value as
in (2.4) or by a suitable heavy-tail distribution [3]. Naturally, such methods strug-
gle when the distribution is misspecified or when outliers correspond to gross errors
unrelated to the stochastic process.

Robust estimators [66, 68], which call for a joint deletion (instead of correction)
of spurious observations and estimation of the values of the process, are preferable
from a statistical perspective. The class of robust estimators, which include trimmed
least squares and least median of squares, achieve an optimal breakdown point [43]
(the minimum proportion of anomalous data that could cause the estimator to fail)
of 1/2. Unfortunately, robust estimation problems involve combinatorial decisions
(which points to discard), are NP-hard in general [11], and are difficult to approximate
[58]. Classical methods to compute such estimators are either heuristic or rely on
complete enumeration [4, 67]. More recently, mixed-integer optimization formulations
have been proposed to tackle such problems. In particular, least median of squares
estimation and, more generally, least quantile of squares estimation admit mixed-
integer linear optimization (MILO) formulations [13, 39]; owing to recent progress in
MILO solvers [16], problems with hundreds or thousands of variables can be solved to
optimality. In contrast, the trimmed least squares problem is naturally nonlinear and
thus more difficult to solve: Zioutas and Avramidis [78] propose a MIQO formulation
(see also [79]) but comment that the method is only suitable for small-sample data
due to the complexity. In time series analysis, where the sample size (number of time
periods) is typically large, existing MIQO methods do not scale.

3. MAP estimation and MIQO. We now discuss the proposed approach to
solve the joint estimation and outlier detection problem discussed in section 2.2. We
propose to simultaneously identify outliers to discard and estimate the value of process
Wt by solving a MAP estimation problem, that is, simultaneously find a set of outliers
S \in \scrZ and estimates x of W that result in the most probable outcome of the graph-
ical model depicted in Figure 1. Denote by \bfitY = (Y1, . . . , Yn) the vector of random
variables corresponding to the observations, and let p(E) be the density function of
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OUTLIER DETECTION VIA MIXED-INTEGER OPTIMIZATION 1901

event E happening. The MAP estimate can be obtained by solving the optimization
problem

max
S\in \scrZ ,\bfitx \in RN

p
\bigl( 
\bfitW = \bfitx ,\bfitY \bfitN \setminus \bfitS = \bfity \bfitN \setminus \bfitS 

\bigr) 
= max

S\in \scrZ ,\bfitx \in RN
p(\bfitW = \bfitx )p

\bigl( 
YN\setminus S = \bfity \bfitN \setminus \bfitS | \bfitW = \bfitx 

\bigr) 
= max

S\in \scrZ ,\bfitx \in RN
p(\bfitW = \bfitx )

\prod 
i\in N\setminus S

p(Yi = yi| Wi = xi)

= max
S\in \scrZ ,\bfitx \in RN

e - 
1
2\bfitx 

\prime \bfSigma  - \bfone \bfitx \sqrt{} 
(2\pi )n| \Sigma | 

\prod 
i\in N\setminus S

1\sqrt{} 
2\pi \sigma 2

i

e
 - (yi - xi - \mu i)

2

2\sigma 2
i ,(3.1)

where the second equality follows from the conditional independence Yi and \bfitW given
Wi, matrix \Sigma is the covariance matrix of the Wiener process given by (2.1), and
| \Sigma | denotes the determinant of \Sigma . See also [54] for a similar formula to compute
likelihoods corresponding to patches of outliers. Instead of maximizing (3.1), we
instead minimize the negative logarithm, resulting in the optimization problem

min
S\in \scrZ ,\bfitx \in RN

1

2
\bfitx \prime \Sigma  - \bfone \bfitx +

\sum 
i\in N\setminus S

1

2\sigma 2
i

(yi  - xi  - \mu i)
2 +

1

2

\sum 
i\in N\setminus S

ln(2\pi \sigma 2
i ),(3.2)

where we dropped from the optimization the constant term 1
2 ln(2\pi )n + 1

2 ln(| \Sigma | ).
Using the closed form expression of \Sigma  - \bfone given in (2.2), we find that (3.2) simplifies
to

min
S\in \scrZ ,\bfitx \in RN

x2
1

2t1
+

n - 1\sum 
i=1

(xi+1  - xi)
2

2(ti+1  - ti)
+

\sum 
i\in N\setminus S

(yi  - \mu i  - xi)
2

2\sigma 2
i

+
\sum 

i\in N\setminus S

ln(2\pi \sigma 2
i )

2
.(3.3)

Observe that if \scrZ = \emptyset , then (3.3) reduces to a one-dimensional Markov random fields
problem for which efficient algorithms exist [46, 47, 48]. If \scrZ = \{ S \subseteq N : | S| = k\} for
some k \in Z+, ti = i for all i \in N , \bfitmu = 0, and \bfitsigma = \bfite , then the last term in (3.3) is a
constant that can be dropped from the formulation.

Throughout the paper, we will illustrate the formulations using the data described
in the following example.

Example. Figure 2 depicts a Wiener process Wt (in green), 100 equally spaced
observations \bfity (as crosses), and the MAP estimator that does not account for outliers,
\scrZ = \emptyset (in blue). If there are no outliers, then the MAP estimator is a good estimator
of the underlying process. However, if 10 of the observations are actually outliers (red
crosses), then the MAP estimator (without removing the outliers) is poor. In this
example the noisy observations follow independent and identically distributed (i.i.d.)
standard normal distributions. The outliers values are equal to \pm 20 and are chosen
``adversarially"" by the author.

MIQO formulation . We now describe a natural MIQO formulation for problem
(3.3). The formulation is a direct adaptation of the MIQO formulation of [78] for the
trimmed least squares problem. Define \bfitz \in \{ 0, 1\} N as the indicator vector of S, i.e.,
zi = 1 if and only if i \in S. Moreover, let Z \subseteq \{ 0, 1\} N such that S \in \scrZ \leftrightarrow z \in Z ;
we assume that Z =

\bigl\{ 
\bfitz \in \{ 0, 1\} N : \bfitG \bfitz \leq \bfitb 

\bigr\} 
. Then problem (3.3) can be modeled as

the mixed-integer optimization problem
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(a) No outliers
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y_t W_t x_t

(b) 10 outliers.

Fig. 2. MAP inference of Wiener process with ti = i, \bfitmu = \bfzero , \bfitsigma = \bfite without accounting for
outliers. Blue crosses correspond to noisy observations, red crosses indicate outliers, the green curve
indicates the true values of Wt, and the blue curve is the MAP estimator. Nonoutlier observations
are the same in both cases.

min
\bfitx ,\bfitz ,\bfitv 

x2
1

2t1
+

n - 1\sum 
i=1

(xi+1  - xi)
2

2(ti+1  - ti)
+

n\sum 
i=1

(yi + vi  - \mu i  - xi)
2

2\sigma 2
i

 - 
n\sum 

i=1

ln(2\pi \sigma 2
i )

2
zi(3.4a)

s.t. \bfitv \circ (\bfite  - \bfitz ) = 0,(3.4b)

\bfitG \bfitz \leq \bfitb ,(3.4c)

\bfitx \in RN , \bfitz \in \{ 0, 1\} N , \bfitv \in RN .(3.4d)

Constraints (3.4b) ensure that zi = 0 =\Rightarrow vi = 0 for all i \in N . Thus, if an
outlier is identified at point i \in N , then zi = 1, and in optimal solutions of (3.4)
we have that vi = xi + \mu i  - yi (independently of the value of xi), and the error
term corresponding to i vanishes---modeling the effect of discarding the value yi. In
contrast, if the datapoint i \in N is not discarded, then zi = vi = 0.

Each quadratic constraint vi(1  - zi) = 0 in (3.4b) is nonconvex, but it can be
linearized using big-M constraints. It can be easily shown that there exists an optimal
solution of (3.4) satisfying minj\in N\{ yj  - \mu j\} \leq xi \leq maxj\in N\{ yj  - \mu j\} for all i \in N .
Therefore it follows that

| vi| \leq max
j\in N

\{ yj  - \mu j\}  - min
j\in N

\{ yj  - \mu j\} 
def
= M \forall i \in N,

and constraints (3.4b) can be replaced with  - M\bfitz \leq \bfitv \leq M\bfitz ---note, however, that
the convex relaxation induced by big-M constraints is notoriously weak [55]. Thus,
problem (3.4) can be formulated as a MIQO. Perhaps the more common and intuitive
specification of Z corresponds to the prior that there is an upper bound k on the
number of outliers, which can be modeled via the cardinality constraint

Z =

\Biggl\{ 
\bfitz \in \{ 0, 1\} N :

\sum 
i\in N

zi \leq k

\Biggr\} 
.

