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Abstract
Control of forces is essential in both animals and walking machines. Insects measure forces as
strains in their exoskeletons via campaniform sensilla (CS). Deformations of cuticular caps
embedded in the exoskeleton excite afferents that project to the central nervous system. CS afferent
firing frequency (i.e. ‘discharge’) is highly dynamic, correlating with the rate of change of the force.
Discharges adapt over time to tonic forces and exhibit hysteresis during cyclic loading.
In this study we characterized a phenomenological model that predicts CS discharge, in which
discharge is proportional to the instantaneous stimulus force relative to an adaptive variable. In
contrast to previous studies of sensory adaptation, our model (1) is nonlinear and (2) reproduces
the characteristic power-law adaptation with first order dynamics only (i.e. no ‘fractional
derivatives’ are required to explain dynamics). We solve the response of the system analytically in
multiple cases and use these solutions to derive the dynamics of the adaptive variable. We show that
the model can reproduce responses of insect CS to many different force stimuli after being tuned to
reproduce only one response, suggesting that the model captures the underlying dynamics of the
system. We show that adaptation to tonic forces, rate-sensitivity, and hysteresis are different
manifestations of the same underlying mechanism: the adaptive variable. We tune the model to
replicate the dynamics of three different CS groups from two insects (cockroach and stick insect),
demonstrating that it is generalizable. We also invert the model to estimate the stimulus force given
the discharge recording from the animal. We discuss the adaptive neural and mechanical processes
that the model may mimic and the model’s use for understanding the role of load feedback in
insect motor control. A preliminary model and results were previously published in the
proceedings of the Conference on Biohybrid and Biomimetic Systems.

1. Introduction

Campaniform sensilla (CS) are strain-sensitive
mechanoreceptors in the exoskeleton of insects
(Chapman et al 1973, Zill and Moran 1981a, Harris
et al 2020). Each sensillum consists of a cap in the
cuticle that when compressed, mechanically distorts
a sensory neuron’s dendrite and causes the afferent
to fire action potentials (APs) (figure 1(a)). Because
the strain of a body is proportional to the stress
within it, CS can function as force- or load-sensing
organs (Ridgel et al 1999, Kaliyamoorthy et al 2005,

Zill et al 2011). CS are found wherever an insect’s
body experiences significant strain during behavior,
including on the legs (Harris et al 2020), on the
antennae (Mongeau et al 2015), and across wings and
halteres (Agrawal et al 2017, Dickerson et al 2021).

Insects control their leg posture and locomotion
using load feedback from CS (Zill et al 2004, Tuthill
and Wilson 2016, Dickerson et al 2021), similarly
to the way vertebrates use load feedback from Golgi
tendon organs (Jami 1992, Prochazka et al 1997a,
1997b, Duysens et al 2000). For example, feedback
from leg CS is thought to reinforce muscle activity
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Figure 1. (a) Schematic of a campaniform sensillum (CS), illustrating how the cap is deformed by bending moments that
compress the cuticle. The cap’s deflection strains a sensory neuron’s dendrite, causing it to discharge APs. (b) Schematic of the
stick insect leg with recording sites, muscle groups in the femur that actuate the tibia, and tibial CS groups labeled (insect body
not shown). Schematic also illustrates the experimental setup. Animals were fixed to a platform with staples. Movements of the
FTi joint were prevented by a pin glued to the proximal end of the tibia. Force was applied by a probe equipped with strain gauges
and actuated by a DC motor. (c) Experimental set up for recording from CS of the cockroach leg (similar to (b)). (d)
Experimental data characterizing response properties of CS afferents (Ridgel et al 2000) that support the assumptions of the
model: discharge (APs per second) is proportional to load, with a small offset; (e) peak discharge during a ramp stimulus is
proportional to the rate of load, with a power-law relation; (f) discharge rate decays over time according to a power-law; and (g)
discharge exhibits hysteresis under repeated loading. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Journal of Comparative Physiology A [Ridgel et al.] (c) 2000.

during the stance phase of walking (Pearson 1972,
Zill et al 2015) and contribute to inter-leg coordi-
nation (Zill et al 2009, Dallmann et al 2017). Such
pathways appear particularly important during slow
walking due to the latency between CS discharge and
subsequent motor neuron activation (Zill and Moran
1981b). Despite the apparent importance of CS feed-
back during walking, it remains largely unknown pre-
cisely how feedback from CS is integrated to con-
trol the body, partly due to the technical difficulty of
targeted experimental manipulations and recordings
during natural behavior.

Mathematical and robotic models of animal loco-
motion are powerful tools with which to address the
question of how load feedback is used in body con-
trol. In such models, feedback can be manipulated
at will, enabling one to test the necessity and suffi-
ciency of specific sensory feedback to perform con-
trol tasks (Prochazka and Gorassini 1998, Elzinga et al
2012, Chung et al 2015, Markin et al 2016, Naris et al
2020). However, to provide meaningful insights into
control, the dynamics of sensory feedback must be
modeled realistically. CS are not simple sensors that
directly report the forces experienced by the leg to
the nervous system. Instead, they have a complicated
dynamic response to load (Ridgel et al 2000, Zill et al
2011, Zill et al 2018): CS discharge adapts rapidly over

time in response to tonic forces and is completely
silenced by decreasing forces; CS discharge primar-
ily reflects the positive rate of change of force, but
with a power-law scaling; CS discharge exhibits hys-
teresis, wherein the afferent firing reflects both the
instantaneous and past load imposed on the CS. To
better understand the functional role of load feedback
in posture and locomotion, a mathematical model is
needed that can relate recordings of CS discharge to
the forces acting on the leg (Goldsmith et al 2020).

Mathematical models have been formulated to
describe the afferent firing of CS (Chapman et al 1979,
Szczecinski et al 2020), other load sensors such as spi-
der slit sensilla (Torkkeli and French 2002) and verte-
brate Golgi tendon organs (Prochazka and Gorassini
1998). Models have also been developed for other
sensory afferents (Dallmann et al 2021), including
insect hair fields (Ache and Dürr 2015), insect cerci
(Chapman and Smith 1963), insect photoreceptors
(Thorson and Biederman-Thorson 1974), vertebrate
muscle spindles (Prochazka and Gorassini 1998,
Blum et al 2020), and others. All these sensory sys-
tems show adaptation in neural activity in response
to tonic inputs (French 1984). A particularly intrigu-
ing property of many of these afferents is that they
adapt to tonic inputs according to a power-law over
time, e.g. y = a · tk, where y is the sensory discharge,
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Table 1. List of abbreviations.

Abbreviation Definition

A Amplitude of bending force stimulus in millinewtons
AP Action potential
CS Campaniform sensillum/sensilla
FTi Femur-tibia joint
GA Genetic algorithm
MAE Mean absolute error
N Number of individual animals used in an experiment
n Number of total trials conducted for an experiment
T Duration of ramp phase of bending force stimulus in seconds
u Stimulus force applied to the tibia in millinewtons
x Model’s dynamic variable
y Model discharge in APs per second

t is time, k is a constant exponent, and a is a con-
stant multiplier (Thorson and Biederman-Thorson
1974, French and Torkkeli 2008). This is surprising
because it suggests underlying dynamics quite dif-
ferent from typical engineered systems. For example,
many engineered control systems cause adaptation
according to an exponential function over time, e.g.
y = a · exp

(−t/τ
)

which is the solution to a linear
first-order differential equation with time constant τ .
However, the power-law adaptation y = a · tk is the
solution to a kth-order differential equation, that is,
a system whose dynamics include fractional (i.e. non-
integer) derivatives of its states (French 1984). While
such an insight is a valuable description, it is not clear
what chemical, electrical, or mechanical mechanism
may compute the fractional derivative of a stimu-
lus (Thorson and Biederman-Thorson 1974, Di Paola
et al 2013). One motivation for the present study is
to formulate an integer-order dynamical model that
also produces power-law decay over time. An integer-
order model may have more intuitive physical mean-
ing and be simpler to implement for simulation or
data filtering on board a robot.

