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ABSTRACT: Solvation thermodynamics is concerned with the
evaluation and physical interpretation of solvation free energies.
Endpoints DFT provides a framework for computing solvation free
energies by combining molecular simulations with a version of the
classical density-functional theory of solutions which focuses on ω,
the indirect (solvent-mediated) part of the solute−solvent
potential of mean force (indirect PMF). The simulations are
performed at the endpoints of a hypothetical charging process
which transforms the solvent density from the pure liquid state to
that of the solution state. The endpoints DFT expression for solvation free energy can be shown to be equivalent to the standard
expression for which the key quantity is the direct correlation function, but it has the advantage that the indirect term ω is more
focused on the change in solvent−solvent correlations with respect to the pure liquid as the solute is inserted into the solution. In
this Perspective, we review recent developments of endpoints DFT, highlighting a series of papers we have written together
beginning in 2017. We emphasize the importance of dimensionality reduction as the key to the evaluation of endpoints DFT
expressions and present a recently developed, spatially resolved version of the theory. The role of interfacial water at certain positions
which stabilize or destabilize a solute in solution can be analyzed with the spatially resolved version, and it is of considerable interest
to investigate how changes in solvation affect protein−ligand binding and conformational landscapes from an endpoints DFT
perspective. Endpoints DFT can also be employed in materials science; an example involving the rational design strategy for polymer
membrane separation is described. The endpoints DFT method is a scheme to evaluate the solvation free energy by introducing
approximations to integrate the classical density functional over a charging parameter. We have further proposed a new functional
which captures the correct dependence of the indirect PMF ω at both endpoints of the charging process, and we review how it might
be employed in future work.

1. INTRODUCTION

Statistical thermodynamic theories of solvation have deep roots
in chemical physics, with the two main branches being
inhomogeneous solvation theory (IST)1−5 and classical
density-functional theory (DFT).2,6,7 In the 1990s, we wrote a
series of three papers from the IST perspective about hydration
shell models of solvation, which attributes the thermodynamic
response when a solute is inserted into a liquid to a locally
perturbed region of solvent adjacent to the solute.8−10 The
central focus of the IST formalism is the expansion of the
solvation energy and entropy11 in a series of solute−solvent
multipoint correlation functions; the numerical implementation
requires a judicious choice of truncation scheme. Classical DFT
leads through the variational principle to an integral equation
theory of condensed phase fluids and solutions that dates back to
the 1950s;2,7 it has elements in common with the density-
functional theory formalism employed in widely used quantum
chemistry computational packages. The central focus of classical
DFT is the direct correlation function, which formally
corresponds to the functional derivative of the free energy
with respect to a change in the density. The earliest applications
of classical DFT were to simple atomic liquids.2 The structure

and thermodynamics of these liquids which have a high degree
of symmetry can be determined by first solving a pair of integral
equations for the total and direct correlation functions, given the
intermolecular potential. For complex liquids like water and
solutions containing solutes dissolved in water, it is much more
difficult to extract solute excess chemical potentials by solving
the DFT equations starting from knowledge only of the
intermolecular potentials, and the integral-equation methods
have been mainly developed in terms of site−site radial
distribution functions and three-dimensional versions of the
reference interaction site model (RISM);2,12−20 a local
molecular field integral equation theory of solvation has also
been developed in recent years.21−23 A feature of the DFT
approach is that it does not use an alchemical path for the
insertion of the solute into solution. This stands in contrast to
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the much more common computational approaches like free-
energy perturbation which involve explicit simulations along an
alchemical change of the state,24−28 or approaches which involve
reweighting the two endpoint simulations when the states have
sufficient overlap.29−31 Explicit (brute force) free-energy
simulations over alchemical intermediate states can be much
more readily carried out today than a decade or two ago, but they
are still computationally demanding. Many thermodynamic
processes of interest are not accessible by this brute force
approach, and little physical insight is provided by the structural
data generated at the alchemical intermediate states.
In the early 2000s, one of us (N.M.) constructed a DFT

theory of solvation thermodynamics which departed in two
important respects from other DFT-based approaches em-
ployed at the time.32−34 First, structural data extracted from
simulations of both physical endpoints of the solvation process,
the pure solvent and the solution with fully coupled solute, were
used to evaluate the DFT expression for the excess chemical
potential. The name “endpoints DFT” makes the use of data
from both physical endpoints explicit. Second, the DFT
equations for the excess chemical potential were formulated in
a one-dimensional energy representation, rather than the
standard six-dimensional coordinate (position and orientation)
representation; this greatly facilitated the ability to converge the
density functionals which appear in the DFT expression for the
excess chemical potential. Another important feature of
“endpoints DFT” is its focus on evaluating ω, the indirect
(solvent-mediated) contribution to the solute−solvent potential
of mean force (called indirect PMF hereafter). ω plays the
central role in endpoints DFT as the direct correlation function c
does in classical DFT, and is more focused on the solvent−
solvent effects on the solute−solvent correlations, as discussed
below.
This Perspective reviews recent developments of endpoints

DFT, highlighting a series of papers we have written together
beginning in 2017.35−40 In the following section, we provide a
brief introduction to, and overview of, our recent collaborative
work. In section 3, we review the theoretical framework and
implementation of endpoints DFT, including the approxima-
tions used to evaluate the endpoints DFT equations, especially
dimensionality reduction and our construction of a new
endpoints density functional based on the two-points quadratic
HNC (hypernetted-chain) approximation. In section 4, we
review some recent applications of endpoints DFT to problems
in biological and materials science.