Example. Figure 3 depicts the MAP estimators when a cardinality constraint is
imposed. We see that if the true cardinality k = 10 is used, then all the outliers are
removed and the MAP estimator is a good estimator of the underlying process. If
k = 5 is used instead, then the five ``isolated"" outliers are discarded, but the estimator
fits the five ``clustered"" outliers.

In addition to the simple cardinality constraint, several other priors on the struc-
ture of the outliers can be easily incorporated thanks to the modeling power of mixed-
integer optimization. Additional modifications of (3.4) can also be envisioned to tackle
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(a) \bfite \prime \bfitz \leq 10.
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(b) \bfite \prime \bfitz \leq 5.

Fig. 3. MAP inference of the Wiener process for different cardinalities.

forecasting and isotonic regression problems, among others. Some of these variants
are discussed in Appendix A.

4. Convexification. A direct use of formulation (3.4) with current mixed-integer
optimization solvers is sufficient to solve small problems within a reasonable amount
of time but fails in larger instances. To address this limitation, a by now standard ap-
proach in the optimization, statistical, and machine learning communities is to derive
tight convex relaxations of (3.4). The resulting convex relaxations can then be directly
used as a proxy of (3.4) to obtain approximate MAP estimators very efficiently or can
be exploited within a branch-and-bound algorithm to aggressively prune the search
tree and prove optimality faster. This section is devoted to studying such relaxations.

4.1. The natural convex relaxation. If Z =
\bigl\{ 
\bfitz \in \{ 0, 1\} N : \bfitG \bfitz \leq \bfitb 

\bigr\} 
, then

the simplest convex relaxation is obtained simply by relaxing the integrality con-
straints:

min
\bfitx ,\bfitz ,\bfitv 

x2
1

2t1
+

n - 1\sum 
i=1

(xi+1  - xi)
2

2(ti+1  - ti)
+

n\sum 
i=1

(yi + vi  - \mu i  - xi)
2

2\sigma 2
i

 - 
n\sum 

i=1

ln(2\pi \sigma 2
i )

2
zi(4.1a)

s.t.  - M\bfitz \leq \bfitv \leq M\bfitz ,(4.1b)

\bfitG \bfitz \leq \bfitb ,(4.1c)

\bfitx \in RN , \bfitz \in [0, 1]N , \bfitv \in RN .(4.1d)

If the constraints (4.1c) are given by a cardinality constraint \bfite \prime \bfitz \leq k, then (4.1) is
closely related to the common \ell 1 norm relaxation \| \bfitv \| 1 \leq Mk [29]. For more so-
phisticated constraints, standard integer programming techniques [74] can be used to
improve the formulations. Problem (4.1) is a convex quadratic optimization prob-
lem that can be solved very efficiently in practice. Unfortunately, even for simple
constraints (4.1c), the convex relaxation (4.1) is weak and is a poor approximation
of (3.4).

Example. Figure 4 depicts the optimal solution of (4.1) with constraint \bfite \prime \bfitz \leq 10.
We also use black dots (corresponding to the secondary axis) to represent the optimal
values of \bfitz . Although the optimal values of \bfitz are in general low, less than 0.1 in
most cases, all points are actually discarded as outliers, and the estimator is \^\bfitx \approx 0.
Moreover, the optimal objective value of (4.1) is  - 9.2 while the optimal objective

value of (3.4) is 18.3, for an integrality gap of 18.3 - ( - 9.2)
18.3 \times 100 = 150\%.

4.2. No separable or rank-one strengthening. Motivated by applications
in portfolio optimization [14] and, more recently, sparse regression [12], there has
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Fig. 4. Solution of the convex relaxation (4.1) with constraint \bfite \prime \bfitz \leq 10.

been progress in the past two decades in improving the convex relaxations of MIQO
problems [6, 7, 9, 8, 15, 17, 30, 29, 34, 35, 36, 33, 37, 41, 44, 49, 75, 76, 77]. Most of the
existing approaches rely on the perspective reformulation [23, 34], which can be used to
derive ideal formulations of separable nonlinear functions with indicators: a separable
quadratic term

\sum n
i=1(divi)

2 in the objective value for some vector \bfitd \in Rn can be
replaced with its convexification

\sum n
i=1(divi)

2/zi. However, the objective function
(3.4a) does not have any such terms in \bfitv , and the perspective reformulation cannot
be naturally used.

An alternative is to derive convexifications based on the rank-one quadratic terms
qi(xi, vi) = (yi + vi  - \mu i  - xi)

2 = (yi  - \mu i)
2 +2(yi  - \mu i)(vi  - xi)+ (vi  - xi)

2. Towards
this end, let

X1 =
\bigl\{ 
(x, z, v, s) \in R\times \{ 0, 1\} \times R\times R : (x - v)2 \leq s, v(1 - z) = 0

\bigr\} 
.

Unfortunately, as Proposition 4.1 shows, no strengthening can be derived from the
study of X1, as the closure of its convex hull corresponds to simply relaxing the
integrality constraints and dropping the complementary constraints.

Proposition 4.1. cl conv(X1) =
\bigl\{ 
(x, z, v, s) \in R\times [0, 1]\times R\times R : (x - v)2 \leq s

\bigr\} 
.

Proof. Let

\=X1 =
\Bigl\{ 
(w, x, z, v, s) \in \{ 0, 1\} \times R\times \{ 0, 1\} \times R\times R : (x - v)2 \leq s,

v(1 - z) = 0, x(1 - w) = 0
\Bigr\} 
.

Atamt\"urk and G\'omez [8] show that

cl conv( \=X1) =
\Bigl\{ 
(w, x, z, v, s) \in [0, 1]\times R\times [0, 1]\times R\times R : (x - v)2 \leq s,

(x - v)2

w + z
\leq s

\Bigr\} 
.

By fixing w = 1 and noting that the second constraint is redundant, we obtain the
result.

Therefore, in order to improve upon the natural convex relaxation (4.1), it is
necessary to study sets with more sophisticated quadratic functions.

4.3. Convexification via lifting. As discussed in section 4.2, existing convex-
ification schemes cannot be used to strengthen the natural convex relaxation (4.1).
In this section we derive a new convex relaxation which exploits additional structure
of the objective function of (3.4).
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By expanding the quadratic terms

(yi + vi  - \mu i  - xi)
2 = (yi  - \mu i)

2  - 2(yi  - \mu i)(xi  - vi) + (xi  - vi)
2

and rearranged terms, problem (3.4) can be stated equivalently as

min
\bfitx ,\bfitz ,\bfitv 

1

2

n - 2\sum 
i=2

\biggl( 
1

2\sigma 2
i

(xi  - vi)
2 +

(xi+1  - xi)
2

ti+1  - ti
+

1

2\sigma 2
i+1

(xi+1  - vi+1)
2

\biggr) 
(4.2a)

+
1

2

\biggl( 
1

\sigma 2
1

(x1  - v1)
2 +

(x2  - x1)
2

t2  - t1
+

1

2\sigma 2
2

(x2  - v2)
2

\biggr) 
(4.2b)

+
1

2

\biggl( 
1

2\sigma 2
n - 1

(xn - 1  - vn - 1)
2 +

(xn  - xn - 1)
2

tn  - tn - 1
+

1

\sigma 2
n

(xn  - vn)
2

\biggr) 
(4.2c)

(4.2d)

+
x2
1

2t1
 - 

n\sum 
i=1

(yi  - \mu i)(xi  - vi)

\sigma 2
i

 - 
n\sum 

i=1

ln(2\pi \sigma 2
i )

2
zi +

n\sum 
i=1

(yi  - \mu i)
2

2\sigma 2
i

(4.2e)

s.t.  - M\bfitz \leq \bfitv \leq M\bfitz ,(4.2f)

\bfitx \in RN , \bfitz \in Z, \bfitv \in RN .(4.2g)

Since rearranging terms does not impact the relaxation quality, the natural convex
relaxation of (4.2) is exactly (4.1). Now, given a1, a2 > 0, define

X =

\Biggl\{ 
(\bfitx , \bfitz ,\bfitv , s) \in R2 \times \{ 0, 1\} 2 \times R2 \times R : v1(1 - z1) = 0, v2(1 - z2) = 0,

a1
2
(x1  - v1)

2 +
(x1  - x2)

2

2
+

a2
2
(x2  - v2)

2 \leq s

\Biggr\} 
,

and observe that X is the mixed-integer epigraph of the functions in (4.2a)--(4.2c)
(after appropriate scaling). The relaxation of (3.4) is then obtained by replacing each
term in (4.2a)--(4.2c) by its convexification. Define

(4.3) \=a
def
= a1a2 + a1 + a2.