Here we describe and analyze a nonlinear model
that does not rely on fractional derivatives to pro-
duce power-law adaptation over time. Conceptually,
the model is simple: the discharge frequency is pro-
portional to the stimulus force, relative to a nonlin-
ear adaptive variable (see table 1 for a list of variables
and their meanings). This nonlinear formulation does
not allow the application of linear analysis, which is
possible for fractional derivative formulations (Chap-
man and Smith 1963). However, since it is a first order
(i.e. not fractional order) system, its dynamics could
describe several neural or mechanical phenomena,
such as slow sodium channel inactivation in recep-
tor cells (Torkkeli and French 2002) or the viscoelas-
tic straining of body tissues (Brown and Stein 1966,
Hillerton 1984). Furthermore, our analysis directly
links the form of power-law adaptation to the struc-
ture of the model, such that the model parameters
dictate the shape of the responses. However, despite
the similarity to multiple adaptive mechanisms, the
model is phenomenological in that it reproduces the

input-output relationship of CS afferents without
specifically modeling any particular mechanism(s).
The advantages of such an abstract, phenomenolog-
ical model is its compactness and computational effi-
ciency, which facilitate its integration within a multi-
scale model of the motor system (Markin et al 2016,
Prilutsky et al 2016, Goldsmith et al 2020, Sandbrink
et al 2020, Dallmann et al 2021).

In this manuscript we show that our simple phe-
nomenological model reproduces the responses of
cockroach and stick insect tibial CS with minimal
parameter tuning. We show that all dynamic response
properties, i.e. adaptation, rate-sensitivity, and hys-
teresis, emerge from the model’s one basic under-
lying mechanism: computing the discharge as the
instantaneous load relative to a dynamic adapting
variable. We derive the first-order, nonlinear system
that produces power-law adaptation. We show how
such a model approximates rate-sensitivity, indicat-
ing that the adaptation and rate-sensitivity are linked.
If we eliminate the adapting variable, then hystere-
sis disappears, demonstrating that the adapting vari-
able and hysteresis are linked. Having established the
model’s gross response properties, we then show that
the model can reproduce CS discharges in response
to highly dynamic force stimuli which it has not been
tuned to reproduce. We show that the model can be
inverted, enabling the estimation of highly dynamic
forces acting on the leg based on CS afferent recording
alone. Throughout the study, we compare the model’s
accuracy to a fractional-derivative model and show
that the former replicates discharge more accurately
than the latter in most of the cases tested. In the dis-
cussion, we relate our model to previous models, dis-
cuss our model’s applications to CS and other sensory
systems, and discuss its application to simulation and
robotics.

2. Methods

2.1. Recordings of campaniform sensilla
discharge
Sensory discharges from the tibial CS of the American
cockroach (Periplaneta americana) and Indian stick
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Table 2. Parameter values used in this study. Values for the cockroach proximal tibial group
were calculated by minimizing the mean squared error between the response to the
ramp-and-hold stimulus depicted in figure 3(a) and the model’s response to the same
stimulus. Values for the stick insect group 6A were found by minimizing the mean squared
error between the recorded 6A discharge depicted in figure 7(a) and the model’s response to
the same stimulus. Values for the stick insect group 6B were found by minimizing the mean
squared error between the recorded 6B discharge depicted in figure 7(b) and the model’s
response to the same stimulus.

Group Cockroach Stick insect Stick insect
Prox. tibia 6A 6B

Amplitude of adaptive term, a (Hz mN−1) 707.6 265.0 605.0
Exponent of adaptive term, b (unitless) 2.262 1.675 3.325
Amplitude of proportional term, c (Hz mN−1) 54.29 17.75 5.750
Amplitude of bias term, d (Hz) −41.16 −22.50 10.50
Amplitude of adaptive time constant, τ (ms) 3.859 9.678 1.659
Figures using this instance of the model 2, 3, 4, 5, 8 6, 10 6, 7, 9, 10
Model tuned using single trial from figure 3(a) 7(a) 7(b)

insect (Carausius morosus) were recorded extracellu-
larly. Methods for recording from the CS have been
described in detail (cockroach: (Ridgel et al 2000);
stick insect: (Zill et al 2011)) and are briefly described
below (figures 1(b) and (c)). For both species, the
abdomen, thorax, and proximal leg segments of each
animal were restrained by staples. The femur-tibia
(FTi) joint was paralyzed by cutting the nerves that
supply the femoral muscles. A pin was placed adja-
cent to proximal end of the tibia and a small drop
of cyanoacrylate glue was applied to link the pin and
tibia and prevent rotation. The pin was positioned
such that the tibial CS were distal to this anchor
point. CS normally respond to loads that are resisted
by muscle contractions. In the experimental arrange-
ment, externally imposed forces and moments were
counteracted instead by the glued pin. The tarsus
was then ablated. Force waveforms generated by an
analog to digital interface (Spike 2, Cambridge Elec-
tronics) were applied to the distal end of the tibia
by a probe actuated by a DC motor. The resultant
forces were measured via strain gauges within the
probe.

To extracellularly record APs from CS afferents,
silver wires were inserted in the femur near nerves that
carry afferents from the tibial CS. APs were identi-
fied in recordings based on thresholding and treated
as discrete events. The source of each AP (i.e. which
CS group) was determined by AP amplitude, direct
cap stimulation, and cap ablation (Ridgel et al 2000).
A continuous discharge rate (AP/s) was calculated by
counting the number of AP events that took place
within a moving window of time (typically 20 ms).

2.2. Features of campaniform sensilla discharge
CS discharge is highly dynamic and reflects mul-
tiple features of the stimulus force. The plots in
figures 1(d)–(g) summarize characterization of CS
discharge dynamics reported in (Ridgel et al 2000). CS
discharge in response to a tonic stimulus is propor-
tional to the amplitude of the stimulus (figure 1(d)).
When the stimulus level changes, the discharge adapts

to the new level of force according to a power-
law function of time (i.e. the discharge y (t) ∝ tk2 ,
figure 1(e)). CS discharge in response to a phasic
stimulus reflects the rate of change of the stimu-
lus according to a power-law relationship (i.e. the

discharge y ∝ (
du
dt

)k1 , where u is the stimulus force
and k1 is the slope of the line of best fit on loga-
rithmic axes, figure 1(f)). Finally, the discharge in
response to a stimulus depends on whether the stim-
ulus increased or decreased to that level (figure 1(g)).
CS responses to these simple stimuli (i.e. ramp-and-
hold) were used to produce a dynamic, phenomeno-
logical model of CS discharge that captures responses
to highly dynamic stimuli and can be inverted to
predict what forces cause recorded CS discharge
patterns.

2.3. Dynamic phenomenological model of
campaniform sensilla discharge
Considering the features of CS discharge described in
the previous section, a continuous dynamical descrip-
tion of the discharge rate, y, was formulated. Because
y represents a firing rate, it must be positive. When
subjected to a tonic stimulus, y is proportional to the
stimulus force u plus a constant bias (Ridgel et al
2000, Zill et al 2011), meaning that y should include
c · u + d, where c and d are constant parameters.
Finally, it is known that y reflects u̇, the rate of change
of u; y adapts to tonic u according to a power-law
function over time; and y exhibits hysteresis as u oscil-
lates. We hypothesized that all three of these features,
i.e. rate-sensitivity, power-law adaptation, and hys-
teresis, would emerge from a single term in the model,
a · (u − x). This term is the difference between the
stimulus u and a slowly adapting variable, x. The
resulting model is:

y = max (0, a · (u − x) + c · u + d) (1)

τ · ẋ = f (u − x) , (2)

where a, c, d, and τ are constant parameters (see
table 2) and f is a scalar valued function that increases
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Figure 2. Basic behavior of the model. (a) The model response can be described by three key ideas: x follows the value of u, albeit
by a nonlinear function; y peaks while u is increasing, approximating the rate of change of u; and y adapts to 0 when u is constant.
(b) The steady-state response of x is a time-delayed version of u when u is a ramp function. The input ramp, u(t), is plotted in
solid blue; the input ramp delayed by Δt is plotted in dashed yellow; the full simulated response x(t) is plotted in dotted red. The
dotted red curve approaches the dashed yellow curve over time. In this plot, A = 2, T = 4, b = 5, τ = 30 × 10−3, and the
resulting time shift from equation (18) is Δt = 0.8635 s.

monotonically and satisfies f (0) = 0. Due to these
requirements on f, the only equilibrium value for x is
x = u, which occurs after enough time has elapsed.
Thus, the a · (u − x) term causes the value of y to
adapt to a tonic force: as time elapses, x approaches u,
causing y to decrease until y = c · u + d (figure 2(a)).

