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ABSTRACT. Explicitly reprasenting an agent's context has bean shown o have many banefils, which should also
apply to machine leaming. In this paper, we describe an approach to do this called contexi-dependent deep learming
(CODL), which is bassd on earlier work in confext-mediated behavior (CMB) that uses contextual schemas (o-
schamas) to represent classes of siluations aklong with knowledge useful in them. These c-schemas are then recalled
and guide reasoning in the corresponding contexts. CODL stores knowledge about deep neural network structure and
waights in c-schemas, which allows context-specific learning. Our work is being developed in the domain of seabird
detection in aerial images of islands for use by biologists.

RESUME. La représentation explicite du contexte d'un agent a montré avoir de nombreux avantages, qui devraient
aussi pouvoir s'appliguer a Fapprentissage symboligue (CODL). Dans ce papier nous décrivens une approche pour
faire ceci qui est appelés apprentissage en profondeur dépendant du contexte. Cette approche est baseée sur des
travaux antérieurs sur le comportermant madiatisé par le conlexte qui ulilise des schémas contexfuels (c-schémas)
pour représanter des classes de représentations avec les connaissances uliles pour elles. Ces c-schémas sont rappe-
lés pour quider le raisonnement dans les contextes correspondant. CODL stocke les connaissances sur la struciure
du réseau neurcnal profond ef des pondérations dans les c-schémas, connaissances gui permetient un apprentissage
contexfualisé spécifigus. Ce travail st réalisé dans le domaine de la détection des ciseaux de mer sur des images

adriennes d'iles pour des biologistes,
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Ower the past two decades, researchers in the context community have shown the importance of
explicitly representing (modeling) and using context and contextual knowledge in a wide range of
areas, including natural language processing, problem solving, and handling unanticipated events.'
Simultaneously, machine learning has progressed rapidly in many of the same areas, often outpacing
traditional symbolic approaches. To date there has been little cross-pollination of machine-learning
and symbolic approaches, yet context is as important for machine leaming as it is for any other task.

A machine leaming system working in many different contexts necessarily must learn contextual
and task features and relationships simultaneously. For example, a deep learning neural network
trained to identify objects in images has to learn what objects look like in many different contexts:
alone, in a cluttered environment, under different lighting conditions, etc. The system develops only
an implicit model of context that is spread across the network’s weights. However, explicitly
representing context has numerous benefits, including helping understand how context affects tasks,
allowing reasoning about contexts as first-class objects to facilitate interpretation and acquiring

*see, e, the CONTEXT {International and Interdisciplinary Conference on Modeling and Using Context) conference series as
well this journal.
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knowledge from humans, and avoiding redundant work by reasoning within rather than repeatedly
about the context.

A better approach is to separate the problem of identifying the task context from the problem of
learning or performing tasks within it. The first problem can be addressed by existing context-
sensitive reasoning approaches, such as our own context-mediated behavior (CMB) [11]. Then a
machine learmning system can then be tailored to the particular needs of tasks in that context. Since
the work of identifying the context is done by another program, the machine learning system should
learn faster, from fewer examples, and require fewer resources (e.g., number of weights, amount of
processing time, etc. ).

Indeed, a pilot study some years ago showed just this, at least for very simple neural networks
[1]. Neural networks were used to assess the depth of an autonomous underwater vehicle (AUV)
both alone and in conjunction with a context manager. The context manager was responsible for
diagnosing the situation as an instance of a known context, then used information about the context
to instantiate a network with appropriate structure and weights learned in past occurrences of the
context. Experiments showed that context-specific networks can be smaller yet still produce fewer
errors than context-independent networks and that training time for these networks can grow more
slowly as the number of different contexts increases. Work by Stein & Gonzalez (e.g., [10]) has
shown that applying context-based reasoning to a neuroevolutionary, leaming-from-observation task
can significantly improve performance by allowing the system to learn how to behave in contexts
identified by humans as pertaining to parts of the task.

In this paper, we discuss an ongoing project to extend our early work in deep leaming to more
difficult tasks requiring much more complex networks. The goal of the project is to develop a
general reasoning mechanism, which we call context-dependent deep learning (CDDL), to be used
with deep learning neural networks in a variety of domains. Our initial domain is recognizing
different types of nesting birds on islands off the coast of Maine (USA) from aerial imagery.

Detecting birds in aerial images

Our work 1s part of a project that involves acquiring and analyzing aerial imagery of 274 of
Maine's offshore islands to identify and count nesting seabirds. This is important because seabird
populations are sensitive to the dynamics of their forage-fish prey, and so are indicators of the health
of the marine and coastal environments [2]. Biologists survey these populations during the breeding
seasons, but surveys are challenging due to the remoteness of the islands. However, aenal (plane-
based) images are available both historically and from current surveys. Figure 1 shows an image of
a small portion of one island with gulls located within a context of cobble.