2. RECENT DEVELOPMENTS IN THE ENDPOINTS DFT
APPROACH TO SOLVATION THERMODYNAMICS
2.1. DFT Framework in Comparison to IST. In 2017, we

published a paper which examined the relationship between the
IST and DFT frameworks for analyzing solvation thermody-
namics based on solute−solvent and solvent−solvent correla-
tion functions.35 When the expansion of the entropy in terms of
the correlation functions is carried out to all orders in IST and
the evaluation of the density-functional charging integral is
performed exactly in DFT, both DFT and IST provide exact
expressions for the solute chemical potential in solution. In
practice, approximations must be made. Both IST and DFT
contain an explicit term which when integrated over the solution
gives the one-body solute−solvent contribution to the solvation
free energy. We pointed out that, when the excess energy and
excess entropy are integrated separately, there can be a nonlocal
and ensemble-dependent contribution to both terms which

indeed cancels when both terms are evaluated exactly but may
not cancel when the two terms are each approximated and
evaluated separately. The “standard” lowest-order approxima-
tion in IST is to include the second-order solvent−solvent
energy change in the IST expression, while the “standard”
approximation employed in DFT is to use the HNC and PY
(Percus−Yevick) closure relations to evaluate the density
functional. The relative accuracy of these different approx-
imations can only be ascertained by comparison with exact free-
energy simulations of solute insertion given a common force
field. However, it is customary in the IST approaches to include
the two-body solvent−solvent energy and omit the two-body
and higher-order entropy terms. This approximation may be
unbalanced because the energy and entropy will tend to
compensate each other. Finally, we noted that the one-body
free-energy density computed from the position-dependent
energy and entropy of the solvent molecule does not correspond
to the free energy of transfer of the solvent from the bulk to a
position proximate to the solute. This observation has important
implications for IST- and DFT-based analyses of the role of
solvation in molecular association.

2.2. Endpoints DFT in Reduced Dimensions. The
endpoints DFT formalism was introduced in the early
2000s.32−34 As was emphasized in the first papers, the numerical
implementation of the fundamental equations is not practical in
the full coordinate representation because it requires the
calculation of high-dimensional density functions involving the
position, orientation, and intramolecular degrees of freedom of
all of the solvent and solute molecules, but this problem can be
overcome by projecting to lower dimensions. The original
implementation of endpoints DFT and virtually all of the
subsequent work has been carried out in a one-dimensional
energy representation.41 A widely distributed software package
which uses this one-dimensional representation, ERmod, is
available for endpoints DFT calculations.42 The price paid for
this reduction in dimensionality is the loss of spatial resolution,
but there are problems for which a spatially resolved version of
endpoints DFT is needed. In work published in 2019, we derived
a new endpoints DFT expression in a mixed four-dimensional
representation (three dimensions for position and one for
energy).39 This opens the way to identifying regions proximate
to a solute which provide net stabilizing vs destabilizing
contributions to the solvation free energy. We expect this
mixed four-dimensional position-energy representation to be
especially useful in future applications of endpoints DFT for
analyzing the role that interfacial water plays in protein−ligand
binding and many other molecular recognition processes as well
as to mapping protein conformational free-energy landscapes.

2.3. The Cavity Particle and a New Endpoints DFT
Functional. In our most recent joint publication, we showed
the equivalence between the density-functional theory of
solvation thermodynamics based on standard DFT expressions
that employ the direct correlation function c(x) and the
endpoints DFT formalism which focuses on the indirect PMF
ω(x).40ω(x) is closely related to the so-called cavity distribution
function y(x) which is the distribution function of a tagged
solvent molecule which interacts normally with all of the other
solvent molecules but does not interact with the solute. The
relationship between ω(x) and y(x) is given by ω(x) = −kBT
log y(x). A key idea underlying endpoints DFT is to use
simulation data to determine the correct behavior of the
functional at the physical endpoints, and the integral over the
charging parameter is then approximated by a linear form using
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either HNC or PY approximation. Because the integration
within the excluded volume region of a solute makes a
substantial contribution to the solute chemical potential, it is
desirable to estimate this contribution as accurately as possible.
However, it is not generally possible to determine ω(x) within
the excluded volume region of the solute molecule without
employing special sampling methods that amount to simulating
a cavity particle in the solution containing the solute and solvent.
In order to assess the accuracy of the endpoints DFT
approximations used within the solute excluded volume region,
we performed explicit simulations of a cavity particle in solutions
containing model hydrophobic solutes of different sizes.40 We
found that, for solutes whose sizes are greater than or equal to
∼1.5× the diameter of a water molecule,ω(x) changes sign from
negative to positive as the cavity particle penetrates deeper into
the hydrophobic core, whereas the sign remains negative when
theHNCor PY approximations are used to estimateω(x). It was
also observed that the water molecules in the first shell adapt
well to the hydrogen bonds of the cavity particle located near the
solute surface, which may be related to the enhanced
fluctuations of water at hydrophobic interfaces.43 Based on the
results of the cavity simulations, we constructed a new density
functional which gives the correct behavior of ω(x) inside the
cores of larger solutes as well as having the correct gradient with
respect to the variation of the solute−solvent distribution at the
pure liquid state. The new functional varies quadratically with
the density change and gives the exact result at the two
endpoints, hence our name 2P-QHNC (two-points quadratic
HNC; see ref 40 for the detailed naming convention concerning
2P-QHNC).We found that the new 2P-QHNC functional leads
to improved estimates for the excess chemical potential of
idealized hydrophobic solutes as the solute size grows, but its
construction relies on cavity particle simulations which are
costly. We have begun to explore alternative routes to the
calculation of ω(x) in the solution system with fully coupled
solute−solvent interaction in the interfacial solute−solvent
region using reweighting techniques instead of explicitly
simulating cavity particles.40

We now present amore complete description of the endpoints
DFT framework for estimating solvation free energies from
simulations of the two physical endpoint states, the pure liquid
and the solute in solution.