How does y reflect u̇ if there is no u̇ term in
equation (1)? We observe that when u is a ramp func-
tion of the form A/T · t, the steady-state response of x
is the same as u, but delayed by time Δt (figure 2(b)).
This means that in steady-state, the first term in
equation (1), a · (u − x) = a · (u (t) − u (t −Δt)).
If a = 1/Δt, then this term would be the finite-
difference approximation of u̇. Thus, the adapta-
tion term in the model directly endows it with
rate-sensitivity. We show in the results that eliminat-
ing this term also eliminates hysteresis in the model,
demonstrating that adaptation, rate-sensitivity, and
hysteresis are all linked.

What is the form of f? Because CS discharge adapts
to tonic inputs according to a power-law over time
(i.e. y = A · tk (Ridgel et al 2000), we seek a func-
tion f such that yss = a · (u − xss) ∝ u̇k, where xss is
the steady-state response of x, yss is the steady-state
response of y, and k is a constant coefficient. To deter-
mine the form of f, we calculated the response of y to
a ramp input of the form u = A

T · t, where t is time
and A and T are constants that determine the slope of
the ramp. From simulation (figure 2(b)), we observed
that xss lags u by Δt,

xss = u (t −Δt) =
A

T
· (t −Δt) , (3)

where Δt is to be determined. We observed that the
corresponding steady-state response of y,

yss = a · (u (t) − u (t −Δt)) , (4)

would be the finite-different approximation of u̇ if
a = 1

Δt . Thus, yss approximates u̇ without including
an explicit u̇ term in y.

Computing Δt in terms of the stimulus and
model parameters set the form of the low-pass fil-
ter function f necessary to achieve the goal that
yss ∝ u̇k. To compute Δt, we substituted equation (3)
into equation (2), recognized that ẋss =

A
T , and rear-

ranged:

Δt =
T

A
· f −1

(
τ · A

T

)
. (5)

Substituting equation (5) into equation (4) and
simplifying,

yss = a · f −1

(
τ · A

T

)
. (6)

Recall that when u is a ramp function, u̇ = A
T , so

yss = a · f −1 (τ · u̇) . (7)

Setting f (z) = sign (z) · |z|b such that b = 1
k is a

constant parameter accomplishes the goal of finding
f(z) such that y ∝ u̇k. Thus,

f (u − x) = sign (u − x) · |u − x|b. (8)

2.4. Derivation of the model’s step response
Experimental data shows that discharge frequency
adapts according to a power law function of time
(Chapman and Smith 1963, Ridgel et al 2000, French
and Torkkeli 2008). Here we demonstrate that our
model replicates this behavior. Consider the first-
order nonlinear system from equations (1) and (2)
written to explicitly include the form of f from
equation (8):

τ · ẋ = sign (u − x) · |u − x|b (9)
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y = a · (u − x) . (10)

We sought to show that when x (t = 0) = x0 and
u = 0, x approaches 0 according to a power-law func-
tion of time,

x (t) = B ·
(

t +Δt

τ

)s

, (11)

where B, s, and Δt are constant coefficients. We
required that s < 0 to ensure that the response decays
over time and that Δt > 0 to avoid a singularity when
t = 0. We also assumed that sign (B) = sign(x0). We
solved for B and s by the ‘lucky guess’ method, sub-
stituting equation (11) and its time derivative into
equation (9). The time derivative of equation (11) is:

ẋ (t) =
B · s

τ
·
(

t +Δt

τ

)s−1

. (12)

Substituting equations (11) and (12) into
equation (9), we obtained:

− B · s ·
(

t +Δt

τ

)s−1

= Bb ·
(

t +Δt

τ

)s·b
. (13)

For the left- and right-hand sides to be equal for
all times, both exponents must be equal and both
coefficients of time must be equal,

s − 1 = s · b, (14)

− B · s = Bb. (15)

Rearranging equation (14) to solve for s, sub-
stituting the result into equation (15), and solving
equation (15) for B yielded:

s =
1

1 − b
, (16)

B = (b − 1)
1

1−b . (17)

The final remaining constant Δt was calculated by
substituting the initial condition x (t = 0) = x0 into
equation (11) and simplifying,

Δt = τ · x1−b
0

b − 1
. (18)

That equations (16)–(18) can be solved indicates
that equation (11) is indeed the transient solution of
equation (9). Thus, we have accomplished the goal of
demonstrating that our CS model will adapt to a tonic
force according to a power-law over time, as deter-
mined experimentally. Furthermore, all three of the
constant parameters in the solution, s, B, and Δt, can
be expressed in terms of the constants τ and b from
equation (9), meaning that the decay response can
be computed directly and analytically as soon as the
parameter values are set, without simulation.

2.5. Model parameter selection
The model’s goal is to map from a time-varying force
stimulus to a time-varying discharge frequency of the
afferent. We call this the ‘forward model’, in which
force stimulus is the input, and sensory discharge
is the output. Data of this form represent a rate-
coding of mechanical states. Many sensory neuro-
science studies report data this way (Chapman and
Smith 1963, Zill and Moran 1981a, Ridgel et al 2000),
making it the simplest form the model could take.

We tuned multiple instances of the forward
model to model the tibial CS of cockroaches (prox-
imal group) and stick insects (groups 6A and 6B,
figures 1(b) and (c)). To tune the cockroach prox-
imal CS model, we used gradient-based optimiza-
tion to minimize the mean-squared-error between
the recorded discharge pattern (figure 3(a)) and the
model’s output, sampled at the same points in time.
This is in effect a least-squared minimization problem
(Dennis and Schnabel 1983). Due to the simplic-
ity of the ramp-and-hold stimulus used to tune the
model (shown in figure 3(a)), it was possible to esti-
mate good starting values for the model parameters by
hand. The parameters whose values were optimized,
their descriptions, and their values are listed in table 2.

To tune the stick insect groups 6A and 6B mod-
els, the constant parameters were tuned by first using
a genetic algorithm (GA) to minimize the mean-
squared-error between the recorded discharge pat-
terns and the model discharge (figures 7(a) and (b)),
and then refining the GA’s solution with gradient-
based optimization as described in the previous para-
graph. The GA was necessary to find good start-
ing values for the parameters because it broadly
explores the parameter space before converging on
the values that provide the best solution (De Jong
1975). Our GA was greatly accelerated by establish-
ing a grid of permissible parameter values, storing
the mean-squared-error of each value combination
in memory, and then skipping simulation if that
value combination had already been evaluated. More
details are provided in the supplementary materials
(https://stacks.iop.org/BB/16/065001/mmedia). This
discretized approach was sufficient because the GA’s
best solution was refined by more precise gradient-
based minimization.

To compare the accuracy of our model to that of
the fractional derivative approach, we applied these
same tuning methods to tune the parameters in a
fractional derivative model,

y = max
(
0, a · Dbu (t)

)
, (19)

where y is the instantaneous afferent discharge; a and
b are constant parameters; and D is the derivative
operator, such that Db represents the bth derivative
of the force stimulus, u(t). Because the discharge is
measured in APs per second, it must be positive. Frac-
tional derivatives were calculated numerically with a
Matlab toolbox (Jonathan 2021).