Figure 1. A portion of a representative image context, with Herring Gulls (Larus argentatus) indicated.
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Processing images manually is labor-intensive, time-consuming, and error-prone. For example,
processing imagery for one of the islands involved identifying 2500+ birds and required
approximately 14 hours each for two people. Given the large number of islands of interest and the
desire to survey the islands on a regular basis, human image analysis is impractical. Fortunately,
there are many different approaches to computer-based image recognition, the most promising of
which is deep learning with convelutional neural networks (CNNs) [4]. CNNs are patterned loosely
after mammalian visual systems, in which a series of functions (convolutions) i1s performed on the
input image to detect increasingly abstract features until finally entire objects are detected. Each
neuron in one of the convolutional layers has a small receptive field in the preceding layer it
responds to in particular ways. Many convolutional layers are stacked together, with the resulting
highly-abstract features usually passed on to fully-connected layers at the end to recognize objects.

Our domain requires recognizing multiple objects in an image and providing locations and
bounding boxes for them (image segmentation and localization, resp.). Deep CNNs that can do this
include the Faster R-CNN (Region CNN) [9], YOLO (You Only Look Once) [B], and S5D (Single
Shot Multibox Detector) [5]. Both YOLO and SSD are faster (during recognition) than Faster R-
CNN, and YOLO has been shown to be effective for recognizing small objects (relative to the image
size) in aerial photographs [6]. At least one study [7] found that YOLO was slightly more accurate
than 55D, although susceptible to false positives when the objects were of varying sizes. In our
domain, size variability is small, and so we are using YOLO. Figure 2 shows an example of YOLO's
output for our domain.

Unfortunately, the depth of these networks and total number of parameters to be trained (e.g.,
YOLO v3 has 53 convolutional layers and roughly 65 million weights) result in long training times
and require a large number of labeled images as training examples. For example, one of our recent
traming sessions with YOLO resulted in only a $0% recognition success after a week of training on
a state-of-the-art, shared multi-GPU cluster capable of several petaFLOPs (quadrillions of floating
point operations per second).

Learning in context

Task complexity can increase training time and network size (depth and number of weights). Our
earlier pilot study [1] showed that, at least for simple neural networks, removing the need for
context recognition by the network decreases the network size required in any given context while
preserving performance quality. The study also suggested that allowing networks with different
structure, weights, or both, to be trained separately in different contexts can actually increase the
networks' accuracy.

Figure 2. Example oufput of YOLO for our domain, with one Herring Gull labeled.

Using a similar approach for more complex networks in our domain promises several benefits.
First, learning in context will reduce the network complexity and tfraining time needed in any
particular context; a network for detecting gulls among rocks and one for detecting them in grass,
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for example, are each likely to be simpler and easier to train than a single network that has to learn
to recognize them in both contexts.

Second, learning in context will allow effective allocation of training time and processing. For
example, objects can be more difficult to detect in some contexts than others. A nesting gull 15 much
easier to detect in grass than among rocks, and so it makes sense to use a deeper network or more
training in the rocky context. With a single network that does not explicitly recognize the context,
this 1s not possible. Similarly, if objects are known not to occur in some contexts, then there is no
need to look for them there. For example, there is no need to look for nesting herons in rocky or
grassy areas, nor to look for nesting gulls in trees. This will free up training time to look for the
birds that are expected.

Third, by recognizing the context, training examples can be used more effectively. For example,
one species of cormorant (the Great Cormorant, Phalacrocorax carbo) has been found on only a
few 1slands in Maine, whereas the Double-crested Cormorant (P. auriiis) 1s much more widespread.
A network tramned on images of cormorants drawn from across all islands may not leam to
recognize the distinction between the two, whereas if the known occurrence of P. carbo is taken into
account to separate the examples, the networks trained for those islands are more likely to be able to
detect both species.

In our domain, as in many others, contextual knowledge can be readily acquired from human
experts. Biologists know a great deal about where in general one is likely to find or not find nests of
different bird species, as well as the relative difficulty of identifying birds in different kinds of
terrain. While this knowledge cannot easily be given to a neural network—human knowledge is
symbolic, while a neural network’s is sub-symbolic—it can easily be used by a symbolic Al
program tasked with identifying the context.