Our main convexification result is stated below.

Theorem 4.2. Define functions \nu 1, \nu 2 : R3 \rightarrow R and \=\zeta : R2
+ \rightarrow R as

\nu 1(x1, v1, v2) = x1  - v1 +
a2

\=a
(v1  - v2),

\nu 2(x2, v1, v2) = x2  - v2  - 
a1

\=a
(v1  - v2),

\=\zeta (z1, z2) = min\{ 1, z1 + z2\} .

The closure of the convex hull of X is given by

cl conv(X) =

\Biggl\{ 
(\bfitx , \bfitz ,\bfitv , s) \in R2 \times [0, 1]2 \times R2 \times R :

a1

2
\nu 1(x1, v1, v2)

2 +
a2

2
\nu 2(x2, v1, v2)

2

+
(\nu 1(x1, v1, v2) - \nu 2(x2, v1, v2))

2

2
+ a1a2

(v1  - v2)
2

2\=a\=\zeta (z1, z2)
\leq s

\Biggr\} 
.
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1906 ANDR\'ES G\'OMEZ

The proof of Theorem 4.2 is given at the end of the paper in section 6.

Remark 4.3. Set cl conv(X) is conic quadratic representable by adding additional

variables w1
def
= \nu 1(x1, v1, v2), w2

def
= \nu 2(x2, v1, v2), \=z

def
= \=\zeta (z1, z2), and r

def
= (v1  - 

v2)
2/\=\zeta (z1, z2) and using the system of inequalities

w1 = x1  - v1 +
a2
\=a
(v1  - v2),(4.4a)

w2 = x2  - v2  - 
a1
\=a
(v1  - v2),(4.4b)

\=z \leq 1, \=z \leq z1 + z2, \=z \geq 0,(4.4c)

(v1  - v2)
2 \leq r\=z, r \geq 0,(4.4d)

a1
2
w2

1 +
a2
2
w2

2 +
(w1  - w2)

2

2
+

a1a2
2\=a

r \leq s.(4.4e)

Constraints (4.4a)--(4.4b) correspond directly to the definition of functions w1 and w2

and are linear. Constraints (4.4c) correspond to the linearization of min\{ 1, z1 + z2\} 
and are linear as well. The first constraint (4.4d) corresponds to the epigraph of the
ratio (v1  - v2)

2/\=\zeta (z1, z2) and is a rotated cone constraint which can be used with
conic quadratic solvers. Finally, constraint (4.4e) is a restatement of the inequality
defining cl conv(X), and is convex quadratic.

From Theorem 4.2 and Remark 4.3, we obtain a strong MICQO formulation
of (3.4). Define \lambda 1 = 1

\sigma 2
1
, \lambda n = 0, and \lambda i = 1

2\sigma 2
i

for 1 < i < n, and let Li =

\lambda i (1/\sigma 2
i+1  - \lambda i+1) (ti+1  - ti)+\lambda i + 1/\sigma 2

i+1  - \lambda i+1, i = 1, . . . , n - 1. Note that each term
in (4.2a) can be written as

1

2(ti+1  - ti)

\Bigl( 
\lambda i(ti+1  - ti)(xi  - vi)

2 + (xi+1  - xi)
2

+
\bigl( 
1/\sigma 2

i+1  - \lambda i+1

\bigr) 
(ti+1  - ti)(xi+1  - vi+1)

2
\Bigr) 

and is thus of the form of set X where a1 = \lambda i(ti+1 - ti), a2 =
\bigl( 
1/\sigma 2

i+1  - \lambda i+1

\bigr) 
(ti+1 - 

ti), and \=a = Li(ti+1  - ti). Terms (4.2b)--(4.2c) can be handled identically, and we
obtain the following strong formulation.

Corollary 4.4. Formulation

min
1

2

n - 1\sum 
i=1

\biggl( 
\lambda iw

2
i,1 +

(wi,1  - wi,2)
2

ti+1  - ti
(4.5a)

+

\biggl( 
1

\sigma 2
i+1

 - \lambda i+1

\biggr) 
w2

i,2 +
\lambda i (1/\sigma 2

i+1  - \lambda i+1)

Li
ri

\biggr) 
+

x2
1

2t1
 - 

n\sum 
i=1

(yi  - \mu i)(xi  - vi)

\sigma 2
i

 - 
n\sum 

i=1

ln(2\pi \sigma 2
i )

2
zi +

n\sum 
i=1

(yi  - \mu i)
2

2\sigma 2
i

s.t. wi,1 = xi  - vi +
1/\sigma 2

i+1  - \lambda i+1

Li
(vi  - vi+1), i = 1, . . . , n - 1,(4.5b)

wi,2 = xi+1  - vi+1  - 
\lambda i

Li
(vi  - vi+1), i = 1, . . . , n - 1,(4.5c)

\=zi \leq 1, \=zi \leq zi + zi+1, (vi  - vi+1)
2 \leq ri\=zi, i = 1, . . . , n - 1,(4.5d)

 - M\bfitz \leq \bfitv \leq M\bfitz ,(4.5e)
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Fig. 5. Solution of the convex relaxation (4.5) with constraint \bfite \prime \bfitz \leq 10.

\bfitG \bfitz \leq \bfitb ,(4.5f)

\bfitx \in Rn, \bfitz \in \{ 0, 1\} n, \bfitv \in Rn, \bfitw \in Rn\times 2, \=\bfitz \in Rn - 1
+ , \bfitr \in Rn - 1

+ ,(4.5g)

is a correct formulation for (3.3) and dominates (3.4) in terms of strength of the
natural convex relaxations of both formulations.

Example. Figure 5 depicts the optimal solution of the natural convex relaxation
of (4.5) with constraint \bfite \prime \bfitz \leq 10. We see that the resulting estimators \^\bfitx are a better
estimate of Wt than those obtained from (4.1). All indicator variables corresponding
to isolated outliers have optimal solutions equal to zi = 1 (while clustered outliers
are more difficult to recognize). Moreover, the optimal objective value of the convex
relaxation of (4.5) in this case is 15.0, resulting in a much improved integrality gap
of 18.3 - 15.0

18.3 \times 100 = 18\%.

5. Computations. In this section we report computational experiments com-
paring the standard formulation (3.4) (MIQO) and the proposed stronger formulation
(4.5) (MICQO). We also benchmark the statistical performance of solving (4.5) against
the heuristic methods used in the statistical literature. All tested formulations were
coded using AMPL modeling language, and the computations were performed in the
NEOS Server [1] using Gurobi 8.1.0 with default settings and a 30 minute time limit.
All the raw data and AMPL model, data, and command files used can be found at
https://sites.google.com/usc.edu/gomez/data.

5.1. Instances. The formulations were tested in synthetic instances generated
as follows. First, unless stated otherwise, we generate n equally spaced observations of
a Wiener process by sampling from a multivariate normal distribution, \bfitW \sim \scrN (0,\Sigma ),
where \Sigma is the matrix given in (2.1) with ti = i. Then, given a outlier probability
\tau = 0.1, we generate observations \bfity as follows. For i = 1, . . . , n, with probability
1 - \tau , we generate a noisy observations yi \sim Wi +\scrN (0, 1), and with probability \tau the
observation yi is an outlier. We consider three main classes of outliers:
dev-3 Outliers yi are generated from a mixture of two normal distributions (with

equal weights), each with unit variance and mean equal to Wi \pm 3. Thus, on
average, outliers are 3 standard deviations away from the mean of a noisy
observation.

dev-15 Outliers yi are generated from a mixture of two normal distributions (with
equal weights), each with unit variance and mean equal to Wi\pm 15. Thus, on
average, outliers are 15 standard deviations away from the mean of a noisy
observation.
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1908 ANDR\'ES G\'OMEZ

uni Let \ell = mini\in N Wi and u = maxi\in N Wi. Then outliers yi are generated uniformly
in [\ell , u]. Observe that unlike dev-3 and dev-15, outliers here are very weakly
correlated with \bfitW .

Moreover, we consider two additional variants of dev-15 instances, resulting in
more challenging instances (both from an optimization and statistical perspective):
clu Outliers are clustered together in batches of 10. The instance are generated as

follows. Let q = \lfloor n/10\rfloor . Then for 0 \leq i \leq q, either none of the 10 consecutive
datapoints y10i, y10i+1, . . . , y10i+9 is an outliers (with probability 1 - \tau ) or all
10 points are outliers (with probability \tau ). In the latter case, y10i is generated
as described in dev-15, and y10i+j = y10i for j = 1, . . . , 9.

rti The observations are no longer equally spaced. Instead, all times ti are generated
uniformly between 0 and 200.