6



Bioinspir. Biomim. 16 (2021) 065001 N S Szczecinski et al

Figure 3. The dynamical model captured the discharge dynamics of CS in response to loading. (a) The discharge in response to a
single ramp-and-hold waveform, measured in APs per second (AP/s), was used to tune model parameters. This demonstrates that
the model can capture the basic discharge pattern of CS. The duration of the recording is 0.8 s. (b) Without retuning parameter
values, the model replicated the CS discharge pattern in response to a dynamic joint torque waveform (from (Dallmann et al
2016)). The duration of the recording is 0.8 s. (c) When compared, the model’s discharge in response to these two waveforms
differed as seen in the animal (Zill et al 2018): the response to the ramp-and-hold had a higher peak and adapted more quickly,
while the response to the naturalistic torque was relatively ‘flat’ and adapted slowly. (d) Sampling of CS discharges at high
resolution during ramps of different rates. Afferent frequency reflected the amplitude of force at slow rates but increasingly
indicated dF/dt in more rapid ramps. Without retuning, the model captured the discharge in response to ramp stimuli of
increasing rate, suggesting that the model captures the underlying dynamics of CS discharge. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Conference on Biomimetic and Biohybrid Systems
[Szczecinski et al.] (c) 2020.

2.6. Model inversion: one-group technique
The model described so far is a forward model (i.e.
force stimulus in, sensory discharge out). The for-
ward model may be ‘inverted’, in which the input is an
afferent discharge recording and the model outputs
the stimulus force required to generate the response.
Although CS groups frequently exist in ‘antagonistic’
pairs that encode bending forces in opposing direc-
tions (Ridgel et al 1999, Zill et al 2012), CS responses
are often experimentally characterized by unidirec-
tional forces that primarily activate one CS group.
This is justified because studies that have measured
limb segments forces during walking show that some
segments experience unidirectional forces, e.g. the
bending torque on the femur during walking (Dall-
mann et al 2016). Therefore, we developed a one-
group technique with which to estimate the stimu-
lus force required to produce the recorded afferent
discharge.

The one-group technique estimates the stimulus
force as follows. First, a forward model (i.e. force in,
discharge out) is tuned to reproduce the discharge
in response to one stimulus from one experimental
recording. The forward model is now a model of that
particular CS group (e.g. cockroach proximal tibia
CS). Second, the output of the corresponding inverse
model (i.e. discharge in, force out) is calculated in
an iterative way. For each ‘time step’ of the discharge

pattern, the algorithm uses Brent’s method to cal-
culate what stimulus force (i.e. the inverse model’s
output) would be required for the forward model’s
response to match the provided discharge pattern (i.e.
the inverse model’s input). Because CS discharge is
so dynamic, multiple values of stimulus force may
cause the same discharge pattern. Therefore, once the
forward model’s response matches the discharge pat-
tern, an algorithm searches for the largest and smallest
forces that could still produce a match (this algorithm
is akin to a line-search (Dennis and Schnabel 1983)
and is described in the supplementary materials).
When the discharge (i.e. the inverse model’s input) is
greater than 0, there is usually no difference between
the largest and smallest forces it calculates. However,
because CS discharges are minimal or silent when
forces decrease, there may be a wide range of forces
that would produce no discharge or sharp decreases
in discharge frequency. When this occurs, the enve-
lope between the largest and smallest forces ‘opens’
and the inverted model’s accuracy decreases. Results
from the one-group technique are shown in figures 9
and 10.

2.7. Model inversion: two-group technique
To improve the accuracy of the inverse model
while the discharge of one CS group decreases or
ceases, a two-group technique that uses simultaneous
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recordings from antagonistic CS groups was devel-
oped. In our experiments, we used recordings from
stick insect tibial CS groups 6A and 6B. Conceptually,
the two-group technique is identical to the one-group
technique except in two ways. First, the two-group
technique maintains two separate CS forward mod-
els (i.e. force in, discharge out), one for each group,
where both forward models receive the same force
stimulus, except that the sign of one group’s stimulus
is inverted (i.e. made negative) to reflect the sensitiv-
ity of groups 6A and 6B to forces in opposite direc-
tions (Zill et al 2011). Second, the two-group tech-
nique tries to calculate one force stimulus that would
simultaneously equate the sensory discharge of both
forward models to its corresponding experimental
recording at each time step; if this cannot be accom-
plished at a particular time step, the algorithm mini-
mizes the sum of the square of the deviation between
each model’s sensory discharge and its correspond-
ing recording. In this way, the inverse model calculates
one output, the stimulus force, based on two inputs,
the sensory discharge of group 6A and 6B. Results
from the two-group technique are shown in figure 11.

2.8. Model simulation
All modeling was conducted in Matlab 2020b (The
Mathworks, Natick, MA). Model dynamics were sim-
ulated with the ode15s function. Gradient-based opti-
mization was conducted with the fmincon func-
tion. All other code, including the GA and one- and
two-group techniques for inverting the model were
written for this project. https://github.com/nss36/
campaniformSensillaModeling

3. Results

3.1. Model responses to simple force stimuli
To test if the model can reproduce the documented
responses to simple force stimuli, we first tuned
parameter values to reproduce CS response to a single
ramp-and-hold (RAH) force stimulus. The parame-
ter values found are displayed in table 2. The stim-
ulus, the response of the cockroach proximal tibial
sensilla to the stimulus, and the model’s response
are shown in figure 3(a). The responses of both
the CS and the model show a sharp initial increase
(0%–5% stimulus), followed by a decrease in its slope
(5%–15% stimulus), followed by a dramatic adap-
tation (15%–80% stimulus), and finished by total
silencing (80%–100% stimulus). This response is typ-
ical for CS groups across the legs of multiple insect
species (Zill et al 2018).

Without altering the parameter values, the model
reproduced the responses to multiple additional stim-
uli. Figure 3(b) shows that the model reproduced the
CS response to a ‘naturalistic stimulus’, i.e. a joint
torque experienced during walking that lacks a static
hold phase (Dallmann et al 2016). Similar to results

reported in cockroach CS, the model’s response to the
naturalistic stimulus varied greatly from its response
to the RAH stimulus. In particular, the naturalistic
response rose less quickly, peaked lower, and adapted
less rapidly than its response to the RAH stimulus
(figure 3(c), see also figure 9(c) of (Zill et al 2018)).
Furthermore, the model reproduced the responses to
additional RAH stimuli (figure 3(d)). In particular,
as the speed of force application increased (i.e. du

dt of
the RAH stimulus), the model’s responses scaled as
observed in animal recordings. These results suggest
that the model captures the underlying dynamics of
load sensing in insect legs.

To evaluate whether our model performs as well
as a fractional derivative model, figure 3(a) also
includes the fractional derivative of the input force
(a = 40.6, b = 0.631 in equation (19)). Both models
mimic the discharge pattern with a small mean abso-
lute error (MAE) of about 5 AP/s (table 3). Similar
accuracy may be expected because this trial was used
to tune the parameter values. However, when com-
paring the model responses in figure 3(b), which the
models were not tuned to reproduce, the fractional
derivative model’s average error is more than 50%
greater.

To test if the model encodes force stimulus u
and its rate of change du

dt as documented in the ani-
mal, we subjected the model to a number of RAH
stimuli of varying amplitudes, rates, and offsets. The
model responses in figure 4(a) and the summary in
figure 4(b) show that the model reproduced the result
from Ridgel et al (Ridgel et al 2000). In the animal, the
proportionality constant of this logarithmic relation-
ship (i.e. k in figure 4) spans 0.28 to 0.57 given a list
of stimulus amplitudes; in testing our model with the
same amplitudes, we found proportionality constants
spanning a similar range, 0.27 to 0.46.

Furthermore, it has been observed that the encod-
ing of du

dt is less sensitive to the application of tonic
forces, as indicated by the narrower range of propor-
tionality constants as the stimulus is offset (Ridgel et al
2000). The responses in figure 4(c) and the summary
in figure 4(d) show that the model mimics this result
as well. In the animal, the proportionality constant
of this logarithmic relationship, k, spans 0.34 to 0.43
given a list of stimulus offsets; in testing our model
with the same offsets, we found proportionality con-
stants spanning a similar range, 0.25 to 0.38. The
change in proportionality constants was lower than
that in response to changing the amplitude in both
the animal and the model, suggesting that they are
both less sensitive to offsets than to stimulus ampli-
tudes. In both figures 4(b) and (d), the model’s dis-
charge encoded the rate of change of the stimulus with
similar proportionality as in the animal, despite not
having been tuned to do so.