3. THEORETICAL DEVELOPMENTS

3.1. DFT Approach to Solvation Free Energy. The focus
of our developments is the solvation free energy Δμ. It is the
free-energy change for turning on the solute−solvent interaction
and is to be expressed as a functional of solute−solvent
distribution functions in the DFT approach. Our formulation
starts from the Kirkwood charging formula.35,40,41 We let x be
the full coordinate of position and orientation of the solvent
molecule relative to the solute (with the intramolecular degrees
of freedom if the molecule is flexible), and the solute−solvent
intermolecular interaction is assumed to be pairwise additive.
The solute−solvent pair potential of interest is v(x), and to
formulate the charging formula, the coupling parameter λ (0≤ λ
≤ 1) is employed to introduce a set of solute−solvent interaction
potentials uλ(x). When λ = 0, u0(x) = 0 and the statistical
ensemble is generated without solute−solvent interactions.
When λ = 1, u1(x) = v(x) and the system is the solution system of
interest. Δμ is then expressed as an integral over λ as

u
x

x
xd d

( )
( )f

0

1
∫ ∫μ λ

λ
ρΔ =

∂
∂
λ

λ (1)

where x( )fρλ is the one-body distribution function of solvent
around the solute and the superscript f is attached to show that
the distribution is represented over the full coordinate. It should
be noted that x( )fρλ is obtained in the presence of the solute−
solvent interaction uλ(x).
The key quantity in our DFT treatment is the indirect

(solvent-mediated) part of the potential of mean force x( )fωλ
(denoted as indirect PMF) introduced by

ux x x x( ) ( ) exp( ( ( ) ( )))f f f
0ρ ρ β ω= − +λ λ λ (2)

where x( )f
0ρ is the distribution function in the pure solvent

(reference solvent) at λ = 0 and β is the inverse of kBT with the
Boltzmann constant kB and the temperature T. x( )fωλ is called

the indirect part, since k T x xlog( ( )/ ( ))f f
B 0ρ ρ− λ and uλ(x) are

the potential of mean force (PMF) and direct interaction
between the solute and solvent molecules, respectively.

xexp( ( ))fβω− λ is further termed the cavity distribution
function.2 This function corresponds to the distribution of a
“cavity” particle, for which the molecular structure is the same as
that for the solvent molecule and only the interaction with the
solute is turned off. x( )fωλ quantifies the effect on the solute−
solvent distribution of the change in the solvent−solvent
correlation due to the solute insertion. With eq 2, eq 1 is
modified through the use of partial integration into33,35,40,41
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where ρf(x) denotes x( )f
1ρ in the solution system (λ = 1) for

notational brevity. Equation 3 is an exact expression for the
solvation free energy Δμ. Its first term is the average sum of the
interaction energy between the solute and solvent in the solution
system of interest (λ = 1), and the second term corresponds to
the pair entropy (in the units of kBT) to quantify the deviation of
the solute−solvent distribution in the solution (λ = 1) from that
in the pure solvent (λ = 0). The third term is written as an
integral of x( )fωλ over the coupling parameter λ and
incorporates the many-body effects from the variations in
solvent−solvent correlations with λ.
The standard DFT approach has been formulated by

employing the intrinsic free energy and a series of direct
correlation functions.2,7,44 The one-body direct correlation

function c x( )(1)
λ is introduced by

z u cx x x( ) exp( ( ) ( ))(1) (1)ρ β= − +λ λ λ (4)

where z = exp(βμv)/Λ3 with the chemical potential μv and the
thermal de Broglie length Λ of the solvent. The solvation free
energy is then expressed in the grand-canonical ensemble as
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∫

μ ρ

μ ρ ρ
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(5)

where Fλ is the intrinsic free energy at the coupling parameter λ.
It was shown40 by virtue of

k T c cx x x( ) ( ( ) ( ))f
B

(1)
0
(1)ω = − −λ λ (6)

that eq 3 is equivalent to eq 5. According to eq 6, x( )fωλ is more

focused on the solute−solvent effects than c x( )(1)
λ . This is

because the one-body direct correlation function c x( )(1)
λ

corresponds to the free-energy change (divided by −kBT) for
transferring a cavity particle from vacuum to configuration x. It is
referenced to vacuum and is zero when the solvent is absent. On
the other hand, x( )fωλ vanishes beyond a certain correlation
length and becomes zero in the bulk region (far from the solute)
of the solution (when the thermodynamic limit is achieved).
Our formulation starts from the Kirkwood charging formula

of eq 1 and is advantageous in that it is valid in any ensemble
including the grand-canonical, canonical, and isothermal−
isobaric. The intricacies due to the conservation of the number
of solvent molecules in the canonical and isothermal−isobaric
ensembles can be further resolved by setting the solute−solvent
potentials to zero at far separations.34,40−42 Therefore, eq 3 is
readily amenable for evaluation of Δμ when combined with
molecular simulations through the scheme of dimensionality
reduction described in the next subsection.
An approximate expression for Δμ is called endpoints DFT

when it is constructed from distribution functions obtained from
molecular simulations at the two endpoint states of physical
interest: the pure solvent (λ = 0) and the solution (λ = 1).
Within the framework of eq 3, an endpoints expression can be
obtained by introducing approximations to x( )fωλ . The Percus−
Yevick (PY) and hypernetted-chain (HNC) approximations are
formulated by adopting the linear dependencies on λ of the
cavity distribution function xexp( ( ))fβω− λ and the indirect

PMF x( )fωλ , respectively, under the linear variation of the
solute−solvent distribution through

x x x( ) ( ) (1 ) ( )f f f
0ρ λρ λ ρ= + −λ (7)

The integration over λ in the third term of eq 3 can then be
performed analytically with eq 7, leading to an endpoints
formula for Δμ. The PY and HNC relationships correspond to
the first-order expansions with respect to the variation of the
solute−solvent distribution. A higher-order scheme can be
proposed through a quadratic dependence of the indirect PMF
on λ, as will be presented in the later subsection which describes
an improved endpoints functional. It should be noted that the
contrast between integral-equation approaches and the
endpoints method lies in the schemes for obtaining the
distribution functions and carrying out the integration over
the coupling parameter λ to determine Δμ. In the former,2,6,7 a
set of distribution functions are usually determined in self-
consistent and iterative manners and care needs to be taken for
the integration over λ for some choices of closure relationships
(e.g., when using bridge functions).45 In the latter, the
integration is already performed over λ for the approximate
functional of free energy and a set of distribution functions

obtained from molecular simulations are directly substituted
into the functional without using iterative procedures.