In all cases, we scale the data so that \| \bfity \| \infty = 1. Figure 6 illustrates all five
classes of instances. In our computations, we impose an outlier sparsity constraint\sum n

i=1 zi \leq \tau n so that the number of points removed is equal to the expected number
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(a) \bfd \bfe \bfv -\bfthree .
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(c) \bfu \bfn \bfi .
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Fig. 6. The five classes of outliers.
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of outliers. Nonetheless, the actual number of outliers may differ substantially from
\tau n in specific instances; we focus on those instances in section 5.4. We use \sigma 2

i = 1 in
formulations (3.4) and (4.5) (matching the variance of the noise).

5.2. Computational results. First, we test the performance of the formula-
tions for different classes of outliers. Table 1 shows, for n = 200, different classes
of outliers and for both the MIQO and MICQO formulations (from left to right): the
time in seconds required to solved the natural convex relaxation; the initial gap of
the natural convex relaxation, computed as objMIO - objrelax

objMIO
, where objMIO is the best

objective value known for the mixed-integer optimization and objrelax is the optimal
value of the natural convex relaxation; the time required to solve the mixed-integer
optimization in seconds; the end gap reported by the solver after 30 minutes of the
branch-and-bound method; the number of branch-and-bound nodes explored; and the
number (\#) of instances that were solved within the time limit. Each row represents
the average over five instances generated with the same parameters. We see that the
initial gaps of the MIQO are invariably bad, close to 100\% in all cases. As a conse-
quence, the branch-and-bound method struggles to prove optimality in most instances,
and average end gaps are above 10\% in all cases after millions of branch-and-bound
nodes. In contrast, formulation MICQO is stronger, with initial gaps of 15\% or less in
instances dev-3, dev-15, and uni. The branch-and-bound solver is able to leverage
the stronger relaxations to prove optimality within a few minutes in all instances ex-
cept two, and with only thousands of branch-and-bound nodes. Interestingly, even in
instances clu and rti, where the gaps of the convex relaxation of MICQO is relatively
high (above 50\%), the resulting branch-and-bound algorithm is still substantially
faster.

We now test the formulations for different dimensions n and outlier class dev-3
(similar results are obtained for other classes of outliers). Table 2 shows the result.
We see that for n = 100, formulation MIQO is able to deliver optimal solutions in
most instances (after 10 minutes on average) after substantial branching; nonetheless,
formulation MICQO is clearly superior as it delivers optimal solutions in three seconds,
and the number of branch-and-bound nodes required to prove optimality is reduced
by three orders-of-magnitude. In instances with n \geq 200 formulation MIQO struggles
badly, resulting in end gaps of 70\% or more. In contrast, formulation MICQO is able

Table 1
Computational results for instances with n = 200 and different classes of outliers.

Outlier Formulation
Convex Relaxation Branch-and-bound
Time(s) Gap Time(s) Gap Nodes \#

\bfd \bfe \bfv -\bfthree 
MIQO 0.03 98.0\% 1,800 74.1\% 6,790,725 0
MICQO 0.08 13.9\% 112 0.0\% 41,021 5

\bfd \bfe \bfv -\bfone \bffive 
MIQO 0.04 99.5\% 734 13.3\% 5,745,813 3
MICQO 0.10 15.5\% 366 3.3\% 37,389 4

\bfu \bfn \bfi 
MIQO 0.04 96.9\% 1,462 28.3\% 9,538,118 1
MICQO 0.10 7.9\% 13 0.0\% 4,177 5

\bfc \bfl \bfu 
MIQO 0.02 96.4\% 1,800 19.9\% 8,979,567 0
MICQO 0.07 53.0\% 145 0.0\% 29,980 5

\bft \bfr \bfi 
MIQO 0.05 99.5\% 1,329 28.0\% 1,741,649 2
MICQO 0.15 62.9\% 369 3.2\% 5,529 4
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1910 ANDR\'ES G\'OMEZ

Table 2
Computational results for instances with outliers dev-\bfthree and different sizes.

n Formulation
Convex Relaxation Branch-and-bound
Time(s) Gap Time(s) Gap Nodes \#

100
MIQO 0.04 99.4\% 662 2.4\% 6,302,389 4
MICQO 0.05 15.2\% 3 0.0\% 1,899 5

200
MIQO 0.03 98.0\% 1,800 74.1\% 6,790,725 0
MICQO 0.08 13.9\% 112 0.0\% 41,021 5

500
MIQO 0.08 99.3\% 1,800 97.3\% 2,347,363 0
MICQO 0.21 16.5\% 1,800 12.8\% 265,837 0

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

1 5 25 125 625

%
 o

f 
in

st
an

ce
s 

so
lv

ed
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(a) Percentage of instances solved within a given
time limit (log scale).

(b) End gaps reported after 30 minutes of branch-
and-bound on instances that MIQO cannot solve to
optimality.

Fig. 7. Aggregated computational results.

to deliver optimal solutions for n = 200 (in under two minutes) and proves stronger
optimality gaps of 13\% in instances with n = 500.

Summary. Figure 7(a) shows the performance profile of both MIQO and MICQO

across all instances tested. The stronger formulation (4.5) is considerably faster: while
MIQO is able to solve only 29\% of the instances within the time limit of 30 minutes,
MICQO is able to solve the same quantity of instances in only six seconds. Thus, in our
computations, formulation MICQO is two orders-of-magnitude faster than MIQO in the
``easy"" instances that both formulations can solve to optimality. The improvement of
MICQO is larger once the more challenging instances are accounted for. To illustrate,
Figure 7(b) depicts the end gaps reported by the solvers on the instances that MIQO

does not solve to optimality. The gaps reported by MIQO are large, with average and
median gaps close to 50\%, and in some cases gaps as large as 98\%---suggesting that
it would require a long time indeed to solve these problems using formulation (3.4).
In contrast, the median optimality gap of MICQO is 0\%---since most of these instances
are actually solved to optimality when using formulation (4.5)---the average gap is
3.9\%, and the worst gap is under 20\%.

5.3. Statistical performance. In this section we discuss the statistical perfor-
mance of solving the mixed-integer optimization problem to optimality, and we test
the statistical performance of using the convex relaxations of (4.5) as a proxy. We
benchmark against not removing outliers at all, i.e., setting \scrZ = \emptyset in (3.3), and using
a greedy heuristic similar in spirit to [24, 70], described next.

Greedy heuristic. Let \=S be a tentative set of candidate outliers; initially, we
set \=S = \emptyset . At each iteration, we solve problem (3.3) with \scrZ =

\bigl\{ 
\=S \cup \{ i\} 

\bigr\} 
i\in N

. Note
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Table 3

Statistical performance of different methods in instances with n = 200. Error =
\| \bfitW  - \^\bfitx \| 22
\| \bfitW \| 22

,

and \^\bfitx is an optimal solution of the corresponding optimization problem. Power is the proportion of
outliers that are detected. Each row represents the average over five instances generated with the
same parameters.

Outlier Metric Error Power

\bfd \bfe \bfv -\bfthree 

no discard \bfone .\bfseven \% 0.0\%
heuristic 1.9\% 55.6\%
conic quadratic relaxation 2.3\% \bffive \bffive .\bfnine \%
mixed-integer optimization 1.9\% 55.6\%

\bfd \bfe \bfv -\bfone \bffive 

no discard 12.6\% 0.0\%
heuristic 1.8\% 96.2\%
conic quadratic relaxation 2.1\% 90.4\%
mixed-integer optimization \bfone .\bffour \% \bfnine \bfeight .\bftwo \%

\bfu \bfn \bfi 

no discard 3.7\% 0.0\%
heuristic \bfone .\bffour \% \bfsix \bfsix .\bffive \%
conic quadratic relaxation 1.7\% 62.0\%
mixed-integer optimization \bfone .\bffour \% \bfsix \bfsix .\bffive \%

\bfc \bfl \bfu 

no discard 40.8\% 0.0\%
heuristic 21.5\% 66.2\%
conic quadratic relaxation \bfone \bfthree .\bftwo \% 52.2\%
mixed-integer optimization 19.5\% \bfseven \bffive .\bffour \%

\bfr \bft \bfi 

no discard 18.8\% 0.0\%
heuristic 4.4\% \bfeight \bfeight .\bfeight \%
conic quadratic relaxation \bfone .\bfzero \% 76.8\%
mixed-integer optimization 4.0\% 84.8\%

that, for this choice of \scrZ , problem (3.3) can be easily solved via enumeration. This
process is repeated until | \=S| = \tau n.