Figure 5 shows that the analytically calculated
responses agree with the simulated responses. Because
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Table 3. Summary of nonlinear model’s accuracy compared to the fractional derivative model’s
accuracy. All values are MAE, measured in action potentials per second (AP/s). The first column
indicates the trial in question. The second column includes the MAE between the nonlinear model
presented in this paper and the experimental recordings. The third column indicates the MAE
between the traditional fractional derivative model and the experimental recordings. The final
column indicates the difference in fit between the two models, with positive values indicating that
the nonlinear model fits the data better than the fractional derivative model. Negative values (i.e.
where the fractional derivative model performed best) are written in red for emphasis.

Figures Mean abs. err. Mean abs. err. Nonlinear
nonlinear (AP/s) fractional (AP/s) improvement (AP/s)

Figure 3(a) 4.85 5.56 0.71
Figure 3(b) 9.87 16.22 6.35
Figure 7(a), 6A 6.49 6.11 −0.38
Figure 7(a), 6B 47.3 69.8 22.5
Figure 7(b), 6A 5.58 5.59 0.01
Figure 7(b), 6B 65.0 60.3 −4.70
Figure 7(c), 6A, left 6.26 5.59 −0.67
Figure 7(c), 6A, center 3.90 4.65 5.61
Figure 7(c), 6A, right 2.25 7.86 3.25
Figure 7(c), 6B, left 55.6 54.8 −0.78
Figure 7(c), 6B, center 60.8 54.6 −6.15
Figure 7(c), 6B, right 17.5 24.1 6.64
Figure 7(d), 6A, left 2.50 5.75 3.25
Figure 7(d), 6A, center 2.02 8.89 6.88
Figure 7(d), 6A, right 2.33 6.56 4.23
Figure 7(d), 6B, left 24.7 36.9 12.2
Figure 7(d), 6B, center 20.2 27.9 7.70
Figure 7(d), 6B, right 14.5 21.1 6.60

Figure 4. The model replicated rate-encoding properties of CS sensory discharge. In each part of this figure, many trials were
simulated to characterize gross response properties. The plots in the left column show representative raw simulation results, and
the plots in the right column summarize the results of many simulations and experimental results alongside results from (Ridgel
et al 2000). Points in the summary plots that correspond to the example responses are outlined in black. (a) Example model
responses to stimuli with varying rates of force (i.e. constant amplitude, varying ramp duration). (b) The peak discharge during a
ramp-and-hold stimulus reflected the rate of change of the stimulus (i.e. ramp slope). Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature, Journal of Comparative Physiology A [Ridgel et al.] (c) 2000. The
greater the stimulus amplitude, the higher the peak discharge, and the less sensitive the discharge was to the stimulus rate of
change (i.e. line of best fit has a slope, k, closer to 0). (c) Example model responses to stimuli with varying tonic offsets. (d) The
peak discharge during a ramp-and-hold stimulus was affected by constant offset forces (note varying values of k). The model was
less sensitive to offsets (i.e. narrower range of values of k) than to the amplitude of the stimulus, as observed in cockroach tibial CS
(Ridgel et al 2000). Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Journal of
Comparative Physiology A [Ridgel et al.] (c) 2000.
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Figure 5. The model’s adaptation after a step input follows a power-law function, as observed in discharge recordings from
cockroaches (figure 1(c) and (Ridgel et al 2000)). (a) The model’s responses to step inputs of varying amplitudes were plotted
over time. Simulated responses are plotted in solid black lines, and the exact analytical responses are plotted in dashed lines whose
colors indicate the stimulus amplitude. (b) The same 4 responses shown in (a), plotted on logarithmic axes. The responses fall
along a straight line, indicating that they decay according to a power-law, as opposed to exponential decay.

Figure 6. As observed in insect CS, the model response exhibited hysteresis under cyclic loading. (a) To test the model response, a
‘staircase’ stimulus force was generated, in which the stimulus repeatedly ‘rose’ to a new level, and then ‘ran’ at a constant level
for a portion of time (e.g. (Ridgel et al 2000)). (b) The full dynamic model adapted over time in response to each new force level.
The response during each run period, during which the force is static, is shaded on a blue-to-yellow continuum over time.
(c) Reformulating the model to explicitly rely on the rate of change of the stimulus produced a cosmetically similar response to
the staircase stimulus. However, the signal did not adapt to the new force level during the run portion of the stimulus. (d) Plotting
the model’s average response during the run portion of the stimulus reveals that the response was different depending on whether
the model was loaded or unloaded to that level. (e) Plotting the dynamics-free model’s average response during the run portion of
the stimulus shows that no hysteresis was present. This difference between the model formulations’ responses shows that
hysteresis may simply be a consequence of the adaptive response that gives rise to CS’s sensitivity to force rate of change.
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Conference on Biomimetic
and Biohybrid Systems [Szczecinski et al.] (c) 2020.

the model is nonlinear, it is not guaranteed that an
analytical solution can be found (Boyce and DiPrima

1967). All plots in figure 5 show that the analytical
response from equation (11) lies over the simulated

10



Bioinspir. Biomim. 16 (2021) 065001 N S Szczecinski et al

Figure 7. The model reproduced the animal recordings of CS afferent discharge in response to joint torques recorded from freely
walking insects (Dallmann et al 2016). The model was tuned two different ways to replicate the unique response characteristics of
group 6A and 6B tibial CS. The key in the upper-right corner of the figure applies to all plots. (a) A model of group 6A was
produced by tuning the model’s parameters to minimize the mean squared error between its response and the response of group
6A, which primarily responds to torques imposed by extensor contraction (plot shaded in blue). (b) Separately, a model of group
6B was produced by tuning the model’s parameters to minimize the mean squared error between its response and the response of
group 6B, which primarily responds to torques imposed by flexor contraction (plot shaded in blue). (c) Without retuning, the
group 6A model reproduced the discharge in response to extensor torques from individual steps. (d) Without retuning, the
groups 6A and 6B models reproduced the discharge in response flexor torques from individual steps.

responses. The supplementary materials show that
this agreement is within the tolerances of the numeri-
cal integration algorithm (figure S1). Thus, the model
has an exact analytical solution in response to a step
input, and the solution is power-law decay over time,
a hallmark feature of CS responses.

Figure 5 also shows that the model’s output adapts
to tonic force as a power-law function of time, one
of the key features of CS responses. The plots in
figure 5(a) show how the response adapted to a
step stimulus when the axes are linear. Characteris-
tic of power-law adaptation, the adaptation appears
to ‘stall’ almost immediately after stimulus onset,
decaying at an ever-slowing rate. Power-law responses
appear as straight lines when the time and discharge
axes are scaled logarithmically. Figure 5(b) plots the
responses from (a) on the same set of logarithmically

scaled axes for direct comparison. All the responses
follow a straight line, indicating power-law decay.

CS discharge exhibits hysteresis, in which the aver-
age response over time to a particular load amplitude
is different depending on whether the force increased
or decreased to that amplitude. Hysteresis is quan-
tified by loading the CS with a ‘staircase’ function,
in which the force is increased in steps and then
decreased in steps (figure 6(a)). Due to hysteresis in
load encoding, the average discharge due to any single
force level will be higher on the way ‘up’ the staircase
than on the way ‘down’, i.e. it will depend on both the
instantaneous force and its history (Ridgel et al 2000).

