


mesh size and the embedded boundary position for elliptic problems. However to the best of our knowledge, such

a preconditioner has not been developed for advection-dominated problems. Furthermore, preconditioning is not a

suitable solution to a restrictive CFL condition when using an explicit time integration scheme.

In this paper, we investigate a cut-cell version of the discontinuous Galerkin difference (DGD) method [19–21]

that does not appear to suffer from the small-cell problem. DGD discretizations are based on piecewise discontinuous

polynomial basis functions whose support extends over several elements; we believe the stencil of the DGD reconstruction

eliminates the small-cell problem without requiring special treatment. This claim is supported by the preliminary results

presented herein.

The rest of the paper is organized as follows. Section II presents the governing equations and their weak formulation;

the section also describes the level-set method used to represent the geometry and develop quadratures for cut-cells.

Section III provides the cut-cell DGD discretization for the Euler equations, and accuracy studies are presented in

Section IV. Finally, we conclude with a summary in Section V.

II. Cut-cell finite-element formulation using level-sets

This section provides a high-level overview of how the cut-cell finite-element method can be used to discretize the

Euler equations of gas dynamics. Consider the strong form of the two-dimensional Euler equations:

mU

mC
+ mFG

mG
+
mFH

mH
= 0, ∀ x ∈ Ω, (1)

where the state variables are the conservative variables, U = [d, dD, dE, 4]) , and the flux vectors are

FG =



dD

dD2 + ?
dDE

(4 + ?)D



, FH =



dE

dED

dE2 + ?
(4 + ?)E



.

The pressure is defined by the calorically perfect ideal gas law as ? = (W − 1) [4 − d

2
(D2 + E2)], with W = 1.4. For

simplicity, we do not include boundary conditions for the time being.

We begin the discretization process by partitioning the domain into elements of uniform size∗; that is, Ω =
⋃ 
^=1

Ω^

where Ω^ denotes the domain of a single element ^ with boundary Γ^ . Let ℎ = max^

√
Ω^ be the nominal element size

(in 2D). To obtain the Galerkin weak formulation of the Euler equations, we multiply (1) by a test function and integrate

over each element to yield the following problem statement: find U ∈ , (Ω) such that

 ∑

^=1

∫

Ω^

V mU
mC

3Ω^ −
 ∑

^=1

∫

Ω^

(
mV
mG

FG +
mV
mH

FH

)
3Ω^ +

 ∑

^=1

∮

Γ^

V
(
FG=G + FH=H

)
3Γ^ = 0, ∀V ∈ , (Ω),

(2)

where, (Ω) is an appropriate function space. Note that we have used integration-by-parts on each element to arrive at

the weak form (2).

The infinite-dimensional problem (2) is transformed into a finite-dimensional problem by replacing , (Ω) with

a finite element space, which we denote by ,ℎ (Ω). Thus, the generic finite-element problem statement is to find

Uℎ ∈ ,ℎ (Ω) such that

 ∑

^=1

∫

Ω^

Vℎ
mUℎ

mC
3Ω^ −

 ∑

^=1

∫

Ω^

(
mVℎ

mG
FG +

mVℎ

mH
FH

)
3Ω^ +

 ∑

^=1

∮

Γ^

Vℎ F̂= (U+
ℎ ,U−

ℎ ) 3Γ^ = 0, ∀Vℎ ∈ ,ℎ (Ω),

(3)

where F̂= (U+
ℎ
,U−

ℎ
) denotes a conservative numerical flux function. The flux function depends on the trace value taken

from the interior of the element, U+
ℎ
, and the trace value from the exterior of the element, U−

ℎ
; the latter is based on the

numerical solution, for interior faces, or the boundary conditions, for boundary faces. The particular numerical flux

functions used in this work will be described in Section IV.

∗we consider non-conforming, Cartesian adaptive meshes later.
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more importantly, we require the quadrature rules to have strictly positive quadrature weights. The requirement for

positive quadrature weights is motivated by our long-term interest in developing an entropy-stable cut-cell discretization.

Since we use a level-set function to represent the geometry, we can use the algorithm from Reference [24] to produce

quadrature rules for the cut-cells that satisfy our requirements.