Table 3 shows the statistical error and power of the estimators obtained by ei-
ther not discarding any observations (no discard), the greedy heuristic (heuristic),
solving problem (3.3) to optimality (mixed-integer optimization), or solving the
natural convex relaxations of (4.5) (conic quadratic relaxation) to optimality.
Error is the standardized error between the estimated signal \^\bfitx (corresponding to the
optimal solution of an optimization problem) and the actual values of the Wiener

process \bfitW : error =
\| \bfitW  - \^\bfitx \| 2

2

\| \bfitW \| 2
2

; power is the probability that an anomalous point is

labeled as an outlier. For the convex relaxation, we mark a point i \in N as an outlier
if the (fractional) value \^zi of the solution is among the \tau n largest entries of \^\bfitz .

In instances dev-3, outliers are not significant enough to alter the inference of
the underlying process, and not discarding outliers actually results in the best per-
formance. However, we note that identifying them (by any method) results in only
a slightly larger error, whereas ignoring outliers results in significantly worse perfor-
mance in every other instance class.

In instances dev-15 and uni, mixed-integer optimization consistently results
in the best performance, with heuristic also resulting in good performance overall
(and in fact matching mixed-integer optimization in uni instances). Using the
conic quadratic relaxation results in slightly subpar performance in these two
instance classes (by a fraction of a percentage point), although this method is still far
superior than simply ignoring outliers.
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1912 ANDR\'ES G\'OMEZ

Finally, in instances clu and rti, the errors are in general worse (for all methods).
Interestingly, the conic quadratic relaxation results in substantially less error
than other methods (by several percentage points)---although the simple rounding
method we use to identify outliers is not successful, as shown by the inferior power
of the method. In addition, mixed-integer optimization also outperforms the
heuristic in terms of error.

In summary, we see that while the relative merits of each method depends on the
instance class, we can draw the following high-level conclusions:

1. Ignoring outliers can result in large errors, whereas discarding outliers only
results in small errors even when outliers are not significant.

2. In general, mixed-integer optimization results in better performance than
the heuristic method, especially in terms of the error.

3. A direct inference based on the conic quadratic relaxation is more ro-
bust: it may result in much improved statistical properties in the more chal-
lenging instances, at the expense of slightly larger errors in simpler instances.

5.4. On outlier sparsity. Theory on robust estimators [66, 68] indicates that
such estimators perform well even if the actual number of outliers is substantially less
than the number of discarded points. Our experiments corroborate this theoretical
result. Figure 8 illustrates this phenomenon in a dev-15 instance with n = 200 and 11
outliers (versus 20 discarded points)---corresponding to the instance of this size with
the least number of outliers in our computations. Note that we observed a similar
phenomenon in section 5.3 with dev-3 instances: while not discarding any points is
preferable, optimally choosing 20 points to discard results in a marginally larger error;
see Table 3.

Moreover, theory indicates that robust estimators may fail if there are more out-
liers than discarded points. In our computations we found that this may indeed be
the case, but it depends on the structure of the outliers. On the one hand, in uni
instances, where outlier observations are independent from the Wiener process but
could be close to it in some cases, the mixed-integer optimization method is ro-
bust to misspecification: Figure 9 presents the uni instance with n = 200 and largest
number of outliers.

On the other hand, if outliers are far apart from the true values of the process,
then underestimating the number of outliers does result in poor performance of
mixed-integer optimization. These settings, however, also correspond to the

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200

W_t outlier_obs x

Fig. 8. Solution from mixed-integer optimization in a dev-\bfone \bffive instance with 11 outliers and
20 discarded points. The error with respect to the true signal is 0.4\%.
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Fig. 9. Solution from mixed-integer optimization in a uni instance with 29 outliers and 20
discarded points. The error with respect to the true signal is 0.2\%.
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(a) Conic quadratic relaxation, error=7.1\%
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(b) Mixed-integer optimization, error=14.3\%

Fig. 10. Solutions in a clu instance with 50 outliers and 20 discarded points.
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(a) Conic quadratic relaxation, error=1.2\%
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(b) Mixed-integer optimization, error=7.1\%

Fig. 11. Solutions in a rti instance with 25 outliers and 20 discarded points.

situations in which the conic quadratic relaxation results in much better sta-
tistical performance than its discrete counterpart. Figures 10 and 11 depict this
phenomenon in clu and rti instances, respectively.

6. Proof of Theorem 4.2. This section is devoted to proving Theorem 4.2. We
derive the result via a similar lifting technique as the one used in [10, 40, 60, 63].
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6.1. Main idea and proof outline. Define

f(\bfitx ,\bfitv ) =
a1
2
(x1  - v1)

2 +
(x1  - x2)

2

2
+

a2
2
(x2  - v2)

2 and

C =
\bigl\{ 
(\bfitx , \bfitz ,\bfitv ) \in R2 \times \{ 0, 1\} 2 \times R2 : v1(1 - z1) = 0, v2(1 - z2) = 0

\bigr\} 
so thatX = \{ (\bfitx , \bfitz ,\bfitv ) \in C, s \in R : f(\bfitx ,\bfitv ) \leq s\} . Moreover, for any \bfitz \in \{ 0, 1\} 2, \bfitalpha ,\bfitbeta \in 
R2, define the function

g\bfita (\bfitz ;\bfitalpha ,\bfitbeta )
def
= min

\bfitx ,\bfitv 
f(\bfitx ,\bfitv ) - \alpha 1x1  - \alpha 2x2  - \beta 1v1  - \beta 2v2(6.1)

s.t. (\bfitx , \bfitz ,\bfitv ) \in C.

Function g\bfita depends on the vector \bfita and is parametrized by (\bfitalpha ,\bfitbeta ). Observe that for
any (\bfitx , \bfitz ,\bfitv , s) \in X and any \bfitalpha ,\bfitbeta \in R2 we have that

s - \bfitalpha \prime \bfitx  - \bfitbeta \prime \bfitv \geq f(\bfitx ,\bfitv ) - \bfitalpha \prime \bfitx  - \bfitbeta \prime \bfitv \geq g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ),(6.2)

where the second inequality is obtained by minimizing over (\bfitx ,\bfitv ). From (6.2), we
can derive lower bounds on s by studying the function g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) +\bfitalpha \prime \bfitx + \bfitbeta \prime \bfitv .

The proof of Theorem 4.2 consists of three steps:
1. We give, for any (\bfitalpha ,\bfitbeta ), a closed form expression of the set function g\bfita (Propo-

sitions 6.1 and 6.2).
2. We derive, for any (\bfitalpha ,\bfitbeta ), the closure of the convex envelope of function g\bfita ,

i.e., the maximal convex function \=g\bfita : [0, 1]2 :\rightarrow R such that \=g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) \leq 
g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) for all z \in \{ 0, 1\} n (Proposition 6.3). It follows from (6.2) that

(6.3) s - \bfitalpha \prime \bfitx  - \bfitbeta \prime \bfitv \geq \=g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ).

3. Noting that (6.3) holds for any (\bfitalpha ,\bfitbeta ), we find the strong nonlinear valid
inequality

(6.4) s - \bfitalpha \prime \bfitx  - \bfitbeta \prime \bfitv \geq max
\bfitalpha ,\bfitbeta 

\=g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ).

It follows from Theorem 1 in [63] that inequality (6.4) and bound constraints
describe cl conv(X) (see Proposition 6.4). Thus, to prove Theorem 4.2, it
suffices to solve the lifting problem (6.4) in closed form (Proposition 6.5).

6.2. Formal proof. We now give an explicit description of function g\bfita described
in (6.1).

Proposition 6.1. If \alpha 1+\beta 1 \not =  - \alpha 2 - \beta 2, then g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ) =  - \infty . Otherwise,
if

(6.5) \alpha 1 + \beta 1 = \gamma =  - \alpha 2  - \beta 2

for some \gamma \in R, then

g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) =

\left\{    - 1
2
(\alpha 1+\alpha 2)

2+a2\alpha 
2
1+a1\alpha 

2
2

\=a if \bfitz = 0,

 - 1
2

\Bigl( 
(\gamma  - \alpha 1)

2

a1
+ \gamma 2 + (\gamma +\alpha 2)

2

a2

\Bigr) 
otherwise,

where \=a is given in (4.3).
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Proof. We first compute g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ). By taking derivatives of the objective
function of (6.1) with respect to v1 and v2 and setting to 0, we find

v1 = x1 +
1

a1
\beta 1,

v2 = x2 +
1

a2
\beta 2.

Thus, we obtain

(6.6) g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ) = min
x\in R2

 - \beta 2
1

2a1
 - \beta 2

2

2a2
+

1

2
(x1 - x2)

2 - (\alpha 1+\beta 1)x1 - (\alpha 2+\beta 2)x2.