The model replicated this effect, with the tran-
sient response biasing the mean discharge upward
during increasing steps and downward during
decreasing steps (figure 6(b)), despite the model
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Figure 8. The model mimicked animal recordings of group 6B CS subjected to dynamic force stimuli scaled to different
magnitudes. (a) The single-step stimulus from figure 7(b), scaled to different levels: 0.6, 1.1, 1.8, 2.3, and 2.8 mN. (b) Scaling
the magnitude also scales the rate of change of the stimulus. (c) In animal recordings, the level of fluctuation in the animal
responses tended to increase with the scaling factor of the force. (d) Model responses formed a similar spectrum in response to
scaled forces. This includes responses that reflect the rate of change of the stimulus and responses that ‘bunch’ together at some
points. (e) Animal recordings encoded the rate of change of force and exhibited three identifiable features: (i) generally no activity
during negative rates of change of force; (ii) activity that generally encoded the positive rate of change of force; and (iii) activity in
response to small decreases in force, provided that the magnitude of the force was large. (f) Model responses correlated to changes
in force in the same ways as the animal recordings.

being formulated to have exactly one equilibrium
point. The model’s response to both step-up and
step-down stimuli will approach the same value as
time goes to infinity. However, due to the power-law
decay, the response approaches the equilibrium more
slowly as time progresses, meaning that in a practical
sense, the CS and model exhibit hysteresis. When
subsequent steps were considered, the responses
form a ‘hysteresis loop’ (figure 6(d)), which is gen-
erally considered undesirable for engineered sensory
systems.

Despite hysteresis being undesirable for engi-
neered sensors, we hypothesize that hysteresis and
rate-sensitivity are mechanistically linked. Recall
from the methods that the adaptation in our model
gives rise to the rate-sensitivity of the response. If this
adaptive response were removed, the model would no

longer encode du
dt . However, it was possible to refor-

mulate the model in a simpler way that abandoned
adaptation to encode the rate of force directly:

y = max(au̇b + cu + d).

This simplified model’s discharge directly encodes
du
dt , and so must encode force amplitude and rate
in a similar way as the full model. However, this
model’s response (figure 6(c)) showed no apparent
adaptation or hysteresis in response to the staircase
stimulus. Generating a plot as in figure 6(d) reveals
that no hysteresis occurs without the adaptation
(figure 6(e)). This suggests that the rate-sensitivity,
adaptive responses, and hysteresis observed in insect
CS are all interdependent characteristics that may
stem from the same underlying mechanism.
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Figure 9. Using the one-group model inversion technique, the model could recreate features of the force waveform applied to the
tibia based on the sensory discharge recording. (a) The model inversion process used the comparison between the animal
recording and model response to predict the force. (b) The inverted model accurately estimated the slope of the stimulus as well as
the amplitude of the hold phase. This was unsurprising because this trial was used to tune the model parameters. However, this
trial showed that since CS are strongly inhibited by decreasing forces, the one-group inversion technique failed to estimate them,
even when recreating the data used to tune the model. (c) The model inversion technique could follow the sensory discharge
exactly for this stimulus. (d) The model inversion technique performed similarly as in (b) when provided the discharge pattern
from a more dynamic stimulus. The model estimated the rate and amplitude of the non-decreasing portion of the force stimulus,
but again failed when the force began to decrease rapidly.

3.2. Model responses to walking force stimuli
To better validate that the model captures the dynam-
ics of CS discharge, we subjected the model to highly
dynamic ‘naturalistic stimuli’, i.e. the torque expe-
rienced by the leg as a stick insect walks on a level
surface (Dallmann et al 2016). Figure 7 shows the
eight naturalistic stimuli used, the corresponding
response of stick insect groups 6A and 6B tibial
CS, and the response of the model. Group 6A and
group 6B encode force complementarily: group 6A
to forces and rates of force (i.e. dF/dt) imposed by
extensor contraction resisted by external tibia flexion,
while group 6B responds to forces and rates of force
imposed by flexor contraction resisted by external
tibia extension (Zill et al 2011). Thus, two instances
of the model were tuned: a group 6A instance and a
group 6B instance. The 6A instance received the force
stimulus as indicated throughout figure 6 and was
tuned using only one trial (figure 7(a)). The 6B ver-
sion received an identical but negative force stimulus
due to its orientation relative to group 6A (Zill et al
2011) and was tuned using only one, separate trial
(figure 7(b)). Making the force negative also changes
the sign of dF/dt, meaning that both groups 6A and
6B may respond to the same force stimulus, even if the
force itself is biased in one direction or the other. The
parameter values for each instance of the model (i.e.
6A and 6B) are listed in table 2.

The same parameter values enabled the model to
reproduce group 6A discharges to all eight stimuli
tested. Predicted discharges appear most accurate in
response to extensor torques, group 6A’s preferred

direction (figure 7(c)). The group 6B model tuning
captured the dynamics of flexor torques most accu-
rately (figure 7(d)). Less accurate responses (figure 7,
highlighted in yellow) occurred to force decreases,
which in the animal, were often delayed in time and
firing accelerated as forces approached zero. These
discharges apparently result from cuticle properties
(viscosity) that will, in future work be incorporated
into the model (see discussion).

The model’s ability to capture the dynamics of CS
discharge was further validated by the way in which
its responses varied as the dynamic force stimulus
was scaled. Figure 8(a) shows the naturalistic stimu-
lus from figure 7(b), scaled to five different levels. The
stimuli’s rates of change are shown in figure 8(b). The
responses of the animal’s group 6B CS to the scaled
stimuli are shown in figure 8(c). These responses
appear to correspond more strongly to the rate of
change of the force than to its amplitude, exhibit-
ing steep decreases in firing frequency in response to
intermittently decreasing forces around 10% and 70%
of the stimulus duration. The model responses mim-
icked these features, with a similar ‘bunching’ of the
traces occurring around 10% and 70% of the stimulus
duration (figure 8(d)). However, because the model is
deterministic but animal discharge is stochastic, the
animal responses to differently scaled forces some-
times ‘cross’ one another in a way that the model
responses do not.

Plotting the group 6B discharge versus the rate of
change of the force shows that the discharge strongly
reflected the rate of change of force, despite how
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Figure 10. Using the one-group model inversion technique, the model could recreate some of the force stimuli used in
figures 7(b) and (d) based on the sensory discharge recording of the group 6B CS alone. In each case, the model minimized the
difference between the animal recording and model response ((a), (c), (e) and (g)) to predict the applied force, as long as the
discharge did not reach 0 AP/s. At one time in each trial (t = 0.5 in (b); t = 0.5 in (d); t = 0.7 in (f); t = 0.55 in (g)), the
discharge reached 0 AP/s, causing the envelope between the lower and upper force bounds to open very widely, limiting the utility
of the analysis. Interestingly, the lower bound force continued to respond to rapid increases in the force after the envelope opens
(t = 0.55 in (b); t = 0.55 in (d); t = 0.9 in (f); t = 0.65 in (h)).

dynamic the stimulus was and how adaptive the

response was (figure 8(e)). Three main features are

observed in the animal recordings. First, when the rate

of force was very negative (i.e. less than 5 mN s−1),

the discharge was always 0 AP/s or very nearly

0 AP/s (figure 8(e), (i)). This is because decreas-

ing forces, no matter their amplitude, tended to

silence CS discharge. Second, discharge was roughly

proportional to positive rate of force (figure 8(e), (ii)).

Finally, discharge did occur in response to forces that

decrease slowly, potentially due to tonic sensitivity,

as well as latencies in afferent responses and conduc-

tion speed of APs (figure 8(e), (iii)). The model inher-

ently reproduced all three of these response features,

albeit with less variability than observed in the animal

(figure 8(f)).
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Figure 11. The two-group model inversion method more accurately estimated decreasing forces than the one-group inversion
method. The inverted model could approximate the stimulus forces used in figures 7(b) and (d) based on the groups 6A and 6B
CS recordings. Considering the activity of both groups 6A and 6B ((a), (c), (e) and (g)) decreased the range of the estimated force
relative to the trials in figure 10, i.e. the lower and upper force bounds overlap at every point ((b), (d), (f) and (h), respectively).
At points where the match was poor (e.g. t = 0.6 s in (f)), the estimated force still mimicked the fluctuations in the force stimulus.