3.2. DFT Approach in Reduced Dimensions. When the
molecules of interest are polyatomic, in fact, the numerical
implementation of eq 3 is not practical. This is because the full
set of coordinates of position and orientation (with intra-
molecular degrees of freedom for flexible species) is high-
dimensional and a distribution function represented over a
coordinate of high dimension is not straightforward to handle.
The problem of dimensionality can be overcome by projection
to a lower-dimensional coordinate. In the present subsection, we
introduce the energy representation and provide a DFT
formalism over the energy coordinate.
The energy representation is a scheme for dimensionality

reduction in the density-functional method.32−34,40−42 In this
representation, the solvent distribution around the solute is
expressed with respect to the solute−solvent pair interaction
v(x), where x is the full coordinate. The instantaneous
distribution ( )eρ ϵ̂ is then introduced as

v x( ) ( ( ))e

i
i∑ρ ϵ δ ϵ̂ = −

(8)

where v(xi) refers to the pair interaction between the solute and
the ith solvent molecule and the superscript e signifies that the
function is represented over the energy coordinate ϵ. With eq 8,
the high-dimensional x is projected onto the one-dimensional ϵ
and the information other than the pair-energy value is projected
out.
In the energy representation, the density-functional method is

formulated by restricting the solute−solvent interaction
potentials uλ in the charging formula of eq 1 to those with the
composite form of uλ(v(x)), where v(x) is the potential function
in the solution system of interest (λ = 1). uλ can then be
expressed as uλ(ϵ) when ϵ denotes the value of v(x). At the
endpoints, u0(ϵ) = 0 and u1(ϵ) = ϵ, since v(x) itself is the
potential at λ = 1. Equation 1 then reduces to

u
d d

( )
( )e

0

1
∫ ∫μ λ ϵ

ϵ
λ

ρ ϵΔ =
∂

∂
λ

λ (9)

where ( )eρ ϵλ is the ensemble average of eq 8 in the presence of
the solute−solvent interaction uλ. This is the charging formula in
the energy representation. It is an exact expression with the
distribution function represented over the one-dimensional
coordinate. The formulation in the energy representation can be
developed in parallel to that from eqs 1−3 in the full-coordinate
representation. The indirect PMF ( )eω ϵλ is introduced by

u( ) ( ) exp( ( ) ( ) )e e e
0ρ ϵ ρ ϵ β ϵ ω ϵ= − { + }λ λ λ (10)

and the solvation free energy Δμ is expressed as
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(11)

In eqs 10 and 11, ( )e
0ρ ϵ refers to the pure solvent at λ = 0 and

ρe(ϵ) denotes ( )e
1ρ ϵ for the brevity of notation. The parallelism

is striking between eqs 9, 10, and 11 and eqs 1, 2, and 3. This is
due to the use of the composite form of uλ, and it is anticipated
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that many of theoretical features in the full-coordinate DFT that
cannot be implemented in practice due to the high
dimensionality of the full coordinate will be numerically feasible
over the one-dimensional coordinate ϵ. Equation 11 is exact, and
its structure is in correspondence to that of eq 3. The first term is
the average sum of the solute−solvent interaction energy in the
solution (λ = 1), and the second term refers to the pair entropy
expressed over the one-dimensional coordinate ϵ. The variations
in solvent−solvent correlations through the introduction of the
solute−solvent interaction are incorporated in the third term
through ( )eω ϵλ , and an endpoint expression forΔμ is obtained by
formulating the λ dependence of ( )eω ϵλ .
An endpoints expression for Δμ is obtained in the energy

representation when the λ dependence is approximated for the
indirect PMF ( )eω ϵλ and the integration over λ is performed
analytically in the third term of eq 11. The PY-type and HNC-
type approximations in the energy representation can be
introduced by taking uλ(ϵ) so that

( ) ( ) (1 ) ( )e e e
0ρ ϵ λρ ϵ λ ρ ϵ= + −λ (12)

as in eq 7. These approximations are formulated as the linear
dependencies on λ of the cavity distribution function
exp( ( ))eβω ϵ− λ and the indirect PMF ( )eω ϵλ , respectively, over
the energy coordinate ϵ. Since ( ) 0eω ϵ =λ at λ = 0 by definition
of eq 10, the linear variation with respect to λ can be written in
terms of ωe(ϵ) or ( )e

0σ ϵ , where ωe(ϵ) means ( )eω ϵλ at λ = 1 for
notational brevity and ( )e

0σ ϵ is defined as the derivative at λ = 0
through

( )
( )e
e

0
0

σ ϵ
ω ϵ

λ
=

∂
∂
λ

λ= (13)

The combined PY−HNC relationship is adopted to approx-
imate the integral over λ in the third term of eq 11, and the
endpoints expression for Δμ thus formulated has been
implemented in a software package ERmod.42 It is publicly
available on the web at http://sourceforge.net/projects/ermod
and can be used in combination with common molecular
dynamics (MD) simulation packages.
The formulation in the energy representation is parallel to that

in the full-coordinate representation. It is required in a density-
functional treatment, in fact, that the coordinate used to
construct the distribution functions be one that suffices to
determine the value of the interaction potential. The full
coordinate certainly satisfies this requirement, and the energy is
the coordinate with minimum dimensionality that satisfies the
requirement. The relationship between the interaction potential
and the distribution function is further one-to-one when the
potential is set to be zero at far separations between the solute
and solvent in the canonical and isothermal−isobaric ensembles.
The spatial information on the solvent distribution around the
solute is lost in the energy representation, though. To restore the
spatial resolution at the lowest possible dimensionality, we
proposed a mixed representation over the position and energy,
in which the energy serves as a proxy for all of the variables other
than the position, including the orientation and the intra-
molecular flexibility.39 The mixed representation over the
position r and the pair-energy ϵ of a solvent molecule is
formulated by defining the instantaneous distribution r( , )mρ ϵ̂
as