The algorithm described in [24] provides high-order accurate quadrature rules to evaluate integrals over surfaces

and volumes defined implicitly via a level-set function restricted to a given hyperrectangle. Suppose Ω̄^ represents a

hyperrectangle (mesh element) intersected by the embedded geometry. Then the algorithm presented in [24] provides a

quadrature rule that meets our requirements; that is, all quadrature points lie strictly inside their respective domains,

x8 ∈ Ω^ = Ω̄^ ∩Ω , and all quadrature weights are strictly positive, F8 > 0.

III. Cut-cell DGD discretizations and their conditioning

As discussed in the introduction, one of the numerical challenges associated with cut-cell methods is the so-called

small-cell problem. Near the embedded boundary of the domain, some cut cells may be orders of magnitude smaller

than the regular (non-cut) mesh cells. This can produce system matrices (or Jacobians) that have eigenvalues with

relatively small modulus resulting in poor conditioning [25].

In this work we investigate the impact of the small-cell problem on a discontinuous Galerkin difference (DGD)

discretization. Since Galerkin difference (GD) basis functions extend over several elements, we hypothesize that

the discretization will automatically ameliorate the small-cell problem. The high-order GD method was originally

proposed in the context of continuous basis functions [26], but it was subsequently extended to discontinuous basis

functions [19, 20].

We adapt the DGD method of [21] to cut-cell meshes with the following differences: instead of using summation-

by-parts (SBP) operators for element-level operations, we use conventional discontinuous Galerkin basis functions; and,

instead of triangular elements, we focus on quadrilateral elements. The development of entropy-stable cut-cell operators

is a work in progress and will be included in a forthcoming paper.

A. DGD basis functions

The DGD method is a form of finite-element method, albeit based on non-standard basis functions. Therefore,

to familiarize readers with the method, we review the discontinuous basis functions used in the one-dimensional

formulation of the DGD scheme.

The discrete DGD solution is given by

Dℎ (x) =
 ∑

8=1

D8k8 (x), (5)

where D8 is the discrete solution at the center of element 8 and k8 (x) is the corresponding discontinuous basis function.

The discontinuous basis function in one dimension is given by

k8 (G) =
{
P^,8 (G), if G^ < G < G^+1, and 8 ∈ (^ ,
0, otherwise,

where (^ is the stencil of element ^, which is defined later. The function P^,8 (G) ∈ P? (Ω^ ) is the ?th order Lagrange

interpolant that satisfies the interpolation conditions

P^,8 (G 9 ) =
{

1, G 9 = G8 ,

0, otherwise,

where G 9 is the center of an element in the stencil (^ .

The interpolation condition is satisfied for one-dimensional basis functions, but for two- and three-dimensional

unstructured grids it will be violated since we only solve the interpolation conditions in a least-squares sense. Nevertheless,

the resulting DGD basis functions are still able to exactly represent polynomials of total degree ?, provided the stencil

(^ is unisolvent for P? (Ω^ ).
The stencil (^ of an element ^ is the set of all degrees of freedom that directly influence the solution on element ^;

typically, the stencil (^ consists of ^ itself and some of the neighbouring elements. Starting from ^, elements are added
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In this case, we use DG with a Symmetric Interior Penalty Galerkin (SIPG) [27] penalty for the interface flux

functions. For the DGD case, we use GD basis, in addition.

Figure 5 compares the condition number of the stiffness matrix for two discretizations. The Figure 5(a) shows the

condition number using the DG method for different cut-cell sizes. As observed in the one-dimensional advection case,

the condition number also increases significantly as U is decreased. And, again, for the DGD case, the condition number

remains almost constant with decreasing U.
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(b) DGD

Fig. 5 Condition number vs cut-cell factor, U, for a two-dimensional Poisson PDE

The above tests support our hypothesis that DGD will alleviate, if not eliminate, the small-cell problem. As

mentioned earlier, the small-cell problem has been addressed previously in several distinct ways. The advantage of the

DGD method is that it does not require any special treatment for cut-cells beyond the aforementioned quadrature rules.

This makes the DGD method straightforward to implement for complex geometries.

IV. Accuracy studies

This section presents numerical experiments that further explore the DGD cut-cell discretization. In particular,

we investigate accuracy in the context of Cartesian adaptive meshes and the Euler equations of gas dynamics. The

discretization is implemented using the open source finite element library mfem [28] and the quadrature algorithm

of [24].