If \alpha 1 + \beta 1 <  - \alpha 2  - \beta 2, then setting x1 = x2 = \zeta and letting \zeta \rightarrow  - \infty , we find that

g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ) =  - \beta 2
1

2a1
 - \beta 2

2

2a2
 - (\alpha 1 + \alpha 2 + \beta 1 + \beta 2)\zeta \rightarrow  - \infty . Similarly, if \alpha 1 + \beta 1 >

 - \alpha 2  - \beta 2, then setting x1 = x2 = \zeta and letting \zeta \rightarrow \infty , g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ) \rightarrow \infty .
Otherwise, if \alpha 1 + \beta 1 = \gamma =  - \alpha 2  - \beta 2, then we find by taking derivatives of (6.6)
with respect to x1, x2 and setting to 0 that (x1  - x2) = \gamma and (6.6) reduces to

g\bfita (\{ 1, 1\} ;\bfitalpha ,\bfitbeta ) = min
x\in R2

 - \beta 2
1

2a1
 - \beta 2

2

2a2
+

1

2
(x1  - x2)

2  - \gamma (x1  - x2)

= - \beta 2
1

2a1
 - \beta 2

2

2a2
 - 1

2
\gamma 2 =  - (\gamma  - \alpha 1)

2

2a1
 - 1

2
\gamma 2  - (\gamma + \alpha 2)

2

2a2
.

We assume that \alpha 1 + \beta 1 = \gamma =  - \alpha 2  - \beta 2 in what follows.
We now compute g\bfita (\{ 1, 0\} ;\bfitalpha ,\bfitbeta ). Note that v2 = 0 in (6.1); by taking the

derivative of (6.1) with respect to v1 and setting to 0, we find that v1 = x1 + 1/a1\beta 1

and

g\bfita (\{ 1, 0\} ;\bfitalpha ,\bfitbeta ) = min
x\in R2

 - \beta 2
1

2a1
+

1

2
(x1  - x2)

2 +
a2
2
x2
2  - (\alpha 1 + \beta 1)x1  - \alpha 2x2.

Taking derivatives with respect to x1 we find x1 = x2 + \alpha 1 + \beta 1 and

g\bfita (\{ 1, 0\} ;\bfitalpha ,\bfitbeta ) = min
x2\in R

 - \beta 2
1

2a1
 - 1

2
(\alpha 1 + \beta 1)

2 +
a2
2
x2
2  - (\alpha 1 + \alpha 2 + \beta 1)x2.

Taking derivatives with respect to x2 we find x2 = \alpha 1+\alpha 2+\beta 1

a2
and

g\bfita (\{ 1, 0\} ;\bfitalpha ,\bfitbeta ) - \beta 2
1

2a1
 - 1

2
(\alpha 1+\beta 1)

2 - (\alpha 1 + \alpha 2 + \beta 1)
2

2a2
=  - (\gamma  - \alpha 1)

2

2a1
 - 1

2
\gamma 2 - (\gamma + \alpha 2)

2

2a2
.

Similarly, we find

g\bfita (\{ 0, 1\} ;\bfitalpha ,\bfitbeta ) =  - (\alpha 1 + \alpha 2 + \beta 2)
2

2a1
 - 1

2
(\alpha 2 + \beta 2)

2  - \beta 2
2

2a2

=  - (\gamma  - \alpha 1)
2

2a1
 - 1

2
\gamma 2  - (\gamma + \alpha 2)

2

2a2
.

Finally, we compute g\bfita (\{ 0, 0\} ;\bfitalpha ,\bfitbeta ). Note that v1 = v2 = 0 in (6.1); thus
it follows from standard quadratic optimization arguments that ga(\{ 0, 0\} ;\bfitalpha ,\bfitbeta ) =
 - 1/2\bfitalpha \prime \bfitA  - \bfone \bfitalpha , where

\bfitA =

\biggl( 
1 + a1  - 1
 - 1 1 + a2

\biggr) 
,
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i.e.,

g\bfita (\{ 0, 0\} ;\bfitalpha ,\bfitbeta ) =  - (1 + a2)\alpha 
2
1 + 2\alpha 1\alpha 2 + (a1 + 1)\alpha 2

2

2\=a
,

and the proof is complete.

Proposition 6.2 gives an alternative characterization of g as a function in terms
of variables \bfitz .

Proposition 6.2. For any (\bfitalpha ,\bfitbeta , \gamma ) satisfying (6.5), we can rewrite function g
as

(6.7) g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) = g\bfita (0;\bfitalpha ,\bfitbeta ) - \rho \bfita \bfitalpha ,\gamma max\{ z1, z2\} ,

where

\rho \bfita \bfitalpha ,\gamma =  - 

\Bigl( 
\=a\gamma  - (a2\alpha 1  - a1\alpha 2)

\Bigr) 2
2a1a2\=a

.

Proof. Equation (6.7) is trivially satisfied for \bfitz = 0. To check that it is also
satisfied for \bfitz \not = 0, we verify that

\rho \bfita \bfitalpha ,\gamma =g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) - g\bfita (0;\bfitalpha ,\bfitbeta )

= - 1

2

\Biggl( 
(\gamma  - \alpha 1)

2

a1
+ \gamma 2 +

(\gamma + \alpha 2)
2

a2
 - (\alpha 1 + \alpha 2)

2
+ a2\alpha 

2
1 + a1\alpha 

2
2

\=a

\Biggr) 

= - 1

2

\biggl( 
a2\gamma 

2  - 2a2\gamma \alpha 1 + a2\alpha 
2
1 + a1a2\gamma 

2 + a1\gamma 
2 + 2a1\gamma \alpha 2 + a1\alpha 

2
2

a1a2

 - (\alpha 1 + \alpha 2)
2
+ a2\alpha 

2
1 + a1\alpha 

2
2

\=a

\Biggr) 

= - 1

2

\Biggl( 
\=a\gamma 2  - 2(a2\alpha 1  - a1\alpha 2)\gamma + a2\alpha 

2
1 + a1\alpha 

2
2

a1a2
 - (\alpha 1 + \alpha 2)

2
+ a2\alpha 

2
1 + a1\alpha 

2
2

\=a

\Biggr) 

= - 1

2

\biggl( 
(\=a\gamma )2  - 2\=a(a2\alpha 1  - a1\alpha 2)\gamma + (a1 + a2)(a2\alpha 

2
1 + a1\alpha 

2
2) - a1a2(\alpha 1 + \alpha 2)

2

a1a2\=a

\biggr) 
= - 1

2

\Biggl( 
(\=a\gamma )2  - 2\=a(a2\alpha 1  - a1\alpha 2)\gamma + (a2\alpha 1  - a1\alpha 2)

2

a1a2\=a

\Biggr) 

= - 1

2

\left(   
\Bigl( 
\=a\gamma  - (a2\alpha 1  - a1\alpha 2)

\Bigr) 2
a1a2\=a

\right)   .

Therefore, the proposition is proven.

Now consider the mixed-integer epigraph of the set function g\bfita , i.e.,

U =
\bigl\{ 
\bfitz \in \{ 0, 1\} 2, w \in R : g\bfita (\bfitz ;\bfitalpha ,\bfitbeta ) \leq w

\bigr\} 
.

Proposition 6.3. For any (\bfitalpha ,\bfitbeta , \gamma ) satisfying (6.5),

conv(U) =
\bigl\{ 
\bfitz \in [0, 1]2, w \in R : g\bfita (0;\bfitalpha ,\bfitbeta ) - \rho \bfita \bfitalpha ,\gamma min\{ 1, z1 + z2\} \leq w

\bigr\} 
.
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Proof. Proposition 6.3 follows directly from Proposition 6.2 and the fact that the
hypograph of the maximum of two binary variables, \=z \leq max\{ z1, z2\} , can be described
via the inequalities \=z \leq 1 and \=z \leq z1 + z2.

From inequality (6.1) and Proposition 6.3 we find that for all (\bfitx , \bfitz ,\bfitv , s) \in X,

\=z
def
= min\{ 1, z1 + z2\} , and all (\bfitalpha ,\bfitbeta , \gamma ) satisfying (6.5), the inequality

s - \bfitalpha \prime \bfitx  - \bfitbeta \prime \bfitv \geq g(\bfitz ;\bfitalpha ,\bfitbeta ) \geq g\bfita (0;\bfitalpha ,\bfitbeta ) - \rho \bfita \bfitalpha ,\gamma \=z(6.8)

is valid. We adopt the convention that, if (6.5) does not hold, then g(\bfitz ;\bfitalpha ,\bfitbeta ) =  - \infty 
and \rho \bfita \bfitalpha ,\gamma = \infty , in which case (6.8) holds for any (\bfitalpha ,\bfitbeta , \gamma ).