Context-dependent deep learning

The overall CDDL process 1s shown in Figure 3. As in context-mediated behavior, a context
manager (ConMan) observes the world to find comtextual schemas (c-schemas) that most closely
match the current situation. A c-schema is a frame-like knowledge structure that contains facts about
the context represented (descriptive knowledge) as well as knowledge about how tasks should be
performed in the context (prescriptive knowledge). A more complete definition and description of c-
schemas can be found elsewhere (e.g., [11]). In our current domain, the world consists of the image
being processed and any information added as annotations by humans (e.g., the type of camera used,
the weather, where the image was taken, etc.). Finding the most appropriate c-schemas is a
diagnostic task that begins with candidate c-schemas being "evoked" by features of the world, then
critically compared with each other and the situation.

A situation may be an instance of multiple contexts (e.g., "rocky island", "P. carbo expected”,
"cloudy”, etc.). In such cases, ConMan's diagnosis will consist of multiple relevant c-schemas that
are merged into a coherent representation of the combined context called the "Lens" (since it is how
the system views the world). The Lens is essentially a c-schema created on the fly from other
relevant c-schemas to represent the current context. In past work in intelligent agent control
applications, knowledge contained in the Lens was used to describe the situation and to prescribe
how to behave. In this work, it will provide information needed to instantiate a neural network to
recognize/leamn to recognize objects in the context of the image.

Some features that we have identified as useful for characterizing contexts in this domain include
the terrain (rocky, grassy, etc.), location (latitude/longitude, specific island, etc.), altitude of the
camera, weather (sunny, cloudy), time of day/vear, type of camera, and whether the island is
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inhabited. In a planned longer work to appear soon, we will characterize the feature space more
completely.

In some contexts, entire prior neural networks, including weights, should be provided; in others,
the Lens may suggest creating a new neural network base, with its topology and kind of layers based
on the system's past experience and knowledge from experts. Hyperparameters appropriate for the
context can also be provided, for example learning rate and other properties of training, such as the
number of epochs expected to be needed (related to the task's expected difficulty in the context).

When a task 1s complete or the context changes, ConMan updates the Lens' component c-
schemas with anything leamed (e.g., changed weights). This updating allows context-specific
learning, which can then be used in the future when similar contexts are encountered.
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Figure 3. Ovenview of the CDDL process.

While we expect some contexts to be identified by human experts initially, the goal is to have
ConMan learn contexts (and thus, contextual schemas) based on its own experience. The kind of
memory used in our past work directly supports simple inductive learning based on comparing and
differentiating between existing contextual schemas and new instances of problem solving. We
expect to augment this approach with other leaming techniques as the work progresses (e.g., deep
learning to detect contextual features important for successful identification of birds that may
indicate new contexts the system should learn and use).

Planned experiments

Experiments are planned for the summer of 2021 to determine if CDDL is useful in our domain.
The control for these experiments will be the current version of ¥YOLO now being trained without
regard to image context. This version will be compared to smaller networks trained on image
subsets drawn from similar contexts (e.g., grassy area versus rocky shore, weather condition, etc.).
Training time for the control network will be compared to total training time for the smaller
networks, and performance on test images will be compared.

Data will also be gathered about the overhead of context-switching. A complete CDDL system
will almost certainly be presented images without regard to their context, especially as new images
are acquired over time. The CDDL system will assess the context of each image and, when the
context changes, store current network properties and instantiate a new network (or at least load
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different weights). We will measure the time and space requirements when the context changes due
to images being presented in a random order, which will also provide data about memory/disk
requirements for CDDL in this domain. (The time needed to notice a context change and find new c-
schemas, etc., will be assessed in future once ConMan is implemented). We are exploring
compression techniques one of us has developed (e.g., [3]) to reduce the likely substantial space
requirements(e.g., weights for one pre-trammed version of YOLO +3 require ~250 MB.). Other
experiments will compare the performance of the networks under different frequencies of errors in
context diagnosis.

Conclusion and future work

CDDL involves off-loading context recognition from neural networks when the domain requires
tasks to be done across multiple contexts, which should reduce size and leaming time as well as
promote in-context learning. The approach will also allow existing contextual knowledge to be
acquired from humans, rather the network having to leamn it from examples.

Work on CDDL is in an early stage, with our effort so far focusing on designing the overall
process. We have implemented and are fraining a version of YOLO on our high-performance GPU
cluster and have begun delineating some of the situational features and network properties important
to represent in CDDL. In the near future, experiments will be performed to evaluate our approach.

Assuming positive experimental results, a full version of CDDL will be implemented. It will be a
testbed for future research in this and other domains as well as being made available on our cluster
for use by the biclogists, using a web-based interface recently completed as a student capstone
project. Further in the future, we will investigate using deep learning for aspects of context
diagnosis itself.
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