3.3. Inverting the model to estimate force stimuli
from CS discharge recordings
The model can be ‘inverted’, in which sensory
discharge recordings are provided as inputs, and
the model computes what force would be necessary
to produce the recordings. This functionality could
enable experimentalists to estimate the forces acting
on the legs based on CS recordings from standing
or walking animals (Noah et al 2001, 2004, Ridgel

et al 2001, Keller et al 2007). Although previous
studies of other strain-sensitive organs, e.g. spider
lyriform organs, suggest that forces from muscle
co-contraction acting on the cuticle may complicate
such a method (Blickhan and Barth 1985, Blickhan
et al 2021), our analysis suggests that due to the
placement of insect muscle attachments and CS on
the tibia, muscle co-contraction should not affect CS
discharge (see figure S2 in the supplementary
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materials). The one-group and two-group techniques
for this inverted model are described in the methods.

Figure 9 shows the results of inverting the model
using recordings from only one CS group. Because
these recordings were from the proximal tibial CS
of the cockroach (figure 9(a)), the model param-
eter values from the first column of table 2 were
used. Figure 9(b) shows that the inverted model could
accurately estimate the stimulus force that produced
the discharge pattern while the stimulus force was
increasing or held constant. This is because discharge
depends both on the level of force stimulus and its
positive rate of change. Because the model output
cannot become negative in response to decreasing
or negative forces, it cannot predict the amplitude
of the force once the discharge pattern goes to 0.
However, our method did ‘envelop’ the force by com-
puting a lower and upper bound of possible force.
The model correctly detected that the force must have
decreased when t ≈ 0.65 s in order to silence the
discharge. Many rates of decrease could have driven
the discharge to 0, bounded by the small decrease
in the yellow trace and the large decrease in the red
trace. The true force stimulus was contained between
these bounds. Figures 9(c) and (d) show that a sim-
ilar result was produced when the response from the
naturalistic stimulus from figure 3(b) was input. The
inverted model accurately estimated the force stim-
ulus while the force was increasing or constant but
broke down once the force began decreasing rapidly.
As in figure 9(b), the estimated force in figure 9(d) was
bounded during the decrease.

To further validate the performance of the
inverted model, we used the group 6B model (param-
eters in rightmost column of table 2) to predict the
stimulus force that generated the discharge patterns
from figures 7(b) and (d). These discharge and force
patterns are highly dynamic and served as a thorough
test of our model’s capabilities. Figure 10 shows that
the inversion technique performed comparably well
as in figure 9. However, because the discharge patterns
in figure 10 intermittently went to 0, the force enve-
lope opened drastically about halfway through each
trial, limiting the accuracy and utility of the inverted
model. To prevent the force envelope from opening,
we developed the two-group technique, which simul-
taneously considers group 6A discharge to extract
information about the rate and amplitude of force
decreases (see methods).

Figure 11 shows that the two-group technique
improved the performance of the inverted model. The
force envelope always remained much more closed
than in the one-group technique, with the lower and
upper bounds often equal. One noticeable exception
was the end of the third trial, in which the lower
bound traced the force accurately, but the upper
bound remained relatively high. This may be because
both groups were nearly silent during this period,
giving the model limited information from which to

estimate the force. In general, incorporating record-
ings from both groups 6A and 6B gave the model
information about how quickly force was changing in
both directions (i.e. increasing and decreasing), pro-
ducing more accurate tracking of the stimulus force
over time.

4. Discussion

This study described and analyzed a simple non-
linear dynamical phenomenological model of how
sensory afferents from groups of CS on the legs of
insects encode force. The model is simple because
it includes only one input, the stimulus force; one
dynamical adaptive variable; and one output, the dif-
ference between the stimulus and adaptive variable,
plus some additional terms. The model is nonlinear
and dynamical because the adaptive variable changes
according to a nonlinear function, which we predicted
and then tuned based on empirical data. Finally, the
model is phenomenological because it reproduces the
input-output relationship between the stimulus force
applied to the leg and the firing frequency of the
afferent nerve without any explicit reference to the
mechanics or nervous system of the animal. Despite
its simplicity and abstraction, this model predicts all
dynamic response properties of leg CS reported in
the literature (adaptation, rate-sensitivity, and hys-
teresis) to simple force stimuli and highly dynamic
force stimuli. It can be inverted to predict the force
stimulus required to produce recorded sensory dis-
charge. This model reproduces CS discharges more
accurately than a fractional-derivative model in most
of the cases tested and may be more readily related
to neural and mechanical mechanisms because of its
integer-order dynamics (i.e. no fractional derivatives,
(Chapman and Smith 1963, French 1984)).

In our phenomenological model, the ‘adapting
variable’ does not refer to any specific adaptation
mechanism. Such adaptation could arise from neural
properties such as spiking rate adaptation in the affer-
ents (Gerstner, 2000, French and Torkkeli 2008, Miha-
las and Niebur 2009, Szczecinski et al 2020a, 2020b),
macroscopic mechanical properties of the cuticle such
as viscoelastic creep (Brown and Stein 1966, Chap-
man et al 1979, Hillerton 1984), adaptive properties
of molecular transduction structures within the sense
organ (Gillespie and Walker 2001), or other sources.
Although it has been suggested that multiple simul-
taneous relaxation processes within the exoskeleton
and nervous system combine to produce adaptation
(Brown and Stein 1966), investigations of spider slit
sensilla suggest that adaptation is dominated by neu-
ral properties rather than mechanical effects. Specifi-
cally, afferent firing adapts even in response to direct
electrical stimulation (French 1984), and simulations
suggest that the dynamics of a slowly inactivating
Na+ channel can produce similar sensory adaptation
over time, providing a plausible mechanism by which
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this adaptation arises (French and Torkkeli 2008).
However, due to differences in anatomy and available
experimental techniques between spiders and insects,
it is uncertain if the same is true of CS. We plan to
perform similar experiments in insect CS to deter-
mine if neural properties contribute to the observed
adaptation.

4.1. Future applications
One motivation for this model was to endow a legged
robot with CS-like load sensing. Some insect-like
robots include strain gauges in some of the loca-
tions where CS appear on insect legs (Szczecinski
et al 2015, Goldsmith et al 2020), and the feed-
back they provide coordinates the timing (Szczecinski
et al 2017) and magnitude (Szczecinski and Quinn
2017) of motor output as observed in animals (Zill
et al 2004, Buschmann et al 2015, Tuthill and Wil-
son 2016, Bidaye et al 2017). Furthermore, care is
taken to dynamically scale the robot’s mechanics and
movement speeds to match those of an insect (Sutton
et al 2021). Using such a robot as a neuromechan-
ical model of an insect, the impact of CS-like load
processing on the control of walking can be tested.

Although this study did not present data from a
robot, in future studies we plan to implement this
model as a real-time filter for feedback from strain
gauges on the legs. We expect that such a filter would
improve the timing control of the actuators dur-
ing walking. Current biologically inspired walking
controllers use load feedback from strain gauges to
detect when the leg is supporting the body and subse-
quently alter the phasing of pattern generators in the
ventral nerve cord to generate stance phase motor
activity (Goldsmith et al 2020). To achieve proper
coordination, load feedback must often be amplified
to strongly inhibit parts of the network that generate
the swing phase, but such amplification also ampli-
fies electrical and vibrational noise that interferes with
proper coordination. We expect that the CS model
will improve network performance due to its sensi-
tivity to increasing forces. Specifically, when the leg
first makes ground contact, the CS model will initially
produce strong discharge with which to inhibit swing
phase motor networks and transition the network
into the stance phase. As the stance phase progresses,
further increases in force would reinforce the activity
of stance phase motor networks. Toward the end of
the stance phase, load on the leg may decrease due to
the forces of other legs (Dallmann et al 2017) or the
orientation of the leg itself (Cruse 1985), which would
silence discharge of CS that encode load increases
and activate CS that detect load decreases (Zill et al
2009), eliciting an activation (or disinhibition) of
swing phase control networks.

We also expect that a strain feedback filter like
the model in this study would improve the mag-
nitude control of the actuators during walking.
Many studies in invertebrates and vertebrates describe

positive force feedback, in which force feedback
excites agonist muscles to resist the sensed load (Proc-
hazka et al 1997a, 1997b, Zill et al 2014, 2015). One
would expect such a system to be unstable unless
closely monitored by the nervous system. However, a
more parsimonious explanation for the apparent sta-
bility of legged animals utilizing positive force feed-
back is that the CS (and Golgi Tendon Organs (Jami
1992)) encode the rate of change of force or ‘yank’
(Lin et al 2019) much more strongly than the tonic
force level (Zill et al 2021). In this way, the feedback
may regulate itself, by effectively reducing its gain
as it adapts to constant loads. Applying our model
to robotic and simulation studies will enable us to
directly compare robot performance with different
forms of force feedback and better understand how
sensory dynamics may contribute to the stability of
complete behaviors.