A. Steady isentropic vortex problem

To verify the accuracy of the Euler-equations discretization, we begin by solving the steady isentropic vortex problem

using the cut DGD discretization, and we compare the results against those obtained using the conforming-mesh DGD

discretization. We chose the two-dimensional isentropic vortex because it has an analytical solution and, thus, is useful

for verifying accuracy.

The two-dimensional isentropic vortex is a simple flow consisting of circular streamlines and radially varying density

and pressure. The exact solution for the two-dimensional steady vortex problem is defined as

d(A) = d8

[

1 + W − 1

2
"2

8

(

1 −
A2

8

A2

)] 1

W−1

, D(A, \) = −d
√
W?

d
"0 sin \,

E(A, \) = d
√
W?

d
"0 cos \, 4(A, \) = ?

W − 1
+ 1

2
W?"2

0,

(10)

where A is the radial polar coordinate, and A8 = 1 is the reference radius. The density and Mach number at A8 are given

by d8 = 1 and "8 = 0.5, respectively. Here, D, E, 4 are calculated using the isentropic gas relations and "0 is the local
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mach number given by

"0 =

√√√
2

W − 1

[(
d8

d

)W−1 (
1 + 1

2
(W − 1)"2

8

)
− 1

]

.

The domain for the steady-vortex verification is a quarter annulus: Ω = {(A, \) | 1 ≤ A ≤ 3, 0 ≤ \ ≤ c/2}. The

conforming mesh is created by generating an # × # quadrilateral mesh in polar-coordinate space. For the cut-cell

domain case, the background mesh is a simple Cartesian mesh with domain {(G, H) | 0 ≤ G ≤ 3, 0 ≤ H ≤ 3}, generated

using an # × # quadrilateral mesh in Cartesian space. A slip-wall boundary condition is applied along the inner radius

at A = 1, and the exact solution is supplied to incoming characteristics on the remaining boundaries. For the slip-wall,

the numerical flux is defined by the Euler flux with the normal component of the velocity projected out. Finally, we use

the Lax-Friedrichs flux function along interior interfaces.

The solution for ? = 3, # = 80 is shown in Figure 6 for conforming (non-cut) and cut DGD discretizations. The

rough edge for cut-cell DGD solution is a limitation of the plotting software and does not reflect the true domain.

Figure 7 compares the !2 density error calculated from the two DGD discretizations as a function of element size

ℎ = 1/# . The results show that degrees ? = 1 and ? = 3 have closer to optimal ? + 1 rates of convergence — both

non-cut and cut — while ? = 2 is sub-optimal. Similar sub-optimal behavior for ? = 2 was observed in [21].

(a) conforming (non-cut) DGD discretization (b) cut-cell DGD discretization

Fig. 6 Density solution for ? = 3, # = 80

B. Flow over an ellipse

Next we solve the Euler equations to model the flow over an ellipse. We selected the ellipse problem because it

approximates an airfoil while having a simple level-set function. We are currently developing a level-set approach for

more general geometries.

The ellipse is placed inside a 40 × 40 square domain and a background mesh is constructed using quadrilateral

elements as shown in Figure 8. The ellipse is centered at (G, H) = (20, 20), and its level-set function is

q(G, H) =
(
G − 20

0.5

)2

+
(
H − 20

0.05

)2

− 1. (11)

The elements in the initial, coarse mesh are refined isotropically (i.e. split into four equal-sized cells) in a non-conforming

sense starting from the cells that are cut by the embedded ellipse. The refinement is constrained such that elements have

at most two elements along any edge.

The Mach number for the flow is set to " = 0.5 and the angle of attack is zero. Along the edges of the square

domain, far-field boundary conditions are imposed using a characteristic-based numerical flux function. As with the

isentropic vortex, the slip-wall boundary condition at the surface of the ellipse is imposed by removing the normal
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(a) ? = 1 (b) ? = 2 (c) ? = 3

Fig. 9 Density contour plot, full domain

(a) ? = 1 (b) ? = 2 (c) ? = 3

Fig. 10 Density contour plot, leading edge

(a) ? = 1 (b) ? = 2 (c) ? = 3

Fig. 11 Density contour plot, trailing edge
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the context of the Euler equations. Future work will address entropy stability and level-set functions for more complex

domains. We are also seeking a formal theoretical explanation for the favorable conditioning of the cut-cell DGD

method.
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