We can strengthen inequality (6.8) by finding the best (\bfitalpha ,\bfitbeta , \gamma ), i.e.,

s \geq max
(\bfitalpha ,\bfitbeta ,\gamma )

\Bigl\{ 
g\bfita (0;\bfitalpha ,\bfitbeta ) - \rho \bfita \bfitalpha ,\gamma \=z +\bfitalpha \prime \bfitx + \bfitbeta \prime \bfitv 

\Bigr\} 
def
= \=f\bfita (\bfitx , \bfitz ,\bfitv ).(6.9)

Obviously, optimal solutions (\bfitalpha ,\bfitbeta , \gamma ) of (6.9) satisfy (6.5). As stated in Proposi-
tion 6.4, the valid inequality (6.9) is in fact ideal.

Proposition 6.4. Function \=f\bfita and bound constraints describe the closure of the
convex hull of X,

cl conv(X) =
\Bigl\{ 
(\bfitx , \bfitz ,\bfitv , s) \in R2 \times [0, 1]2 \times R2 \times R : \=f\bfita (\bfitx , \bfitz ,\bfitv ) \leq s

\Bigr\} 
.

Proof. The results follows from Theorem 1 in [63]. See also [40] for a similar
result specialized to submodular functions.

Therefore, in light of Proposition 6.4, it suffices to find the explicit form of
\=f\bfita (\bfitx , \bfitz ,\bfitv ) to complete the proof of Theorem 4.2.

Proposition 6.5. Let functions \nu 1, \nu 2 : R3 \rightarrow R and \=\zeta : R2
+ \rightarrow R be as described

in Theorem 4.2. Then

\=f\bfita (\bfitx , \bfitz ,\bfitv ) =
a1\nu 1(x1, v1, v2)

2 + a2\nu 2(x2, v1, v2)
2 + (v1  - v2)

2

2
+ a1a2

(v1  - v2)
2

2\=a\=\zeta (z1, z2)
.

Proof. We now solve for (\bfitalpha ,\bfitbeta , \gamma ) in (6.9). We can write (6.9) explicitly (after
substituting \bfitbeta ) as

s \geq max
\bfitalpha ,\gamma 

 - 1

2

(\alpha 1 + \alpha 2)
2
+ a2\alpha 

2
1 + a1\alpha 

2
2

\=a
 - 

\Bigl( 
\=a\gamma  - (a2\alpha 1  - a1\alpha 2)

\Bigr) 2
2a1a2\=a

\=z(6.10)

+ \alpha 1x1 + \alpha 2x2 + (\gamma  - \alpha 1)v1  - (\gamma + \alpha 2)v2

\leftrightarrow s \geq max
\bfitalpha ,\gamma 

 - (a1a2 + a1a
2
2)\alpha 

2
1 + (a1a2 + a21a2)\alpha 

2
2 + 2a1a2\alpha 1\alpha 2

2a1a2\=a
(6.11)

+
a22\=z\alpha 

2
1 + a21\=z\alpha 

2
2  - 2a1a2\=z\alpha 1\alpha 2

2a1a2\=a
 - \=a2\=z\gamma 2  - 2\=a\=z\gamma (a2\alpha 1  - a1\alpha 2)

2a1a2\=a

+ (x1  - v1)\alpha 1 + (x2  - v2)\alpha 2 + (v1  - v2)\gamma 
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\leftrightarrow s \geq max
\bfitalpha ,\gamma 

 - (a1a2 + a1a
2
2 + a22\=z)\alpha 

2
1 + (a1a2 + a21a2 + a21\=z)\alpha 

2
2 + 2a1a2(1 - \=z)\alpha 1\alpha 2

2a1a2\=a

(6.12)

 - \=a\=z

2a1a2
\gamma 2 + (x1  - v1 +

\=z\gamma 

a1
)\alpha 1 + (x2  - v2  - 

\=z\gamma 

a2
)\alpha 2 + (v1  - v2)\gamma 

\leftrightarrow s \geq max
\bfitalpha ,\gamma 

 - a2
2\=a

\alpha 2
1  - 

a1
2\=a

\alpha 2
2  - 

1

2\=a
(\alpha 1 + \alpha 2)

2  - \=z

2a1a2\=a
(a2\alpha 1  - a1\alpha 2)

2

(6.13)

 - \=a\=z

2a1a2
\gamma 2 + (x1  - v1 +

\=z\gamma 

a1
)\alpha 1 + (x2  - v2  - 

\=z\gamma 

a2
)\alpha 2 + (v1  - v2)\gamma 

\leftrightarrow s \geq max
\bfitalpha 

 - a2
2\=a

\alpha 2
1  - 

a1
2\=a

\alpha 2
2  - 

1

2\=a
(\alpha 1 + \alpha 2)

2  - \=z

2a1a2\=a
(a2\alpha 1  - a1\alpha 2)

2

(6.14)

+ (x1  - v1)\alpha 1 + (x2  - v2)\alpha 2 +
a1a2
2\=az

\biggl( 
\=z

a1
\alpha 1  - 

\=z

a2
\alpha 2 + (v1  - v2)

\biggr) 2

\leftrightarrow s \geq max
\bfitalpha 

 - 1

2\=a

\Bigl( 
(a2 + 1)\alpha 2

1 + \alpha 1\alpha 2 + (a1 + 1)\alpha 2
2

\Bigr) 
+
\Bigl( 
x1  - v1 +

a2
\=a
(v1  - v2)

\Bigr) 
\alpha 1

(6.15)

+
\Bigl( 
x2  - v2  - 

a1
\=a
(v1  - v2)

\Bigr) 
\alpha 2 + a1a2

(v1  - v2)
2

2\=a\=z
.

Inequality (6.11) is obtained by setting the denominator a1a2\=a on the first ratio and
expanding quadratic terms; inequality (6.12) is obtained by rearranging terms and

noting that \=a2\=z\gamma 2 - 2\=a\=z\gamma (a2\alpha 1 - a1\alpha 2)
2a1a2\=a

= \=a\=z
2a1a2

\gamma 2  - \=z\gamma 
a1
\alpha 1 +

\=z\gamma 
a2
\alpha 2; inequality (6.13) is ob-

tained by grouping together terms that depend on \=z and simplifying the resulting ex-

pression; inequality (6.14) is obtained by noting that \gamma \ast =
\Bigl( 

\=z
a1

\alpha 1 - \=z
a2

\alpha 2+(v1 - v2)
\Bigr) 
/
\Bigl( 

\=a\=z
a1a2

\Bigr) 
in any optimal solution (which can be checked by taking derivatives with respect to \gamma 
and setting to 0); finally, inequality (6.15) is obtained by expanding the last quadratic
term and regrouping terms.

Observe that optimization problem (6.15) is of the form

max
\bfitalpha 

 - 1

2
\bfitalpha \prime \bfitQ \bfitalpha +\bfitw \prime \bfitalpha ,

where w1 = x1  - v1 +
a2

\=a (v1  - v2), w2 = x2  - v2  - a1

\=a (v1  - v2), and

Q =
1

\=a

\biggl( 
a2 + 1 1

1 a1 + 1

\biggr) 
.

Standard quadratic optimization techniques yield that the optimal objective value is
1
2\bfitw 

\prime \bfitQ  - \bfone \bfitw , i.e., in the original space of variables,

s \geq 
1

2

\bigl( 
x1  - v1 + a2

\=a
(v1  - v2) x2  - v2  - a1

\=a
(v1  - v2)

\bigr) \biggl( a1 + 1  - 1
 - 1 a2 + 1

\biggr) \biggl( 
x1  - v1 + a2

\=a
(v1  - v2)

x2  - v2  - a1
\=a
(v1  - v2)

\biggr) 
+ a1a2

(v1  - v2)2

2\=amin\{ 1, z1 + z2\} 
.

This is precisely the form given in Theorem 4.2 and Proposition 6.5 (in an extended
formulation), completing the proof.

7. Conclusions. In this paper we study the computation of robust estimates of a
Markov process in the presence of outliers. The estimation problem is closely related to
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the trimmed least squares procedure or the leave-k-out diagnostics from the statistical
literature. We study the convexification of the natural MIQO formulation of this
problem and derive a novel MIQO formulation via lifting. Using the new formulations
with off-the-shelf solvers results in orders-of-magnitude improvements in terms of
solution times or end gaps. Our computations also indicate that estimators obtained
from solving just the convex relaxation of the proposed formulation, which can be done
very quickly with interior point methods, result in good statistical performance and
in some cases improve upon the performance of solving the mixed-integer optimization
problem to optimality.