vr r r x( , ) ( ) ( ( ))m

i
i i∑ρ ϵ δ δ ϵ̂ = − −

(14)

where ri and v(xi) are the position of the ith solvent molecule
relative to the solute and the pair energy between them,
respectively, and the superscript m stands for the mixed
representation. r can be set to the center of mass of the solvent
molecule or refer to the oxygen site in the case of water.
A DFT expression for Δμ in the mixed representation can be

formulated in parallel to those in the full-coordinate and energy
representations by adopting the set of solute−solvent
interactions with the composite form of uλ(r, ϵ), where u0(r,
ϵ) = 0 and u1(r, ϵ) = ϵ. The Kirkwood charging formula is then
written as

u
r

r
rd d d
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ρ ϵΔ =
∂

∂
λ

λ (15)

where r( , )mρ ϵλ is the ensemble average of eq 14 at the coupling
parameter λ. r( , )mρ ϵλ is obtained by marginalizing the full-

coordinate distribution x( )fρλ , and the information other than
the position and energy is projected out. It should be noted that
eq 15 can be formulated in this way, since the energy ϵ is retained
as a coordinate along with the position r. In fact, the four-
dimensional density r( , )mρ ϵλ is a function determined uniquely
through the one-to-one relationship by the solute−solvent
interaction potential. When the coordinate set used to construct
the solute−solvent density function is not enough to specify the
value of the interaction potential, for example, it is the water
oxygen coordinate r only, an expression like eq 15 cannot be
formulated. The indirect PMF r( , )mω ϵλ is further introduced by

ur r r r( , ) ( , ) exp( ( , ) ( , ) )m m m
0ρ ϵ ρ ϵ β ϵ ω ϵ= − { + }λ λ λ

(16)

and the spatially decomposed DFT expression is given by

r rd ( )∫μ μΔ = Δ
(17)
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Equations 17 and 18 are an exact formula. Δμ(r) is interpreted
as the free-energy density at r, and each term in eq 18 has a
similar physical meaning to the corresponding terms in eqs 3 and
11. Approximations to the third term of eq 18 can be introduced
similarly to the case of (one-dimensional) energy representa-
tion, and the PY-type and HNC-type forms were adopted in ref
39 as in ref 42. In numerical implementations, the spatial
position in eq 14 needs to be discretized. A grid can be
employed, or the space is divided with respect to the solvation
shells around chemically important groups of atoms.

3.3. Improved Endpoints Functional. The indirect PMF
( )eω ϵλ plays a key role in eq 11 and is approximated in the

previous subsection as the linear dependencies on λ of
exp( ( ))eβω ϵ− λ and ( )eω ϵλ . The linear approximations are
formulated in terms of either ( )e

0σ ϵ or ωe(ϵ). An improved
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approximation may then be formulated when both of ( )e
0σ ϵ and

ωe(ϵ) are employed to model the λ dependence of ( )eω ϵλ under
eq 12.40 Equation 13 at λ = 0 and ( ) ( )e eω ϵ ω ϵ=λ at λ = 1 can
both be enforced with a quadratic form of

( ) (1 ) ( ) ( )e e e
0

2ω ϵ λ λ σ ϵ λ ω ϵ= − +λ (19)

and with this form, the third term of eq 11 leads with eq 12 to
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The λ dependence of ( )eω ϵλ is linear in the HNC-type expression
and is extended in eq 19 to the quadratic form by employing
( )e

0σ ϵ and ωe(ϵ) at the two endpoint states of λ = 0 and 1.
Equation 19 was thus called two-points quadratic HNC (2P-
QHNC) in ref 40, where the Δμ estimation was observed to
improve significantly for large solutes.
In the endpoints functional introduced in the previous

subsection, ( )eω ϵλ is approximately treated in terms of ( )e
0σ ϵ in

the repulsive-core region of the solute due to the use of a
weighting function.42 ( ) 0e

0σ ϵ < is usually observed in the solute
core, and the PY-type and HNC-type approximations lead to
( ) 0eω ϵ <λ at ϵ ≫ 0. ωe(ϵ) ( ( )eω ϵ= λ at λ = 1) is equal to the

negative of the solvation free energy of the solvent molecule in
its bulk, on the other hand, when the solute is large enough and
the cavity particle is located in the deep-core region of the solute.
This is because ( )eω ϵλ is the transfer free energy of the cavity
particle from the bulk to the location specified by the energy
coordinate ϵ and the cavity particle does not interact with the
other solvent molecules in the deep core of a large enough
solute. ( )eω ϵλ is thus positive at ϵ ≫ 0 when the solvent is
ambient water, for example, and the contribution from the deep-
core region will be too positive for a large solute in the
approximate calculation with the original functional in ref 42
compared to the exact treatment with the exact ( )eω ϵλ . Equation
19 is a scheme to capture the correct behavior of ( )eω ϵλ in the
deep-core region of a large solute, and the results obtained in ref
40 suggest that it is an improved functional for Δμ.
Given that ϵ≫ kBT and ρe(ϵ)≈ 0 in the deep-core region, the

evaluation of ωe(ϵ) from eq 10 at λ = 1 is usually not possible
there when molecular simulations are conducted only at λ = 0
and 1 without employing an advanced strategy such as umbrella
sampling.40 It was actually observed, though, that the density of
the solvation free energy in the excluded-volume region depends
weakly on the structure (conformation) of the solute
molecule,39 and accordingly, the repulsive-interaction effect on
the structural change is expected to reflect only the contributions
from the “skin” parts that are close to the solute surface. A
reweighting technique based on UWHAM (unbinned weighted
histogram analysis method)38,46 can then be used to construct
ωe in the “skin” parts efficiently, and the 2P-QHNC functional
will be of use to study the solvent effects on the conformational
changes of biomolecules.