Another motivation for this model is to facil-
itate future experiments with animals. One possi-
bility would be to record from the CS of freely
walking insects and use this model to estimate the
forces and torques experienced during locomotion.
Because muscles actuate limbs by generating torque
about a joint, insight into the control of locomotion
can be gained by measuring the torques acting on
each individual leg joint. Typically, the torque act-
ing about each joint during locomotion is calculated
by simultaneously measuring ground reaction forces
(e.g. via a force plate) and leg kinematics (e.g. via a
motion-tracking camera system) and building a kine-
matic model to approximate the torque acting about
each joint (Murray et al 1994, Witte et al 2002, Dall-
mann et al 2016). Such a method is difficult to employ
for some insects, for example cockroaches, whose legs
are oriented under their bodies with flexed posture.
Furthermore, this method is expensive, complicated,
and requires much expertise and external equipment.
Recording CS discharge from freely-standing insects
(Noah et al 2001, 2004, Ridgel et al 2001, Keller et al
2007) and then using our model to estimate joint
torques from the discharge pattern may provide a use-
ful alternative method with relatively low cost and
complexity.

4.2. Limitations of the model
Although the model captures the response dynamics
of CS in many contexts, the model’s output deviates
starkly from the recorded 6B discharge in the trials
plotted in figures 7(a) and (c) (shaded yellow). In
many tests, the model predicts vigorous discharges
to force decrements while biological responses of CS
are both smaller in magnitude and often delayed in
onset. The source of CS’s sensitivity to force decrease
is unclear. These responses appear to be dependent
upon mechanical properties of the leg cuticle as
the receptors do not show ON-OFF discharges in
response to direct stimulation of the caps (Zill et al
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2011). Further study of the effects of the viscoelas-
tic properties of the exoskeleton in response to force
decreases may clarify the source of apparent damp-
ening of afferent discharges and further improve the
accuracy of the model. The results of such study
could be used to extend the model, e.g. by explic-
itly modeling viscoelastic leg dynamics in addition to
other dynamic processes that cause afferent firing rate
adaptation.

The recordings themselves may also contribute
to the disagreement between the model and animal
data. Ordinarily, discharges can be classified as small
and large amplitude on extracellular recordings (Zill
et al 2011). However, when afferents discharge rig-
orously, e.g. at the onset of a stimulus, multiple APs
from differently-sized caps may coincide, limiting the
accuracy of measurement of afferent firing frequency.
Because the model so accurately mimics responses
in all other contexts tested, it is possible that action
potential superposition led to inaccurate determina-
tion of the 6B firing frequency, meaning that the
model’s output reflects the actual afferent discharge
frequency. However, further work is needed because
both our model and the fractional derivative model
predicted robust afferent firing during force decreases
when none (or very little) occurred in the animal (cf
figures 7(a) and (c)).

4.3. How dynamic load feedback may enhance
legged locomotion
This study models the dynamics of CS afferent dis-
charge and shows how adaptation to tonic forces
and rate-sensitivity may be mechanistically related.
Processing load feedback this way should have impli-
cations for the control of locomotion. There is a grow-
ing call in motor control to focus on the rate of
change of force, or ‘yank’, in various animal systems
(Zill et al 2018, 2021, Lin et al 2019), particularly
since multiple load sensing organs across phyla appear
more sensitive to yank than force (spider slit sensilla,
(Torkkeli and French 2002); vertebrate Golgi tendon
organs, (Jami 1992); insect CS, (Zill et al 2018)).
Measuring yank rather than the instantaneous force
level may enable the nervous system to make predic-
tions about the future state of the load, for example,
by linearly extrapolating the force into the future,
e.g. u (t +Δt) ≈ u (t) +Δt · du

dt . Such information
may facilitate preemptive motor reactions to changing
conditions, for example, initiating a leg’s swing phase
motor program while force is decreasing but before
it disappears (Akay et al 2001, 2004). Such a predic-
tion could enhance interleg coordination as neigh-
boring legs enter the stance phase (Dallmann et al
2017), enable the leg to assume a new posture if the
foot slips (Zill et al 1992), or detect postural insta-
bility before the animal falls over. However, for the
nervous system to represent the instantaneous force
acting on the body, it would need to ‘integrate the
derivative’ of load over time, which would likely be

prone to drift and stochasticity. Future studies could
search for what neural systems are required to inte-
grate yank over time accurately. Furthermore, model-
ing and robotics studies may test whether successful
motor control should require integrating yank over
time at all.

Acknowledgments

The authors thank Till Bockemuehl and Gesa Dinges
for their thoughtful critiques and suggestions. NSF
Grant 2015317 to RDQ and NSS, NSF Grant 1704436
to RDQ, DFG Research Fellowship DA 2322/1-1 to
CJD.

Data availability statement

The data that support the findings of this study
will be openly available following an embargo at
the following URL/DOI: https://github.com/nss36/
campaniformSensillaModeling

ORCID iDs

Nicholas S Szczecinski https://orcid.org/0000-
0002-6453-6475
Chris J Dallmann https://orcid.org/0000-0002-
4944-920X

References

Ache J M and Dürr V 2015 A computational model of a descending
mechanosensory pathway involved in active tactile sensing
PLoS Comput. Biol. 11 e1004263

Agrawal S, Grimaldi D and Fox J L 2017 Haltere morphology and
campaniform sensilla arrangement across diptera Arthropod
Struct. Dev. 46 215–29

Akay T, Bässler U, Gerharz P and Büschges A 2001 The role of sen-
sory signals from the insect coxa-trochanteral joint in con-
trolling motor activity of the femur-tibia joint J. Neurophys-
iol. 85 594–604

Akay T, Haehn S, Schmitz J and Büschges A 2004 Signals from
load sensors underlie interjoint coordination during stepping
movements of the stick insect leg J. Neurophysiol. 92 42–51

Bidaye S S, Bockemühl T and Büschges A 2017 Six-legged walking
in insects: how CPGs, peripheral feedback, and descending
signals generate coordinated and adaptive motor rhythms J.
Neurophysiol. 119 459–75

Blickhan R and Barth F G 1985 Strains in the exoskeleton of spiders
J. Comp. Physiol. 157 115–47

Blickhan R, Weihmann T and Barth F G 2021 Measuring strain
in the exoskeleton of spiders-virtues and caveats J. Comp.
Physiol. A 207 191–204

Blum K P, Campbell K S, Horslen B C, Nardelli P, Housley S N,
Cope T C and Ting L H 2020 Diverse and complex mus-
cle spindle afferent firing properties emerge from multiscale
muscle mechanics eLife 9 1–32

Boyce W E and DiPrima R C 1967 Elementary Differential Equations
and Boundary Value Problems 4th edn (New York: Wiley)

Brown M C and Stein R B 1966 Quantitative studies on the slowly
adapting stretch receptor of the crayfish Kybernetik 3 175–85

Buschmann T, Ewald A, von Twickel A and Büschges A 2015
Controlling legs for locomotion—insights from robotics and
neurobiology Bioinspiration Biomimetics 10 041001

18



Bioinspir. Biomim. 16 (2021) 065001 N S Szczecinski et al

Chapman K M, Duckrow R B and Moran D T 1973 Form and role
of deformation in excitation of an insect mechanoreceptor
Nature 244 453–4

Chapman K M, Mosinger J L and Duckrow R B 1979 The role of
distributed viscoelastic coupling in sensory adaptation in an
insect mechanoreceptor J. Comp. Physiol. 131 1–12

Chapman K M and Smith R S 1963 A linear transfer function
underlying impulse frequency modulation in a cockroach
mechanoreceptor Nature 197 699–700
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