Appendix A. Modeling using mixed-integer optimization.We now discuss
how several priors on the structure of the outliers, as well a variants of (3.4) of practical
interest, can be naturally modeled using mixed-integer optimization.

A.1. Outlier density. Outliers can be clustered together or be isolated, in
which case (depending on the application) they may have different interpretations.
For example, when monitoring the outcomes of an experiment over time, an isolated
outlier may correspond to a measurement error (due to a faulty instrument) or even
to a transcription error; in contrast, a cluster of outliers may corresponding to a phys-
ical phenomenon (e.g., change of temperature) or an external influence that abruptly
changes the conditions of the experiment. Cluster of outliers are often more difficult
to identify [57], as illustrated also in Figure 3(b).

A decision-maker may wish to remove isolated outliers (as they are likely to
be incorrect measurements) but keep clusters of outliers (as they may represent a
phenomenon of interest). To accomplish this goal, given a density parameter b \in Z+,
low-density constraints

k+b\sum 
i=k

zi \leq 1 for k = 1, . . . , n - b

can be imposed, which state that outliers need to be spaced by at least b points.
Alternatively, a decision-maker may wish to focus on detecting clusters of outliers,

to identify the relevant phenomena. In this case, given a density parameter b \in Z+,
high-density constraints

min\{ k+b,n\} \sum 
i=max\{ k - b,1\} 

zi \geq (b+ 1)zk for k = 1, . . . , n

can be imposed, which state that outliers occur in clusters of at least b+ 1 points.

Example. Figure 12 depicts the MAP estimators with a cardinality constraint
\bfite \prime \bfitz \leq 10 and low/high-density constraints with b = 8. We also use black dots (corre-
sponding to the secondary axis) to represent the optimal values of \bfitz . Note that the
cardinality parameter is (purposely) misspecified, as there are only five isolated/clus-
tered outliers. We see that in both cases the density constraints achieve their goal of
focusing on isolated/clustered outliers. Although in both cases additional outliers are
incorrectly detected (due the misspecification), the estimation corresponding to those
points is not significantly affected. This example illustrates how additional priors help
the inference process and reduce the effect of choosing the ``wrong"" parameters.

A.2. Anomaly sparsity. As mentioned in section A.1, a cluster of outliers
may be indicative of a single anomaly disrupting the process. In such cases it can
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(a) Low density.
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(b) High density.

Fig. 12. MAP inference of the Wiener process with constraint \bfite \prime \bfitz \leq 10 and low/high-density
constraints with density parameter b = 8. Black dots (corresponding to the secondary axis) depict
the optimal values of \bfitz .

be natural to assume that, in addition of the quantity of corrupted data being small,
the quantity of such anomalies is also small. Such constraints can be enforced by
restricting the number of times that the signal can move between anomalous states
and normal states, i.e., given a sparsity parameter b \in Z+,

(A.1)
n - 1\sum 
i=1

| zi+1  - zi| \leq b.

Observe that constraint (A.1) has a structure similar to the fused lasso [64, 69]. How-
ever, unlike fused lasso constraints, (A.1) restricts changes in the indicator variables \bfitz 
instead of the continuous variables \bfitx . Constraint (A.1) was previously used in signal
estimation problems in [9].

Example. If, in addition to the cardinality constraint
\sum 

i\in N zi \leq 10, an anom-
aly constraint (A.1) is added with b = 2, then the results are identical to those in
Figure 12(b). Figure 13 depicts the MAP estimators for b = 4 and b = 6 (no den-
sity constraints are used). The constraints indeed restrict the number of anomalies
detected, prioritizing those corresponding to a larger number of points.

A.3. Forecasting. Thus far, we have been concerned with obtaining high qual-
ity of true values of Wt using all the observations. In many applications, however,
the decision-maker is interested in predicting the value of yi using only past informa-
tion y1, . . . , yi - 1. Note that outliers cannot be accurately forecasted (as they are not
assumed to follow any particular distribution); nonetheless, one would be interested
in how to deal with identify/deal with outlier data to improve the overall forecasts of
nonoutlier data.

Observe that if there are no outliers, ti = i for all i, \bfitmu = 0, and the noise
is i.i.d., then exponential smoothing forecasts are ideal to estimate yt [59]. In an
exponential smoothing forecast, each prediction xi is a weighted average of all past
values y1, . . . , yi - 1, where recent observations carry exponentially more weight. In
particular, given a smoothing factor 0 \leq b \leq 1, the forecasts are a convex combination
of the most recent forecast and observation, xi = byi - 1 + (1 - b)xi - 1 with x0 = 0.

Thus, in order to remove outliers in a time series to improve forecasts, we propose
to solve (3.4) with the additional constraint that the estimates \bfitx are obtained from
an exponential smoothing forecast by adding the smoothing constraints

(A.2) xi = b(yi - 1 + vi - 1  - \mu i - 1) + (1 - b)xt - 1, i = 2, . . . , n.

If constraints (A.2) are imposed, then the equality vi = xi + \mu i  - yi may not hold;
thus in this model outliers are not discarded. Instead, the values of outlier data i \in S

D
ow

nl
oa

de
d 

09
/2

9/
21

 to
 1

50
.2

12
.1

81
.1

5 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OUTLIER DETECTION VIA MIXED-INTEGER OPTIMIZATION 1921

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

y_t W_t x_t z

(a)
\sum n - 1

i=1 | zi+1  - zi| \leq 4.
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(b)
\sum n - 1

i=1 | zi+1  - zi| \leq 6.

Fig. 13. MAP inference of the Wiener process with constraint \bfite \prime \bfitz \leq 10 and anomaly sparsity
constraints. Black dots (corresponding to the secondary axis) depict the optimal values of \bfitz .
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(a) Smoothing parameter b = 0.1.
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(b) Smoothing parameter b = 0.9.

Fig. 14. MAP inference of the Wiener process with constraint \bfite \prime \bfitz \leq 10 and smoothing con-
straints. Black squares depict the corrected values \=\bfity .

are ``corrected"" to a value \=yi = yi + vi that results in the best overall MAP estimates
of Wt achievable by a exponential smoothing method with parameter b and initial
forecast x1. We point out that other usual techniques such as moving averages or
additive seasonality can be easily modeled as well.

Example. Figure 14 depicts the estimators with a cardinality constraint \bfite \prime \bfitz \leq 10
and smoothing constraints (A.2). We also plot using black squares the corrected
values \=\bfity . We observe that the corrected values are not necessarily on the curve of the
MAP estimator (as they account for the effect on future predictions as well) and that
the corrected values depend on the smoothing parameter b.
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A.4. Additional variants. Several other considerations can be modeled via
minor modifications of (3.4). For example, to estimate a Wiener process \=Wt = \=\mu t +
\=\sigma Wt with drift \=\mu and infinitesimal variance \=\sigma 2, it suffices to update the objective
value of (3.4) to

x2
1

2t1
+

n - 1\sum 
i=1

\Bigl( 
xi+1  - xi  - \=\mu (ti+1  - ti)

\Bigr) 2

2\=\sigma 2(ti+1  - ti)
+

n\sum 
i=1

(yi + vi  - \mu i  - xi)
2

2\sigma 2
i

+

n\sum 
i=1

ln(2\pi \sigma 2
i )

2
(1 - zi).

The formulations can also be adapted to pairwise Markov random fields (not
necessarily one-dimensional) estimation problems with outliers as

min
\bfitx ,\bfitz ,\bfitv 

1

2

\sum 
(i,j)\in E

cij(xj  - xi)
2 +

1

2

\sum 
i\in N

di(yi + vi  - xi)
2

s.t.  - M\bfitz \leq \bfitv \leq M\bfitz ,

\bfitx \in RN , \bfitz \in Z,\bfitv \in RN

for some separation coefficients \bfitc and deviations coefficients \bfitd , where E denotes the
set of adjacent nodes; see [46, 47] for a detailed description of pairwise Markov random
fields.

Several other additional constraints can be added to (3.4). For example,
constraints \bfitv \geq 0 (or \bfitv \leq 0) can be used to incorporate the prior that outliers
consistently underestimate (or overestimate) the true process Wt. A ``fused lasso""

constraint
\sum n - 1

i=1 | vi+1  - vi| \leq b indicates that outliers are introduced smoothly into
the process. Constraints | vi| \leq bxi for all i \in N indicate that the maximum pertur-
bation induced by an outlier is bounded by the true value of the signal at that point.
Constraints xi \leq xi+1 for all i = 1, . . . , n - 1 can be used for isotonic estimation [48]
with outliers.
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