4. APPLICATIONS
4.1. The Role of Interfacial Water in Protein−Ligand

Binding and Conformational Free-Energy Differences. It
is widely believed that the displacement of specific water
molecules from the binding site at protein receptor surfaces

plays a key role in determining protein−ligand binding
affinities.47−51 The simple idea, cast in the IST framework, is
that interfacial water molecules located at positions for which
the sum of the excess energy and entropy is unfavorable will
make a favorable contribution to binding if they are replaced by a
ligand functional group. This is the basis of the popular
“Watermap” tool that has been used for lead optimization in
drug design.47−51 The idea can also be analyzed within the
context of endpoints DFT, with the goal of identifying the
thermodynamic signatures of interfacial water molecules, some
of which are observed in crystal structures, which are predicted
to provide the largest contribution to the binding affinity when
displaced by the functional group of a ligand.37 It is important to
distinguish the contribution of interfacial water to the stability
(excess chemical potential) of the protein from its possible role
in protein ligand binding. To clarify this point, we rewrite eq 3
for a protein solute as a functional of the density of water ρ(x) at
the interface and the indirect PMF ω(x)

k T x x x x x x

x x
x
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λ ω
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Δ = − [ − ] + [− ]

+
∂
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(21)

where the superscript f has been removed. It was shown in ref 10
that the behaviors of distribution functions at far separations
between the solute and solvent give rise to the ensemble
dependence of a thermodynamic quantity. In eq 21, the
contributions from the far separations are actually canceled,
and eq 21 is valid in any ensemble. For a more detailed
discussion of this point, see refs 35 and 37. Equation 21
highlights the central role of ω(x). When a water molecule
located at the interface x interacts more favorably with the other
solvent molecules than one in the bulk, ω(x) < 0 and this water
makes an unfavorable contribution to the stability of the protein
in solution through the second term in eq 21. When the
displaced water is subject to an unfavorable interaction with the
other solvent molecules compared with bulk ω(x) > 0, water at
this location makes a favorable contribution to Δμ through the
second term in eq 21.
Furthermore, the total PMF WT(x) to transfer a water

molecule from the pure solvent to location x at the interfacial
region can be expressed as

k T Tsx
x
x

xWT( ) ln
( )
( )

( )B
0

(1)ρ
ρ

= − =
(22)

where s(1)(x) is the one-body term of the space-resolved entropy
at location x in solution from the IST expression.37 Since the
direct part of the PMF v(x) is equivalent to the one-body term
(solute−solvent term) of the space-resolved energy in the IST
expression e(1)(x), the indirect PMF corresponds to the one-
body term in the IST (energy + entropy) expansion for the
solvent excess chemical potential:

v e Tsx x x x x( ) WT( ) ( ) ( ) ( )(1) (1)ω = − = −[ − ] (23)

When expressed in this way, it is now clear from eqs 21, 22, and
23 why water molecules at the interface with a repulsive indirect
PMF make a favorable (stabilizing) contribution at the one-
body level to the excess chemical potential of the solute, while
water molecules with an attractive indirect PMF make an
unfavorable (destabilizing) contribution at the one-body level.
When the indirect PMF ω(x) at x is positive, the one-body
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contribution to the free energy to move a water to x from the
bulk (or pure solvent) is attractive and vice versa.
In approximate implementations of IST formulas for the

solute chemical potential and for the analysis of interfacial
solvent effects on protein−ligand binding, the two-body energy
replaces the third term of eq 21, and the first term is dropped.
Two-body and higher-order terms in the IST entropy expansion
are usually not included in the IST analysis of the
thermodynamic signatures of interfacial waters. A key
distinction between IST and DFT is that IST includes two-
body energies in the analysis while DFT takes care of the many-
body effects as the variation of the indirect PMF against λ (third
term of eq 21). It is conjectured that theDFT formulas which are
based on the analysis of the indirect solute−solvent PMF, and
therefore include the IST one-body energy and one-body
entropy terms but not the two-body energy, provide a well
balanced approximation, especially for strongly associating
liquids such as water for which cancelation between the
second-order energy and the second- and higher-order entropy
terms is more likely.
In order to further motivate why the analysis of the indirect

PMF ω holds information about the role of interfacial water in
protein−ligand binding, we have designed a thermodynamic
cycle to show how the relative binding free energy ΔΔGbind
between a pair of congeneric ligands can be expressed in a way
that includes the contribution ω from displaced water
explicitly.37 The relative binding free energy ΔΔGbind between
a large ligand L and a small ligand S can be approximately
calculated by the following formula
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where the subscript PS denotes the case that the solute is the
complex of the protein and the small ligand; the subscript S
denotes the case that the solute is the small ligand located in bulk
water; Vdisp is the region in which water is found in the system
containing the small ligand but not in the system containing the
large ligand; and ΔUpro−lig is the difference of the interaction
between the protein and ligand as the ligand which binds
changes from small (S) to large (L). The first three terms
capture the thermodynamic effects of displacing interfacial water
closest to the protein and the change in the protein−ligand
interactions when a functional group is added to a ligand core of
a congeneric pair.
According to eq 24, we can suggest a scheme to search for

water molecules to displace by ligand functional groups in terms
of the thermodynamic signatures of interfacial water in Table
1.37 We suppose that the functional group added to the ligand is

polar when the displaced water is at the high density hydrophilic
or bulk density hydrophilic position and is nonpolar when the
displaced water is at the high density hydrophobic or the low
density dry water position. For a “high density hydrophilic
water”, the difference of the interaction energies between the
protein and ligand ΔUpro−lig needs to be strongly negative to
increase the binding strength because both the first and second
terms of eq 24 are positive (ρPS(x) > ρ0 andωPS(x)≫ 0). Thus, a
polar functional group is added to replace the interfacial water
that has this thermodynamic signature. A similar argument holds
for “bulk density hydrophilic water”, since ρPS(x) ≈ ρ0 and
ωPS(x) ≈ −v(x) ≫ 0. When the displaced water is at a high
density hydrophobic or low density dry water position,ΔUpro−lig
is considered to be small based on our supposition and v ≈ 0 for
both cases. Under the assumption that v is approximately equal
to zero, it can be proved that the sum of the first two terms in eq
24 is negative.37 Therefore, these two terms account for most of
ΔΔGbind and make a favorable contribution. We also show in ref
37 that the magnitude of the sum of these two terms increases
with |ωPS|, which agrees with the following argument that those
interfacial water molecules with indirect PMF that are large in
magnitude are the prime candidates to be replaced by a ligand
functional group during a search of a protein receptor for
possible binding sites. Furthermore, for the “low density dry
water” (ωPS < 0), the sum of the first and second terms is
bounded by −kBTρ0Vdisp.37 This also agrees with our summary
in Table 1 that the “low density dry water” is not a good target
for ligand design because the corresponding ΔΔGbind is small in
magnitude.
In ref 37, we examined the total PMF WT, the direct

interaction energy v, and the indirect PMFω of water molecules
at binding sites on the surface of three proteins which are drug
design targets and for which congeneric binding data are
available. We constructed a simple fitting function to illustrate
the empirical correlation between the change of binding free
energyΔΔGbind of congeneric ligand pairs and the magnitude of
the indirect PMF ω from the extra displaced water molecules

G A B
i

n

ibind
1

∑ ωΔΔ = +
= (25)

where A and B are two fitting parameters and ωi is the indirect
PMF from the ith water molecule. ΔΔGbind values based on eq
25 versus ΔΔGbind values using the double decoupling charging
method over alchemical states for 12 congeneric ligand pairs are
compared in Figure 1. As can be seen, they agree well with a
correlation of R2 = 0.84.

Table 1. Thermodynamic Signatures of InterfacialWater (the
Unit of Energy Is kcal/mol)a

type WT ρ/ρ0 v ω
one-body

effect on Δμ
design
target

high density
hydrophilic

<0 >1 ≤−4 ≫0 stabilize yes

bulk density
hydrophilic

≈0 ≈1 ≤−4 ≈−v stabilize yes

high density
hydrophobic

<0 >1 ≈0 <0 destabilize yes

low density dry
water

>0 <1 ≈0 >0 stabilize
(small)

?

bulk density
water

≈0 ≈1 ≈0 ≈0 no

aReprinted (adapted) with permission from ref 37. Copyright 2018
American Chemical Society.
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There are two challenges to implementing a more systematic
search for high affinity ligand binding sites based on the
thermodynamic signatures of receptor bound waters. They both
involve the problem of how to rapidly calculate the potential of
mean force (corresponding to the excess chemical potential of a
water molecule) WT for all of the interfacial locations. A
straightforward approach to calculate WT is to measure the
work of dragging a tagged water molecule from the bulk to the
specific position on the interface,37 but this method is
impractical for searching binding sites throughout the entire
solute−solvent interface. In ref 38, we proposed a novel
approach to estimate the excess chemical potential of water
molecules in solution by applying UWHAM46 to the simulation
data generated from the endpoints states. The excess chemical

potential of the interfacial waters (not the solute) estimated in
this way agrees with the benchmark within a 95% confidence
interval for most interfacial locations. Second, because the
analysis of a water “position” involves six variables (three for
position and three for orientation), evaluation of the indirect
PMF ω at many locations for the purposes of identifying waters
to displace by the ligand is not straightforward. Here we can
make use of the four-dimensional representation of endpoints
DFT for aqueous solutions, consisting of the three-dimensional
coordinates of the water oxygen and the interaction energy of
the water with the solute.39 Use of this reduced four-dimensional
representation which we introduced in 2019 should facilitate the
development of a DFT-based method of “Watermap”-type
analysis. We will report on this in a future communication.
Conformational free-energy differences play an essential role

in many areas of biophysics, including inhibitor specific binding,
and allosteric effects. The reorganization of the hydration shell
solvent can make a significant contribution to conformational
free-energy differences of peptides and proteins. The spatially
resolved four-dimensional version of endpoints DFT that we
developed can be used to investigate how the reorganization of
interfacial solvent contributes to the conformational preferences
of peptides and proteins. As a first effort in this direction,39 we
used eq 11 for an analysis of how the solute−solvent interaction
and solvent reorganization affect the conformational preferences
of alanine dipeptide in water, a frequently used model system.
We further defined the concept of the hydration free energy
within nonoverlapping regional volumes by suitably discretizing
eq 18. We found that the regional hydration free-energy
contributions to the conformational preferences of the peptide
could be used as an accurate proxy for the total contribution
including the entire solvent volume as shown in Figure 2, and
furthermore, when the intramolecular conformational energy of
alanine dipeptide was added to the hydration free energy, the
sum of the terms accurately reflected the conformational free
energies obtained by explicit long MD free-energy simulations.
Mapping conformational free-energy landscapes of proteins, and

Figure 1. ΔΔGpredict based on eq 25 versus ΔΔGDDM using the double
decouplingmethod from 12 congeneric ligand pairs. The displaed water
molecules are located at binding sites on the surface of coagulation
factor Xa (FXa), streptavidin, and the mouse major urinary protein
(MUP). Reprinted (adapted) with permission from ref 37. Copyright
2018 American Chemical Society.

Figure 2.Correlations of the total free energy of hydration of alanine dipeptide against the partial contribution from the excluded-volume and first-shell
regions of C1, N1, C2, C3, and N2 atomic sites and that from the excluded-volume to second-shell regions. A single point in the right panel corresponds
to a single conformation of alanine dipeptide shown in the left panel. With the linear regression against the total sum, the slope is 0.54 and 0.75 for the
sums to the first and second shells, respectively, with correlation coefficients of 0.99 and 1.00.
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particularly how changing the protein sequence alters the
landscape, is currently one of the most challenging problems in
computational biophysics.52 We are hopeful that the spatially
resolved four-dimensional version of endpoints DFT can be
further developed and will become a useful tool to better
understand the central role that solvation plays in determining
the conformational landscapes of proteins.
4.2. Water Dissolution into Polymers. Here we treat

polymers. Polymer material is useful in membrane separation,
and the performance as the separation medium is quantified by
the permeability of the molecule to be separated. The standard
framework to describe the permeability is the solubility−
diffusion mechanism, in which the permeant dissolves into the
polymer medium and diffuses across it. The permeability is then
governed often by the extent of dissolution, that is determined in
turn by the accompanying change in the free energy. The
dissolution free energy reflects the intermolecular interaction
between the permeant and polymer at atomic resolution.
Atomistic schemes to analyze the dissolution are thus necessary
in order to establish a theoretical and computational framework
for the rational design of polymer membranes for separation.
MD simulation is useful for the atomistic analysis of polymer

physical properties. In MD, the intra- and intermolecular
interactions can be described at the atomic level and the
structural flexibility of polymer species is incorporated naturally
during the generation of the statistical ensemble. A key for the
design of a polymer membrane is then to develop a computation
method for the dissolution free energy. A polymer is usually a
highly flexible molecule, and the free-energy method is required
to be suitable for treating flexible species. The endpoints DFT
method in the energy representation meets this requirement. It
is applicable to flexible molecules, and the dissolution free
energy can be obtained as a free energy of solvation by viewing
the permeant as the solute and the polymer as the solvent.
The dissolution of water was examined53 in nine polymers

depicted in Figure 3. The polymer medium was treated at the

state of amorphous bulk and was a homogeneous “solvent”when
the solvation free energyΔμ of a water molecule was calculated.
Figure 3 shows Δμ obtained through the endpoints functional,
with the experimental values. The mean absolute deviation is 0.5
kcal/mol between the computed and experimental sets of Δμ,
and their correlation coefficient is 0.97. The agreement is thus

satisfactory given that, even for small solute molecules in water,
the computational Δμ deviates from the experimental value by
∼1 kcal/mol with well tuned force fields.54 It is demonstrated
with Figure 3 that the endpoints method is predictive for the free
energy of water dissolution in a diverse class of polymers.

5. CONCLUSIONS AND FUTURE DIRECTIONS

Endpoints DFT is a framework for fast computation and
physical interpretation of the excess chemical potential
(solvation free energy) through the combination of molecular
simulation and the density-functional theory of solutions. The
simulation is to be performed only in the pure liquid and the
solution system of interest, which are the endpoints of the
hypothetical insertion process of the solute into the system. Our
formulation starts from the Kirkwood charging formula and is
valid in any ensembles including the canonical and isothermal−
isobaric. The central role is played in the formulation by the
indirect (solvent-mediated) part of the solute−solvent potential
of mean force (indirect PMF), and we have shown that the
expression for the solvation free energy is equivalent to the one
in classical DFT in which the key quantity is the direct
correlation function. As seen in eqs 3 and 21, our density
functional can identify the stabilizing or destabilizing effect of a
solvent molecule on the solute. The thermodynamic signatures
of interfacial water can be categorized according to the density
and indirect PMF, and through eq 24, a scheme can be devised
to search for druggable targets on protein receptors.
A difficulty in the DFT approach is the high dimensionality

when the coordinate for the distribution functions is the full set
of positions and orientations of a solvent molecule relative to the
solute. This difficulty can be circumvented by introducing the
one-dimensional energy representation, in which the solute−
solvent pair energy is adopted as a projected coordinate and the
free-energy functional is formulated in terms of the energy
distribution functions. The energy representation enables
applications of the endpoints DFT method to a wide variety
of systems, and we saw that the dissolution of a water molecule
in a polymer is described at chemical accuracy. The spatial
resolution of endpoints DFT can be restored in a numerically
feasible manner by implementing the four-dimensional
representation of mixed position and energy. When the
hydration effect is analyzed for the conformational change of
alanine dipeptide, it was found that the total effect of hydration is
well correlated to the contribution up to the first shell with
quantitatively non-negligible effects from farther distances.
With the endpoints DFT approach, all-atom analyses are

possible for solvation effects on a protein and its complex in
direct connection to the free energy, given that molecular
simulations are now possible at nanometer and microsecond
length and time scales. The role of interfacial water at a certain
position to stabilize or destabilize a solute can be analyzed with
the spatially resolved version, and it is of interest to specify which
water molecules are responsible for conformational changes in
such pharmaceutically important targets as kinase family
proteins.55,56 Another possibly is ligand design. The Watermap
analysis has shown the importance of the energetics of water
around a protein receptor, and with eq 24, the endpoints DFT
approach provides a systematic route to estimating the free-
energy change due to the displacement of solvent resulting from
the variation of the ligand. Key properties are the one-body
distribution function, the indirect PMF, and a gridding
procedure based on the four-dimensional coordinates (r, ϵ).

Figure 3. Polymers examined in ref 53 and the correlation plot between
the computed and experimental free energies Δμ of water dissolution.
The dashed line in the right panel stands for the least-squares fit of the
computedΔμ to the experimental, and its slope is 1.0 with an intercept
of 0.5 kcal/mol.
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With these computational tools, the DFT-based design of
ligands can be anticipated.
The endpoints DFT method is an approximate scheme to

determine the solvation free energy. Approximations are
introduced to the integral of the indirect PMF over the coupling
parameter. A systematic improvement of the free-energy
functional can thus be possible by incorporating the correct
dependence of the indirect PMF on the coupling parameter at
the endpoints. We proposed 2P-QHNC and, indeed, observed
improved performance of the functional for large, hydrophobic
solutes. It is then necessary to identify which region in the energy
or spatial coordinate is important and which is not for
implementing the correct behavior of the indirect PMF, in
view of its computational demand. The deep-core region of the
solute seems less important in the analysis of conformational
changes of a protein, and we are now developing a scheme to
obtain the indirect PMF in the “outer skin” of the excluded
volume.
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